Focal plane array incorporating ultra-small resonant structures

Information

  • Patent Grant
  • 7442940
  • Patent Number
    7,442,940
  • Date Filed
    Friday, May 5, 2006
    19 years ago
  • Date Issued
    Tuesday, October 28, 2008
    17 years ago
Abstract
A focal plane array electromagnetic radiation detector includes an array of micro-electromagnetic resonant detector cells. Each micro-electromagnetic resonant detector cell may include an ultra-small resonant structure for receiving an electromagnetic wave and adapted to angularly modulate a charged particle beam in response to receiving an electromagnetic wave. Each micro-electromagnetic detector cell may include a detector portion that measures the angular modulation of the charged particle beam. The ultra-small resonant structure is designed to angularly modulate the charged particle beam according to a characteristic of the received electromagnetic wave.
Description
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright or mask work protection. The copyright or mask work owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright or mask work rights whatsoever.


CROSS-REFERENCE TO RELATED APPLICATIONS

The present invention is related to the following co-pending U.S. patent applications which are all commonly owned with the present application, the entire contents of each of which are incorporated herein by reference:

    • 1. U.S. application Ser. No. 11/302,471, entitled “Coupled Nano-Resonating Energy Emitting Structures,” filed Dec. 14, 2005,
    • 2. U.S. application Ser. No. 11/349,963, entitled “Method And Structure For Coupling Two Microcircuits,” filed Feb. 9, 2006;
    • 3. U.S. patent application Ser. No. 11/238,991, filed Sep. 30, 2005, entitled “Ultra-Small Resonating Charged Particle Beam Modulator”;
    • 4. U.S. patent application Ser. No. 10/917,511, filed on Aug. 13, 2004, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching”;
    • 5. U.S. application Ser. No. 11/203,407, filed on Aug. 15, 2005, entitled “Method Of Patterning Ultra-Small Structures”;
    • 6. U.S. application Ser. No. 11/243,476, filed on Oct. 5, 2005, entitled “Structures And Methods For Coupling Energy From An Electromagnetic Wave”;
    • 7. U.S. application Ser. No. 11/243,477, filed on Oct. 5, 2005, entitled “Electron beam induced resonance,”
    • 8. U.S. application Ser. No. 11/325,448, entitled “Selectable Frequency Light Emitter from Single Metal Layer,” filed Jan. 5, 2006;
    • 9. U.S. application Ser. No. 11/325,432, entitled, “Matrix Array Display,” filed Jan. 5, 2006,
    • 10. U.S. patent application Ser. No. 11/400,280, titled “Resonant Detector for Optical Signals,” filed Apr. 10, 2006.


FIELD OF THE DISCLOSURE

This relates to micro-electromagnetic resonant detectors, and, more particularly, to using such devices in focal plane arrays.


Glossary


Ultra-small resonant structure: any structure of any material, type or microscopic size that by its characteristics causes electrons to resonate at a frequency in excess of the microwave frequency.


Micro-electromagnetic resonant detector cell: detects electromagnetic radiation by angularly modulating a beam of charged particles and comprises at least a charged particle source, at least one detector and at least one ultra-small resonant structure.


INTRODUCTION & BACKGROUND

A focal plane array (FPA) is a matrix of detector cells. FPAs are frequently connected to or built on a semiconductor chip. FPA detector cells are composed of materials that are responsive to particular frequencies of electromagnetic radiation (EMR). The particular frequencies the detector cells are responsive to depends on the application. The response of all the detector cells in the array can be combined to form a composite image. One of the most common imaging application is digital photography, i.e. generating an image from detector cells that are responsive to frequencies in the visible light range. However, there is a growing market for devices that create images from detector cells that are responsive to a variety of electromagnetic frequencies including those not in the visible light spectrum.


