Treatment options for nonresectable tumors are restricted due to multiple clinical factors, most notably the presence of tumors near critical structures (large blood vessels and nerve bundles), extensive tumor volumes, and/or metastases. Alternate therapies like microwave ablation, radiofrequency ablation, and cryoablation are also limited by tumor location, and thermal therapies are indiscriminate and can easily damage these critical structures. In contrast, electroporation-based therapies (EBTs) are appealing and have proven advantageous for treating or ablating nonresectable tumors due to their nonthermal mechanisms of cell death, which spare proteinaceous structures including nerves and vasculature.
Clinically, EBTs are applied using one or more array of needle electrodes placed in and around the target tissue site. High amplitude (up to 3000 V), short duration (50-100 μs) pulsed electric fields (PEFs) are applied across the electrodes, exposing target tissues to high local field strengths. This results in an increased voltage drop across the cell membrane (transmembrane potential) and gives rise to the creation of defects on the cell membrane. Depending on the pulsing protocol, these defects are either transient or can lead to irrevocable damage.
In a systematic review, electrochemotherapy (ECT), which utilizes reversible electroporation (RE) for enhanced drug delivery, demonstrates an increased overall complete response rate of 59.4% compared to 8.0% with chemotherapy alone, regardless of tumor type. Conversely, irreversible electroporation (IRE) utilizes higher field strengths and increased pulse number to irreversibly disrupt the cell membrane. As the electric fields applied for IRE also encompass fields which generate RE, IRE can be utilized as a combinatorial therapy to ablate a central tumor core with peritumoral RE for enhanced delivery of adjuvant molecular agents. Notably, combinatorial treatment of locally advanced pancreatic cancer with standard-of-care and IRE demonstrated nearly double median overall survival compared to standard-of-care alone. In addition, preclinical trials in a spontaneous canine GBM model have yielded complete responses, demonstrating the effectiveness of IRE as a therapy for intracranial tumors. (Rossmeisl, John H., et al. “Safety and feasibility of the NanoKnife system for irreversible electroporation ablative treatment of canine spontaneous intracranial gliomas.” J. neurosurgery 123.4 (2015): 1008-1025.)
More recently, a second generation IRE therapy known as High Frequency IRE (H-FIRE) has emerged as an ablation modality that incorporates beneficial aspects of nonthermal ablation improving upon traditional IRE. H-FIRE utilizes bursts of bipolar pulses (˜0.5-10 μs) to destabilize cellular membrane structures within the therapeutic field, inhibiting tumor growth. H-FIRE for the treatment of spontaneous intracranial malignancies, for example, is highly efficacious due to compounding effects that alter the highly resistive, invasive, and immunosuppressive environment protecting glioblastoma (GBM) and other brain tumors.
H-FIRE forms a predominantly nonthermal ablation within heterogenous tumors such as GBM, regardless of chemotherapeutic resistance. In addition, prior in vitro studies demonstrate lower therapeutic electric fields are required to induce cell death in malignant brain cell lines compared to healthy brain cell lines, suggesting preferential targeting of malignant phenotypes.
Sub-H-FIRE electric fields are known to cause a reversible electroporation (RE) effect where cells are temporarily permeabilized to larger, normally impermeable chemotherapeutics. In vitro experiments have demonstrated cell-impermeable dye uptake within hours of treatment with RE fields.
Recent investigations have elucidated a long-lived disruption of the blood-brain-barrier (BBB), resulting in enhanced molecular diffusion of impermeable hydrophilic molecules into the brain parenchyma. Finally, recent investigations have elucidated a shift in the tumor microenvironment from immunosuppressive to pro-inflammatory after treatment with an EBT, suggesting that combinatorial H-FIRE and immunotherapy may have a synergistic effect. Thus, tumor ablation with H-FIRE provides multiple avenues for the treatment of non-resectable, highly resistive tumors.
Despite widespread use, EBTs face a unique challenge: intraoperative monitoring of treatment progression towards the determination of a clinical endpoint. Current approaches to determine extent of ablation rely either on postoperative procedures, including imaging with MRI and ultrasound techniques or intraoperative electrical characterization techniques based on a pre-defined change in tissue resistance/current. (W. van den Bos, D. M. de Bruin, A. van Randen, M. R. Engelbrecht, A. Postema, B. Muller, I. Varkarakis, A. Skolarikos, C. Savci-Heijink, R. Jurhill et al., “MRI and contrast-enhanced ultrasound imaging for evaluation of focal irreversible electroporation treatment: results from a phase i-ii study in patients undergoing ire followed by radical prostatectomy,” European radiology, vol. 26, no. 7, pp. 2252-2260, 2016.) For example, an absolute change in current/resistance is used to determine a clinical endpoint. The current implementation of this technique, using 50-100 μs IRE/ECT pulses, utilizes direct current (DC) current/resistance measurements which are highly coupled (electroporation+Joule heating) and would make it impossible to differentiate between electroporation induced changes in impedance and temperature-induced changes in impedance. Here, the inventors provide a method which uses a high-frequency reference, which is not susceptible to electroporation effects (
Within the β-dispersion frequency band (˜1 kHz-100 MHz), biological tissue can be represented as a 3-domain system, where a high impedance cell membrane separates the intracellular and extracellular spaces. (D. Voyer, A. Silve, L. M. Mir, R. Scorretti, and C. Poignard, “Dynamical modeling of tissue electroporation,” Bioelectrochemistry, vol. 119, pp. 98-110, 2018; Q. Castellvi, B. Mercadal, and A. Ivorra, “Assessment of electroporation by electrical impedance methods,” in Handbook of electroporation. Springer-Verlag, 2016, pp. 671-690; O. G. Martinsen and S. Grimnes, Bioimpedance and bioelectricity basics. Academic press, 2011.) Prior to electroporation (EP), the intact cell membrane impedes low frequency currents, restricting current flow to the extracellular domain (
The analysis of tissue impedance with bursts of bipolar pulses can be characterized into two categories: 1) intra-burst (in-pulse) impedance measurements, the impedance analysis of the EBT waveform, and 2) inter-burst impedance measurements, the impedance analysis at discrete timepoints between therapeutic PEFs. An application for intra-burst impedance has focused on quantifying changes in tissue conductivity during the EBT pulses (N. Beitel-White, S. Bhonsle, R. Martin, and R. V. Davalos, “Electrical characterization of human biological tissue for irreversible electroporation treatments,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018, pp. 4170-4173; A. Ivorra, B. Al-Sakere, B. Rubinsky, and L. M. Mir, “In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome,” Physics in Medicine & Biology, vol. 54, no. 19, p. 5949, 2009), aimed towards the creation of accurate pretreatment planning models (Y. Zhao, S. Bhonsle, S. Dong, Y. Lv, H. Liu, A. Safaai-Jazi, R. V. Davalos, and C. Yao, “Characterization of conductivity changes during high-frequency irreversible electroporation for treatment planning,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 8, pp. 1810-1819, 2017; R. E. Neal II, P. A. Garcia, J. L. Robertson, and R. V. Davalos, “Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 1076-1085, 2012).
