The present invention generally relates to footwear having a sensor system and, more particularly, to a shoe having a force sensor assembly operably connected to a communication port located in the shoe.
Shoes having sensor systems incorporated therein are known. Sensor systems collect performance data wherein the data can be accessed for later use such as for analysis purposes. In certain systems, the sensor systems are complex or data can only be accessed or used with certain operating systems. Thus, uses for the collected data can be unnecessarily limited. Accordingly, while certain shoes having sensor systems provide a number of advantageous features, they nevertheless have certain limitations. The present invention seeks to overcome certain of these limitations and other drawbacks of the prior art, and to provide new features not heretofore available.
The present invention relates generally to footwear having a sensor system. Aspects of the invention relate to an article of footwear that includes an upper member and a sole structure, with a sensor system connected to the sole structure. The sensor system includes a plurality of sensors that are configured for detecting forces exerted by a user's foot on the sensor.
According to one aspect, the footwear further contains a communication port operably connected with the sensors. In one embodiment, the communication port is configured for transmitting data regarding forces detected by each sensor in a universally readable format. The port may also be configured for connection to an electronic module to allow communication between the sensors and the module.
Additional aspects of the invention relate to a port for use with an article of footwear may include a housing adapted to be at least partially received within the sole structure of the article of footwear. The housing includes a plurality of side walls defining a chamber adapted to receive an electronic module therein. An interface is engaged with the housing and has at least one electrical contact exposed to the chamber. In this configuration, the interface is adapted to form an electrical connection with the module such that the module engages the at least one electrical contact when the module is received within the chamber.
Further aspects of the invention relate to an article of footwear adapted to receive a foot and including a sole structure, an upper portion, a sensor system, and a port as described above. The sole structure includes an outsole member and a midsole member supported by the outsole member, the midsole member having a well therein. The upper portion is connected to the sole structure. The sensor system includes a force sensor connected to the sole structure and a sensor lead extending away from the force sensor, the force sensor being adapted to sense a force exerted on the sole structure by the foot. The interface of the port includes an electrical contact that is connected to the sensor lead and thereby in electronic communication with the force sensor.
Still further aspects of the invention relate to a system for use with article of footwear adapted to engage a foot. The system includes a sole structure having an outsole member and a midsole member supported by the outsole member, the midsole member having a well therein and an upper portion connected to the sole structure. The system also includes a sensor system having a plurality of force sensors connected to the sole structure and a plurality of sensor leads extending away from the force sensors, the force sensors each being adapted to sense a force exerted on the sole structure by the foot. A port is connected to the sole structure and the sensor system. The port includes a housing at least partially received within the well in the midsole member and an interface engaged with the housing. The housing includes a plurality of side walls defining a chamber and a retaining member connected to at least one of the side walls. The interface has a plurality of electrical contacts exposed to the chamber, such that the electrical contacts are connected to the plurality of sensor leads and are thereby in electronic communication with the force sensors. The system further includes an electronic module received in the chamber of the port, such that the module engages the plurality of electrical contacts of the interface when the module is received within the chamber, forming an electrical connection with the interface. The module is configured to receive signals from the force sensor through the electrical connection with the interface and store data received from the force sensor. Additionally, the retaining member of the housing exerts a force on the module to retain the module within the chamber.
Still other features and advantages of the invention will be apparent from the following specification taken in conjunction with the following drawings.
While this invention is susceptible of embodiment in many different forms, there are shown in the drawings, and will herein be described in detail, preferred embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspects of the invention to the embodiments illustrated and described.
Footwear, such as a shoe, is shown as an example in
An article of footwear 100 is depicted in
As further shown in
Upper 120 may also include a heel element (not shown) and a toe element (not shown). The heel element, when present, may extend upward and along the interior surface of upper 120 in the heel region 113 to enhance the comfort of footwear 100. The toe element, when present, may be located in forefoot region 111 and on an exterior surface of upper 120 to provide wear-resistance, protect the wearer's toes, and assist with positioning of the foot. In some embodiments, one or both of the heel element and the toe element may be absent, or the heel element may be positioned on an exterior surface of the upper 120, for example. Although the configuration of upper 120 discussed above is suitable for footwear 100, upper 120 may exhibit the configuration of any desired conventional or non-conventional upper structure without departing from this invention.
Sole structure 130 is secured to a lower surface of upper 120 and may have a generally conventional shape. The sole structure 130 may have a multipiece structure, e.g., one that includes a midsole 131, an outsole 132, and a foot contacting member 133, which may be a sockliner, a strobel, an insole member, a bootie element, a sock, etc. (See
Midsole member 131 may be an impact attenuating member. For example, the midsole member 131 may be formed of polymer foam material, such as polyurethane, ethylvinylacetate, or other materials (such as phylon, phylite, etc.) that compress to attenuate ground or other contact surface reaction forces during walking, running, jumping, or other activities. In some example structures according to this invention, the polymer foam material may encapsulate or include various elements, such as a fluid-filled bladder or moderator, that enhance the comfort, motion-control, stability, and/or ground or other contact surface reaction force attenuation properties of footwear 100. In still other example structures, the midsole 131 may include additional elements that compress to attenuate ground or other contact surface reaction forces. For instance, the midsole may include column type elements to aid in cushioning and absorption of forces.
Outsole 132 is secured to a lower surface of midsole 131 in this illustrated example footwear structure 100 and is formed of a wear-resistant material, such as rubber or a flexible synthetic material, such as polyurethane, that contacts the ground or other surface during ambulatory or other activities. The material forming outsole 132 may be manufactured of suitable materials and/or textured to impart enhanced traction and slip resistance. The structure and methods of manufacturing the outsole 132 will be discussed further below. A foot contacting member 133 (which may be an insole member, a sockliner, a bootie member, a strobel, a sock, etc.) is typically a thin, compressible member that may be located within the void in upper 120 and adjacent to a lower surface of the foot (or between the upper 120 and midsole 131) to enhance the comfort of footwear 100. In some arrangements, an insole or sockliner may be absent, and in other embodiments, the footwear 100 may have a foot contacting member positioned on top of an insole or sockliner.
The outsole 132 shown in
Other embodiments of the sensor system 12 may contain a different number or configuration of sensors 16, such as the embodiments described below and shown in
The sensor system 12 can be positioned in several configurations in the sole 130 of the shoe 100. In the examples shown in
In one embodiment, as shown in
Additionally, the sensors 16 may be placed or positioned in engagement with the shoe structure in many different manners. In one example, the sensors 16 may be printed conductive ink sensors, electrodes, and/or leads deposited on a sole member, such as an airbag or other fluid-filled chamber, a foam material, or another material for use in the shoe 100, or a sock, bootie, insert, liner, insole, midsole, etc. The sensors 16 and/or leads 18 may be woven into garment or fabric structures (such as sockliners, booties, uppers, inserts, etc.), e.g., using conductive fabric or yarns when weaving or knitting the garment or fabric structures. Many embodiments of the sensor system 12 can be made inexpensively, for example, by using a force-sensitive resistor sensor or a force-sensitive resistive material, as described below and shown in
The port 14 is configured for communication of data collected by the sensors 16 to an outside source, in one or more known manners. In one embodiment, the port 14 is a universal communication port, configured for communication of data in a universally readable format. In the embodiments shown in
The port 14 is adapted for connection to one or a variety of different electronic modules 22, which may be as simple as a memory component (e.g., a flash drive) or which may contain more complex features. It is understood that the module 22 could be as complex a component as a personal computer, mobile device, server, etc. The port 14 is configured for transmitting data gathered by the sensors 16 to the module 22 for storage and/or processing. In another embodiment, the port 14 may include necessary components (e.g. a processor, memory, software, TX/RX, etc.) in order to accomplish storage and/or execution of such computer programs/algorithms and/or direct (wired or wireless) transmission of data and/or other information to an external device 110. Examples of a housing and electronic modules in a footwear article are illustrated in U.S. patent application Ser. No. 11/416,458, published as U.S. Patent Application Publication No. 2007/0260421, which is incorporated by reference herein and made part hereof. Although the port 14 is illustrated with electrical contacts forming an interface 20 for connection to a module, in other embodiments, the port 14 may contain one or more additional or alternate communication interfaces for communication with the sensors 16, the module 22, the external device 110, and/or another component. For example, the port 14 may contain or comprise a USB port, a Firewire port, 16-pin port, or other type of physical contact-based connection, or may include a wireless or contactless communication interface, such as an interface for Wi-Fi, Bluetooth, near-field communication, RFID, Bluetooth Low Energy, Zigbee, or other wireless communication technique, or an interface for infrared or other optical communication technique (or combination of such techniques).
