The present invention relates to a device for measuring a force in a vehicle undercarriage, more particularly the brake torque, said force being transmitted to said vehicle undercarriage by a bar-shaped member and said bar-shaped member being loaded transversally by said force. The invention further relates to a sensor for such a device.
The brakes of aircraft consist of stacks of mutually interleaved brake disks that are pressed against each other by hydraulic or electric actuators. One of the stacks is connected to the respective wheel. The other stack is connected to the stationary part of the landing gear for receiving the brake torque. In order to transmit the brake torque, i.e. the torque that appears when the brakes are activated, to the landing gear, the latter stationary stack is non-rotatably locked to the landing gear in a suitable manner. Generally, this is achieved by a fastening device that is arranged on the stationary stack eccentrically with respect to the axis of the wheel, in the simplest case a bore. A bolt serves for connecting the stationary stack to the landing gear directly or via a torque arm. This bolt is highly stressed by the torque in the transversal direction and is consequently made of a high-strength material. However, since its diameter is generally relatively large, it is made hollow in order to reduce its weight.
For various reasons it is desirable to measure the momentary braking action. To this end, U.S. Pat. No. 4,474,060 suggests designing the bushing that is normally arranged between the mentioned bolt and the respective receiving opening as a torque sensor. However, the disadvantage of this solution is that it involves a modification of the elements which serve for force transmission, thereby causing considerable expenditure for the certification of this solution. The certification is relatively time-consuming and costly and may furthermore be required, in the extreme case, for each aircraft type separately.
Similar problems in the measurement of the brake torque may also be encountered in other types of vehicles whose braking systems are similar to those of aircraft. Furthermore, in the undercarriages of aircraft and other vehicle types, other forces whose measurement is desirable or important may appear, e.g. due to bumps, suspension, damping elements, vehicle weight, etc.
It is therefore an object of the present invention to provide a device for measuring forces in a vehicle undercarriage, more particularly the brake torque, that can be mounted without any substantial interventions in the transmission path of the brake torque.
This is accomplished by a device wherein at least one sensor is arranged in the interior of said bar-shaped member and measures the deformation of said bar-shaped member that is due to said transversal load. The following claims indicate preferred embodiments and sensors for use in the device.
Accordingly, the device comprises a sensor located in a connecting element that is generally bar-shaped and is transversally loaded and concomitantly deformed by the force or forces that is/are to be measured, e.g. by the brake torque. More particularly, the sensor is designed to detect the distance between the sensor and the inner walls of the cavity in the connecting element in which the sensor is located. Preferentially, capacitive or inductive distance measuring elements are used for this purpose.
The invention will be further explained by means of an exemplary embodiment and with reference to figures.
The depicted basic construction of an aircraft landing gear corresponds to the state of the art for larger aircraft. Alternatively, instead of using torque arm 12, it is also common, especially in smaller aircraft, to transmit the torque from the brake directly to the landing gear, e.g. by a direct bolt connection.
Bolt 16 extends through bore 9 in lever 8 as well as through a bore 15 at the end of brake torque arm 12. Bolt 16 is made of a high-strength material and is largely hollow to reduce its weight. However, during brake application, it is still noticeably deformed. For example, a deformation of 4/10 mm has been observed in a bolt having an internal diameter of 50 mm.
Bolt 16, which is hollow, contains sensor 20. At its end on the right in the figure, enclosure 22 is provided with projections or has such an overall diameter that it is in close contact with inner wall 26 of bolt 16. Bolt 16 as well as end 24 of sensor 20 are here traversed by a bore through which a pin 28 is pushed. Pin 28 is held in a bore 30 in an orientation ring 32 that is attached to lever 8, i.e. to the stationary part 14 of brake 6. The purpose of this device is to lock the sensor in a predetermined, fixed orientation relative to the brake torque (arrow 34).
On the outside of portion 36 of sensor 20 on the left in
As appears more clearly in
Arms 54 of core 52 along with the outer ends of coils 50, 51 are maintained in corresponding bores respectively recesses of enclosure 22 such that the ends of arms 54 represent a part of the enclosure surface of sensor 20. In this manner, a magnetic field emitted from core 52 through arms 54 may leave respectively enter into the sensor unrestrictedly. In order not to disturb the propagation of such a magnetic field, enclosure 22 of sensor 20 is made, at least in the area near inductive distance measuring element 40, of a material having a low magnetic permeability.
