1. Field of the Invention
This invention relates to the field of dual stage actuated (DSA) suspensions for disk drives. More particularly, this invention relates to the field of electrical connections to microactuators on DSA suspensions.
2. Description of Related Art
Magnetic hard disk drives and other types of spinning media drives such as optical disk drives are well known. Disk drive suspensions are the assemblies that hold the read/write head over the correct place on the spinning data disk, in order to write data to, and read data from, the desired data track on the disk.
Both single stage actuated disk drive suspensions and dual stage actuated (DSA) suspension are known. In a single stage actuated suspension, only a voice coil motor moves the disk drive suspension. In a DSA suspension, as for example in U.S. Pat. No. 7,459,835 issued to Mei et al. as well as many others, in addition to the voice coil motor which moves the entire suspension, at least one secondary actuator, often referred to as a microactuator, is located on the suspension in order to effect fine movements of the magnetic head slider to keep it properly aligned over the data track on the spinning disk. The secondary DSA microactuator(s) provide much finer control and much higher bandwidth of the servo control loop than does the voice coil motor alone which effects relatively coarse movements of the suspension and hence the magnetic head slider. Lead zirconium titanate is one of the broadly used intermetallic inorganic compounds possessing piezoelectric properties and is commonly referred to as PZT. PZT devices are often used as the microactuator motor, although other types of microactuator motors are possible. Examples of a dual stage actuated suspension, a PZT microactuator often referred to simply as a PZT for short, and various methods of electrically and mechanically integrating the PZT into the suspension, are disclosed in U.S. Pat. No. 8,570,688 to Hahn, and in copending U.S. patent application Ser. No. 14/045,773, which are owned by the assignee of the present application. Other mechanical and electrical connections have been proposed.
Various structures and methods have been proposed for making the required electrical connections to the PZT microactuators. One structure and method that was developed by the assignee of the present application is shown in
The electrical connection of
The present invention provides an improved connection structure and method that reduces the distance from the copper contact pad to the electrode that is the top surface of the PZT. In an exemplary embodiment of the invention, part or all of the electrical contact pad is formed such as by stamping or other techniques to give it a raised profile compared to the part of the suspension that is directly underneath the PZT. In one embodiment, a dimple is stamped into a portion of the flexible circuit that includes the copper contact pad so as to raise at least part of the copper contact pad up to a higher level, namely, a level that is closer to the level of the top of the PZT. In another embodiment, the flexible circuit has a jog or step in it that raises the copper contact pad up to a higher level.
Exemplary embodiments of the invention will be further described below with reference to the drawings, in which like numbers refer to like parts. The drawing figures might not be to scale, and certain components may be shown in generalized or schematic form and identified by commercial designations in the interest of clarity and conciseness.
A raised or vertical feature such as a convex curved bump, dimple or dome 60 has been formed in the supporting layer 32 and in the conducting layer 36 and its contact pad 37, thus creating both a supporting layer bump 64 and a conducting layer bump 62 in the flexible circuit, in order to raise at least part of the contact pad 37 up to a higher z-height. At least part of the copper contact pad 37 is therefore raised up to a vertical height that is closer to, or even on the same height as or above, the top metallized surface 24 of the PZT that defines the PZT's top electrode, than it would be in the absence of the vertical feature. Furthermore, at least part of the copper contact pad 37 is therefore raised up to a vertical height that is closer to the top metallized surface of the PZT than it is to the bottom surface or bottom electrode 26 of the PZT. In this embodiment, as in the additional embodiments disclosed herein, the raised part of the copper contact pad 37 can be raised up to: closer to the top electrode 24 of the PZT 20 than to its bottom surface 26; as high as or even higher than the top electrode 24 of the PZT; higher than the unbent portion of the copper signal trace 36 that is adjacent the bump 60; and/or at least as high as a midplane MP of the PZT 20. In all cases, the copper contact pad 37 and its convex surface is effectively raised to higher than it would be, and closer to the top surface and top electrode 26 of the PZT, than it would be in the absence of the vertical feature 60.
An electrically conductive bridge 152 is then established between the PZT's top (positive) electrode or surface 24 and electrical contact pad 37, such as by conductive adhesive 152 such as conductive epoxy, or perhaps some other flowable and subsequently hardened conductive material such as solder paste. The presence of the bump thus reduces the physical and electrical distance that must be traversed by conductive bridge 152 from copper contact pad 37 to the PZT's driven electrode 26 on its top surface.
In the illustrative embodiment a portion 33 of the supporting layer 32 not covered by copper layer 36 extends underneath bottom surface 26 of PZT 20. A section 35 of polyimide layer 34 acts as a dam to help prevent the undesired spread of non-conductive epoxy 50.
