The present disclosure relates to focus position control of an optical beam, such as focus control, tracking control, and the like in an optical disc apparatus for performing recording/reproduction on an optical disc.
In recent years, the recording/reproduction rate of optical disc apparatuses for performing recording/reproduction of a signal on a recordable DVD disc such as a DVD-RAM, a DVD-R, and the like, has been increased, and also, the thickness of optical disc apparatuses has been reduced. Furthermore, the wavelength of an optical source has been reduced and the numerical aperture of objective lenses has been increased, thus allowing the commercialization of large capacity optical disc apparatuses for performing recording/reproduction on a Blu-ray Disc and the like. To ensure highly reliable recording/reproduction in such a high rating, thinning, and enlarging of capacity, recording/reproduction apparatuses are required to have higher performance of focus position control of an optical beam, such as focus control, tracking control, and the like. However, it is not easy to realize control, with a sufficiently high reduction rate, to reduce high frequency disturbances caused when high-speed recording/reproduction is performed. In particular, in a thin optical disc apparatus, since a lens actuator of an optical head is small and thin, there is a restriction to thrust force to be produced. Therefore, it is very difficult to increase a control band to a high frequency. In a Blu-ray Disc apparatus having an increased density, a track pitch is small, i.e., 0.32 μm, which is 43% of that of a traditional DVD disc, and thus, high tracking accuracy is required.
A surface runout and an eccentricity are most serious problems in focus control and tracking control of an optical disc apparatus. When a disc with a large surface runout and a large eccentricity is rotated at high speed, it is not easy to stably cause transition of control and thereby allow an optical beam to follow a recording surface and a recording track of the disc with high accuracy. For example, when recording is performed on a DVD-R disc at a ×20 speed, a maximum rotation frequency is 200 Hz. In this case, when an eccentricity amount is 50 μm, a control gain of about 70 dB is necessary in order to reduce a control residual to 0.02 μm or less that allows stable recording/reproduction. To obtain the necessary control gain, the control frequency band has to be increased to at least about 15 kHz. However, because of the produced thrust force of an actuator, a high order resonance, a phase delay, and the like, it is difficult to increase the control frequency band to 10 kHz or more.
Also, there are cases in which not only a surface runout and eccentricity which vary at a rotation frequency occur, but also a local surface runout and eccentricity which vary at a higher frequency. This is caused by a local distortion which has occurred in a stamper of a master disc during the production of discs. Optical discs produced using such a stamper have a similar track distortion approximately at the same location, or a distortion along a recording surface. Such distortions cause the occurrence of a local surface runout and eccentricity, and greatly affect focus control and tracking control. In many cases, such distortions occur at each rotation in a plurality of tracks in the radial direction, a very high order disturbance relative to the rotation frequency is caused, and therefore, the distortions cannot be reduced by normal control. Accordingly, a large control residual occurs, and thus, there might be cases where recording or reproduction cannot be locally performed.
An apparatus using feed forwarding control in which information for an eccentricity and a surface runout is temporarily stored in a memory and used for focus position control has been known as correction processing to reduce influences of an eccentricity amount and a surface runout amount. The apparatus is configured so that information for an eccentricity and a surface runout is written in a memory in synchronization with the rotation frequency of a disc, and then, the written data is read from the memory and used for tracking control and focus control (see, for example, PATENT DOCUMENT 1, 2). Such an apparatus can perform normal control in a state where a surface runout and an eccentricity have been reduced using the data read from the memory, and thus, even when a disc with a large surface runout and a large eccentricity is rotated, the control residual can be reduced.
Also, a repetitive control apparatus in which a tracking error signal of a normal feedback control system is sequentially stored in a memory in synchronization with the rotation of a disc, is sequentially output with one rotation delay, and is used for tracking control has been known. The apparatus is configured so that a tracking error signal which has been stored in a memory in the previous rotation is added to a tracking error signal via a compensation means having a transfer function, which is the reciprocal of a transfer function of a feedback control system, and thus, serves as a tracking control system (see, for example, PATENT DOCUMENT 3, 4). Thus, a tracking error which could not be corrected in the previous rotation can be corrected beforehand and, and therefore, the following capability can be improved.