Microbolometers have FPAs consisting of detector cells made from materials that produce a change in electrical resistivity in accordance with a temperature change i.e. a change in infrared radiation. Commercially available microbolometers have FPAs with a resolution of 320×240 and a response speed of 30 fps. Micrcobolometers are an uncooled type of bolometer as opposed to a cooled type which typically requires cryogenic cooling to minimize noise. Cooled sensors offer greater sensitivity, but are more expensive because of the cost required to cool them. Furthermore, mircobolometers are limited by their response speed. Thus, it is desirable to produce a microbolometer type device with increased sensitivity and a better response speed, but without the added costs of temperature controls.


The more specific aspects of the various other focal point arrays and the various other devices which employ them are known to the artisan and for brevity will not be repeated herein.


U.S. patent application Ser. No. 11/400,280, noted above describes various arrangements of ultra-small resonant structures that can be used to angularly modulate a beam of charged particles directed past them, when exposed to incoming or received EMR. The ultra-small structure(s) may comprise, for instance, any number of nano-sized resonant structures constructed and adapted to angularly modulate a beam of charged particles in responses to observed electromagnetic waves such that EMR can be detected e.g., as described above and/or in U.S. patent applications Ser. Nos. 11/243,476; 11/400,280 (each described in greater detail above).


It is desirable to use one or more ultra-small resonant structures or arrays thereof, to create a FPA for use in imaging applications, in particular mircobolometery.





BRIEF DESCRIPTION OF THE DRAWINGS

The following description, given with respect to the attached drawings, may be better understood with reference to the non-limiting examples of the drawing, wherein the drawings show:



FIG. 1: Diagrammatically shows an imaging device;



FIG. 2: Shows an enlarged diagrammatic view of a micro-electromagnetic radiation detector cell; and



FIG. 3: Shows an enlarged diagrammatic view of an alternative micro-electromagnetic radiation detector cell.





DESCRIPTION OF THE PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS

As shown in FIG. 1, an imaging device 10 that includes a lens system 11 and at least one Focal Point Array (FPA) 12 comprised of a plurality of micro-electromagnetic resonant detector cells, where each micro-electromagnetic resonant detector cell is denoted as ED1, ED2 . . . EDn. An enlarged view of the surface of the FPA 12 is shown to the right of the imaging device 10. EMR 13 is focused through the lens system 11 and is absorbed by the surface of the FPA 12. The structure set forth in FIG. 1 is intended to be exemplary only and is not intended to limit the ways in which a FPA can or might absorb EMR 13. It should be noted, that the FPA 12 may be capable of moving within the housing of the imaging device 10 e.g. the FPA 12 may be capable of rotating about an axis or tilting about an axis.


Each detector cell ED1-EDn includes a charged particle source, at least one detector and at least one ultra-small resonant structure. It should be noted that although the detectors cells EDns are shown to be rectangular in shape, this should not be viewed in any limiting way, but is used purely for exemplary purposes EDns could be other shapes (e.g. hexagons, etc.), or any combination of shapes, without departing from the scope of the present invention. Furthermore, although the EDns are shown with there faces on a single plane this is not intended to be limiting, the EDns may face different directions, e.g. the EDns may be orthogonal to each other.



FIG. 2 shows an enlarged view of an exemplary detector cell EDn which includes a charged particle source 21 that generates a beam of charged particles 23, a detector 22, and an ultra-small resonant structure 20.


The details of detection are set forth in the above referenced U.S. patent application Ser. No. 11/400,280 and will not be repeated herein. However, in brief the charged particle source 21 generates the particle beam 23 that passes along or next to at least one ultra-small resonant structure 20. The particle beam 23 may comprise any type of charged particles (such as, e.g., positive ions, negative ions, electrons, protons and the like) and the charged particle source 21 may be any desired source of charged particles such as an ion gun, a thermionic filament, tungsten filament, a cathode, a vacuum triode, a planar vacuum triode, an electron-impact ionizer, a laser ionizer, a field emission cathode, a chemical ionizer, a thermal ionizer, an ion-impact ionizer, an electron source from a scanning electron microscope, etc.


