The present invention generally relates to the field of a Forward Looking Virtual Imaging System (FLVI). More specifically, the present invention relates to a synergistic bridge of navigation technologies with simulation imagining technologies to produce a clear simulated real time display of a driver's or pilot's actual position and view out a windshield.
Forward Looking Virtual Imaging or FLVI is an aid to navigation designed to help the crews of the following vehicles: aerospace, surface, maritime and submarine to have synthetic forward and side vision that will result in safer navigation in very low to “0” visual conditions. FLVI synergistically bridges the benefits of navigation technologies with simulation imagining technologies, bringing the benefit of dynamic synthetic vision, embedded simulation and flight review capabilities.
FLVI has many versions such as the following: FLVI-Aero: taxi, take off, approach and landing phases, helicopter/rotary-wing aircraft for helo pads for medical/law enforcement, and tactical operations; FLVI-FLIR: FLIR imagery superimposed on high-resolution panchromatic or multispectral satellite/aerial imagery; FLVI-AeroTCAS: traffic information displayed in the synthetic environment; FLVI-AeroTerrain: terrain alert by displaying it; FLVI-Marine: “close quarters” navigation such as channels, rivers and harbors; FLVI-Sub-Surface: operations requiring synthetic bathymetric visualization; and FLVI-Surface: synthetic visualization for all surface vehicles.
In a typical aerospace simulator (SIM) the image generator/viewer (IG) dynamically receives “simulated” “aircraft status” and presents the SIM crew with the forward and/or side looking imagery outside the aircraft. FLVI dynamically integrates “aircraft status” from the “real” aircraft avionics into a modified scene generator to present the crew with a synthetic representation that corresponds to what they would actually see out of the cockpit under clear visibility conditions.
Many serious accidents resulting in fatalities and property damage occur every year worldwide when a vehicle, navigating in very low ceiling and poor visibility conditions, deviates from a correct path and collides with an object or terrain feature or the operator suffers spatial disorientation and loss of vehicle control. Other navigation displays are insufficient in providing information leading pilots to ignore the hazards of significant deviations from course or altitude.
Our brain perceives three-dimensional information much better than information expressed in other ways such as needles, tables, and graphs. High-resolution geo-specific (photo-realistic) imagery and elevation data, along with extracted 3D cultural/man-made objects will be presented as a synthetic environment to the operator as either day or night ceiling and visibility unlimited (CAVU) condition for Summer or Winter. In order to maintain interactivity and real-time display of the synthetic environment, the resolution of the terrain model will be adaptively improved according to the position and altitude of the aircraft, vessel, or vehicle through “occlusion culling” (levels of detail). In the highest level of detail (LOD), the imagery, elevation, and 3D features should have enough detail to show the key features of interest and present a high level of realism.
The terrain databases will require periodic revisions and updates as changes to the environment occur or new data sources become available. The frequency of the update and data sources used would depend on the FLVI application. Aerospace applications would use DAFIF data, airborne/satellite imagery, LIDAR/DEM elevation data, and other sources as available. Maritime applications would use Digital Nautical Charts (DNC) and aids to navigations (ATONS) such as channel markers and approaches to ports and harbors. For sub-surface vessels, bathymetric data and obstructions to navigations would be used. Surface applications would use available source data to generate roads, man made objects and terrain features. Military applications would use NGA (National Geospatial Agency) and other DoD specific source data for features of military importance.
FLVI is also a training tool when its operational history is reviewed. FLVI is also an embedded simulation tool. The inherent value of the FLVI system is to display, in real-time, highly accurate virtual imagery of what lays ahead and/or to the side of the vehicle so that the operator can integrate what is in the synthetic environment with the traditional information from navigation instrumentation. Dangers arising from serious deviations from the required correct precision path would become very obvious to the crew when using FLVI and provide an opportunity for immediate corrections or aborts. On the other hand if the vehicle is on the correct precision path, the FLVI will confirm it.
