1. Field of the Invention
The present invention relates generally to wall systems, and, in particular, to a foam wall structure.
2. Description of Related Art
Insulated wall panels provide thermal insulation for residential homes and buildings. A wall panel's R-value is its ability to impede heat flow. The greater the ability to impede heat flow, the higher the R-value. Over the years, insulation standards have become more strict, requiring higher R-values and continuous insulation on the exterior side of insulated wall panels. The current market solutions to these stricter requirements are (1) pre-fabricated wall panels that incorporate insulation at the construction site, and (2) Structural Insulated Panels (SIPs).
The pre-fabricated wall panel that incorporates insulation at the construction site is the more widely adopted solution in the market. However, pre-fabricated wall panels that incorporate high-quality insulation at the construction site require a separate sub-contractor for on-site insulation with fiberglass batting, which is known to have suboptimal R-values. Fiberglass is not an air barrier and allows for air intrusion, thus, increasing the probability of condensation and mold growth within wall systems. Furthermore, additional material is necessary to finish the wall (e.g., Oriented Strand Boards (OSBs) and house wrap), and the overall construction process duration is extended, thereby, increasing possible risk of trade scheduling conflicts. Installing insulation onsite also leads to potential inconsistencies in insulation installation, performance, risk, and usage.
The second solution, SIPs, also have several drawbacks. SIPs typically utilize expanded polystyrene (EPS) foam insulation sandwiched between two OSB boards, which only provide thermal performance of about R-4 per inch. Additionally, current SIPs are mainly used by smaller scale home builders with high levels of home customization.
A need, therefore, exists for an insulated wall structure that satisfies the strict industry insulation requirements and that can be made without excessive material and labor costs.
According to one embodiment of the present invention, a foam wall structure includes a frame, at least one primary support member, and a foam layer. The frame can include: a first member; a second member spaced apart from the first member; and two side members extending between the first and second members. The first member, second member, and two side members each have a front surface and a rear surface that form the front frame surface and the rear frame surface of the frame. The at least one primary support member can be positioned between the two side members and extend between the first and second member. The primary support member defines a front primary support surface and an opposite rear primary support surface corresponding to the front frame surface and rear frame surface. The foam layer can be received within at least a portion of the frame and overlies the front surface of the primary support member to form an uninterrupted exposed foam surface.
According to another embodiment of the present invention, a method of manufacturing a foam wall structure includes: a) providing a frame with at least one primary support member; b) providing a rigid surface having a width equal to or greater than the width of the front frame surface and length equal to or greater than the length of the front frame surface; c) orientating the front frame surface over the rigid surface such that the front frame surface is substantially parallel to the rigid surface; d) depositing foam material into the frame; and e) allowing the foam material to expand within at least a portion of the frame, wherein the foam layer overlies the front support surface of the primary support member to form an uninterrupted exposed foam surface.
The present invention is also directed to a foam wall structure made according to the methods described herein.
For purposes of the description hereinafter, spatial orientation terms, if used, shall relate to the referenced embodiment as it is oriented in the accompanying drawing figures or otherwise described in the following description. However, it is to be understood that the embodiments described hereinafter may assume many alternative variations and embodiments. It is also to be understood that the specific devices illustrated in the accompanying figures and described herein are simply exemplary and should not be considered as limiting.
As indicated, in certain embodiments, the present invention is directed to a foam wall structure 10 that includes a frame 11, at least one primary support member 17, and a foam layer 30 with an uninterrupted exposed foam surface 31. In certain embodiments, as shown in
The frame 11 can be constructed into different shapes depending on its intended use. In certain embodiments, as shown in
Referring to
Referring again to
Further, the primary support members 17, side members 16, first member 12, and/or second member 14 may comprise one or more plates, boards, beams, or the like. For example, as shown in
In certain embodiments, the two side members 16 and/or primary support members 17 are fixedly engaged to the first member 12 and second member 14. For instance, in certain embodiments, the two side members 16 and/or primary support members 17 are fixedly engaged to the first member 12 and second member 14 with fasteners. Suitable fasteners that can be used with the present invention include, but are not limited to, nails, staples, bolts, screws, and rivets. The first member 12, second member 14, two side members 16, and primary support members 17 can be made of various materials. For example, the first member 12, second member 14, two side members 16, and primary support members 17 can be made of wood, metal, fiberglass, plastic, or a combination thereof. The first member 12, second member 14, two side members 16, and primary support members 17 can be made of the same material or different materials.
Further, the dimensions of the first member 12, second member 14, two side members 16, and primary support members 17 will vary depending on the intended use of the frame 11. The first member 12, second member 14, two side members 16, and primary support members 17 can each have any dimension. In certain embodiments, the first member 12, second member 14, two side members 16, and primary support members 17 have the same dimensions. For example, the first member 12, second member 14, two side members 16, and primary support members 17 may have the same width and height dimensions. In one non-limiting embodiment, the first member 12, second member 14, two side members 16, and primary support members 17 all have a width and height dimension of nominally 2×4 inches. In another non-limiting embodiment, the first member 12, second member 14, two side members 16, and primary support members 17 all have a width and height dimension of nominally 2×6 inches.