As mentioned previously, inter-burst impedance measurements have been used to gauge the extent of EP. While H-FIRE addresses intricacies associated with current IRE technology (i.e., H-FIRE mitigates muscle excitation, field distortions in heterogenous tissues, and potential cardiac arrythmias), challenges in determining a clinical endpoint with all EBTs still exist. Proposed solutions towards determining a clinical endpoint of EBTs include monitoring changes in bulk tissue impedance/resistance and changes in tissue conductivity distribution. This includes:
While these technologies have been successful in predicting cell kill in their respective experimental setups, there are limitations in the equipment required to implement these procedures. For example, although these technologies are successful in mapping tissue impedance changes following treatment, there exists difficulties in integrating these technologies with existing pulse generators, there is typically additional cost or expense associated with additional equipment, and the impedance spectrum acquisition timeframe (˜10 s) is typically much larger than that between pulse periods (˜1 s) used with EBTs.
Here, the present inventors introduce Fourier Analysis SpecTroscopy (FAST) as an impedance spectroscopy methodology for monitoring tissue impedance changes during EBTs in real-time. Specifically, the development of both diagnostic FAST, aimed towards monitoring inter-burst impedance, and therapeutic FAST, aimed towards inducing tissue EP while simultaneously monitoring high voltage intra-burst tissue impedance (
To this end, methods for rapid bioimpedance measurements have been previously proposed. In summary, rapid EIS measurements are dependent on applying low-voltage or low-current stimulus, subsequent Fourier Transform, followed by analysis in the frequency domain. Above all else, these methods should be performed to minimize inclusion of significant nonlinearities (membrane resealing). Several stimulation signals have been proposed, including multisine waves (B. Sanchez, G. Vandersteen, R. Bragos, and J. Schoukens, “Optimal multisine excitation design for broadband electrical impedance spec-troscopy,” Measurement Science and Technology, vol. 22, no. 11, p. 115601, 2011), Gaussian pulses (M. Min, U. Pliquett, T. Nacke, A. Barthel, P. Annus, and R. Land, “Broadband excitation for short-time impedance spectroscopy,” Physio-logical measurement, vol. 29, no. 6, p. S185, 2008), rectangular chirps (M. Min, A. Giannitsis, R. Land, B. Cahill, U. Pliquett, T. Nacke, D. Frense, G. Gastrock, and D. Beckmann, “Comparison of rectangular wave excitations in broad band impedance spectroscopy for microfluidic applications,” in World Congress on Medical Physics and Biomedical Engineering, Sep. 7-12, 2009, Munich, Germany. Springer, 2009, pp. 85-88), maximum length binary sequences (S. Gawad, T. Sun, N. G. Green, and H. Morgan, “Impedance spectroscopy using maximum length sequences: Application to single cell analysis,” Review of Scientific Instruments, vol. 78, no. 5, p. 054301, 2007), and white-noise (S. C. Creason, J. W. Hayes, and D. E. Smith, “Fourier transform faradaic admittance measurements iii. comparison of measurement efficiency for various test signal waveforms,” Journal of Electroanalytical chemistry and interfacial electrochemistry, vol. 47, no. 1, pp. 9-46, 1973). Particularly in the field of electroporation, only modest works have been conducted to investigate inter-burst impedance changes throughout the entirety of treatment.
Previously, García-Sánchez et al. proposed utilization of a multi-sine burst for impedance analysis between 5 kHz to 1.313 MHz at 21 discrete frequencies. (T. García-Sánchez, A. Azan, I. Leray, J. Rosell-Ferrer, R. Bragos, and L. M. Mir, “Interpulse multifrequency electrical impedance measurements during electroporation of adherent differentiated myotubes,” Bioelectrochemistry, vol. 105, pp. 123-135, 2015.) Preference to using rectangular waveforms, over sinusoidal excitation signals (B. Sanchez, G. Vandersteen, R. Bragos, and J. Schoukens, “Basics of broadband impedance spectroscopy measurements using periodic excitations,” Measurement Science and Technology, vol. 23, no. 10, p. 105501, 2012), is such that rectangular waveforms are easily integrated into existing pulse generator topologies for EBTs as the pulse widths implemented are similar to those delivered with nanosecond PEFs, high-frequency bipolar PEFs, and monopolar PEFs. Ultimately, the inventors aim to minimize the excitation of cardiomyocytes, skeletal muscle fibers, and nerve fibers during impedance characterization with diagnostic FAST; for example through the use of a charge balanced bipolar chirp waveform, the stimulation of excitable tissues will be kept to a minimum. This would further extend applicability into techniques such as cardiac ablation. FAST introduces a novel application of high-frequency tissue impedance measurements as an indicator of the extent of Joule heating effects during EP. Although low-frequency impedance measurements are sensitive to both EP effects and Joule heating, the inventors have found that high frequency currents, which short the membrane reactance, are less sensitive to EP effects and can uniquely act to distinguish thermal effects (
Previously, the inventors utilized a Fourier analysis to quantify intra-burst impedance changes during H-FIRE therapy. (S. Bhonsle, M. F. Lorenzo, A. Safaai-Jazi, and R. V. Davalos, “Characterization of nonlinearity and dispersion in tissue impedance during high-frequency electroporation,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 10, pp. 2190-2201, 2017.) By fitting the resulting data to a dispersive parallel RC (resistance and capacitance) tissue model, this technique allowed for quantifying the ex vivo porcine tissue conductivity/permittivity response at varying applied electric fields with an end goal directed towards pre-treatment planning. The goal was to show that the electric field distribution was more homogenous by determining the conductivity function for predicting the electric field.
Here, the inventors' initial findings are extended to develop diagnostic FAST for monitoring inter-burst electrical impedance spectra directed towards monitoring treatment outcome with EBTs and therapeutic FAST for monitoring intra-burst impedance directed towards characterizing biological tissue response during EP. Their findings suggest acquisition of an impedance spectrum (˜0.1 kHz-100 MHz), such as a high-bandwidth inter-burst impedance spectrum (between 1.8 kHz-4.93 MHz) and intra-burst impedance spectrum (between 18.3 kHz-1.96 MHz) is possible at >100 discrete frequencies per spectrum and at a capture rate <<1 s. Through the modification of existing H-FIRE waveforms, the inventors demonstrate bipolar pulse schemes of pulse width 1 μs-1 ms enable FAST to capture electrical impedance content at frequencies between 1 kHz-5 MHz. This technique not only enables real-time EIS but allows for novel applications for high-frequency impedance as a parameter to delineate thermal effects from that of EP during EBTs. FAST technologies can be used to monitor EBT treatment outcomes (e.g., when an expected endpoint of treatment has been reached and/or the success of a treatment, such as whether the desired ablation effect has been achieved), EBT treatment progress, and/or detect or warn of thermal effects. FAST technologies are especially suited to provide for such monitoring in real-time during an EBT treatment, which can be very helpful in knowing when to alter treatment parameters, or when to halt treatment temporarily (such as to avoid excess temperatures), or when to stop treatment completely.
Embodiments of the invention include Aspect 1, which is a method for monitoring administration of electrical pulses comprising: obtaining a baseline impedance spectrum; administering a plurality of electrical pulses; obtaining one or more additional impedance spectrum; identifying any impedance spectrum change relative to the baseline; and monitoring the administering to determine if a desired endpoint is reached as indicated by the impedance spectrum change, and i) adjusting one or more parameters of, ii) stopping, iii) halting, and/or iv) continuing the administering based on the monitoring.
Aspect 2 is the embodiment of Aspect 1, wherein the endpoint for irreversible electroporation is a point during the administering where electroporation no longer contributes to any impedance spectrum change as evidenced by the obtaining of a flat impedance spectrum.
Aspect 3 is the method of Aspect 1 or 2, further comprising halting the administering to allow tissue temperature to reach a desired level, then resuming the administering to the desired endpoint.