With no incoming EMR being received, the charged particle beam 23 will simply pass by the ultra-small resonant structure to the center of the detector 22. However, the ultra-small resonant structures 20 will angularly modulate the charged particle beam 23 when they receive EMR 13. The ultra-small resonant structure 20 may be any of the ultra-small resonant structures disclosed in the related applications. In general, the structures have one physical dimension that is smaller than the wavelength of visible light.


As described in U.S. patent application Ser. No. 11/243,476 when the energy of an electromagnetic wave 13 is absorbed by an ultra-small resonant structure 20, the transfer causes plasmons on the ultra-small resonant structure 20 to resonate. The ability of an electromagnetic wave to induce the surface plasmons to resonate is described in one or more of the above applications including Ser. No. 11/400,280 and is not repeated herein.


The ultra-small resonant structures 20 will resonate in accordance with the characteristics of an incoming electromagnetic wave 13 (for example, intensity, frequency, polarization, etc.), such that the amplitude of the electric field in the ultra-small resonant structures bears a relation to a electromagnetic wave 13 characteristic. When the ultra-small resonant structures 20 resonate as a result of electromagnetic wave 13 being received the path of the particle beam 23 will be altered from its natural or normal path 23a. The amount the path of the particle beam 23a will be altered is related to the amplitude of the electrical field in the ultra-small resonant structures 20. Thus, the alteration of the particle beam from the normal or natural path 23a can be related to a characteristic of incoming electromagnetic wave 13. That is, the amplitude of a characteristic of an incoming electromagnetic wave 13 can be calculated by measuring the alteration of the particle beam path 23a. Exemplary altered paths of particle beams are shown as 23b and 23c, on both sides of 23a depending on the particular characteristics of electromagnetic wave 13.


As described in U.S. patent application Ser. No. 11/400,280, the detector 22 comprises charged particle absorption elements (e.g. receiving electrodes) that are placed at locations corresponding to altered paths 23b-23c and detector elements (e.g. differential current detector) that detect which particle absorption element absorbed particles from the particle beam 23 (i.e. to what extent was the particle beam 23 angularly modulated). Detector portions 22 typically comprise an absorption element that receives the unaltered particle beam 23a and a series of detector elements that receive various altered particle beams 23b-23c. Further details of detecting the deflected particle beam are disclosed in U.S. patent application Ser. No. 11/400,280 and will not be described herein. Alternative methods of detecting the deflected particle beam will be recognizable to the artisan who understands from this description the structure and purpose of the detector portion 22.



FIG. 3 shows an enlarged view of an exemplary EDn with multiple detector portions 32a-c and multiple ultra-small resonant structures 30a-c. A single beam source 31 provides particle beams 33a-c to ultra-small resonant structures 30a-c. This may be accomplished by having a beam source 31 that is capable of providing particle beams 33a-c to ultra-small resonant structures 30a-c simultaneously via beam splitters, or the like, or by having a beam source 31 that provides particle beams 33a-c to each ultra-small resonant structure 30a-c at a different time. It should be noted that although FIG. 3 shows an EDn with three ultra-small resonant structures and three detectors this is not intended to be limiting. In fact, any number of ultra-small resonant structures and corresponding detectors could be incorporated into a detector cell, so long as each ultra-small resonant structure can angularly modulate a particle beam and a the corresponding detector can detect the modulation.


The EDn in FIG. 3 functions in a similar manner to the EDn described in accordance with FIG. 2, the difference being that it uses multiple detector portions 32a-c and multiple ultra-small resonant structures 30a-c which allows the EDn to gather more information about the incoming characteristics of the incoming electromagnetic radiation 13. For example, each ultra-small resonant structure 30a-c could be tuned to resonant at different frequencies of received EMR 13. In addition, one ultra-small resonant structure could be tuned to resonant in response to receiving EMR of a particular frequency while another ultra-small resonant structure is tuned to resonant in response to receiving EMR of a particular polarity.


The various micro-electromagnetic resonant detector cells EDn may be made, e.g., using techniques such as described in U.S. patent applications Ser. Nos. 10/917,511; 11/203,407 (described in greater detail above), or in some other manner.