When data such as a tracking error signal and the like regarding an eccentricity and a surface runout is stored or read in synchronization with the rotation of a disc, there is a delay time caused by processing of a hardware or a software of the system, and therefore, a rotation phase with which data is stored in a memory might be different from a rotation phase with which data stored in the memory is to be output as an appropriate deviation amount. In such a case, data is output with an output timing shifted from a timing with which the data is to be output as an original deviation amount, and is input to a regular feedback control system. Thus, the above-described advantages might not be fully achieved, or the control residual which is to be reduced is unfavorably increased.
The influence of a timing shift due to a delay time caused when data is stored or read increases, as the rotation frequency of a disc increases and the frequency band of a control residual which is to be reduced increases. Also, the level of the influence of such a timing shift due to a delay time differs between control to reduce a control residual caused by a surface runout and an eccentricity of a rotation frequency component using data stored in a memory, and the above-described control to reduce a control residual caused by a high order frequency component such as a local surface runout and eccentricity, and the like due to a distortion of a disc, because of difference of the frequencies. Therefore, if timing is adjusted only in consideration of the rotation frequency component, the control residual of the high order frequency component such as a local surface runout and eccentricity might be unfavorably increased, as compared to normal feedback control. Thus, a timing shift due to a delay time caused when data is stored or read disturbs highly accurate focus control and tracking control, and is a major obstacle to realize high-speed recording/reproduction and high-density recording/reproduction.
Example focus position control apparatus and method allow reduction in a timing shift due to a delay time caused when data is stored or read, thus realizing highly accurate focus control or tracking control. The focus control and the tracking control are collectively referred to as the focus position control.
Specifically, a focus position control apparatus for control of a focus position of an optical beam includes: an error signal generation unit configured to generate, based on an output signal from an optical head configured to irradiate an optical disc in which a track is formed on a recording surface with an optical beam to record or reproduce data, an error signal indicating an amount of a shift of a focus position of the optical beam from a desired position; a control unit configured to generate, based on the error signal, a control signal for controlling the focus position of the optical beam to a desired position; a rotation synchronizing signal generation unit configured to generate a clock signal synchronized with a rotation of the optical disc; a memory unit configured to sequentially store, as memory data, the control signal in synchronization with the clock signal at an associated one of clock addresses whose one round is completed as the optical disc rotates once; a memory data output unit configured to sequentially read the memory data stored in the memory unit in synchronization with the clock signal; a phase correction unit configured to correct, when the memory data output unit reads the memory data from the memory unit, a phase shift between a clock address for reading and a clock address for storing; and an adding unit configured to add an output signal of the memory data output unit to the control signal. The phase correction unit corrects the phase shift both when the driving of the optical head based on the error signal is performed and when the driving is not performed, and when the driving of the optical head based on the error signal is not performed, input of the control signal to the memory unit is blocked.
Another focus position control apparatus for control of a focus position of an optical beam includes: an error signal generation unit configured to generate, based on an output signal from an optical head configured to irradiate an optical disc in which a track is formed on a recording surface with an optical beam to record or reproduce data, an error signal indicating an amount of a shift of a focus position of the optical beam from a desired position; a control unit configured to generate, based on the error signal, a control signal for controlling the focus position of the optical beam to a desired position; a rotation synchronizing signal generation unit configured to generate a clock signal synchronized with a rotation of the optical disc; first and second memory units each being configured to sequentially store, as memory data, the control signal to a desired position in synchronization with the clock signal at an associated one of clock addresses whose one round is completed as the optical disc rotates once; first and second memory data output units each being configured to sequentially read the memory data stored in an associated one of the first and second memory units in synchronization with the clock signal; a phase correction unit configured to correct, when each of the first and second memory data output units reads the memory data from an associated one of the first and second memory units, a phase shift between a clock address for reading and a clock address for storing; and an adding unit configured to add an output signal of each of the first and second memory data output units to the control signal.
Still another focus position control apparatus for control of a focus position of an optical beam includes: an error signal generation unit configured to generate, based on an output signal from an optical head configured to irradiate an optical disc in which a track is formed on a recording surface with an optical beam to record or reproduce data, an error signal indicating an amount of a shift of a focus position of the optical beam from a desired position; a control unit configured to generate, based on the error signal, a control signal for controlling the focus position of the optical beam to a desired position; a rotation synchronizing signal generation unit configured to generate a clock signal synchronized with a rotation of the optical disc; a memory unit configured to sequentially store, as memory data, the control signal in synchronization with the clock signal at an associated one of clock addresses whose one round is completed as the optical disc rotates once; first and second memory data output units each being configured to sequentially read the memory data stored in the memory unit in synchronization with the clock signal; a phase correction unit configured to correct, when each of the first and second memory data output units reads the memory data from the memory unit, a phase shift between a clock address for reading and a clock address for storing; and an adding unit configured to add an output signal of each of the first and second memory data output units to the control signal.