The port 14 and/or the module 22 may have one or more interfaces 20, 23, and the port 14 may have internal circuitry to connect all of the leads 18, 18A to the interfaces 20, 23. Additionally, the module 22 may have one or more interfaces 23 that are complementary to the interface(s) 20 of the port 14, for connection thereto. For example, if the port 14 has interface(s) 20 in the side walls 139 and/or base wall 143 thereof, the module 22 may have complementary interface(s) 23 in the side walls and/or base wall as well. It is understood that the module 22 and the port 14 may not have identically complementary interfaces 20, 23, and that only one pair of complementary interfaces 20, 23 may be able to achieve communication between the components. In other embodiments, the port 14 and the well 135 may have a different configuration for connection of the leads 18, 18A. Additionally, the port 14 may have a different shape, which may enable a greater variety of connection configurations. Further, any of the connection configurations described herein, or combinations thereof, can be utilized with the various embodiments of sensor systems described herein.
The module 22 may additionally have one or multiple communication interfaces for connecting to an external device 110 to transmit the data, e.g. for processing, as described below and shown in
While the port 14 may be located in a variety of positions without departing from the invention, in one embodiment, the port 14 is provided at a position and orientation and/or is otherwise structured so as to avoid or minimize contact with and/or irritation of the wearer's foot, e.g., as the wearer steps down in and/or otherwise uses the article of footwear 100, such as during an athletic activity. The positioning of the port 14 in
In one embodiment, where the port 14 is configured for contacted communication with a module 22 contained in a well 135 in the sole structure 130, the port 14 is positioned within or immediately adjacent the well 135, for connection to the module 22. It is understood that if the well 135 further contains a housing 24 for the module 22, the housing 24 may be configured for connection to the interface 20, such as by providing physical space for the interface 20 or by providing hardware for interconnection between the interface 20 and the module 22. The positioning of the interface 20 in
In the example of
Connection to the one or more sensors can be accomplished through TX-RX element 106, and additional sensors (not shown) may be provided to sense or provide data or information relating to a wide variety of different types of parameters. Examples of such data or information include physical or physiological data associated with use of the article of footwear 100 or the user, including pedometer type speed and/or distance information, other speed and/or distance data sensor information, temperature, altitude, barometric pressure, humidity, GPS data, accelerometer output or data, heart rate, pulse rate, blood pressure, body temperature, EKG data, EEG data, data regarding angular orientation and changes in angular orientation (such as a gyroscope-based sensor), etc., and this data may be stored in memory 204 and/or made available, for example, for transmission by the transmission/reception system 106 to some remote location or system. The additional sensor(s), if present, may also include an accelerometer (e.g., for sensing direction changes during steps, such as for pedometer type speed and/or distance information, for sensing jump height, etc.).
As additional examples, electronic modules, systems, and methods of the various types described above may be used for providing automatic impact attenuation control for articles of footwear. Such systems and methods may operate, for example, like those described in U.S. Pat. No. 6,430,843, U.S. Patent Application Publication No. 2003/0009913, and U.S. Patent Application Publication No. 2004/0177531, which describe systems and methods for actively and/or dynamically controlling the impact attenuation characteristics of articles of footwear (U.S. Pat. No. 6,430,843, U.S. Patent Application Publication No. 2003/0009913, and U.S. patent application Publication No. 2004/0177531 each are entirely incorporated herein by reference and made part hereof). When used for providing speed and/or distance type information, sensing units, algorithms, and/or systems of the types described in U.S. Pat. Nos. 5,724,265, 5,955,667, 6,018,705, 6,052,654, 6,876,947 and 6,882,955 may be used. These patents each are entirely incorporated herein by reference.
In the embodiment of
The module 22 may further be configured for communication with an external device 110, which may be an external computer or computer system, mobile device, gaming system, or other type of electronic device, as shown in
Many different types of sensors can be incorporated into sensor systems according to the present invention.
The sensor system 212 in
The FSR sensors 216 shown in
The electrodes 240, 242 of the FSR sensor 216 can be formed of any conductive material, including metals, carbon/graphite fibers or composites, other conductive composites, conductive polymers or polymers containing a conductive material, conductive ceramics, doped semiconductors, or any other conductive material. The leads 218 can be connected to the electrodes 240, 242 by any suitable method, including welding, soldering, brazing, adhesively joining, fasteners, or any other integral or non-integral joining method. Alternately, the electrode 240, 242 and associated lead 218 may be formed of a single piece of the same material. As described below, the force sensitive resistive material 244 can be carbon (such as carbon black) in one embodiment, however other types of sensors may utilize a different type of force-sensitive resistive material 244, such as a quantum tunneling composite, a custom conductive foam, a force transducing rubber, and other force-sensitive resistive materials described herein.
In the example embodiment shown in
Force-sensitive resistors suitable for use in the sensor system 212 are commercially available from sources such as Sensitronics LLC. Examples of force-sensitive resistors which may be suitable for use are shown and described in U.S. Pat. Nos. 4,314,227 and 6,531,951, which are incorporated herein by reference in their entireties and made parts hereof.
In the embodiment of the sensor system 212 shown in
As shown in
One embodiment of an electronic module 322 as described above is illustrated in
In the embodiment illustrated in
The housing 324 also includes retaining structure to retain the module 322 within the chamber 348. In this embodiment, the retaining structure includes retaining members 349, 350 adapted to engage the module 322 and exert a downward retaining force on the module 322 and a biasing member 351 adapted to engage the module 322 and exert an upward biasing force on the module 322. The retaining members 349, 350 include one or more flexible retaining tabs 349 and a rigid retaining member 350 in the form of a lip. The retaining lip 350 is positioned proximate the interface 320, and is configured to hold the front of the module 322 near the interface 320, and the flexible retaining tabs 349 are positioned at the opposite end of the chamber 348 from the interface 320. As shown in
The interface 320 is engaged with the housing 324 and is adapted for electrical connection to the module interface 323 when the module 322 is received in the chamber 348. The interface 320 contains one or more electrical contacts 356 having contact surfaces 357 that are exposed to the chamber 348 and are adapted to form an electrical connection by engaging the contact surface(s) 354 of the electrical contact(s) 353 of the module interface 323. In the embodiment illustrated in
In this embodiment, the base 358 holds the contact springs 356 within an internal cavity or cavities 360 so that the contact springs 356 are at least partially exposed to the chamber 348 for engagement by the module 322. The base 358 is engaged with the housing 324 to properly position the contact springs 356. As shown in
The contact springs 356 are each connected to one of the sensor leads 318, 318A of the sensor system 312, in order to form an electrical connection for communication between the sensors 316 and the module 322. As shown in
Another embodiment of a port 414 is shown in
In the embodiment illustrated in
The housing 424 also includes retaining structure that includes retaining members 449, 450 adapted to engage the module 322 and exert a downward retaining force on the module 322 and a biasing member 451 adapted to engage the module 322 and exert an upward biasing force on the module 322. The retaining members 449, 450 include one or more flexible retaining tabs 449 and a rigid retaining member 450 in the form of a lip, which are configured and function similarly to the retaining members 349, 350 described above. Notches 449B are provided behind the retaining tabs 449 to provide room for the retaining tabs 449 to flex. The biasing member 451 is a flexible biasing tab that is connected to the bottom wall 443 of the housing 424, and is configured and functions similarly to the biasing member 351 described above.