Aspect 4 is the method of any of Aspects 1-3, comprising: delivering a low-voltage, wideband signal of electrical pulses; and monitoring treatment outcome through monitoring inter-burst impedance by capturing voltage and current and performing discrete Fourier transform analysis.
Aspect 5 is the method of any of Aspects 1-4, wherein impedance is captured within a frequency range of above 0.1 kHz to 100 MHz, such as between 1.8 kHz and 4.93 MHz.
Aspect 6 is the method of any of Aspects 1-5, wherein delivering of the electrical pulses comprises applying one or more low-voltage pulses interleaved between one or more high-voltage pulses.
Aspect 7 is the method of any of Aspects 1-6, wherein delivering of the electrical pulses comprises applying pulses in the range of 0.1 μs to 10 ms, such as at a high frequency signal of 1-50-1-50 μs, appended to a low frequency signal of 250-10-250-10 μs.
Aspect 8 is the method of any of Aspects 1-7, further comprising: delivering one or more high-voltage burst of pulsed electric fields; and monitoring tissue response through monitoring high-voltage intra-burst impedance by capturing voltage and current and performing discrete Fourier transform analysis.
Aspect 9 is the method of any of Aspects 1-8, wherein impedance is captured within a frequency range of above 0.1 kHz to 100 MHz, such as between 18.3 kHz and 1.96 MHz.
Aspect 10 is the method of any of Aspects 1-9, wherein the delivering comprises a high-frequency irreversible electroporation burst scheme of pulse width and intra-phase delay ranging from 0.1 μs to 10 ms, and inter-pulse delay ranging from 0.1 μs to 1 s, such as delivering high-frequency irreversible electroporation using a 2-5-2 μs scheme, followed by a 100 μs delay.
Aspect 11 is the method of any of Aspects 1-10, wherein the baseline impedance spectrum and/or the additional impedance spectrum is obtained by one or more of: reference to an impedance spectrum based on standard impedance values for a particular material or tissue; measuring impedance of a material or tissue over a selected frequency band; measuring voltage and/or current and calculating impedance therefrom; and/or calculating impedance as a function of frequency using the formula:
Aspect 12 is the method of any of Aspects 1-11, further comprising using the impedance spectrum change measured at high frequencies to predict a temperature change, such as in tissue, relating to the administering of the electrical pulses.
Aspect 13 is the method of any of Aspects 1-12, wherein the impedance spectrum change indicates one or more of: whether irreversible or reversible electroporation of a tissue has, is or will occur; whether chemical cell death and/or decellularization has, is or will occur; whether death and/or decellularization has, is or will occur due to a physical disruption; whether a tissue is healthy or cancerous; whether a tissue has damage from a stroke and/or traumatic brain injury; whether cell lysis has, is or will occur as evidenced by flattening of the impedance spectrum with no recovery following pulse cessation; whether cell necrosis has, is or will occur as evidenced by flattening of the impedance spectrum with minimal recovery following pulse cessation; and/or whether cell apoptosis has, is or will occur as is evidenced by flattening of the impedance spectrum with moderate recovery following pulse cessation.
Aspect 14 is the method of any of Aspects 1-13, wherein the change in the impedance indicates: whether degradation of a coating has, is or will occur; and/or whether a coating of a material has corrosion and/or a level of the corrosion.
Aspect 15 is the method of any of Aspects 1-14, wherein the monitoring comprises: monitoring tissue decellularization and/or cell death; monitoring gene-transfection efficiency and uptake; monitoring thermal and/or non-thermal tissue ablation for cardiac arrythmias; and/or monitoring cell lysis for immunotherapies.
Aspect 16 is a treatment monitoring system for administering electrical pulses comprising: one or more electrical pulse generator(s); one or more probe(s) capable of connection with the electrical pulse generator(s); one or more controller(s) capable of controlling one or more of the electrical pulse generator(s) and/or one or more of the probe(s) to: administer a plurality of electrical pulses; obtain a baseline impedance spectrum; obtain one or more additional impedance spectrum; and identify any impedance spectrum change relative to the baseline.
Aspect 17 is the treatment monitoring system of any of Aspect 16, further comprising a processing module with a processor in combination with memory and computer-executable instructions configured to process the impedance spectra using a Fourier Transform algorithm.
Aspect 18 is the treatment monitoring system of Aspect 16 or 17, wherein: one or more of the pulse generator(s) is capable of delivering high-voltage pulses; and one or more of the pulse generator(s) is capable of delivering low-voltage pulses.
Aspect 19 is a treatment monitoring system (such as that of any of Aspects 16-18), wherein: one or more controller(s) is a microcontroller capable of connection with: a first 5V H-Bridge circuit for connection with a high-voltage pulse generator; a 15V H-Bridge circuit for connection with a low-voltage pulse generator; and a second 5V H-Bridge circuit for connection with two Reed relays on a high-voltage circuit (HVRR) and two Reed relays on a low-voltage circuit (LVRR); wherein the microcontroller is capable of: triggering the Reed relays on the low-voltage circuit to close; triggering the low-voltage generator to deliver pulses; ceasing the LVRR trigger signal to open the LV and HV circuits; triggering the HVRR Reed relays on the high-voltage circuit to close; triggering the high-voltage generator to deliver pulses.
Aspect 20 is the treatment monitoring system of any of Aspects 16-19, wherein one or more of the controller(s) is capable of i) adjusting one or more parameters of, ii) stopping, iii) halting, and/or iv) continuing the triggering of the low-voltage and/or high-voltage generators based on the impedance spectrum change.
Aspect 21 is a system comprising: one or more probe(s) providing functionality for: delivering a plurality of electrical pulses to a tissue; and measuring electrical impedance relating to the tissue; wherein the functionality is on the same probe or different probes; an impedance analyzer coupled to one or more of the impedance measuring probes; a low voltage power supply and a high voltage power supply coupled to one or more of the probes and configured to deliver a low voltage and/or high voltage energy to the probe(s); one or more waveform generator coupled to one or more of the probes and the low and/or high voltage power supplies; and one or more switch coupled to the low voltage and high voltage power supplies, and configured to perform the delivering of the plurality of electrical pulses in the form of low voltage pulses and/or high voltage pulses, and configured to enable switching between HV and LV.
The accompanying drawings illustrate certain aspects of embodiments of the present invention, and should not be used to limit the invention. Together with the written description, the drawings serve to explain certain principles of the invention.
Reference will now be made in detail to various exemplary embodiments of the invention. It is to be understood that the following discussion of exemplary embodiments is not intended as a limitation on the invention. Rather, the following discussion is provided to give the reader a more detailed understanding of certain aspects and features of the invention.
Definitions:
The term “pulse” refers to an electrical signal with a single phase (monopolar, unipolar) or more than one phase (bi-polar). If bi-polar, there can be a delay between phases or the switch between phases can be immediate (no intra-pulse delay).
The term “burst” refers to a set of pulses, a group of pulses, or a pulse group.
The term “intra-pulse delay” refers to the condition where no energy is applied for a period of time during the bipolar pulses.
The term “inter-pulse delay” refers to the condition where no energy is applied for a period of time between one bipolar pulse or set of bipolar pulses and another bipolar pulse.
The term “intra-burst delay” refers to the condition where no energy is applied for a period of time between one or more bursts.
The term “inter-burst delay” refers to the condition where no energy is applied for a period of time within a burst and in some cases may be the same as an intra- or inter-pulse delay.