The micro-electromagnetic resonant detectors cells EDn of an array may all be of the same type, or each may have a unique architecture, that is each may have a unique type of electrical beam source, each may use different ultra-small resonant structures, each may have a different number of ultra-small resonant structures, each may use different types of detector portions, and each may have a different number of detector portions or any combination of the foregoing. For example, an array could contain a number of the EDns shown in FIG. 2 and a number of the EDns shown in FIG. 3 where each EDn is responsive to a particular EMR characteristic (e.g. intensity, frequency, polarity, etc.). In the case where EDns of an array are responsive to the polarization of an EMR wave, each EDns can respond a different type of polarization (e.g. orthogonal polarizations).


More than one array of micro-electromagnetic resonant detector cells may be used within a signal imaging device. For example, an array could be used for each type of electromagnetic characteristic. Furthermore, when an imaging device comprises multiple arrays, the arrays can be configured such a way that their faces are on the same plane or the arrays can be configured so that each array faces a different direction, e.g. the faces of the arrays may be orthogonal to one another.


The mirco-electromagnetic resonant detector cells EDn may be formed at a linear density of 10,000 per inch.


The FPA described above may be included in any imaging device, including, without limitation, e.g. digital cameras, microbolometers and any device measuring EMR from the infrared to ultraviolet range. In theory, the present invention could be used to measure EMR throughout the EMR spectrum. It should be noted that the present invention is only limited by the degree to which a particle beam can be angularly modulated by an ultra-small electromagnetic detecting resonant structures receiving EMR and the degree to which angular modulations can be measured and correlated to characteristics of an EMR wave.


Furthermore, the FPA described in accordance with the present invention can be used in various imaging technologies such as: 3D imaging technologies that incorporate spinning arrays, imaging technologies that filter EMR before it is received by the FPA, imaging technologies that use multiple lenses and complex lens architectures, imaging technologies that use high shutter speeds, imaging technologies that measure reflected EMR and the like.


All of the ultra-small resonant structures described are preferably under vacuum conditions during operation. Accordingly, in each of the exemplary embodiments described herein, the entire package which includes the ultra-small resonant structures may be vacuum packaged. Alternatively, the portion of the package containing at least the ultra-small resonant structure(s) should be vacuum packaged. Our invention does not require any particular kind of evacuation structure. Many known hermetic sealing techniques can be employed to ensure the vacuum condition remains during a reasonable lifespan of operation. We anticipate that the devices can be operated in a pressure up to atmospheric pressure if the mean free path of the electrons is longer than the device length at the operating pressure.


