The present invention relates to systems and methods of forming catalytic regions within porous structures. More particularly, the present invention relates to supercritical phase processing of powders to form catalytic regions within porous structures.
Certain microporous structures can serve as valuable industrial catalysts. Several features of these structures make them particularly well suited for catalytic applications. For example, their high surface area to volume ratio provides a dense region of reactivity. Their heterogeneity with fluid reactants and products permits relatively easy recovery of the catalyst post-reaction. Furthermore, their microscopic structure provides for physical modulation of the reactants and products in addition to any chemical catalysis.
Some microporous structures, for example some molecular sieves, do not provide for chemical catalysis, but instead solely accomplish physical modulation of working fluids or solutions. Whether or not a microporous structure provides chemical catalytic functions in addition to physical structure, is also a function of the material from which the structure is made.
Most microporous structures cannot be constructed as such, but instead rely on a variety of complex chemical and mechanical formation mechanisms, including self-assembly. These mechanisms are exploited in known production methods, such as sol-gel. Unfortunately, because these production methods and formation mechanisms can operate only on materials with chemical structure, arbitrary materials cannot be formed into a selected microporous structure. Additionally, the catalytic mechanisms within microporous structures are complex and do not always directly relate to the catalytic functionality present in precursors. Thus, formation of a microporous structure capable of performing a desired catalytic function requires a suitable precursor that can chemically form the required structure while retaining a functional group capable of performing the desired catalytic function.
Zeolites are a well-known class of microporous structures. Zeolites are crystalline aluminosilicate minerals that form regular, porous structures. The building blocks of zeolites have the chemical structures illustrated in
However, what is needed in the art is a system for and a method of engineering the catalytic behavior of a porous structure without having to rely on synthesis of precursors suitable for formation into the porous structure.
The present invention provides a system for and a method of forming catalytic regions within pre-formed porous structures. Supercritical phase processing is employed to achieve such catalytic region formation. For the purposes of this disclosure, a supercritical fluid is any fluid that is at a temperature and a pressure above its thermodynamic critical point.
In one aspect of the present invention, a method of forming a catalytic region on a porous structure is disclosed. The porous structure has an exterior surface and a plurality of pores. In the method, a supercritical dispersion is formed, wherein the supercritical dispersion comprises a plurality of particles dispersed in a supercritical fluid. The porous structure is then exposed to the supercritical dispersion. Finally, the particles from the supercritical dispersion are deposited onto the porous structure. These deposited particles are catalytic, thereby enabling the formation of one or more catalytic regions on the porous structure.
In another aspect of the present invention, a method of forming a catalytic region on a microporous structure is disclosed. The microporous structure has an exterior surface and a plurality of pores. In the method, a plurality of particles is dispersed within a carrier fluid, thereby forming a carrier mixture. A supercritical fluid is mixed with the carrier mixture, thereby forming a heterogeneous mixture. The carrier fluid is then removed from the heterogeneous mixture, thereby forming a supercritical dispersion. The supercritical dispersion comprises the plurality of particles dispersed in the supercritical fluid. The microporous structure is exposed to the supercritical dispersion. Finally, the supercritical fluid is removed from the supercritical dispersion while the supercritical dispersion is in contact with the porous structure, thereby depositing the plurality of particles from the supercritical dispersion onto the microporous structure. The deposited particles are catalytic, thereby enabling the formation of one or more catalytic regions on the porous structure.
Other aspects of the present invention relate to systems adapted to perform methods in accordance with the present invention. The present invention is particularly well-suited for use with pre-formed microporous structures. For the purposes of this disclosure, the use of the term “pre-formed” indicates that the porous structure has already been formed, with a plurality of pores disposed within the porous structure, prior to the method steps of the present invention being performed. Additionally, for the purposes of this disclosure, a microporous structure is a structure having a plurality of very fine pores. In one embodiment, a microporous structure comprises a plurality of pores having an average pore diameter of less than 1 micron. In another embodiment, the microporous structure comprises a plurality of pores having an average pore diameter of less than 2 nanometers.
The description below concerns several embodiments of the invention. The discussion references the illustrated preferred embodiment. However, the scope of the present invention is not limited to either the illustrated embodiment, nor is it limited to those discussed, to the contrary, the scope should be interpreted as broadly as possible based on the language of the Claims section of this document.