In certain embodiments, the first member 12, second member 14, and two side members 16 have the same dimensions that are different from the dimensions of the primary support members 17. For example, the first member 12, second member 14, and two side members 16 may have the same width and height dimensions, and the primary support members 17 may have width and height dimensions that are different from the first member 12, second member 14, and two side members 16. In one non-limiting embodiment, the first member 12, second member 14, and two side members 16 have a width and height dimension of nominally 2×6 inches, and the primary support members 17 have a width and height dimension of nominally 2×4 inches.
In addition to the above, and as shown in
As shown in
In certain embodiments, the secondary support members 20 extend between and attach to primary support members 17, or alternatively, the secondary support members 20 extend between and attach to a primary support member 17 and a side member 16. In some embodiments, tertiary support members 22 extend between two secondary support members 20 or between a secondary support member 22 and the first member 12 and/or second member 14.
In certain embodiments, the secondary support members 20, tertiary support members 22, primary support members 17, side members 16, first member 12, and/or second member 14 form a secondary cavity 26. As shown in
In certain embodiments, additional support members and structural elements may also be used depending on the intended use of the foam wall structure 10. For example, and as shown in
In certain embodiments, a foam material can be deposited into the frame 11. As used herein, the term “foam material” refers to a substance that is formed by trapping pockets of gas in a liquid or solid. In certain embodiments, the foam material is a closed-cell foam. As used herein, “closed-cell foam” refers to foam that contains discrete, non-interconnecting cells. Non-limiting examples of foam material that can be used with the present invention include materials made with polyurethane, polyisocyanurate (also referred to as polyiso), and mixtures thereof.
In some embodiments, the foam material may be substantially free, may be essentially free, and may be completely free of halogen containing flame retardant additives. The term “halogen” refers to the halogen elements, which include fluorine, chlorine, bromine and iodine, and the term “halogen containing flame retardant additives” refers to a substance that may be used to inhibit or resist the spread of fire and which contains halogen groups such as a fluoro, chloro, bromo and/or iodo group. Further, the term “substantially free” as used in this context means the foam material contains less than 1000 parts per million (ppm), “essentially free” means less than 100 ppm, and “completely free” means less than 20 parts per billion (ppb) of halogen containing flame retardant additives.
As shown in
In certain embodiments, referring to FIGS. 3 and 7-8, the foam layer 30 extends beyond the front primary support surfaces 17a and the front frame surface 11a. As such, the foam layer 30 forms a continuous or uninterrupted exposed foam surface 31 over the front primary support surfaces 17a and the front frame surface 11a, which can be seen in the top cross-sectional view of
Referring to FIGS. 9 and 11-12, in certain embodiments, the foam layer 30 does not extend beyond the front frame surface 11a, and only extends beyond the front primary support surfaces 17a. Accordingly, in some embodiments, the foam layer 30 forms a continuous or uninterrupted exposed foam surface 31 over the front primary support surfaces 17a and is flush or contained between the front and rear frame surfaces 11a, 11b. As shown in
Referring to
In certain embodiments, when secondary support members 20 and/or tertiary support members 22 are used with the foam wall structure 10 to form a secondary cavity 26, the secondary cavity 26 can be free of foam. For example, in some embodiments, the foam layer 30 does not extend beyond and over the front secondary support surfaces 20a of the secondary members 20, the front tertiary support surfaces 22a of the tertiary support members 22, and/or beyond and over at least a portion of the front surfaces of other members that help form the secondary cavity 26.
Further, the foam layer 30 can be formed in-situ during the manufacturing process. The term “formed in-situ during the manufacturing process” refers to the formation of a foam layer 30 with an uninterrupted exposed foam surface 31 as described herein during manufacturing of the foam wall structure 10 off-site at a facility remote or away from a building construction site. As such, the foam layer 30 with an uninterrupted exposed foam surface 31 may not be formed at a construction site as is required by conventional methods.
The foam layer 30 having a continuous or uninterrupted exposed foam surface 31 is able to fill tight spaces and seal gaps that are not visible to the naked eye. The foam layer 30 with an uninterrupted exposed foam surface 31 also acts as a vapor and thermal insulating barrier, which reduces energy consumption in buildings and residential homes when the present invention is used as a wall panel. In addition, the foam layer 30 with an uninterrupted exposed foam surface 31 provides structural stability to the foam wall structure 10 such as improved wall racking strength. As used herein, “wall racking strength” refers to the ability of a wall structure to maintain its shape under duress.