The term “cycled pulsing scheme” or “cycles” refers to a pulse scheme in which the total number of pulses are delivered over more than one cycle. The total number of pulses per cycle is calculated by dividing the total number of desired pulses by the number of cycles. The term may be used interchangeably with “cycled pulsing protocol,” “cycled pulsing sequence,” “cycled pulsing,” “cycled pulsing paradigm,” “cycled pulsing embodiment,” “cycled pulse sequencing,” “cycled pulse paradigm,” or “cycled pulsing pattern.” For example, a cycled pulsing scheme is shown in
The term “total on time” or “combined signal duration” or “energized time” refers to the time associated with energizing an electrode. For example, a single 1-50-1-50 μs burst scheme would have a total on time of 2 μs for each burst, whereas a 250-10-250-10 μs burst would have a total on time of 500 μs for each burst.
The term “pulse protocol” or “pulsing scheme” or “pulsing protocol” or “pulse scheme” refers to a protocol defined by any one or more of or all of the following: the number of pulses; the duration of each pulse; any inter-pulse, intra-pulse, inter-burst, or intra-burst delay; the number of bursts; and the number of cycles, if applicable.
The term “saturation” refers to an impedance measurement or spectrum matching or converging with another impedance measurement or spectrum. For example, low frequency impedance can be monitored for saturation to the high frequency impedance, meaning a low frequency impedance measurement can be taken and compared with a previous baseline and/or reference high frequency impedance measurement.
Embodiments of the invention provide a Fourier Analysis SpecTroscopy (FAST) technique as an impedance spectroscopy methodology for monitoring impedance changes in a material or tissue, such as during electroporation-based therapies (EBTs) in real-time. Included within embodiments are a diagnostic FAST methodology and a therapeutic FAST methodology.
The term “diagnostic FAST” refers to a pulse scheme designed for monitoring inter-burst impedance of a material or tissue, such as during EBTs, including IRE and/or H-FIRE treatments. Diagnostic FAST can be achieved by delivering a low-voltage (0 V to 100 V), wideband signal (e.g., comprising rectangular bipolar pulses) and performing voltage and current capture followed by discrete Fourier transform for analysis in the frequency domain. Diagnostic FAST can be applied prior to treatment, to determine the impedance spectrum of the tissue in an intact state, during treatment in between high voltage pulses, to continually monitor changes in impedance due to electroporation pulses, immediately after treatment to measure the final state of the tissue, and in the time following treatment to measure the recovery of the cell membrane and recovery of the impedance spectrum. This will be described in more detail below.
In embodiments, the low-voltage electrical pulses/bursts can be applied using a voltage of above 0 V to 100 V, such as up to 10 V, up to 15 V, up to 20 V, up to 30 V, up to 40 V, up to 50 V, up to 60 V, up to 70 V, up to 80 V, up to 90 V, or from 5-85 V, or from 12-55 V, or from 35-75 V, or from 15-45 V, or any range in between any of these ranges or endpoints, including as endpoints any number encompassed thereby. Additionally, although rectangular pulses are more typical, the signal can comprise a waveform with any step, square, sinusoidal, ramp, Gaussian, or sinc function having constant, increasing, or decreasing frequency, or any arbitrary signal designed to achieve a desired frequency spectrum, such as in the range of 0.1 kHz to 100 MHz.
Diagnostic FAST comprises a pulse protocol (typically administering at a low-voltage) constructed by concatenating a high-frequency signal to low-frequency signal to form the final waveform: positive phase−intra-phase delay−negative phase−inter-pulse delay+positive phase−intra-phase delay−negative phase−inter-pulse delay. The set of high-frequency signal(s) (comprising: positive phase−intra-phase delay−negative phase−inter-pulse delay) can be delivered first or after the low-frequency signal(s) (comprising: positive phase−intra-phase delay−negative phase−inter-pulse delay). For example, the pattern can be a set of high-frequency signal(s)+a set of low-frequency signal(s), or low-frequency signal(s)+high frequency signal(s). If desired, multiple pulses, such as rectangular bipolar pulse signals, can be concatenated to form a continuous chirp like that in
The term “therapeutic FAST” refers to a pulse scheme designed to induce tissue EP while monitoring high voltage intra-burst impedance changes in real time. Therapeutic FAST can be achieved by delivering a high-voltage (100 V to 15,000 V) burst of bipolar PEFs and is an adaptation of a traditional high-frequency IRE burst, modified to maximize the frequency bandwidth and resolution to enable intra-burst impedance spectroscopy. In embodiments, the high-voltage electrical pulses/bursts can be applied using a voltage of 100 V to 15,000 V, such as from 500 V up to 3,000 V, and/or from 1,000 V up to 2,000 V, such as up to 250 V, up to 300 V, up to 350 V, up to 600 V, up to 650 V, up to 800 V, up to 1,200 V, up to 1,500 V, up to 15,000 V, up to 7,500 V, from 4,000 V to 12,000 V, or any range in between any of these ranges or endpoints, including as endpoints any number encompassed thereby. In embodiments, the electrical pulses can be administered using a frequency ranging from 100 Hz to 100 MHz, such as in the Hz range from 100 Hz or 1 Hz up to 100 Hz, or from 2 Hz to 100 Hz, or from 3 Hz to 80 Hz, or from 4 Hz to 75 Hz, or from 15 Hz to 80 Hz, or from 20 Hz to 60 Hz, or from 25 Hz to 33 Hz, or from 30 Hz to 55 Hz, or from 35 Hz to 40 Hz, or from 28 Hz to 52 Hz, or any range in between any of these ranges or endpoints, including as endpoints any number encompassed thereby. Additionally, pulses can be administered using a frequency in the kHz or MHz range, such as from 1 kHz to 10 kHz, or from 2 kHz to 8 kHz, or from 3 kHz to 5 kHz, or from 4 kHz to 15 kHz, or from 6 kHz to 20 kHz, or from 12 kHz to 30 kHz, or from 25 kHz to 40 kHz, or from 5 kHz to 55 kHz, or from 50 kHz to 2 MHz, including any range in between, such as from 75 kHz to 150 kHz, or from 100 kHz to 175 kHz, or from 200 kHz to 250 kHz, or from 225 kHz to 500 kHz, or from 250 kHz to 750 kHz, or from 500 kHz to 1 MHz, or any range in between any of these ranges or endpoints, including as endpoints any number encompassed thereby.
FAST schemes can be employed to measure the electrical impedance of testing loads which include, but are not limited to, biological tissues. The bandwidth (frequency limits) and the resolution (number of data points within the bandwidth) of the obtained FAST impedance spectrum are dependent on the pulsing schemes applied to the tissue. The characteristic frequency of each burst scheme determines the lowest frequency at which impedance data is attained, the characteristic frequency being defined as:
fchar=1/(2*pulse width[μs]+intra-phase delay[μs]+interpulse delay[μs]) kHz.
Therefore, pulsing parameters can be modified to a user-desired frequency bandwidth. A method to verifying frequency content entails taking the Fourier Transform and identifying the high-power signal in the frequency spectrum. The high-power signal is processed, and these frequencies constitute the frequencies at which impedance capture is possible.
Fourier Analysis SpecTroscopy (FAST) can be used as a methodology utilizing modified EBT waveforms to conduct low voltage inter-burst (diagnostic FAST) and high-voltage intra-burst (therapeutic FAST) impedance spectroscopy. Diagnostic FAST is the state of the tissue following pore resealing, while therapeutic FAST is a snapshot of the impedance during the pulse, a state when the pores are forming/formed.