This disclosure refers to both particles and powders. These two terms are equivalent, except for the caveat that a singular “powder” refers to a collection of particles. The present invention may apply to a wide variety of powders and particles.
For the purposes of this disclosure, a microporous structure is a structure having a plurality of very fine pores. In one embodiment, a microporous structure comprises a plurality of pores having an average pore diameter of less than 1 micron. In another embodiment, the microporous structure comprises a plurality of pores having an average pore diameter of less than 2 nanometers.
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings. In order to facilitate this description, like reference numerals designate like elements.
The porous structure 300 includes pores of various sizes. Some pores, e.g. 310, are relatively large, while other pores, e.g. 320, are relatively small. Although the illustrated structure has non-uniform pore sizes, some embodiments of the present invention operate on porous structures with substantially uniform pore sizes. For example, some embodiments take zeolites as inputs.
Furthermore, the illustrated relationship between the pores 310 and 320 and the size of the porous structure 300 is not necessarily to scale. In some embodiments of the present invention, the pores 310 and 320 are very small in size compared to the porous structure 300. Preferably, porous structure 300 is a microporous structure, having a plurality of very fine pores. In one embodiment, the microporous structure 300 comprises a plurality of pores having an average pore diameter of less than 1 micron. In another embodiment, the microporous structure 300 comprises a plurality of pores having an average pore diameter of less than 2 nanometers.
The porous structure 310′, shown in cross-section by
In a preferred embodiment, a catalytic particulate is deposited onto a preformed porous structure to form a catalytic region. The particulate is catalytic prior to deposition. In some embodiments, the catalytic functions of the particulate are substantially unchanged by deposition. Preferably, the particulate is deposited in such a manner as to preserve substantially all catalytic functionality of the catalytic particulate. In other embodiments, the catalytic functions of the particulate are substantially altered by deposition. In some of these embodiments, the process of deposition alters a catalytic function of the particulate. In other embodiments, the chemical or physical environment surrounding the deposited particulate alters its catalytic function. The particulate can vary from embodiment to embodiment. In a preferred embodiment, the particulate is a nano-structured powder, or nano-powder, having an average grain size less than 250 nanometers and an aspect ratio between one and one million
In some embodiments of the present invention, a porous structure contains multiple types of catalytic regions. These different types of catalytic regions can provide the same catalytic function, while being disposed in different locations. Alternatively, different types of catalytic regions can provide different types of catalytic functions. For example, some embodiments can include catalytic regions having catalytic functions that depend on their location, while other embodiments can include catalytic regions having differing functions that are not correlated with their location. It is contemplated that a single embodiment can comprise catalytic regions whose function depends on location and catalytic regions whose function is unrelated to location.
In some embodiments, depositing a single type of particulate onto a porous structure in different types of locations produces catalytic regions with differing functions. In other embodiments, depositing differing types of particulate onto different locations produces such regions.
The present invention provides systems for and methods of forming these catalytic regions on a porous structure. Such systems and methods preferably include means for forming a supercritical dispersion from a supercritical fluid and a particulate.
In
In
The illustrated embodiment includes means for forming a heterogeneous mixture 440 comprising a mixture of the carrier fluid 420 and the supercritical fluid 430, with the particulate 410 dispersed therein. In
The present invention includes means for removing the carrier fluid from the heterogeneous mixture. Once the porous structure 300 has been introduced, the carrier fluid 420 is substantially removed from the heterogeneous mixture 440, thereby producing a supercritical dispersion 430′ that comprises the particulate 410 and the supercritical fluid 430, as illustrated in
Additionally, systems for forming catalytic regions on porous structures in accordance with the present invention preferably include means for removing the supercritical fluid 430 from the supercritical dispersion 430′ while the supercritical dispersion 430′ is in contact with the porous structure 300. For example, in
This removal increases the relative concentration of particulate 410 within the supercritical dispersion 430′, resulting in deposition of the particulate 410 on porous structure 300 to form the deposited regions 302 on porous structure 300′. In
In some embodiments, the deposited regions can be catalytic due in part to the surrounding environment (chemical environment, physical environment, or electrical environment) provided by the porous structure, or due in part to their inherent properties, or due in part to a combination of surrounding environment and inherent properties.