The interface 420 is engaged with the housing 424 and is adapted for electrical connection to the module interface 323 when the module 322 is received in the chamber 448. The interface 420 contains one or more electrical contacts 456 having contact surfaces 457 that are exposed to the chamber 448 and are adapted to form an electrical connection by engaging the contact surface(s) 354 of the electrical contact(s) 353 of the module interface 323. In the embodiment illustrated in
In this embodiment, the base 458 holds the contact springs 456 within an internal cavity or cavities 460 so that the contact springs 456 are at least partially exposed to the chamber 448 for engagement by the module 322. The base 458 is engaged with the housing 424 to properly position the contact springs 456. As shown in
The contact springs 456 are each connected to one of the sensor leads 318, 318A of the sensor system 312, in order to form an electrical connection for communication between the sensors 316 and the module 322. As shown in
Another embodiment of a port 514 is shown in
In the embodiment illustrated in
The housing 524 also includes retaining structure that includes retaining members 549, 550 adapted to engage the module 322 and exert a downward retaining force on the module 322 and a biasing member 551 adapted to engage the module 322 and exert an upward biasing force on the module 322. The retaining members 549, 550 include one or more flexible retaining tabs 549 and a rigid retaining member 550 in the form of a lip, which are configured and function similarly to the retaining members 349, 350 described above. Notches 549B are provided behind the retaining tabs 549 to provide room for the retaining tabs 549 to flex. The biasing member 551 is a flexible biasing tab that is connected to the bottom wall 543 of the housing 524, and is configured and functions similarly to the biasing member 351 described above.
The interface 520 is engaged with the housing 524 and is adapted for electrical connection to the module interface 323 when the module 322 is received in the chamber 548. The interface 520 contains one or more electrical contacts 556 having contact surfaces 557 that are exposed to the chamber 548 and are adapted to form an electrical connection by engaging the contact surface(s) 354 of the electrical contact(s) 353 of the module interface 323. In the embodiment illustrated in
In this embodiment, the base 558 holds the contact pins 556 within an internal cavity or cavities 560 so that the contact pins 556 are at least partially exposed to the chamber 548 for engagement by the module 322. The base 558 is engaged with the housing 524 to properly position the contact pins 556. As shown in
The contact pins 556 are each connected to one of the sensor leads 318, 318A of the sensor system 312, via the connectors 563, in order to form an electrical connection for communication between the sensors 316 and the module 322. As shown in
Additional embodiments of a port 614 and a module 622 adapted for connection to the port 614 are shown in
The module 622 illustrated in
In the embodiment illustrated in
The housing 624 also includes retaining structure that includes retaining members 649, 650 adapted to engage the module 622 and exert a downward retaining force on the module 622 and a biasing member 651 adapted to engage the module 622 and exert an upward biasing force on the module 622. The retaining members 649, 650 include one or more flexible retaining tabs 649, which are configured and function similarly to the retaining tabs 349 described above, having notches 649B provided behind the retaining tabs 649 to provide room for flexing. The housing 624 also includes one or more rigid retaining tabs 650 extending from the side walls 639 of the housing 624 at the end opposite the flexible retaining tabs 649. The rigid tabs 650 may take the place of the retaining lip 350 described above, and function in substantially the same manner. The biasing member 651 is a flexible biasing tab that is connected to the bottom wall 643 of the housing 624, and is configured and functions similarly to the biasing member 351 described above.
The interface 620 is engaged with the housing 624 and is adapted for electrical connection to the module interface 623 when the module 622 is received in the chamber 648. The interface 620 contains one or more electrical contacts 656 having contact surfaces 657 that are exposed to the chamber 648 and are adapted to form an electrical connection by engaging the contact surface(s) 654 of the electrical contact(s) 653 of the module interface 623. In the embodiment illustrated in
In this embodiment, the base 658 is a plate-like member that holds the contact pads 656 so that the contact pads 656 are at least partially exposed to the chamber 648 for engagement by the module 622. The base 658 is received in a slot 661 in the housing 624, similarly to the port 314 of
Additional embodiments of a port 714 and a module 722 adapted for connection to the port 714 are shown in
The module 722 illustrated in
In the embodiment illustrated in
The interface 720 is engaged with the housing 724 and is adapted for electrical connection to the module interface 723 when the module 722 is received in the chamber 748. The interface 720 contains one or more electrical contacts 756 having contact surfaces 757 that are exposed to the chamber 748 and are adapted to form an electrical connection by engaging the contact surface(s) 754 of the electrical contact(s) 753 of the module interface 723. In the embodiment illustrated in
In this embodiment, the base 758 is a block-like member that holds the contact pads 756 so that the contact pads 756 are at least partially exposed to the chamber 748 for engagement by the module 722. The base 758 is received in a slot 761 in the housing 724, similarly to the port 314 of
The housing 724 is formed of multiple pieces in this embodiment, including a bottom piece 724A and a top piece 724B, as described in greater detail below. The bottom piece 724A includes a slot 761 for receiving the base 758, as described above. The slot 761 also includes a sloped portion 761A for guiding the band 362 to the chamber 748. The combination of the sloped portion 761A and the block-like base 758 result in less bending of the band 362 during and after connection. The band 362 may additionally or alternately be glued within the sloped portion 761A in one embodiment. As shown in
The operation and use of the sensor systems 12, 212, including the ports 14, et seq. shown and described herein, are described below with respect to the sensor system 12 shown in
In different embodiments, the sensor system 12 may be configured to collect different types of data. In one embodiment (described above), the sensor(s) 16 can collect data regarding the number, sequence, and/or frequency of compressions. For example, the system 12 can record the number or frequency of steps, jumps, cuts, kicks, or other compressive forces incurred while wearing the footwear 100, as well as other parameters, such as contact time and flight time. Both quantitative sensors and binary on/off type sensors can gather this data. In another example, the system can record the sequence of compressive forces incurred by the footwear, which can be used for purposes such as determining foot pronation or supination, weight transfer, foot strike patterns, or other such applications. In another embodiment (also described above), the sensor(s) 16 are able to quantitatively measure the compressive forces on the adjacent portions of the shoe 100, and the data consequently can include quantitative compressive force and/or impact measurement. Relative differences in the forces on different portions of the shoe 100 can be utilized in determining weight distribution and “center of pressure” of the shoe 100. The weight distribution and/or center of pressure can be calculated independently for one or both shoes 100, or can be calculated over both shoes together, such as to find a center of pressure or center of weight distribution for a person's entire body. As described above, a relatively densely packed array of on/off binary sensors can be used to measure quantitative forces by changes detected in “puddling” activation of the sensors during moments of greater compression. In further embodiments, the sensor(s) 16 may be able to measure rates of changes in compressive force, contact time, flight time or time between impacts (such as for jumping or running), and/or other temporally-dependent parameters. It is understood that, in any embodiment, the sensors 16 may require a certain threshold force or impact before registering the force/impact.
As described above, the data is provided through the universal port 14 to the module 22 in a universally readable format, so that the number of applications, users, and programs that can use the data is nearly unlimited. Thus, the port 14 and module 22 are configured and/or programmed as desired by a user, and the port 14 and module 22 receive input data from the sensor system 12, which data can be used in any manner desired for different applications. In many applications, the data is further processed by the module 22 and/or the external device 110 prior to use. It is understood that one or more of the sensors 16, the port 14, the module 22, the external device 110 (including the device 110A), and/or any combination of such components may process at least a portion of the data in some embodiments, provided that such components include hardware and/or other structure with processing capability. In configurations where the external device 110 further processes the data, the module 22 may transmit the data to the external device 110. This transmitted data may be transmitted in the same universally-readable format, or may be transmitted in another format, and the module 22 may be configured to change the format of the data. Additionally, the module 22 can be configured and/or programmed to gather, utilize, and/or process data from the sensors 16 for one or more specific applications. In one embodiment, the module 22 is configured for gathering, utilizing, and/or processing data for use in a plurality of applications. Examples of such uses and applications are given below. As used herein, the term “application” refers generally to a particular use, and does not necessarily refer to use in a computer program application, as that term is used in the computer arts. Nevertheless, a particular application may be embodied wholly or partially in a computer program application.