FLVI-Aero will help to prevent CFIT (controlled flight into terrain) as well as “Spatial Disorientation”. An example of the value added by FLVI-Aero is aircraft operating in a combination of high terrain and low ceiling and visibility conditions. In many areas of the world NAVAIDS are notoriously unreliable. FLVI would show the crew the dangers ahead and provide additional navigation cues.
The present invention will be described by way of exemplary embodiments, but not limitations, illustrated in the accompanying drawings in which like references denote similar elements, and in which:
Various aspects of the illustrative embodiments will be described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. However, it will be apparent to those skilled in the art that the present invention may be practiced with only some of the described aspects. For purposes of explanation, specific numbers, materials and configurations are set forth in order to provide a thorough understanding of the illustrative embodiments. However, it will be apparent to one skilled in the art that the present invention may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order not to obscure the illustrative embodiments.
Various operations will be described as multiple discrete operations, in turn, in a manner that is most helpful in understanding the present invention, however, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations need not be performed in the order of presentation. The phrase in one embodiment is used repeatedly. The phrase generally does not refer to the same embodiment, however, it may. The terms comprising, having and including are synonymous, unless the context dictates otherwise.
Referring now to
Referring to
Referring to
Referring to
The display device may comprise one or more of the following display systems and in any combination: a graphics tablet, a heads-up display (HUD), a composite with attitude indicator, an electronic flight instrumentation system (EFIS), a navigation (NAV) display, a laptop, a night vision device and an infrared vision system.
The forward looking virtual imaging engine may comprise hardware including one or more and in any combination a high clock speed computer, high speed memory, high speed storage and a graphics accelerator board.
The forward looking virtual imaging engine may comprise software including one or more and in any combination an operator interface, image management software, an averaging algorithm and a photo-realism database.
The vehicle may be an aircraft, and the vehicle position data may comprise geo-positional-altitude-universal time date data, heading, velocity/acceleration and aircraft attitude in pitch, roll and yaw.
The input data to a communications interface may comprise data derived from one or more and in any combination typically found in precision and non precision avionics and instrumentation such as: AHRS/GPS/DGPS/WMS/Magnetometer an instrument landing system (ILS), a very high frequency (VHF) omnidirectional radio-range system (VOR), an automatic direction finder (ADF), radar, a weather (Wx) information system, air traffic control (ATC) data, attitude instrumentation, autopilot system, a directional gyro, turn and bank coordinators, a horizontal situation indicator (HIS), altitude instrumentation, a transponder encoder, geographical real-time data of altitude, position and time, forward looking infrared radar (FLIR), a terrain alert system, traffic conflict and alert system (TCAS) and Navionics for marine applications.
Aircraft-Vessel-Vehicle Status Module may have a typical Installation using Inertial Systems. These devices typically utilize MEMS-based inertial sensors and GPS technology in its different variants, GPSWM, DGPS, etc. The system architecture is designed to combine the functions of an IMU (Inertial Measurement Unit), VG (Vertical Gyros), GPS (Global Positioning System) and AHRS (Attitude & Heading Reference System) in a compact environmentally sealed enclosure with built-in EMI protection.
Some installations may require the use of a separate Magnetometer, like the ones used in Marine Stabilization. This solid state “strapdown” configuration avoids the performance limitations of typical gimbaled systems and offers improved reliability. A 3-axis fluxgate magnetometer and 3-axis micromachined accelerometer are combined with digital signal processing electronics and fully integrated within a small diameter pressure rated housing.
A version of these Magnetometers is the Heading Sensor with typical accuracies of 0.5 RMS. They can operate in dynamic environments with 360 degrees of continuous roll. RS232 or RS422 digital output.
The Inertial System selected for FLVI would provide this performance:
The Image Generator is a computer with a customized OSG viewer (FLVI-View) that uses the onboard navigation information to control the point of view within the synthetic environment and overlay correlated FLIR imagery and TCAS information.
