This patent document relates to a system to deliver two-part expanding polymeric resins to below surface depths.
In a typical two-part expanding polymeric resin system, the two chemical components are impingement-mixed at the surface through appropriate pumping/proportioner equipment and delivered through a single injection tube or probe. The depth to which the mixed components can be delivered is limited to: (a) the time it takes the mixed components to gel and “set-up” which is a function of the density/mix of the resin system and the temperature the resin is injected; (b) the back-pressure created at the end of the probe due to the expansion of the resin after it is injected; (c) if air-locks within the delivery probe occur; and (d) the pressures the mixed material can be injected through a single probe.
The gel time of typical two-part expanding resin systems is generally very short and usually measured in seconds. The more reactive or faster is the expansion of the resin system, the quicker the gel time or set-up time. Similarly, within limits, as the temperature of the chemicals increase, the gel time or set-up time decreases. The gel time or set-up time often limits the depths to which an already-mixed polymeric resin system can be delivered before the material “sets up” and plugs the injection probe.
Once the mixed expanding resin is injected through the injection probe, a back-pressure often develops around the base of the area of the injection and the back-pressure slows down the rate of injection of the mixed resin, which causes the resin to prematurely set-up in the injection probe and plugs the probe.
If the soils at depth into which the expanding resin system is being injected into are very cohesive or saturated, the air within the injection probe could create an air-lock as the chemicals are being delivered from the surface through a single injection probe. At the very least, the back pressure caused by the air within the injection probe will slow the progress of the mixed two-part resin system and therefore minimize the amount of material that can be injected before the expanding resin system sets-up and plugs the probe.
There is a direct relationship between the pressure at which the mixed resins are injected and the depth to which the resins can be delivered. The higher the pressure the faster the material can be delivered through a single injection probe and therefore the deeper and the longer the material can be delivered before the resin sets-up and plugs the injection probe. Despite applied pressures in delivering the two-part resin through a single probe, eventually the probe will plug due to depth and/or back-pressure.
This patent document addresses these and other difficulties with the prior art.
In an embodiment there is a method of delivering a polymer resin below ground surface. A bore that is accessible from the ground surface is created below the ground surface. A mixing chamber, which is a component of a foam delivery system, is lowered into the bore. A polymer resin is discharged from the mixing chamber of the foam delivery system into the bore. The mixing chamber is lifted within the bore and the polymer resin is discharged from the foam delivery system when the foam delivery system is lifted within the bore.
In an embodiment there is a foam delivery system for delivering an expanding polymer resin below a ground surface. The foam delivery system has a first delivery tube having a surface end and a mixing end and a second delivery tube having a surface end and a mixing end. A mixing chamber is attached to the respective mixing ends of each of the first and second delivery tubes. A first delivery arm and a second delivery arm provide a pathway from and connect to the mixing chamber for discharging the expanding polymeric resin from the mixing chamber.
In an embodiment there is a method of delivering an expanding polymer resin having a first component and a second component. An injector, which comprises a mixing chamber, is placed at a first sub-surface location. The first component and the second component of the expanding polymer resin are mixed in the mixing chamber to create a mixed polymer resin. The mixed polymer resin is discharged from the injector at the first sub-surface location creating a first foam discharge. The injector is moved to a different sub-surface location. The first component and the second component of the expanding polymer resin are mixed in the mixing chamber when the injector is at the different sub-surface location to create the mixed polymer resin. The mixed polymer resin is discharged from the injector at the different sub-surface location creating a second foam discharge, which expands into contact with the first foam discharge.
These and other aspects of the device and method are set out in the claims, which are incorporated here by reference.
Embodiments will now be described with reference to the figures, in which like reference characters denote like elements, by way of example, and in which:
In the claims, the word “comprising” is used in its inclusive sense and does not exclude other elements being present. The indefinite article “a” before a claim feature does not exclude more than one of the feature being present. Each one of the individual features described here may be used in one or more embodiments and is not, by virtue only of being described here, to be construed as essential to all embodiments as defined by the claims.
To deliver foam below a ground surface 34 a bore 36 (
Below the mixing end 32 of the delivery tubes 12, 14, the two Components “A” and “B” combine together in the mixing chamber 22. The mixing chamber 22 comprises off-setting arms 26, which may be appropriately angled and spiraled to effect maximum mixing of the two chemicals coupled with opposing flow of the chemicals themselves.
In other embodiments, the pile stem may be a different form of hollow pipe. For example, the pile stem may be a drill stem or a conduit
In other embodiment other expandable synthetic substances having similar properties may be used. The particular resin system used can be tailored to meet specific design applications relating to compressive strength, tensile strength, shear strength, flexural strength and other structural characteristics to meet the specific design application of the resin system for any given project. In some embodiments, for example, the polymeric resin system to be delivered at depth may be a high density, two-part, closed-cell, hydro-insensitive polymer resin, such as a polyurethane system.
In some embodiments, the delivery tubes or probes can be made of metal such as aluminum, copper, steel or other metal or, made of a synthetic material such as rigid or flexible plastics, fiberglass or other synthetic material. The delivery tubes 12, 14 could be sectional with each section being welded, friction fitted, glued, screwed or joined together in some other fashion. The embodiments of
In some embodiments, the delivery tubes 12 and 14 can be, for example made of rigid metal, synthetic material or flexible metal through which each of the two component parts of the expanding resin will be individually pumped to the desired depth. The delivery tubes 12 and 14, which for example, may have a ¼″-¾″ inside diameter or larger, may be constructed from one continuous length or may be sectional and glued, welded, screwed, friction fit, or otherwise fit together to form a delivery tube of the desired length. The pumping system(s) may be, for example, a conventional pumping and/or proportioner equipment readily available in the marketplace capable of pumping the two components in their proper proportions into the delivery system described in this Patent document.
The foam delivery system 10 may be used in a variety of applications, for example for stabilizing and/or densifying base soils at extreme depths, for stabilizing around the base of screw-piles and other types of piles that have been screwed or placed at depth, for densifying base soils in earth quake prone zones as a prevention against liquefaction, for filling voids along vertical planes at depth in such cases as for example old mine tunnels and shafts, new mining tunnels and shafts, conduits, or any other structure resting along a vertical plane that requires back-filling and stabilization and for filling voids along horizontal planes in such cases as for example abandoned conduit, culverts, mined tunnels, or any other structure resting along a horizontal plane that requires void-filling.
Immaterial modifications may be made to the embodiments described here without departing from what is covered by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2,583,016 | Mar 2007 | CA | national |