Foam-dispensing pumps are constructed and arranged for enabling the mixture of air and a selected liquid, in a desired ratio, for the production of foam. This mixture of air and a selected liquid is pushed through a screen or mesh layer of some suitable material and construction in order for aeration of this mixture to occur. The charge of air is divided into smaller bubbles which are coated with a thin film of the selected liquid. The opening size of the screen (or mesh) and the number of passes through other (optional) downstream screens, typically with smaller openings, influences the “quality” of the foam which is ultimately dispensed to the user. The mixture ratio of the charge of air and the charge of liquid also influences the “quality” of the foam relative to whether the foam is considered too wet and thus runny or too dry and unacceptable.
While the selection of a proper mixture ratio of air and liquid is important, it is also important to have a pump mechanism which is cost-effective to manufacture and is reliable. The concept of “reliable” is embodied, at least in part, in the accuracy of the metering of air and the delivery of liquid for the mixture. “Reliable” is also embodied in the valve structures which perform their metering and delivery responsibilities as intended, and without any noticeable leakage or malfunction.
The air valve structures which are included as part of this disclosed foam-dispensing pump provides reliable valve structures for use in this type of pump.
Air valve structures are disclosed which are constructed and arranged for use as part of a foam-dispensing pump. The pump includes an air cylinder for use in delivering a charge of air to a mixing chamber which is upstream from a mesh insert. The air cylinder includes a housing and a reciprocating air piston and the combination defines an interior air chamber. The pump also includes a liquid cylinder for use in delivering a charge of liquid to the mixing chamber. The liquid cylinder includes a portion of the housing and a reciprocating liquid piston.
In one embodiment, as disclosed herein, the pump is assembled to a container which includes a volume of the selected liquid. The representative container has an externally-threaded neck and the pump includes an internally-threaded collar which securely attaches the pump to the container. Other container constructions and other means of connection or attachment are contemplated. In this assembled and attached condition one portion of the pump extends in an axially downward direction into the interior of the container. Another portion of the pump extends in an axially upward direction and protrudes beyond the upper surface of the collar. This “another portion” includes an actuator which defines a dispensing passage and outlet opening for the foam which is produced as the air and liquid mixture passes through and exits from the mesh insert.
The actuator is constructed and arranged to reciprocate axially through an upper opening in the collar. The downward travel of the actuator is the result of manual depression (i.e. a manual downward force on the upper surface of the actuator). The upward travel of the actuator is the result of a spring and a spring-biasing arrangement within the pump. As the actuator is manually pushed in an axially downward direction, an air piston and a liquid piston are each driven axially as the initiating steps in the delivery of air and liquid, respectively. With each stroke of the actuator a charge of air and a charge of liquid are delivered into a mixing area or chamber which is upstream from the mesh insert used for aeration. The flow of air is dependent on the opening of the disclosed air valve so that a portion of the air which is within the air chamber is able to escape as the air chamber volume is reduced by the downward travel of the air piston, as driven by the actuator. When the pressure level within the air chamber is below the resiliency force of the air valve in order to remain open, the mixing air side of the air valve closes. Several air valve structures are disclosed representative of the design embodiments which are contemplated.
As the spring arrangement acts on the air piston and thereby pushes upwardly on the actuator, the pump components return to what is best described as their “starting position”, ready for another manual actuation (i.e. stroke) and for the delivery of another charge or dose of foam. This upward travel of the air piston creates a vacuum within the air chamber and this negative pressure needs to be relieved by the introduction of make-up air. The disclosed air valves are constructed and arranged to allow the introduction of make-up air into the air chamber. Once the negative pressure within the air chamber returns to a pressure which is near atmospheric pressure, the make-up air side of the air valve closes.
In order to provide these described air valve functions, the disclosed foam-dispensing pump includes several embodiments of an air valve structure which includes an annular valve lip and an annular valve element. The annular valve lip of each embodiment is formed as an integral portion of the liquid piston. This valve lip cooperates with the valve element to control the delivery (and amount) of air for mixing with the liquid. The disclosed valve structures achieve a reliable seal which prevents the migration of foam or liquid into the air chamber.