The result of the formed and raised structure 60 is that the physical and electrical distance from the PZT's top electrode 24, or more generally the distance from some other electrical component to which an electrical connection is to be established, to the copper contact pad 37 is reduced as compared to what that distance would be in the absence of the formed vertical feature. This reduction in distance has several advantages. First, less bridging material is needed, whether that bridging material is conductive epoxy or any other material. Second, the distance that the bridging material must traverse over the non-conductive epoxy, which is relatively non-wetting, is reduced, and at the same time the surface area of the bridging material on the more wetting copper contact pad is increased, thus strengthening the resulting bond. Third, because the distance that must be bridged is reduced, and because the distance that must be bridged over the relatively non-wetting non-conductive epoxy is significantly reduced, the conductive epoxy 152 can now be replaced by materials that have better manufacturing process characteristics such as solder paste or solder jet bonding. Solder paste and solder jet bonding are generally superior to non-conductive epoxy at least for the reasons that those materials are more easily dispensed, harden much more quickly, and do not require elevated temperatures for hardening. Elevated temperatures such as used for epoxy hardening can have negative effects on other components of the suspension including the PZT and its poling.
The invention provides the additional advantage that a dimpled or otherwise raised contact pad acts as an effective dam against undesired spreading of the bridging material to the right in
In another feature of the invention, a patterned mask of insulating material such as polyimide can be formed on a portion of the top surface of the PZT and/or the copper contact pad. The patterned mask of insulating material defines a top insulating layer that acts as a dam against undesired spread and smearing of the solder or other bridging material over the PZT and/or the copper contact pad. On the bumped contact pad 37, polyimide coverlay 40 acts as a dam to help prevent the unwanted spread of conductive epoxy 152 over the flexible circuit. On the PZT 20, polyimide layer 28 acts as a dam to prevent unwanted spread of conductive epoxy 152 over the PZT.
Although the invention has been described with reference to piezoelectric microactuators which are a type of transducer, it will be appreciated that the invention is applicable more generally to other types of microactuators, and indeed more generally still to making electrical connections to various types of electronic components other than just microactuators including but not limited to other transducers, sensors, heaters, and in environments other than disk drives and suspension assemblies for disk drives.
It will be understood that the terms “generally,” “approximately,” “about,” “substantially,” and “coplanar” as used within the specification and the claims herein allow for a certain amount of variation from any exact dimensions, measurements, and arrangements, and that those terms should be understood within the context of the description and operation of the invention as disclosed herein.
It will further be understood that terms such as “top,” “bottom,” “above,” and “below” as used within the specification and the claims herein are terms of convenience that denote the spatial relationships of parts relative to each other rather than to any specific spatial or gravitational orientation. Thus, the terms are intended to encompass an assembly of component parts regardless of whether the assembly is oriented in the particular orientation shown in the drawings and described in the specification, upside down from that orientation, or any other rotational variation.
It will be appreciated that the term “present invention” as used herein should not be construed to mean that only a single invention having a single essential element or group of elements is presented. Similarly, it will also be appreciated that the term “present invention” encompasses a number of separate innovations which can each be considered separate inventions. Although the present invention has thus been described in detail with regard to the preferred embodiments and drawings thereof, it should be apparent to those skilled in the art that various adaptations and modifications of the present invention may be accomplished without departing from the spirit and the scope of the invention. Accordingly, it is to be understood that the detailed description and the accompanying drawings as set forth hereinabove are not intended to limit the breadth of the present invention, which should be inferred only from the following claims and their appropriately construed legal equivalents.
This application claims priority from U.S. provisional patent application No. 61/951,506 dated Mar. 11, 2014.
Number | Name | Date | Kind |
---|---|---|---|
4633122 | Radice | Dec 1986 | A |
4761699 | Ainslie et al. | Aug 1988 | A |
5245750 | Crumly et al. | Sep 1993 | A |
5307561 | Feigenbaum et al. | May 1994 | A |
5747358 | Gorrell et al. | May 1998 | A |
6085414 | Swarbrick et al. | Jul 2000 | A |
6164979 | Gillette et al. | Dec 2000 | A |
6166333 | Crumly et al. | Dec 2000 | A |
6313402 | Schreiber et al. | Nov 2001 | B1 |
7167344 | Nakagawa et al. | Jan 2007 | B2 |
7374430 | Nagawatari | May 2008 | B2 |
7545246 | Kim et al. | Jun 2009 | B2 |
7751153 | Kulangara et al. | Jul 2010 | B1 |
7785113 | Mizoguchi | Aug 2010 | B2 |
7900347 | Rathburn | Mar 2011 | B2 |
8026865 | Chen et al. | Sep 2011 | B2 |
8085508 | Hatch | Dec 2011 | B2 |
8248735 | Fujimoto et al. | Aug 2012 | B2 |
8339748 | Shum et al. | Dec 2012 | B2 |
8542465 | Liu et al. | Sep 2013 | B2 |
8570688 | Hahn et al. | Oct 2013 | B1 |
8630067 | Ando et al. | Jan 2014 | B2 |
8717713 | Bjorstrom et al. | May 2014 | B1 |
8773820 | Hahn et al. | Jul 2014 | B1 |
8810972 | Dunn | Aug 2014 | B1 |
8837091 | Arai | Sep 2014 | B2 |
8885299 | Bennin et al. | Nov 2014 | B1 |
20090145641 | Daniel et al. | Jun 2009 | A1 |
20110075301 | Tsuchiya et al. | Mar 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
61951506 | Mar 2014 | US |