Further, the module 22 can be removed from the footwear 100 and replaced with a second module 22 configured for operating differently than the first module 22. It is understood that the module 22 can be removed and replaced by another module 22 configured in a similar or identical manner, such as replacement due to battery drain, malfunction, etc. The original module 22 can be removed, such as in manners described above, and the second module 22 may be inserted in the same manner as the original module 22. The second module 22 may be programmed and/or configured differently than the first module 22. In one embodiment, the first module 22 may be configured for use in one or more specific applications, and the second module 22 may be configured for use in one or more different applications. For example, the first module 22 may be configured for use in one or more gaming applications and the second module 22 may be configured for use in one or more athletic performance monitoring applications. Additionally, the modules 22 may be configured for use in different applications of the same type. For example, the first module 22 may be configured for use in one game or athletic performance monitoring application, and the second module 22 may be configured for use in a different game or athletic performance monitoring application. As another example, the modules 22 may be configured for different uses within the same game or performance monitoring application. In another embodiment, the first module 22 may be configured to gather one type of data, and the second module 22 may be configured to gather a different type of data. Examples of such types of data are described herein, including quantitative force measurement, relative force measurement (i.e. sensors 16 relative to each other), weight shifting/transfer, impact sequences (such as for foot strike patterns) rate of force change, etc. In a further embodiment, the first module 22 may be configured to utilize or process data from the sensors 16 in a different manner than the second module 22. For example, the modules 22 may be configured to only gather, store, and/or communicate data, or the modules 22 may be configured to further process the data in some manner, such as organizing the data, changing the form of the data, performing calculations using the data, etc. In yet another embodiment, the modules 22 may be configured to communicate differently, such as having different communication interfaces or being configured to communicate with different external devices 110. The modules 22 may function differently in other aspects as well, including both structural and functional aspects, such as using different power sources or including additional or different hardware components, such as additional sensors as described above (e.g. GPS, accelerometer, etc.).
One use contemplated for the data collected by the system 12 is in measuring weight transfer, which is important for many athletic activities, such as a golf swing, a baseball/softball swing, a hockey swing (ice hockey or field hockey), a tennis swing, throwing/pitching a ball, etc. The pressure data collected by the system 12 can give valuable feedback regarding balance and stability for use in improving technique in any applicable athletic field. It is understood that more or less expensive and complex sensor systems 12 may be designed, based on the intended use of the data collected thereby.
The data collected by the system 12 can be used in measurement of a variety of other athletic performance characteristics. The data can be used to measure the degree and/or speed of foot pronation/supination, foot strike patterns, balance, and other such parameters, which can be used to improve technique in running/jogging or other athletic activities. With regard to pronation/supination, analysis of the data can also be used as a predictor of pronation/supination. Speed and distance monitoring can be performed, which may include pedometer-based measurements, such as contact measurement or loft time measurement. Jump height can also be measured, such as by using contact or loft time measurement. Lateral cutting force can be measured, including differential forces applied to different parts of the shoe 100 during cutting. The sensors 16 can also be positioned to measure shearing forces, such as a foot slipping laterally within the shoe 100. As one example, additional sensors may be incorporated into the sides of the upper 120 of the shoe 100 to sense forces against the sides. As another example, a high-density array of binary sensors could detect shearing action through lateral changes in “puddling” of the activated sensors.
In another embodiment (not shown) one or more sensors 16 can additionally or alternately be incorporated into the upper 120 of the shoe 100. In this configuration, additional parameters can be measured, such as kick force, such as for soccer or football, as well as number and/or frequency of “touches” in soccer.
The data, or the measurements derived therefrom, may be useful for athletic training purposes, including improving speed, power, quickness, consistency, technique, etc. The port 14, module 22, and/or external device 110 can be configured to give the user active, real-time feedback. In one example, the port 14 and/or module 22 can be placed in communication with a computer, mobile device, etc., in order to convey results in real time. In another example, one or more vibration elements may be included in the shoe 100, which can give a user feedback by vibrating a portion of the shoe to help control motion, such as the features disclosed in U.S. Pat. No. 6,978,684, which is incorporated herein by reference and made part hereof. Additionally, the data can be used to compare athletic movements, such as comparing a movement with a user's past movements to show consistency, improvement, or the lack thereof, or comparing a user's movement with the same movement of another, such as a professional golfer's swing. Further, the system 12 may be used to record biomechanical data for a “signature” athletic movement of an athlete. This data could be provided to others for use in duplicating or simulating the movement, such as for use in gaming applications or in a shadow application that overlays a movement over a user's similar movement.
The system 12 can also be configured for “all day activity” tracking, to record the various activities a user engages in over the course of a day. The system 12 may include a special algorithm for this purpose, such as in the module 22, the external device 110, and/or the sensors 16.
The system 12 may also be used for control applications, rather than data collection and processing applications. In other words, the system 12 could be incorporated into footwear, or another article that encounters bodily contact, for use in controlling an external device 110, such as a computer, television, video game, etc., based on movements by the user detected by the sensors 16. In effect, the footwear with the incorporated sensors 16 and leads 18 extending to a universal port 14 allows the footwear to act as an input system, and the electronic module 22 can be configured, programmed, and adapted to accept the input from the sensors 16 and use this input data in any desired manner, e.g., as a control input for a remote system. For example, a shoe with sensor controls could be used as a control or input device for a computer, or for a program being executed by the computer, similarly to a mouse, where certain foot movements, gestures, etc. (e.g., a foot tap, double foot tap, heel tap, double heel tap, side-to-side foot movement, foot-point, foot-flex, etc.) can control a pre-designated operation on a computer (e.g., page down, page up, undo, copy, cut, paste, save, close, etc.). Software can be provided to assign foot gestures to different computer function controls for this purpose. It is contemplated that an operating system could be configured to receive and recognize control input from the sensor system 12. Televisions or other external electronic devices can be controlled in this manner. Footwear 100 incorporating the system 12 can also be used in gaming applications and game programs, similarly to the Nintendo Wii controller, where specific movements can be assigned certain functions and/or can be used to produce a virtual representation of the user's motion on a display screen. As one example, center of pressure data and other weight distribution data can be used in gaming applications, which may involve virtual representations of balancing, weight shifting, and other performance activities. The system 12 can be used as an exclusive controller for a game or other computer system, or as a complementary controller. Examples of configurations and methods of using sensor systems for articles of footwear as controls for external devices and foot gestures for such controls are shown and described in U.S. Provisional Application No. 61/138,048, which is incorporated by reference herein in its entirety.
Additionally, the system 12 may be configured to communicate directly with the external device 110 and/or with a controller for the external device. As described above,
An external device 110, such as a computer/gaming system, can be provided with other types of software to interact with the system 12. For example, a gaming program may be configured to alter the attributes of an in-game character based on a user's real-life activities, which can encourage exercise or greater activity by the user. In another example, a program may be configured to display an avatar of the user that acts in relation or proportion to the user activity collected by the sensing system of the shoe. In such a configuration, the avatar may appear excited, energetic, etc., if the user has been active, and the avatar may appear sleepy, lazy, etc., if the user has been inactive. The sensor system 12 could also be configured for more elaborate sensing to record data describing a “signature move” of an athlete, which could then be utilized for various purposes, such as in a gaming system or modeling system.
A single article of footwear 100 containing the sensor system 12 as described herein can be used alone or in combination with a second article of footwear 100′ having its own sensor system 12′, such as a pair of shoes 100, 100′ as illustrated in
Still other uses and applications of the data collected by the system 12 are contemplated within the scope of the invention and are recognizable to those skilled in the art.
Sensor systems 12, 212 as described above can be customized for use with specific software for the electronic module 22 and/or the external device 110. Such software may be provided along with a sensor system 12, 212, such as in the form of a sole insert 237 having a customized sensor assembly 213, as a kit or package.
As will be appreciated by one of skill in the art upon reading the present disclosure, various aspects described herein may be embodied as a method, a data processing system, or a computer program product. Accordingly, those aspects may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, such aspects may take the form of a computer program product stored by one or more tangible computer-readable storage media or storage devices having computer-readable program code, or instructions, embodied in or on the storage media. Any suitable tangible computer readable storage media may be utilized, including hard disks, CD-ROMs, optical storage devices, magnetic storage devices, and/or any combination thereof. In addition, various intangible signals representing data or events as described herein may be transferred between a source and a destination in the form of electromagnetic waves traveling through signal-conducting media such as metal wires, optical fibers, and/or wireless transmission media (e.g., air and/or space).
As described above, aspects of the present invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer and/or a processor thereof. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Such a program module may be contained in a tangible computer-readable medium, as described above. Aspects of the present invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. Program modules may be located in a memory, such as the memory 204 of the module 22 or memory 304 of the external device 110, or an external medium, such as game media 307, which may include both local and remote computer storage media including memory storage devices. It is understood that the module 22, the external device 110, and/or external media may include complementary program modules for use together, such as in a particular application. It is also understood that a single processor 202, 302 and single memory 204, 304 are shown and described in the module 22 and the external device 110 for sake of simplicity, and that the processor 202, 302 and memory 204, 304 may include a plurality of processors and/or memories respectively, and may comprise a system of processors and/or memories.