Each disclosed air valve structure provides an improved construction which is easy to fabricate and easy to install and which is reliable and accurate in terms of air-flow management. The concept of air-flow management includes both timing and volume.
For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates. One embodiment of the invention is shown in great detail, although it will be apparent to those skilled in the relevant art that some features that are not relevant to the present invention may not be shown for the sake of clarity.
Referring to
The structural details of actuator 22 are illustrated in
With continued reference to
In use, the pump 20 is assembled to a suitable dispensing container which is holding a supply of a selected liquid product, and the initial step which needs to be performed by a user is to manually push in a downward direction on the upper surface 22a of actuator 22. Considering the mechanical configuration and arrangement of the cooperating component parts, see
As the air piston 26 travels within housing 30, the interior volume of their defined space 56 is reduced thereby resulting in an increase in the interior air pressure within space 56. This increased interior air pressure causes a radially inner portion of the air valve structure 40 to “open” in order to force a dose or charge of air into a mixing area such as mixing chamber 58 which is adjacent the entry end 60 of the mesh insert 32. A radially outer portion of the air valve structure 40 remains “closed”. Downward axial travel of the actuator 22 also effects downward axial travel of the liquid piston 28. The movement of the liquid piston 28 reduces the volume of space 62 which includes a charge of the liquid product. Concurrently with this downward movement, the upper end 64 of the liquid piston 28 separates from the enlarged head 66 of the pull stick 38. This separation creates a liquid flow path for liquid to flow into mixing chamber 58. The dose or charge of air and the dose or charge of liquid are combined within mixing chamber 58 before that air-liquid mixture is pushed into and through the mesh insert 32. The passage of the mixture through the mesh insert 32 results in the production of foam. The dose of foam which is produced is pushed out through the nozzle portion 68 of actuator 22.
The downward axial movement of the actuator 22 which in turn causes the downward axial movement of the air piston 26 and of the liquid piston 28 also causes the compression (i.e. shortening) of spring 34. When the manual force on the upper surface of the actuator 22 is relieved or released, the spring 34 is allowed to return to its extended starting condition. The spring force which is released as the spring returns to its starting condition causes the air piston 26 to move in an axially upward direction. This upward travel creates a negative pressure (i.e. a vacuum or suction) within defined space 56. This negative pressure causes the radially outward portion of the air valve structure 40 to “open” in order to admit make-up air into the defined space 56. While the air pressure within defined space 56 is being adjusted back to something close to atmospheric pressure, the radially inner portion of the air valve structure 40 begins to close. As soon as the positive pressure is lowered below the valve-open force level, the radially inner portion is closed.
The spring return force also drives the liquid piston 28 in an axially upward direction and the suction created opens the ball valve 70 and draws a new charge or dose of liquid up through the dip tube 50 from the liquid supply within the container. When the pressure within the defined space 56 is restored to substantially atmospheric pressure, the pump 20 is ready for another dispensing cycle (stroke) and the dispensing of another dose or charge of foam.
Referring now to
Referring now to
The annular lower portion 90 of inner wall 88 fits within annular channel 92 of air piston 26. The space 94 between inner wall 88 and outer wall 86 received the upper portion 96 of housing 30, including radial flange 96a. Flange 96a seats up against annular ledge 98 of collar 24. Opening 100 receives the outer wall 78 of the actuator 22. The notch 101 receives wall projection 79.
Referring now to
The liquid piston 28 is integrally formed (i.e. molded) with an outwardly radiating, flexible valve lip 125 which controls the flow of mixing air into the air-flow passages 110. Valve lip 125 is adjacent a corresponding entry location for each air-flow passage 110. The lower portion of each rib 108 is inclined radially outwardly thereby creating a complete circumferential clearance ring which is frustoconical in shape. This clearance ring allows the air flow past the outer edge of lip 125 to flow into flow passages 110. This clearance ring corresponds to the referenced entry location. The positive pressure required to open or raise 125 is comparatively low as compared to other air valve structures and this facilitates the adequacy of the flow of mixing air and the responsiveness of the air valve structure 40.