A focus position control method for control of a focus position of an optical beam includes: generating, based on an output signal from an optical head configured to irradiate an optical disc in which a track is formed on a recording surface with an optical beam to record or reproduce data, an error signal indicating an amount of a shift of a focus position of the optical beam from a desired position; generating, based on the error signal, a control signal for controlling the focus position of the optical beam to a desired position; generating a clock signal synchronized with a rotation of the optical disc; sequentially storing, as memory data, the control signal in synchronization with the clock signal at an associated one of clock addresses whose one round is completed as the optical disc rotates once; sequentially reading the stored memory data in synchronization with the clock signal; correcting, when the stored memory data is read, a phase shift between a clock address for reading and a clock address for storing; adding the read memory data to the control signal to control the focus position of the optical beam based on a result of the adding; and stopping storing the control signal as the memory data when the driving of the optical head based on the error signal is not performed.
According to the present invention, a timing shift due to a delay time caused when data is stored or read can be adjusted according to a desired frequency band. Since a plurality of memory units are provided, correction signals corresponding to a plurality of frequencies can be generated, and each of respective output timings of the correction signals can be controlled. Thus, highly accurate, stable focus control and tracking control for high speed recording/reproduction and high density recording/reproduction can be realized.
An objective lens 4 of the optical head 3 is driven in the optical axis direction (focus direction) of the optical beam 39 by a focus actuator 7 comprised of a magnet and a focus drive coil. A focus error signal generation circuit 52 generates a focus error signal indicating a focus shift of the optical beam 39 relative to the recording surface of the optical disc 1. A focus control circuit 6 outputs a focus control signal for controlling a voltage to be applied to the focus drive coil based on the focus error signal to adjust a focus position of the optical beam 39 output from the optical head 3 on the recording surface of the optical disc 1.
An optical head moving unit 13 for moving the optical head 3 to a different radial position is comprised of a traverse motor 14, a lead screw 15, a rack 16, and a guide shaft 17. The lead screw 15 formed to serve as the rotation axis of the traverse motor 14 is engaged with the rack 16 fixed to the optical head 3. The optical head 3 is supported by the guide shaft 17 to be capable of moving straight. The optical head 3 is moved in the radial direction of the optical disc 1 by a rotation torque of the traverse motor 14 transmitted thereto via the lead screw 15 and the rack 16. The rotation of the traverse motor 14 is controlled by a traverse motor control circuit 18 according to an order of a traverse control unit 63, and the position of the optical head 3 in the radial direction is controlled.
Returning to
When a focus control transitions from a state where focus control is not performed, or when a so-called focus jump for moving the focus position of the optical beam 39 from one recording layer on which recording is currently performed to another recording layer in performing recording/reproduction on a multilayer disc having a plurality of recording layers, a focus drive signal generation circuit 21 generates an acceleration drive signal or a deceleration drive signal for the focus actuator 7. The control operation switch 71 performs switching between stopping the focus control circuit 6 to block an output of the focus control circuit 6 and thereby inputting an output of the focus drive signal generation circuit 21 to the focus drive circuit 51, and causing focus control to be performed and thereby inputting an output of the focus control circuit 6 to the focus drive circuit 51. When a focus control signal is selected by the control operation switch 71, the focus control signal is input to a focus memory processing circuit 23, and an output of the focus memory processing circuit 23 is added to the focus control signal, and is input to the focus drive circuit 51.
The system controller 61 is comprised of a focus control unit 64, a focus error signal measurement unit 65, the spindle control unit 62, the traverse control unit 63, a reproduced data processing unit 66, and the like. The focus control unit 64 controls the overall focus control. The focus error signal measurement unit 65 measures the amplitude of a focus error signal. The spindle control unit 62 performs spindle motor control. The traverse control unit 63 performs traverse control. The reproduced data processing unit 66 performs processing to generate reproduced data based on an RF signal.