For example, a 1-50-1-50+250-10-250 μs diagnostic FAST burst scheme can be used to measure frequencies ranging from above 0.1 kHz to 100 MHz, such as between ˜2 kHz-5 MHz (
A therapeutic FAST/H-FIRE burst scheme can be used to ablate and capture impedance information with FAST, for example simultaneously. A 2-5-2-100 μs pulse protocol can be used as the therapeutic FAST scheme, with changes in tissue impedance being monitored preferably in real-time (
Non-square waveforms (i.e. pulsed triangular waveforms, continuous sawtooth waveforms, multisine bursts, and/or multistage waveforms—
In embodiments, the real impedance data matches that attained from a commercial potentiostat (
Using embodiments of the invention, recovery dynamics can now be explored. A slow tissue impedance recovery (back to baseline) will signify dead/dying tissue, whereas a quick recovery can suggest reversible or minimal electroporation, with such analyses helpful in determining when a particular treatment endpoint has been reached, and/or when a particular treatment should be modified/adjusted, halted or stopped.
Diagnostic FAST can be used to provide a patient specific endpoint for electroporation-based therapies. While the existence of the beta dispersion within an impedance spectrum of a densely populated cell suspension/tissue is known, FAST allows for detecting the magnitude of the high frequency impedance. Once this value is determined, a low frequency impedance measurement can be monitored for its saturation to the high frequency impedance reference; this will signify ablation of cells within a therapeutic field, as this is an indication of cell membrane damage. The magnitude of this impedance will vary patient to patient, though the saturation of the low frequency to the high frequency impedance can serve as a marker for the endpoint of treatment. For example, as shown in
This relationship, saturation of the low frequency (˜5 kHz) to high frequency (˜2 MHz) impedance, is specific to peripheral tumor tissue, calcified tumor tissue, necrotic tissues, healthy/tumor ischemic tissues, traumatic brain injury, fibrotic tissues, tissue states prior to and after chemotherapy, and tissue states prior to and after radiation. This technique is also applicable to the classification of tissues, such as identifying/determining between various tissue types such as brain, liver, prostate, kidney, pancreas, and tumor tissues arising from unique electrical characteristics of each tissue.
Diagnostic FAST can be fine-tuned and utilized to monitor changes in tissue morphology, edema, perfusion, fluid infusion, thermal necrosis, cell death by electrical, mechanical, or thermal means, identifying cell subtypes, identifying intracellular structures and morphology, gauging efficacy of drug delivery, integrity of the blood-brain-barrier, and tissue heterogeneity. For example, with respect to edema, methods of the invention are capable of detecting increases in conductivity due to edema influx, which is an indication of a positive immune response to the EP treatment. In some embodiments, the methods of treating/monitoring can include treating tissue and/or cells (e.g., a tumor or a cancer) within a target site in a subject by administering a plurality of electrical pulses to the target site which can induce non-thermal electroporation, such as irreversible electroporation (IRE), of the treatment site; measuring a treatment parameter, including, but not limited to, impedance or an impedance spectrum; detecting a change in the measured parameter such as a change in impedance; and performing an additional downstream or secondary treatment as a result of a change in impedance that indicates a positive immune response (such as edema), wherein the downstream or secondary treatment step can include, but is not limited to, tumor resection, thermal ablation, a secondary non-thermal ablation, chemotherapy, radiation therapy, immunotherapy, biologic therapy, genetic therapy (gene editing), and combinations thereof.
In particular, for example, diagnostic FAST can be used to monitor tissue decellularization/cell death as the impedance spectrum/dispersion flattens. This technique can be used for, but is not limited to, monitoring tissue ablation such as irreversible electroporation, chemical cell death/decellularization (e.g., by surfactants, acids, and/or bases), disruption by physical means (such as by high-intensity focused ultrasound (HIFU), Histotripsy, and/or laser ablation), monitoring gene-transfection efficiency and/or uptake, monitoring tissue ablation (nonthermal, thermal) for cardiac arrythmias, monitoring cell lysis for immunotherapies, and monitoring mechanisms of cell death. Prior to tissue damage/decellularization, the impedance spectrum will feature a prominent dispersion. Following tissue damage, the dispersion will flatten, indicative of low cellular integrity or cellular density.
While prior literature has shown EIS as a potential tool for monitoring electroporation, the equipment, complexity, and more importantly the time required to implement EIS substantially limits applicability and does not currently allow for real-time measurements. This is true if the application of EIS is for monitoring impedance changes during treatment, as opposed to before and/or immediately after a series of ˜100 pulses are delivered. In addition, this invention includes using electrical measurements to monitor temperature changes with existing IRE technology.
With respect to monitoring cell death, lysis will be represented as a flattening of the impedance spectrum/dispersion with no recovery following pulse cessation. As cell lysis involves immediate destruction of the cell membrane, the measurement of impedance recovery, or lack thereof, will be possible on within minutes after treatment. Necrosis will be represented as a flattening of the impedance spectrum/dispersion with minimum recovery following pulse cessation. This assumes pore-formation does not recover and cell is essentially in a lysed state. Apoptosis will be represented as a flattening of the impedance spectrum/dispersion with moderate recovery following pulse cessation. This assumes pore-formation recovery, where the cell dies due to intracellular signaling. As this process occurs on a timescale of hours following treatment, impedance measurements with FAST can be conducted to monitor recovery of the cell membrane within minutes following the end of treatment. Pro-inflammatory forms of cell death, such as necroptosis/necrosis, will aid in determination of administration of immunologic agents.
High frequency tissue impedance measurements can be used to approximate changes in tissue temperature and gauge nonthermal ablation. For example, a 2-5-2-100 μs therapeutic FAST scheme can be used to monitor changes in high-frequency tissue impedance due to temperature. Since changes in temperature are approximated as having a linear impact on the tissue impedance, changes in tissue temperature can be approximated by monitoring the changes in high frequency impedance and using an appropriate temperature coefficient of resistance for the tissue in question:
ZT=Z·(1+α·ΔT) (1)
Here, ZT is the conductivity of the tissue at an elevated change in temperature ΔT, Z the baseline conductivity, and α the temperature coefficient of resistance. For potatoes, an alpha value of 2.25%/° C. was used.
As explained in greater detail below, the inventors employ: 1) numerical methods to examine various FAST schemes in regards to the maximum attainable frequency range and resolution, 2) a flat-plate electrode configuration using potato tissue to validate FAST-measured impedance against a commercial potentiostat using the selected diagnostic and therapeutic FAST from numerical methods, 3) a two-needle configuration in potato tissue to monitor impedance changes during IRE therapy and validate FAST-measured impedance against a commercial potentiostat, 4) a flat-plate electrode configuration to heat potato tissue using therapeutic FAST, with the goal of using the measured impedance to delineate thermal effects from those of EP.
In all cases presented, the extraction of impedance from the numerically simulated or experimentally recorded voltage waveforms V(t) and current waveforms I(t) is as follows. V(t) and I(t) were analyzed in MATLAB vR2018a (MathWorks Inc., Natick, MA, US) using the Fast Fourier Transform (FFT) algorithm, in which the length of the FFT was defined as the next power of 2 from the length of the voltage signal. This resulted in V(f) and I(f), thereafter the magnitude of V(f), labeled as VFFT, was defined. To identify and isolate high-power peaks in VFFT, a peak extraction algorithm in MATLAB was implemented; a single data point was extracted from each high-power peak if the power of the peak was a threshold value 2% of max(VFFT). The data points identified were subsequently extracted from V(f) and I(f), where the impedance was calculated using Ohm's law:
MATLAB functions “real( )” and “imag( )” were used to analyze the real and imaginary parts of the impedance, respectively.
