Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the following description of preferred embodiments, the present invention is preferably applied to a forged piston made of an aluminum alloy. However, the present invention is in no way limited to those specific preferred embodiments but is also effectively applicable to a forged piston made of a magnesium alloy or a titanium alloy.
The forged piston 10 includes a piston head 1, which is located at the top so as to face a combustion chamber, and a piston wall 2, which is sometimes called a “piston sidewall” and which defines a sliding surface that contacts with a cylinder block. The forged piston 10 further includes a piston boss 3 as a bearing for a piston pin.
On the upper portion of the piston wall 2 that is located closer to the piston head 1, grooves 4 have been cut so as to retain either a compression ring or an oil ring. The lower portion 5 of the piston wall 2 that is located under the piston pin has a reduced thickness to decrease the overall weight of the piston and is often called a “piston skirt”.
The forged piston 10 of this preferred embodiment is characterized by the direction in which the fiber flows extend.
As shown in
As described above, the fiber flows F are metal structure flows of a forged product. That is why it is difficult to fracture a forged product across the fiber flows F. In other words, the greater the number of fiber flows F that intersect with a cross section that has been taken in a certain direction, the more perfectly the forged product can endure the bending stress applied in that direction.
In the forged piston 10 of this preferred embodiment, the fiber flows F of the piston head 1 intersect with the radial direction. That is why compared to the situation where the fiber flows f are parallel to the radial direction as shown in
Furthermore, in the forged piston 10 of this preferred embodiment, the fiber flows F of the piston wall 2 are nonparallel to the sliding direction. That is why compared to the situation where the fiber flows f are parallel to the sliding direction as shown in
As described above, in the forged piston 10 of this preferred embodiment, the fiber flows F are nonparallel to the radial and sliding directions, thus realizing high strength and good fatigue endurance.
It should be noted that the nonparallel pattern of the fiber flows F of the piston head 1 with respect to the radial direction and that of the fiber flows F of the piston wall 2 with respect to the sliding direction are not limited to the examples shown in
For example, the fiber flows F may define a steeper tilt angle with respect to the radial direction or the sliding direction as shown in
However, if the fiber flows F had too steep a tilt angle, then it could be more difficult to make the forged piston 10 as intended. That is why to make the forged piston 10 as easily as possible, the fiber flows F preferably have a small tilt angle. That is to say, to facilitate the manufacturing process, the example shown in
Hereinafter, a method of making the forged piston 10 of this preferred embodiment will be described with reference to
First, as shown in
The metal structure that the workpiece 11 will eventually have as a result of the manufacturing process is determined by a forging process. Specifically, in the resultant metal structure, silicon particles and various intermetallic compounds are dispersed on a matrix in which aluminum and additive elements form a solid solution. The matrix includes either isometric crystals or dendritic crystals. Also, the silicon particles are either granular or flake-like, while the intermetallic compounds are granular or needle-like. It should be noted that in the material that has been simply forged, no fiber flows are seen to extend in a particular direction. As the matrix is stretched in the plastic deformation direction and as the silicon particles and intermetallic compounds are aligned with the plastic deformation direction, the fiber flows such as those shown on a larger scale in
The workpiece 11 may be formed by performing either a continuous casting process or a hot extrusion process on the forged ingot at a temperature of about 400° C., for example. The workpiece 11 is a bar member (typically a round bar member) that has been formed by the continuous casting process or the extrusion process. If the extrusion process is adopted, a workpiece 11 with fiber flows that extend parallel to the direction in which the material is extruded can be obtained.
As described above, the present invention is also applicable to a forged piston made of a magnesium alloy or a titanium alloy. As the magnesium alloy, one of Magnesium Alloys F, G and H having the compositions shown in the following Table 2 may be used, for example. Meanwhile, as the titanium alloy, one of Titanium Alloys I and J having the compositions shown in the following Table 3 may be used, for example. All numerals in Tables 2 and 3 represent mass percentages and the balance of the alloy is magnesium in Table 2 and titanium in Table 3.
Next, as shown in
Subsequently, as shown in
Thereafter, as shown in
Subsequently, as shown in
Finally, as shown in
In the manufacturing process described above, the step of twisting the workpiece 11 is performed preferably before the forging process step. By performing this twisting process step, the fiber flows of the workpiece 11 can be made nonparallel to the forging direction (see
In the twisting process step, the number of times of twists may be set according to the desired tilt angle of the fiber flows F. The greater the number of times of twists, the larger the tilt angle of the fiber flows F can be.