The various embodiments of the sensor system described herein, as well as the articles of footwear, foot contacting members, inserts, and other structures incorporating the sensor system, provide benefits and advantages over existing technology. For example, many of the port embodiments described herein provide relatively low cost and durable options for use with sensor systems, so that a sensor system can be incorporated into articles of footwear with little added cost and good reliability. As a result, footwear can be manufactured with integral sensor systems regardless of whether the sensor systems are ultimately desired to be used by the consumer, without appreciably affecting price. Additionally, sole inserts with customized sensor systems can be inexpensively manufactured and distributed along with software designed to utilize the sensor systems, without appreciably affecting the cost of the software. As another example, the sensor system provides a wide range of functionality for a wide variety of applications, including gaming, fitness, athletic training and improvement, practical controls for computers and other devices, and many others described herein and recognizable to those skilled in the art. In one embodiment, third-party software developers can develop software configured to run using input from the sensor systems, including games and other programs. The ability of the sensor system to provide data in a universally readable format greatly expands the range of third party software and other applications for which the sensor system can be used. As a further example, the various sole inserts containing sensor systems, including liners, insoles, and other elements, permit interchangeability and customization of the sensor system for different applications. Still further, various port and module configurations described herein can provide for secure connections with reasonable expense and minimal to no negative effect on shoe performance or response. The connecting structures may also be water-resistant or water-tight to resist interference from sweat and other fluids. Additionally, the connecting structures of the various port configurations described herein may provide quick and easy interchanging of one module for another. Those skilled in the art will recognize yet other benefits and advantages from the configurations described herein.
Several alternative embodiments and examples have been described and illustrated herein. A person of ordinary skill in the art would appreciate the features of the individual embodiments, and the possible combinations and variations of the components. A person of ordinary skill in the art would further appreciate that any of the embodiments could be provided in any combination with the other embodiments disclosed herein. It is understood that the invention may be embodied in other specific forms without departing from the spirit or central characteristics thereof. The present examples and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein. The terms “first,” “second,” “top,” “bottom,” etc., as used herein, are intended for illustrative purposes only and do not limit the embodiments in any way. Additionally, the term “plurality,” as used herein, indicates any number greater than one, either disjunctively or conjunctively, as necessary, up to an infinite number. Further, “Providing” an article or apparatus, as used herein, refers broadly to making the article available or accessible for future actions to be performed on the article, and does not connote that the party providing the article has manufactured, produced, or supplied the article or that the party providing the article has ownership or control of the article. Accordingly, while specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention and the scope of protection is only limited by the scope of the accompanying Claims.
The present application is a continuation application from U.S. application Ser. No. 13/399,916, filed Feb. 17, 2012, which claims priority to and the benefit of U.S. Provisional Application No. 61/443,801, filed Feb. 17, 2011, both of which prior applications are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3270564 | Evans | Sep 1966 | A |
4372558 | Shimamoto et al. | Feb 1983 | A |
4373651 | Fanslow | Feb 1983 | A |
4518267 | Hepp | May 1985 | A |
4578969 | Larson | Apr 1986 | A |
4647918 | Goforth | Mar 1987 | A |
4703445 | Dassler | Oct 1987 | A |
4745930 | Confer | May 1988 | A |
4814661 | Ratzlaff et al. | Mar 1989 | A |
4862743 | Seitz | Sep 1989 | A |
4866412 | Rzepczynski | Sep 1989 | A |
5010774 | Kikuo et al. | Apr 1991 | A |
5033291 | Podoloff et al. | Jul 1991 | A |
5047952 | Kramer et al. | Sep 1991 | A |
5050962 | Monnier et al. | Sep 1991 | A |
5150536 | Strong | Sep 1992 | A |
5154960 | Mucci et al. | Oct 1992 | A |
5249967 | O'Leary et al. | Oct 1993 | A |
5253656 | Rincoe | Oct 1993 | A |
5303131 | Wu | Apr 1994 | A |
5323650 | Fullen et al. | Jun 1994 | A |
5373651 | Wood | Dec 1994 | A |
5374821 | Muhs et al. | Dec 1994 | A |
5393651 | Hoshi | Feb 1995 | A |
5408873 | Schmidt et al. | Apr 1995 | A |
5419562 | Cromarty | May 1995 | A |
5422521 | Neer et al. | Jun 1995 | A |
5444462 | Wambach | Aug 1995 | A |
5471405 | Marsh | Nov 1995 | A |
5500635 | Mott | Mar 1996 | A |
5636146 | Flentov et al. | Jun 1997 | A |
5636378 | Griffith | Jun 1997 | A |
5638300 | Johnson | Jun 1997 | A |
5644858 | Bemis | Jul 1997 | A |
5655316 | Huang | Aug 1997 | A |
5697791 | Nashner et al. | Dec 1997 | A |
5702323 | Poulton | Dec 1997 | A |
5714706 | Nakada et al. | Feb 1998 | A |
5720200 | Anderson et al. | Feb 1998 | A |
5724265 | Hutchings | Mar 1998 | A |
5764786 | Kuwashima et al. | Jun 1998 | A |
5785666 | Costello et al. | Jul 1998 | A |
5812142 | Small et al. | Sep 1998 | A |
5813142 | Demon | Sep 1998 | A |
5813406 | Kramer et al. | Sep 1998 | A |
5844861 | Maurer | Dec 1998 | A |
5889464 | Huang | Mar 1999 | A |
5903454 | Hoffberg et al. | May 1999 | A |
5907819 | Johnson | May 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5929332 | Brown | Jul 1999 | A |
5960380 | Flentov et al. | Sep 1999 | A |
5963891 | Walker et al. | Oct 1999 | A |
6017128 | Goldston et al. | Jan 2000 | A |
6018705 | Gaudet et al. | Jan 2000 | A |
6050962 | Kramer et al. | Apr 2000 | A |
6066075 | Poulton | May 2000 | A |