Numerical Testing to Determine the Desired FAST Schemes
Preliminary studies to determine the frequency content of various FAST schemes in the absence of instrument/measured noise were conducted using MATLAB and COMSOL Multiphysics v5.5 (COMSOL Inc., Stockholm, Sweden). Voltage waveforms V(t) of amplitude 15 V were constructed in MATLAB using a series of concatenated rectangular pulses with 80 ns rise/fall-times. These V(t) waveforms were imported into COMSOL for numerical analysis. A 0D circuit model was constructed in the “Electrical Circuit” module for the circuit shown in
Preliminary investigations of various FAST schemes were conducted using MATLAB vR2018a (MathWorks Inc., Natick, MA, US); determination of optimal pulse schemes included minimizing total signal duration (<10 ms) and frequency content following a Fast Fourier Transform (FFT). In MATLAB, ideal voltage waveforms with 8 ns risetimes were produced using a series of concatenated square waves of pulse-widths 1 μs to 1 ms. Similar to H-FIRE bipolar burst schemes, FAST schemes were designed using a (positive phase-intrapulse delay-negative phase) scheme to maintain the clinically beneficial aspects of H-FIRE. Two sets of FAST schemes were constructed to satisfy the following two experimental investigations.
Both diagnostic and therapeutic FAST were produced to follow a positive phase−intra-phase delay−negative phase−inter-pulse delay pattern (
Once ideal voltage waveforms were created, an FFT algorithm was implemented to determine the frequency content and power spectral density (PSD) of various burst schemes. The PSD was computed by taking the magnitude of the voltage FFT squared and dividing by the length of the time vector.
The PSD reveals the frequencies at which data acquisition, the impedance spectrogram, is possible for the 1-50-1-50+250-10-250-10 μs diagnostic FAST scheme (
Based on the results, the desired diagnostic and therapeutic FAST which maximized the frequency range and frequency resolution for impedance capture were identified and selected. In embodiments, the desired frequency range for impedance capture and the corresponding selection of pulsing scheme pulse width, intraphase delay, and interpulse delay (diagnostic FAST) can be determined prior to treatment. The impedance extracted from the low-voltage pulse is then used to inform treatment endpoint, which can be controlled by personal or software/hardware.
Validation of Low-Voltage FAST Against a Commercial Potentiostat in Potato Tissue Using Flat Plate Electrodes
Following computational investigations in MATLAB, therapeutic and diagnostic FAST schemes were characterized using an in vitro potato tuber tissue model. Like biological tissues, potato tissue is composed of cells embedded within a fibrous matrix, this system loosely represents the macroscopic composition of biological tissues and similarly undergo electroporation. As a result, impedance changes due to electroporation and tissue ablation in potatoes resemble that of biological tissues. Potato tissue ablation occurs through an enhanced oxidative mechanism involving the release of intracellular enzymes that results in a rapid black oxidation of the tissue exposed to higher therapeutic fields; this rapidly oxidized tissue area represents the ablative region.
Select FAST schemes were further tested using a vegetal potato tuber model for validation of FAST-measured impedance against a commercial potentiostat. The system shown in
A russet potato was sliced to a thickness of 0.7 cm and further sectioned using a cylindrical cutter of diameter 0.8 cm. This tissue sample was placed between two flat plate electrodes (
Select diagnostic and therapeutic FAST schemes were tested in potato tissue in vitro (
The minimum and maximum frequency at which data was extracted for diagnostic FAST were 1.78 kHz and 4.69 MHz, respectively, with 216 data points fitting within this range. For LV therapeutic FAST, the minimum and maximum frequency for data acquisition were 18.3 kHz and 1.82 MHz, respectively, with 170 data points fitting within this range.
The resultant potato impedance was calculated using Ohm's law; real (tissue resistance) and imaginary (tissue reactance) impedance are shown in
Diagnostic FAST for Monitoring Ablation Outcome During IRE Therapy with Needle Electrodes in Potatoes
Analogous to biological tissue, following PEF treatment, potato tissue undergoes impedance changes due to EP. Therefore, the diagnostic FAST scheme was used to monitor tissue impedance changes and ablation outcome following the application of IRE pulses.
A 2D configuration was implemented to simplify characterization of ablation areas. Potatoes were sectioned uniformly to a 0.7 cm thickness with an ellipsoidal cross section ˜15×10 cm using a generic mandolin cutter. Two, 20-gauge cylindrical stainless-steel needle electrodes were inserted at the center of the sample and maintained at a 1 cm spacing; these electrodes were used for both EIS and tissue ablation with IRE (
Prior to tissue ablation, a baseline impedance spectrum was measured using a Gamry Reference 600 (Gamry, Warminster, PA, US) at a frequency band 1 kHz and 1 MHz at 10 points per decade. Thereafter, the diagnostic FAST scheme was also implemented for comparison to the commercial potentiostat. All low voltage FAST schemes were delivered using an AFG3021C function generator (Tektronix Inc., Beaverton, OR, US). The voltage and current waveforms were recorded using a WaveSurfer 3024z Oscilloscope (Teledyne LeCroy, Chestnut Ridge, New York). For high voltage waveforms the voltage was stepped down using a 1000× high voltage probe (Enhancer 3000, BTX, Holliston, MA) while the current was recorded using a 10× current probe (2877, Pearson Electronics, Palo Alto, California). Alternatively, separate LV and HV generators can be used to administer the LV and HV waveforms, respectively.
Following baseline impedance characterization, 1, 5, 10, 20, 40, and 80 IRE pulses were delivered at 1000 V and 100 μs on-time (n=9); additional impedance measurements were taken following each pulse group. To mitigate thermal effects on the measured impedance spectrum, IRE pulses were delivered in sets of 10 where applicable with a 1-minute delay in between each set. The potatoes were covered in plastic wrap and stored overnight to allow for tissue oxidation. The oxidized area in each sample was used to quantify the ablative region and was measured in ImageJ software.
Transitioning to a needle electrode (2D) configuration,
IRE was delivered at a pulsing rate 1 Hz; of the 6 treatment groups (Table 1), pulses for groups 4-6 were split into sets of 10 and a 1 minute delay added in between sets to allow for impedance capture with FAST (<1 s) and the potentiostat (>10 s), as well as to allow for heat dissipation. All groups demonstrated an IRE ablation, with 1 pulse (1 P) showing the smallest ablation (1.63±0.26 cm2). As the number of pulses was increased, the ablation area increased: 5 P (2.23±0.34 cm2), 10P (3.45±0.49 cm2), 20 P (3.92±0.33 cm2), 40 P (4.44±0.35 cm2), and lastly the 80 P group resolving in the largest measured ablation (4.57±0.29 cm2) (
A one-way ANOVA with Tukey's post hoc multiple comparisons test revealed statistical differences between all treatment groups except for the 10P vs 20 P group (p=0.074) and the 40 P vs 80 P groups (p=0.964). After 20 pulses, there is a slowed progression in ablation size after additional pulses, with the 40 P and 80 P groups showing no statistical differences. Bulk tissue impedance decreased following IRE treatment (
Delineating Temperature Effects from EP Using High Frequency Impedance
It is known that for a cell suspension and biological tissues, low frequency currents are mostly restricted to the extracellular domain as the intracellular contents are shielded by the highly impeditive cell membrane. At higher frequencies within the beta dispersion band, the cell membrane reactance is essentially shorted and resolves in measurements of a state in which the intracellular and extracellular resistance are in parallel. This state is uniquely realized when tissue is uniformly and nonthermally ablated, such as in tissue ablation with IRE. Once a cell is irreversibly electroporated, electrically, the intracellular and extracellular domains blur; EIS measurements no longer contain a beta dispersion and almost resemble a flat line with the low frequency impedance magnitude converging to that of the high frequency impedance magnitude. Therefore, the relatively unchanged high frequency impedance can be used to monitor changes in temperatures during electroporation-based therapies; this frequency lacks any effects of tissue electroporation, thereby isolating the effects of tissue Joule Heating.