Preferably, embodiments of the present invention include means for immersing the porous structure 300 in the heterogeneous mixture 440. Such means are illustrated in
It is contemplated that the particular materials employed within the present invention can vary. However, in a preferred embodiment, the carrier fluid 420 is a surfactant. Furthermore, the carrier fluid 420 preferably comprises one or more of the following: water, oil, and alcohol. The particulate 410 can be a nanopowder, having an average grain size less than 250 nanometers and an aspect ratio between one and one million. The particulate 410 can be provided in other sizes as well. The porous structure 300 can be a zeolite or an alternative chemical structure.
Various methods in accordance with the present invention relate to inducing deposition of particulate from a supercritical mixture onto a porous structure.
At step 510, a supercritical dispersion is formed. The supercritical dispersion comprises a plurality of particles dispersed in a supercritical fluid. This supercritical dispersion can be formed in a variety of ways, including, but not limited to, the addition and removal of fluids and particles.
At step 520, a porous structure, having a plurality of pores, is exposed to the supercritical dispersion. Such exposure can be achieved in a variety of ways. In a preferred embodiment, the supercritical dispersion is contained within a chamber and the porous structure is immersed in the supercritical dispersion.
At step 530, the particles from the supercritical dispersion are deposited onto the porous structure, thereby forming catalytic regions on the porous structure. The particles are preferably catalytic prior to deposition. However, it is contemplated that particles can become catalytic or that their catalytic function can change in response to being deposited on the porous structure. Also, the particles can be deposited in a variety of different locations, such as on the exterior surface of the porous structure and/or on the interior surface of the pores. Such deposition can be achieved in a variety of ways. Furthermore, the catalytic regions can be formed in a variety of different locations on the porous structure, such as on the exterior surface of a pore or on the interior surface of a pore, with the catalytic region partially or completely surrounding the pore.
At step 610, a plurality of particles is dispersed within a carrier fluid, thereby forming a carrier mixture. Preferably, the particles are either catalytic or predisposed to becoming catalytic once deposited onto the porous structure.
At step 620, a supercritical fluid is mixed with the carrier mixture, thereby forming a heterogeneous mixture. Accordingly, the heterogeneous mixture comprises the supercritical fluid, the carrier fluid and the plurality of particles.
At step 630, the carrier fluid is removed from the heterogeneous mixture, thereby forming a supercritical dispersion that comprises the plurality of particles dispersed within the supercritical fluid. Such removal of the carrier fluid can be achieved in a variety of ways, including, but not limited to, reverse osmosis and filtering.
At step 640, a porous structure, having a plurality of pores, is exposed to the supercritical dispersion. Such exposure can include the porous structure being immersed in the supercritical dispersion.
At step 650, the supercritical fluid is removed from the region while the supercritical dispersion is in contact with the porous structure. This removal increases the relative concentration of particles within the supercritical dispersion, thereby promoting the deposition of the particles on the porous structure. Because of the catalytic nature of the particles, their deposition on the porous structure results in the formation of catalytic regions on the porous structure. The particles can be deposited in a variety of different locations on the porous structure. Similarly, the catalytic regions can be formed in a variety of different location on the porous structure.
The present invention provides methods and systems that provide for formation of catalytic regions on porous structures. The present invention uses an already-formed porous structure as a substrate, upon which catalytic particles are deposited to form catalytic regions. In some embodiments, the catalytic particles retain their functionality following deposition onto the substrate porous structure. Hence, the catalytic behavior of the porous structure can be engineered without relying on synthesis of precursors suitable for formation into porous structures.
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. As such, references herein to specific embodiments and details thereof are not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made to the embodiments chosen for illustration without departing from the spirit and scope of the invention.