Referring to
Further, in certain embodiments, the foam wall structure 10 does not include a rigid sheathing layer. As used herein, the term “rigid sheathing layer” refers to a layer applied to at least a portion of the front frame surface 11a or rear frame surface 11b. Non-limiting of sheathing layers include boards, plates, and the like. For instance, the foam wall structure does not include foam boards, wood boards, metal boards, gypsum boards, paper boards, polymeric foam boards, plates, and the like. Examples of such sheathing layers are disclosed in U.S. Pat. No. 8,397,465 and U.S. Patent Application Publication No. 2012/0011792. The foam wall structure 10, excluding such materials according to the present invention, is able to flex or deform under a load and return to its original design while retaining its structural stability, racking strength, and other physical characteristics.
The present invention is also directed to methods of making a foam wall structure 10. In certain embodiments, a method of making a foam wall structure 10 includes first constructing a frame 11 having at least one primary support member 17. The frame 11 having at least one primary support member 17 can be constructed in accordance with any of the embodiments disclosed herein. Referring to
After orientating the front frame surface 17a over the rigid surface 50, a foam material can be deposited into the frame 11. The foam material may be deposited with an automated delivery device. Alternatively, the foam may be deposited using various other devices including, but not limited to, a foam dispensing gun that is controlled and carried by an individual user. In one embodiment, as shown in
Referring to
Referring to
As shown in
Referring to
As shown in
Referring to
As shown in
As indicated, the foam wall structure 10 can also include secondary support members 20 and tertiary support members 22 that form a secondary cavity 26 within the frame 11. Accordingly, in certain embodiments, the methods described herein include constructing a frame 11 having one or more secondary support members 20 and tertiary support members 22. In certain embodiments, to prevent foam material from entering the secondary cavity 26, the dimensions of the secondary support members 20 and/or tertiary support members 22 are greater than the dimensions of the primary support members 17.
Referring to
In certain embodiments, the coating 36 deposited onto at least a portion of the rigid surface 50 forms a film. To keep the film aligned along the rigid surface 50, the rigid surface 50 can include perforations, holes and the like where pressure can be lowered so as to pull the film against the rigid surface 50. In one embodiment, the rigid surface 50 is connected to a vacuum source V such as a vacuum table as shown in
After the foam layer 30 has expanded, the formed foam wall structure 10 can be removed from the rigid surface 50 and shipped directly to a job site for use as a wall panel. The foam wall structure 10 can be installed without any additional steps, thereby reducing the number of sub-contractors necessary to complete the installation of a wall at a construction site. In addition, the foam wall structure 10 does not require additional materials such as rigid sheathing, OSB boards, and house wrap that are typically used in current residential building practices. Therefore, insulation costs would decrease. The present invention would also decrease the overall cost per square foot per R-value.
The foam wall structure 10 also imparts a higher wall racking strength and improves thermal performance in comparison to existing wall solutions through the introduction of a foam layer 30 with the uninterrupted foam surface 31. Further, the foam wall structure 10 will help meet future R-value industry standards that are expected to increase in certain regions, while still utilizing current wall designs. With current fiberglass insulation, builders would have to convert 2×4-based wall designs to 2×6-based wall designs to ensure enough wall cavity capacity for additional insulation to meet such higher standards.
The methods described herein also improve the consistency of installing insulation, and make it easy to install electrical and plumbing components in the gap or opening 40 of a wall panel. The present invention would also decrease the overall cost per square foot per R-value.
The foam wall structure 10 is not limited for use in newly constructed homes and can be used for residential exterior insulation retrofit applications. Accordingly, another aspect of the present invention is the replacement of wall panels in older homes and buildings with the foam wall structure 10 described herein.
While several embodiments of the invention were described in the foregoing detailed description, those skilled in the art may make modifications and alterations to these embodiments without departing from the scope and spirit of the invention. Accordingly, the foregoing description is intended to be illustrative rather than restrictive.
This application claims the benefit of U.S. Provisional Application No. 61/691,422, filed Aug. 21, 2012, which is hereby incorporated in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
5353560 | Heydon | Oct 1994 | A |
5950386 | Shipman et al. | Sep 1999 | A |
8397387 | Cole et al. | Mar 2013 | B2 |
8397465 | Hansbro et al. | Mar 2013 | B2 |
8458983 | Propst | Jun 2013 | B2 |
20040016194 | Stefanutti et al. | Jan 2004 | A1 |
20100011701 | Cole et al. | Jan 2010 | A1 |
20110173911 | Propst | Jul 2011 | A1 |
20110214374 | Propst | Sep 2011 | A1 |
20120011792 | DeWildt et al. | Jan 2012 | A1 |
20120096785 | Weeks | Apr 2012 | A1 |
20120240501 | Spiegel | Sep 2012 | A1 |
20130104480 | Smith | May 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20140053486 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
61691422 | Aug 2012 | US |