During IRE, the low frequency impedance changes are likely attributed to a combination of tissue electroporation as well as Joule Heating; measuring only the low frequency impedance, as is the standard method with the commercial NanoKnife system, will result in a multivariate signal with no means of separation. The present inventors therefore introduce the measurements of high frequency impedance for isolating impedance changes due solely to Joule Heating. In addition, once the temperature effects on impedance are determined, these temperature effects can then be subtracted from those of the low frequency, effectively isolating the changes in tissue impedance due solely to electroporation.
As shown in
As low frequency currents are mostly restricted to the extracellular domain prior to EP, due to a high membrane resistance, membrane permeabilization throughout PEF treatment greatly influences impedance changes. In addition, Joule Heating effects also shift the impedance spectrum as a function of temperature change. Therefore, it is difficult to isolate thermal and EP effects from the measured impedance. High frequency currents, within the β-dispersion band, short the cell membrane reactance and impedance changes are less susceptible to EP-effects (
A therapeutic FAST/H-FIRE waveform of 2-5-2-100 μs pulses was used to simultaneously heat the tissue while resolving in a large enough frequency band to monitor changes in high frequency impedance. H-FIRE waveforms were delivered using a custom bipolar pulse generator (EPULSUS-FBM1-5, Lisboa, Portugal) to output stainless steel electrodes. This generator consists of two unipolar Marx generators capable of producing voltage waveforms with pulse risetimes of 100 ns and a maximum voltage/current output of 5 kV/50 A.
As opposed to the previous 2D electroporation setup, a 1D electroporation setup consisting of flat plate stainless steel electrodes were utilized to expose the tissue to a uniform electric field. A rectangular shape factor of length, width, and thickness dimensions 2 cm×2 cm×7 mm was used. The rectangular shape factor allows for analytical calculation of the tissue conductivity using the following equation: σ=(I·t)/(V·Ac), where I is the induced current, t is the sample thickness, V is the applied voltage, and Ac is the cross-sectional area. The H-FIRE treatment comprised 400 bursts of bipolar pulses, each energized for 100 μs at an electric field of 1,500 V/cm.
A russet potato was sectioned to a rectangular shape of length, width, and thickness 2×2×0.7 cm. Prior to treatment, an impedance spectrum was quantified using a low-voltage therapeutic FAST scheme with energized time 100 μs; this scheme was implemented to match the impedance attained during treatment. Thereafter, high voltage therapeutic FAST was delivered using a custom-built H-FIRE generator; due to pulse-generator limitations, output voltage was restricted to 1200 V with an energized time of 40 μs per burst and 400 bursts delivered. Temperature was monitored using a FLIR A325SC thermal camera (FLIR, Wilsonville, OR, USA). High voltage waveforms were recorded using a 1000 high voltage probe (Enhancer 3000, BTX, Holliston, MA) and current was captured using a 10 current probe (3792, Pearson Electronics, Palo Alto, California).
The difference between pre-treatment inter-burst impedance and the Nth burst intra-burst impedance is used to quantify temperature increase. By assuming temperature increases linearly with a fixed temperature coefficient of resistance, equation (3) was used to calculate ΔT based on changes in tissue impedance:
Here, ΔT(t) is the calculated increase in temperature, Z(t) is the impedance at the Nth burst, Z0 is the pre-treatment impedance, and a the temperature coefficient of resistance. An average α value of 2.8%/° C. was used. (N. Boussetta, N. Grimi, N. I. Lebovka, and E. Vorobiev, ““cold” electroporation in potato tissue induced by pulsed electric field,” Journal of food engineering, vol. 115, no. 2, pp. 232-236, 2013).
Nonlinear regression analysis was performed and a null hypothesis describing “a single curve fit” between the commercial potentiostat and FAST impedance data was tested. Here, a p-value<0.05 was considered statistically significant (null hypothesis rejected). The R2 reported are those relative to the global/shared curve fit between the potentiostat and FAST-measured impedance. The real part of the impedance for all data sets was fit to a 4-parameter logistic regression model, an adaptation to the Cole-Cole equations:
The measured ablations were compared using a one-way ANOVA with a post-hoc Tukey's multiple comparisons test. A p-value<0.05 was considered statistically significant. Statistical analysis was conducted in GraphPad Prism v8.2.
More specifically, a FLIR thermal camera was used to record the increase in temperature at a rate of 10 Hz during treatment (
Therapeutic FAST schemes were recorded on the oscilloscope at a rate 0.5 Hz and subsequently transferred to MATAB for analysis. By assuming that the changes in tissue temperature vary linearly with high frequency tissue impedance (α=2.25%/° C.), equation 1 is used to predict the ΔT based off the experimentally varied voltage and current waveforms (
With respect to the circuit model analogy (
Between low voltage pre-treatment impedance (Z0) and the 1st burst high voltage intra-burst impedance (Z1), a negligible temperature rise was measured ΔT 0.04° C. (
Therefore, the predicted temperature starting at the 400th burst was calculated and is seen in
Low frequency impedance changes are sensitive to EP-effects due to increased cell membrane permeabilization. If high-energy PEFs heat the tissue, this impedance change is a multivariate signal affected by both EP and thermal effects. High frequencies can short the cell membrane reactance and are therefore less susceptible to EP-effects. Potato tissue was uniformly heated (
Numerical Determination of Select Diagnostic and Therapeutic FAST Schemes
Firstly, the parameters Re, Rm, Cm, and Ri fitted to the impedance measurements were determined as 2071.2Ω, 9.71E06Ω, 6.53 nF, and 198.35Ω, respectively. It should be noted that a more accurate fit to the impedance spectrum is attained by replacing the membrane elements Rm∥Cm with a constant phase element, though the Rm∥Cm was selected to allow for time dependent circuit analysis using the circuit element nodes in COMSOL. The numerical V(t) and I(t) from COMSOL were processed in MATLAB and a subset of the results are plotted in
From numerical simulations, two FAST schemes were selected. The diagnostic FAST scheme is a bipolar pulsing scheme consisting of a high frequency signal 1-50-1-50 μs (84 cycles) appended to a low frequency signal 250-10-250-10 μs (2 cycles) for a combined signal duration 9.608 ms (
In embodiments, bipolar or unipolar pulses can be used for diagnostic FAST and/or therapeutic FAST, along with any type of waveform (e.g., a waveform with any step, square, sinusoidal, ramp, Gaussian, or sinc function) having constant, increasing, and/or decreasing frequency, or any arbitrary signal designed to achieve a desired frequency spectrum in the range of above 0.1 kHz to 100 MHz.
The total number of pulses/bursts per diagnostic FAST or therapeutic FAST treatment or total number of pulses/bursts per cycle can range from 1 to 5,000 pulses/bursts, such as from at least 1 up to 3,000 pulses/bursts, or at least 2 up to 2,000 pulses/bursts, or at least 5 up to 1,000 pulses/bursts, or at least 10 up to 500 pulses/bursts, or from 10 to 100 pulses/bursts, such as from 20 to 75 pulses/bursts, or from 30 to 50 pulses/bursts, such as 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, or 90 pulses/bursts, or any range in between any of these ranges or endpoints, including as endpoints any number encompassed thereby.