6081750 | Hoffberg et al. | Jun 2000 | A |
6122340 | Darley et al. | Sep 2000 | A |
6122846 | Gray et al. | Sep 2000 | A |
6148280 | Kramer | Nov 2000 | A |
6174294 | Crabb et al. | Jan 2001 | B1 |
6195921 | Truong | Mar 2001 | B1 |
6198394 | Jacobsen et al. | Mar 2001 | B1 |
6226577 | Yeo | May 2001 | B1 |
6266623 | Vock et al. | Jul 2001 | B1 |
6287200 | Sharma | Sep 2001 | B1 |
6298314 | Blackadar et al. | Oct 2001 | B1 |
6330757 | Russell | Dec 2001 | B1 |
6336365 | Blackadar et al. | Jan 2002 | B1 |
6356856 | Damen et al. | Mar 2002 | B1 |
6357147 | Darley et al. | Mar 2002 | B1 |
6360597 | Hubbard, Jr. | Mar 2002 | B1 |
6426490 | Storz | Jul 2002 | B1 |
6428490 | Kramer et al. | Aug 2002 | B1 |
6430843 | Potter et al. | Aug 2002 | B1 |
6496787 | Flentov et al. | Dec 2002 | B1 |
6496952 | Osada et al. | Dec 2002 | B1 |
6498994 | Vock et al. | Dec 2002 | B2 |
6515284 | Walle et al. | Feb 2003 | B1 |
6516284 | Flentov et al. | Feb 2003 | B2 |
6536139 | Darley et al. | Mar 2003 | B2 |
6539336 | Vock et al. | Mar 2003 | B1 |
6544858 | Beekman et al. | Apr 2003 | B1 |
6560903 | Darley | May 2003 | B1 |
6578291 | Hirsch et al. | Jun 2003 | B2 |
6611789 | Darley | Aug 2003 | B1 |
6640144 | Huang et al. | Oct 2003 | B1 |
6656042 | Reiss et al. | Dec 2003 | B2 |
6718200 | Marmaropoulos et al. | Apr 2004 | B2 |
6748462 | Dubil et al. | Jun 2004 | B2 |
6778973 | Harlan | Aug 2004 | B2 |
6785579 | Huang et al. | Aug 2004 | B2 |
6785805 | House et al. | Aug 2004 | B1 |
6808462 | Snyder et al. | Oct 2004 | B2 |
6829512 | Huang et al. | Dec 2004 | B2 |
6836744 | Asphahani et al. | Dec 2004 | B1 |
6876947 | Darley et al. | Apr 2005 | B1 |
6882897 | Fernandez | Apr 2005 | B1 |
6885971 | Vock et al. | Apr 2005 | B2 |
6889282 | Schollenberger | May 2005 | B2 |
6892216 | Coburn, II et al. | May 2005 | B2 |
6909420 | Nicolas et al. | Jun 2005 | B1 |
6922664 | Fernandez et al. | Jul 2005 | B1 |
6932698 | Sprogis | Aug 2005 | B2 |
6959259 | Vock et al. | Oct 2005 | B2 |
6963818 | Flentov et al. | Nov 2005 | B2 |
6978320 | Nonaka | Dec 2005 | B2 |
7030861 | Westerman et al. | Apr 2006 | B1 |
7045151 | Trant | May 2006 | B2 |
7046151 | Dundon | May 2006 | B2 |
7054784 | Flentov et al. | May 2006 | B2 |
7057551 | Vogt | Jun 2006 | B1 |
7070571 | Kramer et al. | Jul 2006 | B2 |
7072789 | Vock et al. | Jul 2006 | B2 |
7092846 | Vock et al. | Aug 2006 | B2 |
7152343 | Whatley | Dec 2006 | B2 |
7162392 | Vock et al. | Jan 2007 | B2 |
7171331 | Vock et al. | Jan 2007 | B2 |
7200517 | Darley et al. | Apr 2007 | B2 |
7245898 | Van Bosch et al. | Jul 2007 | B2 |
7277021 | Beebe et al. | Oct 2007 | B2 |
7283647 | McNitt | Oct 2007 | B2 |
7304580 | Sullivan et al. | Dec 2007 | B2 |
7310895 | Whittlesey et al. | Dec 2007 | B2 |
7383728 | Noble et al. | Jun 2008 | B2 |
RE40474 | Quellais et al. | Sep 2008 | E |
7426873 | Kholwadwala et al. | Sep 2008 | B1 |
7428471 | Darley et al. | Sep 2008 | B2 |
7433805 | Vock et al. | Oct 2008 | B2 |
7457724 | Vock et al. | Nov 2008 | B2 |
7497037 | Vick et al. | Mar 2009 | B2 |
7498856 | Lin et al. | Mar 2009 | B2 |
7498956 | Baier et al. | Mar 2009 | B2 |
7522970 | Fernandez | Apr 2009 | B2 |
7552549 | Whittlesey et al. | Jun 2009 | B2 |
7579946 | Case, Jr. | Aug 2009 | B2 |
7602301 | Stirling et al. | Oct 2009 | B1 |
7607243 | Berner, Jr. et al. | Oct 2009 | B2 |
7617068 | Tadin et al. | Nov 2009 | B2 |
7623987 | Vock et al. | Nov 2009 | B2 |
7625314 | Ungari et al. | Dec 2009 | B2 |
7651442 | Carlson | Jan 2010 | B2 |
7658694 | Ungari | Feb 2010 | B2 |
7670263 | Ellis et al. | Mar 2010 | B2 |
7726206 | Terrafranca, Jr. et al. | Jun 2010 | B2 |
7739076 | Vock et al. | Jun 2010 | B1 |
7758523 | Collings et al. | Jul 2010 | B2 |
7771320 | Riley et al. | Aug 2010 | B2 |
7805150 | Graham et al. | Sep 2010 | B2 |
7816632 | Bourke, III et al. | Oct 2010 | B2 |
7840378 | Vock et al. | Nov 2010 | B2 |
7901325 | Henderson | Mar 2011 | B2 |
7905815 | Ellis et al. | Mar 2011 | B2 |
7909737 | Ellis et al. | Mar 2011 | B2 |
7921716 | Morris Bamberg et al. | Apr 2011 | B2 |
7934983 | Eisner | May 2011 | B1 |
7997007 | Sanabria-Hernandez | Aug 2011 | B2 |
8056268 | DiBenedetto et al. | Nov 2011 | B2 |
8061061 | Rivas | Nov 2011 | B1 |
8099258 | Alten et al. | Jan 2012 | B2 |
8131498 | McCauley | Mar 2012 | B1 |
8142267 | Adams | Mar 2012 | B2 |
8172722 | Molyneux et al. | May 2012 | B2 |
8212158 | Wiest | Jul 2012 | B2 |
8216081 | Snyder | Jul 2012 | B2 |
8251930 | Ido | Aug 2012 | B2 |
8253586 | Matak | Aug 2012 | B1 |
8291618 | Ellis | Oct 2012 | B2 |
8333643 | Eisner | Dec 2012 | B2 |
8467979 | Sobolewski | Jun 2013 | B2 |
8474153 | Brie et al. | Jul 2013 | B2 |
8484654 | Graham et al. | Jul 2013 | B2 |
8676541 | Schrock et al. | Mar 2014 | B2 |
8739639 | Owings et al. | Jun 2014 | B2 |
9089182 | Schrock et al. | Jul 2015 | B2 |
20010003665 | Kim | Jun 2001 | A1 |
20010054043 | Harlan | Dec 2001 | A1 |
20020035184 | Plaver et al. | Mar 2002 | A1 |
20020134153 | Grenlund | Sep 2002 | A1 |
20030009308 | Kirtley | Jan 2003 | A1 |
20030054327 | Evensen | Mar 2003 | A1 |
20030097878 | Farringdon et al. | May 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030207718 | Perlmutter | Nov 2003 | A1 |
20040154190 | Munster | Aug 2004 | A1 |
20040162702 | Pandipati et al. | Aug 2004 | A1 |
20040215413 | Weldum et al. | Oct 2004 | A1 |
20040218317 | Kawazu et al. | Nov 2004 | A1 |
20040225467 | Vock et al. | Nov 2004 | A1 |
20040226192 | Geer et al. | Nov 2004 | A1 |
20050011085 | Swigart et al. | Jan 2005 | A1 |
20050032582 | Mahajan et al. | Feb 2005 | A1 |
20050046576 | Julian et al. | Mar 2005 | A1 |
20050106977 | Coulston | May 2005 | A1 |
20050183292 | DiBenedetto et al. | Aug 2005 | A1 |
20050188566 | Whittlesey et al. | Sep 2005 | A1 |
20050221403 | Gazenko | Oct 2005 | A1 |
20050261609 | Collings et al. | Nov 2005 | A1 |
20050282633 | Nicolas et al. | Dec 2005 | A1 |
20060010174 | Nguyen et al. | Jan 2006 | A1 |
20060017692 | Wehrenberg et al. | Jan 2006 | A1 |
20060025229 | Mahajan et al. | Feb 2006 | A1 |
20060026120 | Carolan et al. | Feb 2006 | A1 |
20060082977 | Kim | Apr 2006 | A1 |
20060091715 | Schmitz et al. | May 2006 | A1 |
20060143645 | Vock et al. | Jun 2006 | A1 |
20060144152 | Cabuz et al. | Jul 2006 | A1 |
20060217231 | Parks et al. | Sep 2006 | A1 |
20060226843 | Al-Anbuky et al. | Oct 2006 | A1 |
20060248749 | Ellis | Nov 2006 | A1 |