The operation of the optical disc apparatus in which the focus control apparatus (focus position control apparatus) of this embodiment having the above-described configuration is incorporated will be described. First, steps before the operation of the focus control apparatus is started will be briefly described. Each step is executed based on an order from the system controller 61. First, the traverse motor control circuit 18 drives the traverse motor 14 according to an order from the system controller 61 to move the optical head 3 to a desired radial position. Next, the spindle motor control circuit 5 rotationally drives the optical disc 1 at a desired rotation frequency, which is specified by the system controller 61. In this state, the operation of the focus control apparatus is started.
Next, details of the operation of the focus control apparatus of this embodiment will be described with reference to a flowchart of
The operation after the focus control signal which has passed through the bandpass filter 74 is input to the memory input control unit 75 (S2) until memory data is output as a memory output signal (S4) will be described further in detail.
As described above, by reading memory data with a phase advanced by S clocks, a processing time of the memory input control unit 75, a processing time for writing to the focus drive memory 76, and a delay of a memory output signal from a focus control signal caused by a phase delay due to the frequency characteristic of the bandpass filter 74 can be corrected. If the delay is not corrected, a memory output signal is added as an original deviation amount to a focus control signal with a timing shifted from a timing with which the memory output signal is to be output. Thus, an unnecessary disturbance to normal feedback control performed in the focus control circuit 6 occurs, and a control residual which is to be reduced is unfavorably increased. Therefore, by performing the above-described correction of such a delay, so-called repetitive control effect, i.e., a control residual which cannot be reduced by the normal feedback control by the focus control circuit 6 can be also reduced.
Next, adjustment of a delay correction amount, which is another feature of the present invention will be described. The adverse effect of the delay increases, as the rotation frequency of a disc increases and a frequency band of a control residual which is to be reduced increases. Also, an optimal delay correction amount might vary due to the frequency of a control residual which cannot be reduced by the normal feedback control by the focus control circuit 6, i.e., the frequency of a control residual which is to be reduced. When a delay time of a memory output signal from a focus control signal is determined only by a process time of a hardware or a software, the delay time is constant. However, as the rotation frequency increases, the number of clocks which are to be corrected increases. Also, even with the same rotation frequency, as the frequency of a control residual which is to be reduced increases, the number of clocks existing in a variation cycle of the control residual reduces, and therefore, the level of influence of one clock delay increases. Moreover, if a component, such as the bandpass filter 74 and the like, which has a frequency characteristic is provided, a delay due to the phase characteristic thereof is added. In such a case, a delay time varies due to the frequency of a control residual which is to be reduced. Therefore, optimal adjustment of a delay correction amount has to be appropriately performed so that a greatest advantage of repetitive control using a memory can be achieved.
Each of
As described above, the frequency of a phase delay and the level of the frequency vary according to the amount of a surface runout of the optical disc 1 on which recording/reproduction is performed, whether or not a high order local surface runout exists, the magnitude of the high order local surface runout, a processing time of the memory input control unit 75, a processing time for writing to the focus drive memory 76, and the frequency characteristic of the bandpass filter 74 or the like. However, the focus control apparatus of this embodiment allows correction of a phase shift between a clock position when data is read and a clock position when data is written to the focus drive memory 76. Thus, the control residual can be reduced to be small by setting an optimal phase correction amount S according to conditions of such a case. Furthermore, since the frequency band of a memory input signal to be input to the focus drive memory 76 can be restricted by the bandpass filter 74, it is possible to prevent a phase from being advanced too much by phase correction in an unnecessary band. Thus, the control residual can be reduced to be minimal at any time in any case.
An objective lens 4 is driven in the radial direction (tracking direction) of an optical disc 1 by a tracking actuator 8 comprised of a magnet and a tracking drive coil. A tracking error signal generation circuit 53 generates a tracking error signal indicating a shift of a focus position of an optical beam 39 from a track formed in a recording surface. A tracking control circuit 55 outputs a tracking control signal for causing the optical beam 39 output from an optical head 3 to follow the track formed in the recording surface. A tracking drive circuit 56 controls a voltage to be applied to the tracking drive coil based on the tracking control signal.