While certain configurations of structures have been illustrated for the purposes of presenting the basic structures of the present invention, one of ordinary skill in the art will appreciate that other variations are possible which would still fall within the scope of the appended claims. While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims
  • 1. A micro-resonant detector cell for use in a focal plane array comprised of a plurality of micro-electromagnetic resonant detector cells, the detector cell comprising: a source of at least one charged particle beam;at least one ultra-small resonant structure for receiving electromagnetic radiation and adapted to angularly modulate a charged particle beam in response to receiving electromagnetic radiation;at least one detector that measures the angular modulation of a charged particle beam.
  • 2. The micro-resonant detector cell of claim 1, wherein said micro-electromagnetic resonant detector cell is adapted to determine the amplitude of an electromagnetic wave at a first frequency and to determine the amplitude of an electromagnetic wave at a second frequency.
  • 3. The micro-resonant detector cell of claim 1, wherein said micro-electromagnetic resonant detector cell is adapted to determine the amplitude of an electromagnetic wave at a first polarization and to determine the amplitude of an electromagnetic wave at a second polarization.
  • 4. A focal plane array comprised of a plurality of micro-electromagnetic resonant detector cells, the detector cells comprising: a source of at least one charged particle beam;at least one ultra-small resonant structure for receiving electromagnetic radiation and adapted to angularly modulate a charged particle beam in response to receiving electromagnetic radiation;at least one detector that measures the angular modulation of a charged particle beam.
  • 5. The focal plane array of claim 4, wherein at least one of said micro-electromagnetic resonant detector cells is adapted to determine the amplitude of an electromagnetic wave at a first frequency and wherein at least one of said micro-electromagnetic resonant detector cells is adapted to determine the amplitude of an electromagnetic wave at a second frequency.
  • 6. The focal plane array of claim 4, wherein at least one of said micro-electromagnetic resonant detector cells is adapted to determine the amplitude of an electromagnetic wave at a first frequency and the amplitude of an electromagnetic wave at a second frequency.
  • 7. The focal plane array of claim 4, wherein a plurality of said micro-electromagnetic resonant detector cells are adapted to determine the amplitude of an electromagnetic wave at a first frequency and to determine the amplitude of an electromagnetic wave at a second frequency.
  • 8. The focal plane array of claim 4, wherein at least one of said micro-electromagnetic resonant detector cells is adapted to determine the amplitude of the electromagnetic wave of a first polarization and at least one of said micro-electromagnetic resonant detector cells is adapted to determine the amplitude of the electromagnetic wave of a second polarization.
  • 9. The focal plane array of claim 8, wherein said first polarization and said second polarization are orthogonal.
  • 10. The focal plane array of claim 4, wherein at least one of said micro-electromagnetic resonant detector cells is adapted to determine the amplitude of the electromagnetic wave of a first polarization and to determine the amplitude of the electromagnetic wave of a second polarization.