Inductive distance measuring element 40 serves for measuring radial distances between bolt 16 and sensor 20, as illustrated in
Although a simple coil assembly with a bar-shaped core would be sufficient for the measurement, the cruciform arrangement of two coil assemblies is provided in order to be able to separate the effect of brake torque 34 from other influences and furthermore to allow a simpler derivation of the brake torque from the measuring signals of inductive distance measuring element 40. Moreover, errors on account of an imprecisely centered position of measuring element 40 within bolt 16 are eliminated.
A prerequisite for using an inductive distance measuring element is that bolt 16 is also made of a material having a high magnetic permeability, which is commonly the case today. The usual high-strength materials for these components exhibit sufficient magnetic properties in this respect.
For the measurement, the coil pairs 50, 51 are separately supplied with an alternating current, and the alternating voltage across the coils is measured. By a synchronous demodulation of these voltages by a voltage having the same frequency but which is offset by 90°, the imaginary part of the voltage is obtained, i.e. the part that is due to inductance. Therefrom, using the evaluation described in more detail below, it is possible to generate a measuring signal that is proportional to the brake torque.
The circuitry around inductive distance measuring element 40 is schematically illustrated in
Uosc is converted by two current-voltage converters 60, 62 into currents IA and IB that are supplied to coils A 50 and B 51. The voltages across A and B are supplied to synchronous demodulators 64, 66 to which the output signal Uosc of oscillator 58, shifted 90° by an integrator 68, is supplied as the second signal. After low-pass filtering in respective low-pass filters 70, 71, output signals UA and UB are obtained which correspond to the pure inductance of coil assemblies 50, 52, respectively, i.e. without their ohmic components. Low-pass filters 70, 71 serve for eliminating the carrier frequency. The two voltages UA and UB are supplied to an analog or digital processing unit 73 which divides the difference of the input signals by the sum of the input signals, thereby yielding output signal UOUT. As will be demonstrated, this voltage is proportional to force F acting upon bolt 16.
For the purposes of the following derivation it will be assumed that coil assemblies A and B are each the result of serial connections of ideal inductances LA respectively LB and of ohmic components RA respectively RB. The ohmic component includes iron losses, the ohmic resistance of conductors, etc. As far as alternating voltages and currents are concerned, the currents and voltages indicated below shall normally be considered as vectorial values.
The voltage induced in coil assembly A (that corresponds to coil pair 50) by current IA is:
UA=UL
and:
UL
where:
The pure inductance LA of coil assembly A is equal to:
where:
The variation of air gap dA, equivalent to the sum of distances 75 and 76, is approximately proportional to brake torque F:
dA=d0+CF Eq. 4
where:
From equations (2), (3), and (4) it follows that:
and by an analogous derivation for coil assembly B:
Furthermore, with an identical, symmetrical design of coil pairs 50, 51, the following applies:
IAωKA=IBωKB Eq. 7
When Eq. (7) is entered into Eq. (5) and (6), one obtains for UOUT:
Thence, UOUT is proportional to brake torque F.
The division by (UL
The circuit of
In contrast to
PI or PID controller 81 controls the amplitude of oscillator 58.
Thus the factor
is constant, and the result is:
UOUT*(UL
where K3=constant.
Thus, the output signal of adder 83 preceded by inverter 85, i.e. the difference UL
A particular advantage of the described sensor is that it is insertable into existing connecting bolts 16 without the need of altering the mechanical construction in a way that would require a recertification. Moreover, the sensor can be mounted respectively inspected or replaced on location, i.e. during regular aircraft maintenance.
From the preceding description of an exemplary embodiment, numerous modifications are accessible to those skilled in the art without leaving the scope of the invention that is solely defined by the claims. Conceivable are the following, inter alia:
Number | Date | Country | Kind |
---|---|---|---|
500/06 | Mar 2006 | CH | national |
1079/06 | Jul 2006 | CH | national |
Number | Name | Date | Kind |
---|---|---|---|
3625053 | Laimins | Dec 1971 | A |
3861203 | Dahle et al. | Jan 1975 | A |
4175428 | Eilersen | Nov 1979 | A |
4474060 | Crossman | Oct 1984 | A |
Number | Date | Country | |
---|---|---|---|
20070228825 A1 | Oct 2007 | US |