Returning to
When a tracking control transitions from a state where tracking control is not performed, i.e., for example, when the optical head 3 has moved to a different radial position and the like, or when a so-called track jump for moving the focus position of the optical beam 39 from one track to another, a tracking drive signal generation circuit 22 generates an acceleration drive signal or a deceleration drive signal for the tracking actuator 8. The control operation switch 87 performs switching between stopping the tracking control circuit 55 to block an output of the tracking control circuit 55 and thereby inputting an output of the tracking drive signal generation circuit 22 to the tracking drive circuit 56, and causing tracking control to be performed and thereby inputting an output of the tracking control circuit 55 to the tracking drive circuit 56. When the tracking control signal is selected by the control operation switch 87, the tracking control signal is input to a tracking memory processing circuit 24, and an output of the tracking memory processing circuit 24 is added to the tracking control signal by the adder 88 and then is input to the tracking drive circuit 56.
The system controller 61 is comprised of a tracking control unit 67, a tracking error signal measurement unit 68, a spindle control unit 62, a traverse control unit 63, a reproduced data processing unit 66, and the like. The tracking control unit 67 performs the overall tracking control. The tracking error signal measurement unit 68 measures the amplitude of a tracking error signal.
The operation of the optical disc apparatus in which the tracking control apparatus (focus position control apparatus) of this embodiment having the above-described configuration is incorporated will be described. First, steps before the operation of the tracking control apparatus is started will be briefly described. Each step is executed based on an order from the system controller 61. First, a traverse motor control circuit 18 drives a traverse motor 14 according to an order from the system controller 61 to move the optical head 3 to a desired radial position. Next, a spindle motor control circuit 5 rotationally drives the optical disc 1 at a desired rotation frequency, which is specified by the system controller 61. Then, the operation of the focus control apparatus is started, and the operation of the tracking control apparatus is started in a state where focus control is performed.
Next, details of the operation of the tracking control apparatus of this embodiment will be described with reference to a flowchart of
Note that details of the operation after the tracking control signal which has passed through the bandpass filter 83 is input to the memory input control unit 84 (S22) until memory data is output as a memory output signal (S24) are similar to those of the first embodiment. Also, the surface runout of a rotation frequency component in the focus control, which has been described in the first embodiment, corresponds to an eccentricity of a track in the tracking control of this embodiment. The high order local surface runout in the focus control of the first embodiment corresponds to a high order local eccentricity of a track in the tracking control of this embodiment.
As described above, similar to focus control, the frequency of a phase delay and its level vary in tracking control according to the amount of an eccentricity of the optical disc 1 on which recording/reproduction is performed, whether or not a high order local eccentricity exists, the magnitude of the high order local eccentricity, a processing time of the memory input control unit 84, a processing time for writing to the tracking drive memory 82, and the frequency characteristic of the bandpass filter 83 and the like. However, the tracking control apparatus of this embodiment allows correction of a phase shift between a clock position when data is read and a clock position when data is written to the tracking drive memory 82. Thus, the control residual can be reduced to be small by setting an optimal phase correction amount S according to conditions of such a case. Furthermore, the frequency band of a memory input signal to be input to the tracking drive memory 82 can be restricted by the bandpass filter 83, and it is possible to prevent a phase from being advanced too much by phase correction in an unnecessary band. Thus, a control residual can be reduced to be minimal at any time in any case.
A focus position control apparatus according to a third embodiment of the present invention is configured so that a delay correction amount which causes the maximum amplitude of an error signal to be the smallest is obtained as an optimal phase correction amount S. A case where the focus position control apparatus of this embodiment is a focus control apparatus will be described hereinafter as an example. The focus position control apparatus of this embodiment and an optical disc apparatus in which the focus position control apparatus is incorporated have similar configurations to those of the first embodiment (see
The operation of the focus position control apparatus of this embodiment will be described with referent to a flowchart of
Note that when the phase correction amount is set to be too large, the focus error signal is too large, and focus control might be unstable (see
As described above, in the focus position control apparatus of this embodiment, the optimal phase correction amount with which the focus error signal can be reduced to be minimal can be obtained, regardless of the amount of a phase delay between a clock position when data is read from a memory and a clock position when the data has been written in the memory. Therefore, according to this embodiment, a focus position control apparatus having a stable control characteristic in any case can be realized. Moreover, the focus position control apparatus of this embodiment can be varied to be a focus position control apparatus for performing the tracking control of the second embodiment. That is, measurement is performed to a tracking error signal, instead of a focus error signal, to determine the phase correction amount S with which the maximum amplitude of the tracking error signal is the smallest. Thus, regardless of the amount of a phase delay between a clock position when data is read from a memory and a clock position when the data has been written to the memory, an optimal phase correction amount with which the tracking error signal can be reduced to be minimal can be obtained, and thus, a focus position control apparatus having a stable control characteristic in any case can be realized.