The present application claims priority to co-pending U.S. Provisional Application Ser. No. 60/928,946, filed May 11, 2007, entitled “MATERIAL PRODUCTION SYSTEM AND METHOD,” which is hereby incorporated by reference as if set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
2419042 | Todd | Apr 1947 | A |
2519531 | Worn | Aug 1950 | A |
2689780 | Rice | Sep 1954 | A |
3001402 | Koblin | Sep 1961 | A |
3457788 | Miyajima | Jul 1969 | A |
3537513 | Austin et al. | Nov 1970 | A |
3741001 | Fletcher et al. | Jun 1973 | A |
3774442 | Gustavsson | Nov 1973 | A |
3959420 | Geddes et al. | May 1976 | A |
4008620 | Narato et al. | Feb 1977 | A |
4436075 | Campbell et al. | Mar 1984 | A |
4824624 | Palicka et al. | Apr 1989 | A |
4983555 | Roy et al. | Jan 1991 | A |
4987033 | Abkowitz et al. | Jan 1991 | A |
5043548 | Whitney et al. | Aug 1991 | A |
5073193 | Chaklader et al. | Dec 1991 | A |
5369241 | Taylor et al. | Nov 1994 | A |
5371049 | Moffett et al. | Dec 1994 | A |
5372629 | Anderson et al. | Dec 1994 | A |
5392797 | Welch | Feb 1995 | A |
5485941 | Guyomard et al. | Jan 1996 | A |
5553507 | Basch et al. | Sep 1996 | A |
5611896 | Swanepoel et al. | Mar 1997 | A |
5630322 | Heilmann et al. | May 1997 | A |
5749938 | Coombs | May 1998 | A |
5776359 | Schultz et al. | Jul 1998 | A |
5788738 | Pirzada et al. | Aug 1998 | A |
5811187 | Anderson et al. | Sep 1998 | A |
5853815 | Muehlberger | Dec 1998 | A |
5905000 | Yadav et al. | May 1999 | A |
5935293 | Detering et al. | Aug 1999 | A |
5989648 | Phillips | Nov 1999 | A |
5993967 | Brotzman, Jr. et al. | Nov 1999 | A |
5993988 | Ohara et al. | Nov 1999 | A |
6012647 | Ruta et al. | Jan 2000 | A |
6033781 | Brotzman, Jr. et al. | Mar 2000 | A |
6059853 | Coombs | May 2000 | A |
6102106 | Manning et al. | Aug 2000 | A |
6214195 | Yadav et al. | Apr 2001 | B1 |
6228904 | Yadav et al. | May 2001 | B1 |
6254940 | Pratsinis et al. | Jul 2001 | B1 |
6261484 | Phillips et al. | Jul 2001 | B1 |
6267864 | Yadav et al. | Jul 2001 | B1 |
6344271 | Yadav et al. | Feb 2002 | B1 |
6379419 | Celik et al. | Apr 2002 | B1 |
6387560 | Yadav et al. | May 2002 | B1 |
6395214 | Kear et al. | May 2002 | B1 |
6398843 | Tarrant | Jun 2002 | B1 |
6409851 | Sethuram et al. | Jun 2002 | B1 |
6416818 | Aikens et al. | Jul 2002 | B1 |
RE37853 | Detering et al. | Sep 2002 | E |
6444009 | Liu et al. | Sep 2002 | B1 |
6517800 | Cheng et al. | Feb 2003 | B1 |
6524662 | Jang et al. | Feb 2003 | B2 |
6531704 | Yadav et al. | Mar 2003 | B2 |
6554609 | Yadav et al. | Apr 2003 | B2 |
6562495 | Yadav et al. | May 2003 | B2 |
6569397 | Yadav et al. | May 2003 | B1 |
6569518 | Yadav et al. | May 2003 | B2 |
6572672 | Yadav et al. | Jun 2003 | B2 |
6607821 | Yadav et al. | Aug 2003 | B2 |
6610355 | Yadav et al. | Aug 2003 | B2 |
6635357 | Moxson et al. | Oct 2003 | B2 |
6641775 | Vigliotti et al. | Nov 2003 | B2 |
6652822 | Phillips et al. | Nov 2003 | B2 |
6652967 | Yadav et al. | Nov 2003 | B2 |
6669823 | Sarkas et al. | Dec 2003 | B1 |
6682002 | Kyotani | Jan 2004 | B2 |