The synthetic environment is composed of selected high-resolution geospecific terrain information to suite the operator needs. The synthetic environment is typically constructed from a combination of:
The synthetic environment is generated using a combination of highly specialized terrain database construction tools, image processing/GIS software packages, and 3D modeling tools. For aerospace applications, the terrain database will include the terrain and associated cultural/man-made objects located 10 NM from the center of the airport.
In a typical aircraft operation the crew would power up the FLVI along with the other avionics during the “prior to taxi checklist”. The FLVI would initialize itself according to the Aircraft Status Module and display an image that correlates to the one forward of the aircraft.
The Calibration Module in the FLVI Engine dynamically selects the appropriate and best Navigation information available from the “Aircraft Status Module” to ensure maximum accuracy between the aircraft's real position and the displayed imagery.
When landing at a particular airport, the FLVI-View detects that the aircraft is in the range of the airport (about 10 NM) and automatically loads the selected terrain database from memory and syncs with the Aircraft Status Module. The Calibration Model knows the aircraft is about to execute an ILS instrument approach procedure, so it selects the most precise navigation input which is Localizer, Glide slope and Encoder altimetry and compares it with GPS data. The FLVI-View synchronizes the terrain database with the navigation input and displays the synthetic environment to the crew.
The preferred display device is a HUD since it allows the operator to simultaneously see outside the windshield and inside the flight deck without a head movement. The next preferred displayed is a tablet mounted in front of the pilot, like on the yoke. FLVI integration with EFIS/MFD installations would superimpose the image to the NAV display when selected by the crew.
Typical Sequence of Operation (Aerospace):
In this example, an aircraft is being readied for a night IFR (instrument Flight Rules) departure in an airport surrounded by high terrain and unreliable NAVAIDS (power failures, terrorism). The prevailing weather conditions are indefinite ceiling with a ⅛ mile visibility in fog and mist. The crew, during the avionics phase of the pre-taxi checklist, programs all the navigation systems for the flight. FLVI is then selected and programmed to capture the inputs form the Air data. FLVI-View displays a clear image of the terrain and airport ahead of the aircraft. The pilot uses the imagery as an aid to taxi to the assigned active runway and eventually execute a take off and climb to altitude. The aircraft climbs to its assigned altitude and the crew refers to FLVI-View to avoid high terrain during the IFR published departure procedure (if available).
In the event of a need to abort the climb to altitude and make an emergency landing the imagery provided to the pilot will significantly enhance the safety of the return to the airport for the approach and landing. Continued display of the airport environment will prevent spatial disorientation and contribute to a safe landing avoiding high terrain and other hazards.
After completing the en-route phase of the flight, the aircraft is vectored by ATC to the FAF (final approach fix) of the instrument approach at the destination airport. Weather conditions are very similar to the departure airport.
When the aircraft is within 10 miles of the airport, the FLVI-View displays the airport and surrounding features in a night CAVU (Winter or Summer). Any terrain, vegetation, antennas, etc that could represent a hazard to the flight are displayed as 3D features in the synthetic environment. The runway approach lighting system (if available), runway threshold and lights are shown in the high intensity mode.
The pilot using the primary navigation systems and the FLVI as an aid to spatial orientation continues through the phases of the instrument approach. Looking out of the windshield is a “black hole” but the FLVI continues to provide the pilot with a clear representation of his surroundings. This will help the pilot deal with the consequences of serious deviations from course and altitude and eventually make the decision on whether to miss the approach or to continue on for a successful landing.
After landing the FLVI will continue to provide the imagery that will help to navigate out of the runway and into the taxiways.
The crew can elect to review the flight just completed by requesting from the Crew Interface a “Review previous flight”. The corresponding flight parameters are displayed and played-back in the FLVI-View for after-action review.
While the present invention has been related in terms of the foregoing embodiments, those skilled in the art will recognize that the invention is not limited to the embodiments depicted. The present invention can be practiced with modification and alteration within the spirit and scope of the appended claims. Thus, the description is to be regarded as illustrative instead of restrictive on the present invention.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/780,728, filed Mar. 9, 2006.
Number | Date | Country | |
---|---|---|---|
60780728 | Mar 2006 | US |