As described above, in the method of making a forged piston 10 according to this preferred embodiment, the step of working the workpiece 11 such that the fiber flows F of the workpiece 11 become nonparallel to the forging direction is carried out before the forging process step. As a result, a forged piston 10 with high strength and good fatigue endurance can be obtained.
If such a working process step were not performed before the forging process step, then the fiber flows f would be parallel to the radial direction and the sliding direction as shown in
In the preferred embodiment described above, the bar member 11 is twisted. However, the twisting process step may be performed at any stage before the forging process step is carried out. That is to say, the twisting process step does not have to be carried out when the workpiece is a bar member 11. Alternatively, the twisting process step may also be performed when the workpiece is a billet 12, i.e., after the bar member 11 has been cut and divided into billets 12.
The forged piston 10 of this preferred embodiment has high strength and good fatigue endurance as described above, and therefore, can be used extensively for internal combustion engines (which will be simply referred to herein as “engines”) of automotive vehicles and various other transportation apparatuses.
The engine 100 includes a crankcase 110, a cylinder block 120 and a cylinder head 130.
A crankshaft 111 is stored in the crankcase 110 and includes a crank pin 112 and a crank web 113.
The cylinder block 120 is arranged over the crankcase 110. A cylindrical cylinder sleeve 121 has been fitted into the cylinder block 120 such that the forged piston 10 can reciprocate back and forth inside the cylinder sleeve 121.
The cylinder head 130 is arranged over the cylinder block 120. The cylinder head 130 and the forged piston 10 and the cylinder sleeve 121 of the cylinder block 120 together define a combustion chamber 131. The cylinder head 130 has an inlet port 132 and an outlet port 133. Inside the inlet port 132, an intake valve 134 is arranged to supply a mixed gas to the combustion chamber 131. On the other hand, inside the outlet port 133, an exhaust valve 135 is arranged to exhaust the gas out of the combustion chamber 131.
The forged piston 10 and the crankshaft 111 are coupled together with a connecting rod 30. More specifically, a piston pin 123 is inserted into a through hole at the small end of the connecting rod 30 and the crank pin 112 is inserted into a through hole at the big end of the rod 30, thereby coupling the piston 122 and the crank shaft 111 together. A bearing metal 114 is provided between the inner surface of the through hole at the big end and the crank pin 112.
The engine 100 shown in
In the motorcycle shown in
A seat rail 306 is attached to the body frame 301 so as to extend backward from the surface of the rear end of the body frame 301. A fuel tank 307 is mounted on the body frame 301. And a main seat 308a and a tandem seat 308b have been set up on the seat rail 306.
A rear arm 309 is attached to the rear end of the body frame 301 so as to extend backward. And a rear wheel 310 is rotatably supported on the rear end of the rear arm 309.
The engine 100 shown in
A gearbox 315 is coupled to the engine 100. A drive sprocket 317 is attached to the output shaft 316 of the gearbox 315 and is coupled to the rear wheel sprocket 319 of the rear wheel 310 by way of a chain 318. The gearbox 315 and the chain 318 function as a transmission mechanism to transmit the power, generated by the engine 100, to the driving wheel.
The motorcycle shown in
The present invention provides a forged piston with higher strength and fatigue endurance than conventional ones and a method of making such a piston.
The forged piston of the present invention has such high strength and fatigue endurance that is can be used effectively in the internal combustion engines of passenger cars, buses, trucks, motorcycles, tractors, airplanes, motorboats, civil engineering vehicles and various other types of transportation apparatuses.
While the present invention has been described with respect to preferred embodiments thereof, it will be apparent to those skilled in the art that the disclosed invention may be modified in numerous ways and may assume many embodiments other than those specifically described above. Accordingly, it is intended by the appended claims to cover all modifications of the invention that fall within the true spirit and scope of the invention.
This application is based on Japanese Patent Applications No. 2006-192870 filed on Jul. 13, 2006, the entire contents of which are hereby incorporated by reference. Furthermore, the entire contents of Japanese Patent Application No. 2007-153509 filed on Jun. 11, 2007, are hereby incorporated by reference.
Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-192870 | Jul 2006 | JP | national |