A focus position control apparatus according to a fourth embodiment of the present invention is configured so that a delay correction amount with which a reproduction jitter obtained from an RF signal is minimal is obtained as an optimal phase correction amount S. A case where the focus position control apparatus of this embodiment is a focus control apparatus will be hereinafter described as an example. The focus position control apparatus of this embodiment and an optical disc apparatus in which the focus position control apparatus is incorporated have similar configurations to those of the first embodiment (see
The operation of the focus position control apparatus of this embodiment will be described with a flowchart of
As described above, with the focus position control apparatus of this embodiment, regardless of the amount of a phase delay between a clock position when data is read from a memory and a clock position when the data has been written to the memory, an optimal phase correction amount with which a best reproduction characteristic is achieved can be obtained, and thus, an optical disc apparatus having a stable reproduction characteristic in any case can be realized.
A focus position control apparatus according to a fifth embodiment of the present invention is configured so that a delay correction amount with which the amplitude of an RF signal is maximal is obtained as an optimal phase correction amount S. A case where the focus position control apparatus of this embodiment is a focus control apparatus will be hereinafter described as an example. The focus position control apparatus of this embodiment and an optical disc apparatus in which the focus position control apparatus is incorporated have similar configurations to those of the fourth embodiment (see
The operation of the focus position control apparatus of this embodiment will be described with a flowchart of
As described above, with the focus position control apparatus of this embodiment, regardless of the amount of a phase delay between a clock position when data is read from a memory and a clock position when the data has been written to the memory, an optimal phase correction amount with which a best reproduction characteristic is achieved can be obtained, and thus, an optical disc apparatus having a stable reproduction characteristic in any case can be realized.
A focus position control apparatus according to a sixth embodiment of the present invention is configured so that, even when normal focus control or normal tracking control is stopped, a memory output signal is output, the memory output signal is added to a drive signal output by a tracking drive signal generation circuit 22 to drive a focus actuator 7 or a tracking actuator 8, and thus, a focus position of an optical beam 39 is caused to follow a surface runout or an eccentricity. With this configuration, the operation of transition of focus control or tracking control after focus jump, tracking jump, inter-track movement can be stabilized. A case where focus position control of the focus position control apparatus of this embodiment is tracking control will be hereinafter described as an example. The focus position control apparatus of this embodiment has a similar configuration to that of the second embodiment (see
The operation of the focus position control apparatus of this embodiment will be described with reference to a flowchart of
Normally, a transition of tracking control can be stabilized by the transition of tracking control at the time when a track traverse frequency due to an eccentricity of a track is relatively low. In this case, the tracking actuator 8 has been driven by the optimal memory output signal for following the eccentricity obtained since the start of the seek operation. Thus, at the time when the movement of the optical head 3 is completed to start a transition of tracking control, the track traverse frequency of the optical beam 39 has become low. Therefore, a stable transition of tracking control can be immediately made. At the time of starting the transition, the control operation switch 87 is switched to be connected to the tracking control circuit 55 (S408). Also, at the same time, the phase correction unit 89 returns the phase correction amount from the phase correction amount D which has been currently set to the phase correction amount C according to an order of the tracking control unit 67. Then, the memory input switch 134 is turned on, and writing to the tracking drive memory 82 is restarted (S401).
As described above, while tracking control is performed, the phase correction amount is set to be a value with which the maximum amplitude of the tracking error signal is the smallest. For example, as shown in
As described above, with the focus position control apparatus of this embodiment, a stable transition of tracking control is allowed. Thus, not only the recording/reproduction characteristic can be improved, but also reduction in access speed can be realized by stabilizing a seek operation and reducing a processing time of the seek operation.
Note that similar advantages to those described above for a surface runout of the optical disc 1 can be achieved also in focus control. That is, the focus position of the optical beam 39 can be caused to follow a surface runout even during a focus jump operation, and thus, a stable transition of focus control after a focus jump operation can be realized.