  • 11. The focal plane array of claim 4, wherein at plurality of said micro-electromagnetic resonant detector cells are adapted to determine the amplitude of the electromagnetic wave of a first polarization and to determine the amplitude of the electromagnetic wave of a second polarization.
  • 12. A focal plane array comprised of a plurality of micro-electromagnetic resonant detector cells, the detector cells comprising: a source of at least one charged particle beam;at least one ultra-small resonant structure for receiving electromagnetic radiation and adapted to angularly modulate a charged particle beam in response to receiving electromagnetic radiation;at least one detector that measures the angular modulation of a charged particle beam, wherein said focal plane array is adapted to determine the polarization of incoming electromagnetic radiation and rotate to build an image of the polarized electromagnetic waves.
US Referenced Citations (187)
Number Name Date Kind
1948384 Lawrence Feb 1934 A
2307086 Varian et al. Jan 1943 A
2397905 Rockwell et al. Apr 1946 A
2431396 Hansell Nov 1947 A
2473477 Smith Jun 1949 A
2634372 Salisbury Apr 1953 A
2932798 Kerst et al. Apr 1960 A
2944183 Drexler Jul 1960 A
2966611 Sandstrom Dec 1960 A
3231779 White Jan 1966 A
3543147 Kovarik Nov 1970 A
3571642 Westcott Mar 1971 A
3586899 Fleisher Jun 1971 A
3761828 Pollard et al. Sep 1973 A
3886399 Symons May 1975 A
3923568 Bersin Dec 1975 A
3989347 Eschler Nov 1976 A
4282436 Kapetanakos Aug 1981 A
4482779 Anderson Nov 1984 A
4712042 Hamm Dec 1987 A
4713581 Haimson Dec 1987 A
4727550 Chang et al. Feb 1988 A
4740973 Madey Apr 1988 A
4746201 Gould May 1988 A
4829527 Wortman et al. May 1989 A
4838021 Beattie Jun 1989 A
4864131 Rich et al. Sep 1989 A
5023563 Harvey et al. Jun 1991 A
5113141 Swenson May 1992 A
5128729 Alonas et al. Jul 1992 A
5157000 Elkind et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5185073 Bindra Feb 1993 A
5199918 Kumar Apr 1993 A
5235248 Clark et al. Aug 1993 A
5262656 Blondeau et al. Nov 1993 A
5263043 Walsh Nov 1993 A
5268693 Walsh Dec 1993 A
5268788 Fox et al. Dec 1993 A
5302240 Hori et al. Apr 1994 A
5354709 Lorenzo et al. Oct 1994 A
5446814 Kuo et al. Aug 1995 A
5504341 Glavish Apr 1996 A
5578909 Billen Nov 1996 A
5608263 Drayton et al. Mar 1997 A
5666020 Takemura Sep 1997 A
5668368 Sakai et al. Sep 1997 A
5705443 Stauf et al. Jan 1998 A
5737458 Wojnarowski et al. Apr 1998 A
5744919 Mishin et al. Apr 1998 A
5757009 Walstrom May 1998 A
5767013 Park Jun 1998 A
5790585 Walsh Aug 1998 A
5811943 Mishin et al. Sep 1998 A
5821836 Katehi et al. Oct 1998 A
5821902 Keen Oct 1998 A
5825140 Fujisawa Oct 1998 A
5831270 Nakasuji Nov 1998 A
5847745 Shimizu et al. Dec 1998 A
5858799 Yee et al. Jan 1999 A
5889449 Fiedziuszko Mar 1999 A
5902489 Yasuda et al. May 1999 A
6008496 Winefordner et al. Dec 1999 A
6040625 Ip Mar 2000 A
6060833 Velazco May 2000 A
6080529 Ye et al. Jun 2000 A
6139760 Shim et al. Oct 2000 A
6195199 Yamada Feb 2001 B1
6222866 Seko Apr 2001 B1
6278239 Caporaso et al. Aug 2001 B1
6281769 Fiedziuszko Aug 2001 B1
6297511 Syllaios et al. Oct 2001 B1
6316876 Tanabe Nov 2001 B1
6338968 Hefti Jan 2002 B1
6370306 Sato et al. Apr 2002 B1
6373194 Small Apr 2002 B1
6376258 Hefti Apr 2002 B2
6407516 Victor Jun 2002 B1
6441298 Thio Aug 2002 B1
6453087 Frish et al. Sep 2002 B2
6470198 Kintaka et al. Oct 2002 B1
6504303 Small Jan 2003 B2
6525477 Small Feb 2003 B2
6545425 Victor Apr 2003 B2
6577040 Nguyen Jun 2003 B2
6603915 Glebov et al. Aug 2003 B2
6624916 Green et al. Sep 2003 B1
6636653 Miracky et al. Oct 2003 B2
6640023 Miller et al. Oct 2003 B2
6642907 Hamada et al. Nov 2003 B2
6738176 Rabinowitz et al. May 2004 B2
6741781 Furuyama May 2004 B2
6777244 Pepper et al. Aug 2004 B2
6782205 Trisnadi et al. Aug 2004 B2
6791438 Takahashi et al. Sep 2004 B2