Annular wall portion 80 includes an annular inner wall 80a and an annular outer wall 80b. Walls 80a and 80b are substantially concentric and cooperatively define therebetween annular groove 80c. Groove 80c receives an annular upper wall 112 of valve element 44 (see
Air piston wall 114 is constructed and arranged for a tight sliding fit within housing 30. Wall 114 fits tightly up against the inner surface 116a of housing wall 116. The tight fit is for sealing, while still being at a force level which permits the sealing lips 114a of wall 114 to slide over the inner surface 116a. This sliding movement causes the volume of the defined space 56 to change in a controlled manner for both the delivery of mixing air and for drawing in make-up air.
Referring now to
Referring now to
Annular valve lip 125a includes an annular body portion 127a, and outer annular tip 127b and a bend 127c which is located between a first section 127d of the body portion 127a and a second section 127e of the body portion 127a. Tip 127b is slightly enlarged and rounded on its lower surface for improved sealing contact against surface 186a. The bend 127c is concave from the underside and convex from the upper surface. The actual bend in this embodiment is an included angle of approximately 135 degrees. The first section 127d and the second section 127e are each substantially “straight” in the cross-section view resulting in more of a point or edge on the convex side, as compared to the rounded bend 129c of annular valve lip 125b (see
The shaping and contouring of annular valve lip 125a results in this valve lip having a higher preload force as compared to valve lip 125. The shaping and contouring is partially responsible for this higher preload force. Also partially responsible for this higher preload force is the shorter moment arm relative to a potential deflection or pivot point at the bend. Another option for increasing the preload force is to initially mold the valve lip such that the lower surface of tip 127b is axially lower. In order to position tip 127b on surface 186a, there is more deflection of the valve lip required when the tip 127b is axially lower and thus a higher preload force.
Referring now to
The shaping and contouring of annular valve lip 125b results in this valve lip having a higher preload force as compared to valve lip 125. The shaping and contouring of valve lip 125b is responsible for this higher preload force due to the curvature of the bend. When air pressure is present and works to deflect the annular valve lip, the air pressure loading force on the valve lip is used up, at least in part, to initially try and straighten the curvature rather than simply deflecting the valve lip at its pivot location which is the point of attachment to the remainder of the liquid piston. Another option for increasing the preload force is to initially mold the valve lip such that the lower surface of tip 129b is axially lower. In order to position tip 129b on surface 186a, there is more deflection of the valve lip required when it is initially axially lower and thus a higher preload force when placed on surface 186a.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In the air valve structure 40, the valve lip 125 is flexed into a deflected, sealing preload against the upper annular surface 186a of annular shelf 186 of valve element 44. When a positive pressure is present within defined space 56, due to the axial movement of actuator 22 and thereby the movement of air piston 26, lip 125 is pushed upwardly (i.e. raised) off of surface 186a. The resulting separation between lip 125 and surface 186a creates an air-flow passage for air within defined space 56 to be delivered to the mixing chamber 58 for mixing with the charge of liquid for foam production. When the positive pressure is removed (due to the entry of make-up air) lip 125 closes back against surface 186a. Valve lip 125 includes an annular body portion 125c which extends to and is surrounded by enlarged annular tip 125d. Portion 125c has a thickness of approximately 0.20 mm and tip 125d has a thickness of approximately 0.30 mm. The functional aspects described for lip 125 apply equally to valve lip 125a and to valve lip 125b. The difference as noted above is using the shaped geometry or contours of valve lips 125a and 125b in order to establish a higher preload force on shelf 186.
The air valve structure 40 provides a simple and reliable air valve for the delivery of mixing air and the receipt of make-up air. The structural shapes and cooperative interfit of lip 125 onto edge 186a provide added simplicity to the other component parts of pump 20.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application is a continuation of PCT/US2013/070977 filed Nov. 20, 2013 which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/740,007 filed Dec. 20, 2012 and U.S. Provisional Patent Application Ser. No. 61/903,462 filed Nov. 13, 2013, all of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61740007 | Dec 2012 | US | |
61903462 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2013/070977 | Nov 2013 | US |
Child | 14741690 | US |