A focus position control apparatus according to a seventh embodiment of the present invention is configured to include a drive memory for low frequency and a drive memory for high frequency separately provided therein, thereby separately optimizing their respective phase correction amounts. Furthermore, in the focus position control apparatus of this embodiment, unnecessary frequency components in a memory input signal can be blocked by each of bandpass filters separately provided. The focus position control apparatus of this embodiment and an optical disc apparatus in which the focus position control apparatus is incorporated basically have similar configurations to those of the first embodiment (see
Each of the memory input control units 138 and 188 stores a memory input signal as memory data at a predetermined clock address in each of focus drive memories 121 and 171 in synchronization with a common clock signal. The clock signal is a rotation synchronizing signal, which is generated in a clock generation unit 80 by multiplying an FG signal input to the clock generation unit 80 via the focus control unit 64. As the optical disc 1 rotates once, one round of clock addresses is completed. Each of the memory output control units 136 and 186 outputs the memory data stored at an associated one of specified clock addresses as a memory output signal, based on an order signal sent from a phase correction unit 122. Each of the memory output signals is amplified with a desired gain by an associated one of amplifiers 128 and 178, and is added to the focus control signal by the adder 72 via an associated one of memory output switches 131 and 181. The gain of each of the amplifiers 128 and 178 is controlled to be a desired gain by a gain control signal from the focus control unit 64. The focus control signal to which the memory output signal have been added is input to a focus drive circuit 51, and is converted to a voltage to drive the focus actuator 7.
In the optical disc apparatus in which the focus control apparatus (focus position control apparatus) of this embodiment having the above-described configuration is incorporated, steps before the operation of the focus control apparatus is started are similar to those of the first embodiment. Each step is executed based on an order from a system controller 61. First, a traverse motor control circuit 18 drives a traverse motor 14 according to an order from the system controller 61 to move an optical head 3 to a desired radial position. Next, a spindle motor control circuit 5 rotationally drives an optical disc 1 at a desired rotation frequency, which is specified by the system controller 61. In this state, the operation of the focus control apparatus is started.
Next, details of the operation of the focus control apparatus of this embodiment will be described with reference to a flowchart of
Details of the operation after each of the memory input signals is input to an associated one of the memory input control units 138 and 188 (S502) until memory data is output as a memory output signal (S504) are similar to those of the first embodiment. A feature of this embodiment is that the bandpass filter, the focus drive memory, the memory output control unit, the amplifier, and the memory output switch are provided for each of low frequency components including the rotation frequency component and high frequency components including a frequency component of a local surface runout, i.e., two of each of those components are provided separately for the low frequency components and the high frequency components, and furthermore, the phase correction amount S for the low frequency components is different from that for the high frequency components.
When both of a large surface runout of the rotation frequency and a local surface runout at a frequency which is about 10 times the rotation frequency due to a distortion of the optical disc 1 exist in the optical disc 1, control residuals due to the surface runout and the local surface runout both have to be reduced (see
As described above, with the focus position control apparatus of this embodiment, both of a phase delay of the rotation frequency component in a focus control signal and a phase delay of a high order frequency component in the focus control signal hardly occur, so that a control residual can be reduced to be very small. Similar to the focus position control apparatus of the sixth embodiment, even when focus position control is not performed, only the memory output switch 131 is turned on, and a memory output signal from the memory output control unit 136 is added to a drive signal. Thus, a large reduction rate can be achieved in a low frequency band, and accordingly, a stable transition of focus position control is allowed. Therefore, not only the recording/reproduction characteristic of the optical disc apparatus can be improved, but also reduction in access speed can be realized by stabilizing a seek operation and reducing a processing time of the seek operation.
A focus position control apparatus according to an eighth embodiment is configured so that a memory output control unit for low frequency and a memory output control unit for high frequency are provided for one drive memory, respective phase correction amounts for the memory output control units can be optimized separately, and furthermore, unnecessary frequency components in each of memory input signals of the memory output control units can be blocked by an associated one of bandpass filters separately provided. The focus position control apparatus of this embodiment and an optical disc apparatus in which the focus position control apparatus is incorporated basically have similar configurations to those of the first embodiment (see
Each of the memory output signals is amplified with a desired gain by an associated one of the amplifiers 129 and 179, and is added to a focus control signal by an adder 72 via an associated one of memory output switches 132 and 182. The gain of each of the amplifiers 129 and 179 is controlled to be a desired gain by a gain control signal from the focus control unit 64. The focus control signal to which the memory output signals have been added is input to the focus drive circuit 51, and is converted to a voltage to drive a focus actuator 7.