6689192 | Phillips et al. | Feb 2004 | B1 |
6699398 | Kim | Mar 2004 | B1 |
6706097 | Zornes | Mar 2004 | B2 |
6713176 | Yadav et al. | Mar 2004 | B2 |
6716525 | Yadav et al. | Apr 2004 | B1 |
6746791 | Yadav et al. | Jun 2004 | B2 |
6772584 | Chun et al. | Aug 2004 | B2 |
6786950 | Yadav et al. | Sep 2004 | B2 |
6813931 | Yadav et al. | Nov 2004 | B2 |
6817388 | Tsangaris et al. | Nov 2004 | B2 |
6832735 | Yadav et al. | Dec 2004 | B2 |
6838072 | Kong et al. | Jan 2005 | B1 |
6855426 | Yadav | Feb 2005 | B2 |
6855749 | Yadav et al. | Feb 2005 | B1 |
6886545 | Holm | May 2005 | B1 |
6896958 | Cayton et al. | May 2005 | B1 |
6902699 | Fritzemeier et al. | Jun 2005 | B2 |
6916872 | Yadav et al. | Jul 2005 | B2 |
6919527 | Boulos et al. | Jul 2005 | B2 |
6933331 | Yadav et al. | Aug 2005 | B2 |
6986877 | Takikawa et al. | Jan 2006 | B2 |
6994837 | Boulos et al. | Feb 2006 | B2 |
7007872 | Yadav et al. | Mar 2006 | B2 |
7052777 | Brotzman, Jr. et al. | May 2006 | B2 |
7073559 | O'Larey et al. | Jul 2006 | B2 |
7081267 | Yadav | Jul 2006 | B2 |
7101819 | Rosenflanz et al. | Sep 2006 | B2 |
7147544 | Rosenflanz | Dec 2006 | B2 |
7147894 | Zhou et al. | Dec 2006 | B2 |
7166198 | Van Der Walt et al. | Jan 2007 | B2 |
7166663 | Cayton et al. | Jan 2007 | B2 |
7172649 | Conrad et al. | Feb 2007 | B2 |
7178747 | Yadav et al. | Feb 2007 | B2 |
7208126 | Musick et al. | Apr 2007 | B2 |
7211236 | Stark et al. | May 2007 | B2 |
7217407 | Zhang | May 2007 | B2 |
7307195 | Polverejan et al. | Dec 2007 | B2 |
7323655 | Kim | Jan 2008 | B2 |
7384447 | Kodas et al. | Jun 2008 | B2 |
20020079620 | DuBuis et al. | Jun 2002 | A1 |
20030036786 | Duren et al. | Feb 2003 | A1 |
20030066800 | Saim et al. | Apr 2003 | A1 |
20030108459 | Wu et al. | Jun 2003 | A1 |
20030223546 | McGregor et al. | Dec 2003 | A1 |
20040023453 | Xu et al. | Feb 2004 | A1 |
20040103751 | Joseph et al. | Jun 2004 | A1 |
20040167009 | Kuntz et al. | Aug 2004 | A1 |
20040251017 | Pillion et al. | Dec 2004 | A1 |
20050000321 | O'Larey et al. | Jan 2005 | A1 |
20050000950 | Schroder et al. | Jan 2005 | A1 |
20050077034 | King | Apr 2005 | A1 |
20050097988 | Kodas et al. | May 2005 | A1 |
20050233380 | Pesiri et al. | Oct 2005 | A1 |
20050240069 | Polverejan et al. | Oct 2005 | A1 |
20050258766 | Kim | Nov 2005 | A1 |
20060051505 | Kortshagen et al. | Mar 2006 | A1 |
20060096393 | Pesiri | May 2006 | A1 |
20060105910 | Zhou et al. | May 2006 | A1 |
20060108332 | Belashchenko | May 2006 | A1 |
20060159596 | De La Veaux et al. | Jul 2006 | A1 |
20060231525 | Asakawa et al. | Oct 2006 | A1 |
20070063364 | Hsiao et al. | Mar 2007 | A1 |
20070084308 | Nakamura et al. | Apr 2007 | A1 |
20070084834 | Hanus et al. | Apr 2007 | A1 |
20070087934 | Martens et al. | Apr 2007 | A1 |
20070173403 | Koike et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
56-146804 | Nov 1981 | JP |
WO 02092503 | Nov 2002 | WO |
WO 2006079213 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080280049 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60928946 | May 2007 | US |