6829286 Guilfoyle et al. Dec 2004 B1
6834152 Gunn et al. Dec 2004 B2
6870438 Shino et al. Mar 2005 B1
6885262 Nishimura et al. Apr 2005 B2
6909092 Nagahama Jun 2005 B2
6909104 Koops Jun 2005 B1
6943650 Ramprasad et al. Sep 2005 B2
6944369 Deliwala Sep 2005 B2
6953291 Liu Oct 2005 B2
6954515 Bjorkholm et al. Oct 2005 B2
6965284 Maekawa et al. Nov 2005 B2
6965625 Mross et al. Nov 2005 B2
6972439 Kim et al. Dec 2005 B1
6995406 Tojo et al. Feb 2006 B2
7010183 Estes et al. Mar 2006 B2
7092588 Kondo Aug 2006 B2
7092603 Glebov et al. Aug 2006 B2
7122978 Nakanishi et al. Oct 2006 B2
7177515 Estes et al. Feb 2007 B2
7230201 Miley et al. Jun 2007 B1
7267459 Matheson Sep 2007 B2
7267461 Kan et al. Sep 2007 B2
7342441 Gorrell et al. Mar 2008 B2
20010025925 Abe et al. Oct 2001 A1
20020009723 Hefti Jan 2002 A1
20020027481 Fiedziuszko Mar 2002 A1
20020036121 Ball et al. Mar 2002 A1
20020036264 Nakasuji et al. Mar 2002 A1
20020053638 Winkler et al. May 2002 A1
20020070671 Small Jun 2002 A1
20020071457 Hogan Jun 2002 A1
20020135665 Gardner Sep 2002 A1
20030012925 Gorrell Jan 2003 A1
20030016412 Small Jan 2003 A1
20030016421 Small Jan 2003 A1
20030034535 Barenburu et al. Feb 2003 A1
20030155521 Feuerbaum Aug 2003 A1
20030158474 Scherer et al. Aug 2003 A1
20030164947 Vaupel Sep 2003 A1
20030179974 Estes et al. Sep 2003 A1
20030206708 Estes et al. Nov 2003 A1
20030214695 Abramson et al. Nov 2003 A1
20040061053 Taniguchi et al. Apr 2004 A1
20040085159 Kubena et al. May 2004 A1
20040108473 Melnychuk et al. Jun 2004 A1
20040136715 Kondo Jul 2004 A1
20040150991 Ouderkirk et al. Aug 2004 A1
20040171272 Jin et al. Sep 2004 A1
20040180244 Tour et al. Sep 2004 A1
20040184270 Halter Sep 2004 A1
20040213375 Bjorkholm et al. Oct 2004 A1
20040217297 Moses et al. Nov 2004 A1
20040231996 Webb Nov 2004 A1
20040240035 Zhilkov Dec 2004 A1
20040264867 Kondo Dec 2004 A1
20050023145 Cohen et al. Feb 2005 A1
20050045821 Noji et al. Mar 2005 A1
20050045832 Kelly et al. Mar 2005 A1
20050054151 Lowther et al. Mar 2005 A1
20050067286 Ahn et al. Mar 2005 A1
20050082469 Carlo Apr 2005 A1
20050092929 Schneiker May 2005 A1
20050105690 Pau et al. May 2005 A1
20050145882 Taylor et al. Jul 2005 A1
20050162104 Victor et al. Jul 2005 A1
20050179879 Pril Aug 2005 A1
20050190637 Ichimura et al. Sep 2005 A1
20050194258 Cohen et al. Sep 2005 A1
20050201707 Glebov et al. Sep 2005 A1
20050201717 Matsumura et al. Sep 2005 A1
20050212503 Deibele Sep 2005 A1
20050231138 Nakanishi et al. Oct 2005 A1
20050249451 Baehr-Jones et al. Nov 2005 A1
20050285541 LeChevalier Dec 2005 A1
20060007730 Nakamura et al. Jan 2006 A1
20060018619 Helffrich et al. Jan 2006 A1
20060035173 Davidson et al. Feb 2006 A1
20060045418 Cho et al. Mar 2006 A1
20060060782 Khursheed Mar 2006 A1
20060062258 Brau et al. Mar 2006 A1
20060159131 Liu et al. Jul 2006 A1
20060164496 Tokutake et al. Jul 2006 A1
20060208667 Lys et al. Sep 2006 A1
20060216940 Gorrell et al. Sep 2006 A1
20060243925 Barker et al. Nov 2006 A1
20060274922 Ragsdale Dec 2006 A1
20070003781 de Rochemont Jan 2007 A1
20070013765 Hudson et al. Jan 2007 A1
20070075264 Gorrell et al. Apr 2007 A1
20070086915 LeBoeuf et al. Apr 2007 A1
20070116420 Estes et al. May 2007 A1
20070284527 Zani et al. Dec 2007 A1
Foreign Referenced Citations (13)
Number Date Country
0237559 Dec 1991 EP
2004-32323 Jan 2004 JP
WO 8701873 Mar 1987 WO
WO 9321663 Oct 1993 WO
WO 0072413 Nov 2000 WO
WO 02025785 Mar 2002 WO
WO 02077607 Oct 2002 WO
WO 2004086560 Oct 2004 WO
WO 2005015143 Feb 2005 WO
WO 2006042239 Apr 2006 WO
WO 2007081389 Jul 2007 WO
WO 2007081390 Jul 2007 WO
WO 2007081391 Jul 2007 WO
Related Publications (1)
Number Date Country
20070257739 A1 Nov 2007 US