In the optical disc apparatus in which the focus control apparatus (focus position control apparatus) of this embodiment having the above-described configuration is incorporated, steps before the operation of the focus control apparatus is started are similar to those of the first embodiment. Each step is executed based on an order from a system controller 61. First, a traverse motor control circuit 18 drives a traverse motor 14 according to an order from the system controller 61 to move the optical head 3 to a desired radial position. Next, a spindle motor control circuit 5 rotationally drives the optical disc 1 at a desired rotation frequency, which is specified by the system controller 61. In this state, the operation of the focus control apparatus is started.
Next, details of the operation of the focus control apparatus of this embodiment will be described with reference to a flowchart of
Details of the operation after the memory input signal is input to the memory input control unit 75 (S602) until memory data is output as a memory output signal (S604) are similar to those of the first embodiment. A feature of this embodiment is that the memory output control unit, the bandpass filter, the amplifier, and the memory output switch are provided for each of low frequency components including the rotation frequency component and high frequency components including a frequency component of a local surface runout, i.e., two of each of those components are provided separately for the low frequency components and the high frequency components, and furthermore, the phase correction amount S for the low frequency components is different from that for the high frequency components.
When both of a large surface runout at the rotation frequency and a local surface runout at a frequency which is about 10 times the rotation frequency due to a distortion of the optical disc 1 exist in the optical disc 1, control residuals due to the surface runout and the local surface runout both have to be reduced (see
Each of the memory output control units 137 and 187 reads memory data from a clock address corrected by a predetermined phase correction amount set by the phase correction unit 123 for each of the memory output control units 137 and 187. The phase correction amount S for the memory output control unit 137 is set to be 2 so that a phase delay in a frequency band around the rotation frequency can be corrected. In the memory output signal read with the phase correction amount set as described above, a phase is delayed in a frequency band of a local surface runout (see
Therefore, the focus position control apparatus of this embodiment is configured so that the memory output signals are caused to separately pass through the bandpass filters 127 and 177. The gain characteristics of the bandpass filters 127 and 177 are similar to those of the bandpass filters 126 and 176 of the seventh embodiment (see
Accordingly, in the memory output signal from the memory output control unit 137, the frequency band of a local surface runout in which a phase is delayed is blocked by the bandpass filter 127. Also, in the memory output signal from the memory output control unit 187, the frequency band around the rotation frequency in which a phase is advanced too much is blocked by the bandpass filter 177. That is, a phase in a frequency band whose control residual is to be reduced is optimized using each of memory output signals, and moreover, unnecessary frequency components other than frequency components in the frequency band whose control residual is to be reduced can be removed. Thus, an optical beam can be caused to follow each of low frequency components due to a surface runout and the like and high frequency components due to a local surface runout and the like, so that a control residual can be reduced to be sufficiently small.
As described above, with the focus position control apparatus of this embodiment, each of a phase delay of a rotation frequency component in a focus control signal and a phase delay of a high order frequency component in the focus control signal hardly occurs. Thus, a focus position control apparatus in which a control residual can be reduced to be very small can be realized. Similar to the focus position control apparatus of the sixth embodiment, even when focus control is stopped, only the memory output switch 132 is turned on, and the memory output signal from the memory output control unit 137 is added to a drive signal. Thus, a large reduction rate can be achieved in a low frequency band, so that a stable transition of tracking control is allowed. Therefore, not only the recording/reproduction characteristic of an optical disc apparatus can be improved, but also reduction in access speed can be realized by stabilizing a seek operation and reducing a processing time of the seek operation.
A focus position control apparatus according to the present invention is applicable to an optical disc apparatus in which an optical disc is irradiated with an optical beam, thereby recording/reproducing information on the optical disc.
Number | Date | Country | Kind |
---|---|---|---|
2008-162156 | Jun 2008 | JP | national |
This is a continuation of PCT International Application PCT/JP2009/002803 filed on Jun. 19, 2009, which claims priority to Japanese Patent Application No. 2008-162156 filed on Jun. 20, 2008. The disclosures of these applications including the specifications, the drawings, and the claims are hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2009/002803 | Jun 2009 | US |
Child | 12970521 | US |