20060262120 | Rosenberg | Nov 2006 | A1 |
20070006489 | Case et al. | Jan 2007 | A1 |
20070016091 | Butt et al. | Jan 2007 | A1 |
20070026421 | Sundberg et al. | Feb 2007 | A1 |
20070032748 | McNeil et al. | Feb 2007 | A1 |
20070033838 | Luce et al. | Feb 2007 | A1 |
20070060408 | Schultz et al. | Mar 2007 | A1 |
20070063849 | Rosella et al. | Mar 2007 | A1 |
20070063850 | Devaul et al. | Mar 2007 | A1 |
20070067885 | Fernandez | Mar 2007 | A1 |
20070068244 | Billing et al. | Mar 2007 | A1 |
20070073178 | Browning et al. | Mar 2007 | A1 |
20070078324 | Wijisiriwardana | Apr 2007 | A1 |
20070082389 | Clark et al. | Apr 2007 | A1 |
20070094890 | Cho et al. | May 2007 | A1 |
20070118328 | Vock et al. | May 2007 | A1 |
20070143452 | Suenbuel et al. | Jun 2007 | A1 |
20070152812 | Wong et al. | Jul 2007 | A1 |
20070173705 | Teller et al. | Jul 2007 | A1 |
20070208544 | Kulach et al. | Sep 2007 | A1 |
20070232455 | Hanoun | Oct 2007 | A1 |
20070250286 | Duncan et al. | Oct 2007 | A1 |
20070260421 | Berner et al. | Nov 2007 | A1 |
20070283599 | Talbott | Dec 2007 | A1 |
20080027679 | Shklarski | Jan 2008 | A1 |
20080028783 | Immel et al. | Feb 2008 | A1 |
20080039203 | Ackley et al. | Feb 2008 | A1 |
20080048616 | Paul et al. | Feb 2008 | A1 |
20080056508 | Pierce et al. | Mar 2008 | A1 |
20080060224 | Whittlesey et al. | Mar 2008 | A1 |
20080061023 | Moor | Mar 2008 | A1 |
20080066343 | Sanabria-Hernandez | Mar 2008 | A1 |
20080066560 | Yu et al. | Mar 2008 | A1 |
20080127527 | Chen | Jun 2008 | A1 |
20080134583 | Polus | Jun 2008 | A1 |
20080165140 | Christie et al. | Jul 2008 | A1 |
20080172498 | Boucard | Jul 2008 | A1 |
20080177507 | Mian et al. | Jul 2008 | A1 |
20080188353 | Vitolo et al. | Aug 2008 | A1 |
20080200312 | Tagliabue | Aug 2008 | A1 |
20080203144 | Kim | Aug 2008 | A1 |
20080218310 | Alten et al. | Sep 2008 | A1 |
20080221403 | Fernandez | Sep 2008 | A1 |
20080246629 | Tsui et al. | Oct 2008 | A1 |
20080255794 | Levine | Oct 2008 | A1 |
20080258921 | Woo et al. | Oct 2008 | A1 |
20080259028 | Teepell et al. | Oct 2008 | A1 |
20080269644 | Ray | Oct 2008 | A1 |
20080287832 | Collins et al. | Nov 2008 | A1 |
20080293023 | Diehl et al. | Nov 2008 | A1 |
20080297832 | Otsuka | Dec 2008 | A1 |
20080306410 | Kalpaxis et al. | Dec 2008 | A1 |
20080307899 | Von Lilienfeld-Toal et al. | Dec 2008 | A1 |
20080318679 | Tran et al. | Dec 2008 | A1 |
20090018691 | Fernandez | Jan 2009 | A1 |
20090027917 | Chen et al. | Jan 2009 | A1 |
20090048538 | Levine et al. | Feb 2009 | A1 |
20090061837 | Chaudhri et al. | Mar 2009 | A1 |
20090075347 | Cervin et al. | Mar 2009 | A1 |
20090075781 | Schwarzberg et al. | Mar 2009 | A1 |
20090076341 | James et al. | Mar 2009 | A1 |
20090105047 | Guidi et al. | Apr 2009 | A1 |
20090107009 | Bishop et al. | Apr 2009 | A1 |
20090135001 | Yuk | May 2009 | A1 |
20090137933 | Lieberman et al. | May 2009 | A1 |
20090149299 | Tchao et al. | Jun 2009 | A1 |
20090150178 | Sutton et al. | Jun 2009 | A1 |
20090152456 | Waid et al. | Jun 2009 | A1 |
20090153369 | Baier et al. | Jun 2009 | A1 |
20090153477 | Saenz | Jun 2009 | A1 |
20090163287 | Vald'Via et al. | Jun 2009 | A1 |
20090167677 | Kruse et al. | Jul 2009 | A1 |
20090171614 | Damen | Jul 2009 | A1 |
20090259566 | White, III et al. | Oct 2009 | A1 |
20090262088 | Moll-Carrillo et al. | Oct 2009 | A1 |
20090293319 | Avni | Dec 2009 | A1 |
20090297832 | Hatta et al. | Dec 2009 | A1 |
20100000121 | Brodie et al. | Jan 2010 | A1 |
20100004566 | Son et al. | Jan 2010 | A1 |
20100009810 | Trzecieski | Jan 2010 | A1 |
20100023231 | Allgaier et al. | Jan 2010 | A1 |
20100023531 | Brisebois et al. | Jan 2010 | A1 |
20100035688 | Picunko | Feb 2010 | A1 |
20100053867 | Ellis et al. | Mar 2010 | A1 |
20100056340 | Ellis et al. | Mar 2010 | A1 |
20100057951 | Ellis et al. | Mar 2010 | A1 |
20100059561 | Ellis et al. | Mar 2010 | A1 |
20100062740 | Ellis et al. | Mar 2010 | A1 |
20100063778 | Schrock et al. | Mar 2010 | A1 |
20100063779 | Schrock et al. | Mar 2010 | A1 |
20100065836 | Lee | Mar 2010 | A1 |
20100072948 | Sun et al. | Mar 2010 | A1 |
20100082735 | Petersen et al. | Apr 2010 | A1 |
20100088023 | Werner | Apr 2010 | A1 |
20100094147 | Inan et al. | Apr 2010 | A1 |
20100111705 | Sato et al. | May 2010 | A1 |
20100113160 | Belz et al. | May 2010 | A1 |
20100129780 | Homsi et al. | May 2010 | A1 |
20100152619 | Kalpaxis et al. | Jun 2010 | A1 |
20100184563 | Molyneux et al. | Jul 2010 | A1 |
20100184564 | Molyneux et al. | Jul 2010 | A1 |
20100191490 | Martens et al. | Jul 2010 | A1 |
20100201500 | Stirling et al. | Aug 2010 | A1 |
20100201512 | Stirling et al. | Aug 2010 | A1 |
20100204616 | Shears et al. | Aug 2010 | A1 |
20100225763 | Vock et al. | Sep 2010 | A1 |
20100231580 | Miyasaka | Sep 2010 | A1 |
20100286601 | Yodfat et al. | Nov 2010 | A1 |
20100292599 | Oleson et al. | Nov 2010 | A1 |
20100298659 | McCombie et al. | Nov 2010 | A1 |
20100312083 | Southerland | Dec 2010 | A1 |
20100332188 | Vock et al. | Dec 2010 | A1 |
20110003665 | Burton et al. | Jan 2011 | A1 |
20110021280 | Boroda et al. | Jan 2011 | A1 |
20110087445 | Sobolewski | Apr 2011 | A1 |
20110107369 | O'Brien et al. | May 2011 | A1 |
20110119027 | Zhu et al. | May 2011 | A1 |
20110119058 | Berard et al. | May 2011 | A1 |
20110136627 | Williams | Jun 2011 | A1 |
20110152695 | Granqvist et al. | Jun 2011 | A1 |
20110203390 | Tao et al. | Aug 2011 | A1 |
20110208444 | Solinsky | Aug 2011 | A1 |
20120041767 | Hoffman et al. | Feb 2012 | A1 |
20120050351 | Dobler et al. | Mar 2012 | A1 |
20120050529 | Bentley | Mar 2012 | A1 |
20120234111 | Molyneux et al. | Sep 2012 | A1 |
20120291564 | Amos et al. | Nov 2012 | A1 |
20130019694 | Molyneux et al. | Jan 2013 | A1 |
20130079907 | Homsi et al. | Mar 2013 | A1 |
20130190903 | Balakrishnan et al. | Jul 2013 | A1 |
20130213145 | Owings et al. | Aug 2013 | A1 |
20140033572 | Steier et al. | Feb 2014 | A1 |
20140174205 | Clarke et al. | Jun 2014 | A1 |
20140222173 | Giedwoyn et al. | Aug 2014 | A1 |
20140350435 | Lam | Nov 2014 | A1 |
20150257475 | Langvin et al. | Sep 2015 | A1 |
20160242500 | Langvin et al. | Aug 2016 | A1 |
20160345663 | Walker et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
2668946 | May 2008 | CA |
1101757 | Apr 1995 | CN |
1839724 | Oct 2006 | CN |
200977748 | Nov 2007 | CN |
200994779 | Dec 2007 | CN |
101240461 | Aug 2008 | CN |
101242880 | Aug 2008 | CN |
101367012 | Feb 2009 | CN |
101784230 | Jul 2010 | CN |
101890215 | Nov 2010 | CN |
101894206 | Nov 2010 | CN |
102143695 | Aug 2011 | CN |
201948063 | Aug 2011 | CN |
3704870 | Apr 1988 | DE |
0160880 | Nov 1985 | EP |
0662600 | Jul 1995 | EP |
1707065 | Oct 2006 | EP |
2189191 | May 2010 | EP |
2929827 | Oct 2009 | FR |
251054 | Apr 1926 | GB |
2421416 | Jun 2006 | GB |
56-64301 | May 1981 | JP |
H023020 | Jan 1990 | JP |
05-161724 | Jun 1993 | JP |
H05161724 | Jun 1993 | JP |
H06014803 | Jan 1994 | JP |
H06336967 | Dec 1994 | JP |
H08-89482 | Apr 1996 | JP |
H10241648 | Sep 1998 | JP |
3036281 | Apr 2000 | JP |
2001351591 | Dec 2001 | JP |
2002163404 | Jun 2002 | JP |
2003236002 | Aug 2003 | JP |
2004158242 | Jun 2004 | JP |
2005019305 | Jan 2005 | JP |
2005079019 | Mar 2005 | JP |
2005156531 | Jun 2005 | JP |
2005270640 | Oct 2005 | JP |
2006086072 | Mar 2006 | JP |
2006-280955 | Oct 2006 | JP |
2007-134473 | May 2007 | JP |
200715117 | Jun 2007 | JP |
2008-3752 | Oct 2008 | JP |
2009148338 | Jul 2009 | JP |
2009-535157 | Oct 2009 | JP |
2010088886 | Apr 2010 | JP |
2010-517725 | May 2010 | JP |
2011112938 | Jun 2011 | JP |
2011-524207 | Sep 2011 | JP |
2011196931 | Oct 2011 | JP |
2012065942 | Apr 2012 | JP |
2012524638 | Oct 2012 | JP |
20050032119 | Apr 2005 | KR |
20060021632 | Mar 2006 | KR |
20060034353 | Apr 2006 | KR |
10-2009-0102550 | Sep 2009 | KR |
20100012845 | Dec 2010 | KR |
20100130860 | Dec 2010 | KR |
20110071728 | Jun 2011 | KR |
20130130051 | Nov 2013 | KR |
9807341 | Feb 1998 | WO |
0033031 | Jun 2000 | WO |
0235184 | May 2002 | WO |
2006065679 | Jun 2006 | WO |
2006067434 | Jun 2006 | WO |
2006091715 | Aug 2006 | WO |
2007064735 | Jun 2007 | WO |
2007082389 | Jul 2007 | WO |
2007128049 | Nov 2007 | WO |
2008061023 | May 2008 | WO |
2008101085 | Aug 2008 | WO |
2008134583 | Nov 2008 | WO |
2009027917 | Mar 2009 | WO |
2009126818 | Oct 2009 | WO |
2009152456 | Dec 2009 | WO |
2010065836 | Jun 2010 | WO |
2010065886 | Jun 2010 | WO |
2010111705 | Sep 2010 | WO |
2011157607 | Dec 2011 | WO |
2012061804 | May 2012 | WO |
2012109244 | Aug 2012 | WO |
2012112931 | Aug 2012 | WO |
2012112934 | Aug 2012 | WO |
2012143274 | Oct 2012 | WO |
Entry |
---|
Aug. 7, 2013—(WO) ISR and WO—App. No. PCT/US2013/027397. |
Aug. 21, 2012—(WO) ISR and WO—App. No. PCT/US2012/025717. |
Jul. 11, 2012—(WO) ISR & WO App No. PCT/US2012/025709. |
Aug. 29, 2013—(WO) International Preliminary Report on Patentability App No. PCT/US2012/025713. |
Dec. 11, 2009—(WO) ISR and WO App No. PCT/2009/047246. |
Morris, Stacy J., A Shoe-Integrated Sensor System for Wireless Gait Analysis and Real-Time Therapeutic Feedback, dissertation, 2004, pp. 1-314, Massachusetts Institute of Technology, MA. |
May 28, 2013—(WO) ISR & WO App No. PCT/US2013/027421. |
Fleming et al, Athlete and Coach Perceptions of Technology Needs for Evaluating Running Performance, article, Aug. 14, 2010, 18 pages, 13:1-18, UK. |
Salpavaara, et al. Wireless Insole Sensor System for Plantar Force Measurements during Sports Events, article, Sep. 6-11, 2009, XIX IMEKO World Congress, Fundamental and Applied Metrology, 6 pages, Lisbon, Portugal. |
Mar. 7, 2012—(WO) ISR and WO—App. PCT/US2011/060187. |
Jul. 15, 2013—(WO) Search Report and Written Opinion—App. No. PCT/US2013/022219. |
Lovell, “A system for real-time gesture recognition and classification of coordinated motion,” Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005, <http://dspace.mit.edu/handle/1721.1/33290> (2 pages). |
Chee et al, “A low cost wearable wireless sensing system for upper limb home rehabilitation,” Robotics Automation and Mechatronics (RAM) 2010 IEEE Conference on Jun. 28-30, 2010; Abstract printout (1 page). |
Guraliuc et al., “Channel model for on the body communication along and around the human torso at 2.4Ghz and 5.8Ghz,” Antenna Technology (IWAT), 2010 International Workshop on Mar. 1-3, 2010; Abstract printout (1 page). |
Jun. 21, 2012—(WO) ISR—App No. PCT/US2012/025701. |
Frazier, Karen, “How Many Calories to 1 Carb?” published Nov. 12, 2010, Livestrong.com, 3 pages. |
Oct. 1, 2013—(WO) ISR and WO—App No. PCT/US2013/048157. |
Llosa et al., “Design of a Motion Detector to Monitor Rowing Performance Based on Wireless Sensor Networks,” Intelligent Networking and Collaborativge Systems, 2009, http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5369324 (1 page). |
Choquette et al., “Accelerometer-based wireless body area network to estimate intensity of therapy in post-acute rehabilitation,” Journal of NeuroEngineering and Rehabilitation 2008, http://www.jneuroengrehab.com/content/5/1/20/ abstract (1 page). |
Morris, “A shoe-integrated sensor system for wireless gait analysis and real-time therapeutic feedback,” Harvard-MIT Division of Health Sciences and Technology, 2004,http://dspace.mitedu/handle/1721.1/28601 (3 pages). |
Lapinski, “A wearable, wireless sensor system for sports medicine,” Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008, http://dspace.mit.edulhandle/1721.1/46581(3 pages). |
Aylward, “Sensemble : a wireless inertial sensor system for the interactive dance and collective motion analysis,” Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2006, http://dspace.mitedu/handle/1721.1/37391 (3 pages). |
Danko; How to Work a Nike Sensor; Dec. 26, 2010; eHow website; 4 pages. |
Coyne; Stout's Shoes on Mass Ave Oldest Shoe Store in the USA; Jun. 18, 2013; FunCityFinder website; 5 pages. |
Oct. 15, 2015—(EP) Office Action—App 14718257.0. |
Davis, The Re-emergence of the Minimal Running Shoe, Clinical Commentary, Journal of Orthopaedic & Sports Physical Therapy, vol. 44, No. 10, pp. 775-784, Oct. 2014. |
Lim, Joo-Tack, STO Ltd., Final Report on IT development cooperative project, “Development of IT running shoes that an transmit athletic information of the shoes when running and development of receiver technology,” Ministry of Knowledge Economy (Institute for Information Technology Advancement (ITA)) (Jun. 30, 2009). |
Aug. 8, 2016—(EP) Extended Search Report—App. No. 16170589.2. |
Sep. 1, 2016—(EP) Extended Search Report—App. No. 16167470.0. |
Mar. 15, 2017—(EP) ESR—App. No. 16199665.7. |
Number | Date | Country | |
---|---|---|---|
20160309829 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61443801 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13399916 | Feb 2012 | US |
Child | 14949521 | US |