According to any embodiment of diagnostic or therapeutic FAST, each pair of electrodes can be activated by a pulse train with no delay between pulses in the pulse train. In other embodiments, one or more delays can be introduced, such as a delay between one or more pulses in the pulse train, and/or a delay between the activation of one or more pair of electrodes, and/or a delay between one or more of the cycles. The delay can be on the order of microseconds or seconds, such as one to one thousand microseconds, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, or 1,000 microseconds or one to several seconds such as 1, 1.5, 2, 2.5, 3. 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30 seconds or more. Cumulatively, the one or more delays may be on the order of seconds or minutes.
Likewise, where cycled pulsing paradigms are used for diagnostic or therapeutic FAST, the number of cycles can be any number of cycles, such as zero cycles, or from 1-100 cycles, or from 2-50 cycles, or from 3-40 cycles, or from 4-30 cycles, or from 5-20 cycles, or from 10-15 cycles, or any range in between any of these ranges or endpoints, including as endpoints any number encompassed thereby.
The therapeutic FAST scheme is a modified H-FIRE burst scheme to include an extended inter-pulse delay (e.g., 100 μs): 2-5-2-100 μs burst scheme (25 cycles) energized for 100 μs (
An FFT algorithm was implemented to attain V(f) and I(f); the magnitude of V(f), labeled VFFT, is shown for the diagnostic FAST scheme (
Diagnostic FAST demonstrates frequency content ranging from ˜2 kHz to 5 MHz; 204 data points were extracted within this frequency range (
Broadband Impedance Spectroscopy with Diagnostic FAST
A diagnostic FAST waveform consisting of a high frequency signal 1-50-1-50 μs (84 cycles) appended to a low frequency signal 250-10-250-10 μs (2 cycles) was identified to reliably capture impedance with a frequency range spanning 1.8 kHz-4.9 MHz at 216 discrete frequencies. A broadband impedance spectroscopy is achievable using pulsing parameters currently applied in EBTs.
Although the distribution of frequencies is neither linearly nor logarithmically spaced (B. Sanchez and R. Bragos, “Fast electrical impedance spectroscopy for moving tissue characterization using bilateral quasilogarithmic multisine bursts signals,” in 4th European Conference of the International Federation for Medical and Biological Engineering. Springer, 2009, pp. 1084-1087), nonlinear regression demonstrated the real part of the impedance acquired from FAST does not deviate significantly from that of a calibrated commercial potentiostat (
Therapeutic FAST Allows for High-Bandwidth Intra-burst Impedance Spectroscopy
The therapeutic FAST waveform is proposed to permeabilize/ablate biological cells while simultaneously allowing for high-bandwidth intra-burst impedance spectroscopy. The selected therapeutic FAST is a high voltage 2-5-2-100 μs burst scheme, an H-FIRE burst scheme modified to include an extended inter-pulse delay following the negative polarity pulse. This extended inter-pulse delay increases the resolution of the impedance spectrum, allowing for intra-burst impedance spectroscopy between 18.3 kHz to 1.96 MHz (
Monitoring Change in Temperature Using Tissue Electrical Impedance
In contrast to impedance change at low-frequencies being sensitive to both EP effects and Joule heating, the inventors have found that high-frequency impedance measurements, whose corresponding electric currents short the membrane reactance, are less sensitive to EP effects and can uniquely act to distinguish thermal effects. The flat-plate electrode configuration (
To demonstrate monitoring of temperature, 300 bursts of bipolar pulses (
A 6th order Butterworth filter was applied to exclude frequency components above cutoff frequency 5 MHz. A linear approximation for Joule heating is assumed relating the impedance and temperature change by means of the temperature coefficient of resistance α.
Zi+1=Zi·(1+α(T−T0)) (6)
As this analysis is conducted for impedance changes attributed to both electroporation and thermal effects, the term Δθ is utilized, as opposed to ΔT, to represent this relationship. Equation 6 is rewritten as:
Zi+1=Zi·(1+α(θ−θ0)) (7)
Through algebraic manipulation, Equation 7 can be converted into Equation 8.
Defining FAST-Controlled Pulsing Endpoint or Pulsing Intervals
A circuit model analogy describing tissue response to pulsed electric fields is described by Voyer et al. (D. Voyer et al. “Dynamical modeling of tissue electroporation.” Bioelectrochemistry 119 (2018): 98-110). Here, it can be discerned that once a cell membrane is fully electroporated (i.e., a lysed state), the electrical impedance is a function of only the intracellular resistance and extracellular resistance. This phenomenon is reflected by a theoretical flat impedance spectrum in which electroporation would no longer contribute to impedance changes (
In embodiments, for example, a clinical endpoint for electroporation can be defined when low-frequency impedance measurements, either a single frequency or a range of frequencies between 0.1 kHz to 500 kHz, continually decreases to a value within 20% of the reference or baseline high-frequency impedance measurements, either a single frequency or a range of frequencies between 500 kHz to 100 MHz. This is visually depicted as a flattening of the impedance spectrum during electroporation treatment.
Alternatively, or in addition, a clinical endpoint can be defined when the present low-frequency impedance measurements, either a single frequency or a range of frequencies between 0.1 kHz to 500 kHz, is unchanged compared to a prior low-frequency measurement, such as within a window of approximately 1-10%, such as within 5%. In this clinical endpoint, the low-frequency impedance measurement does not decrease to the magnitude of the high-frequency reference and does not satisfy criteria for clinical endpoint defined in above. However, the tissue is still “fully-electroporated.” Pulsing in this scenario is terminated to avoid thermal damage. The following equation can be used to calculate the percent change in the present low-frequency impedance relative to the prior measurement:
Here, Z0 is the baseline low-frequency impedance measurement, Zi is the ith pulse/burst in the treatment, and Zi−1 is the pulse/burst previous to the ith pulse/burst in the treatment.
In the event the impedance profile does not saturate following a set of pulses, where the number of pulses is defined either by a predetermined number of pulses or a FAST-calculated ΔT, treatment can be adjusted, stopped, and/or halted to allow for heat dissipation to avoid or prevent excessive tissue heating. The adjusting or stopping/halting of the treatment can be performed automatically by the system and/or the system can provide prompts to the user through a graphical user interface that provide information and/or options to the user on how to proceed. Once the tissue temperature has reached a desirable level, pulsing can continue. This methodology can be repeated until the pulsing endpoint is met (flat impedance profile). A theoretical, representative pulsing profile for which multiple pulsing sets might be used is depicted in
In embodiments, for example, the halting/pausing of electroporation treatment can be defined as delivering a pre-determined number of pulses/bursts (0-1,000) across one or more electrode/probe pair combinations. Once this value is reached, treatment can be paused for a pre-determined time (e.g., 0-600 s), as shown in
Alternatively, or in addition, the halting/pausing of electroporation treatment can be defined as reaching a pre-determined increase in temperature (e.g., 0-50° C.) across one or more electrode/probe pair combinations. This increase in temperature is measured using either a temperature measurement device (fiber optic temperature sensor, thermocouple, etc.) or by using high-frequency impedance measurements to predict temperature change. Once this temperature increase is reached, treatment will be paused for a pre-determined time (e.g., 0-600 s) or until a temperature decrease (e.g., 0-50° C.) criteria is met. This process will be repeated until the clinical endpoint, such as determined from diagnostic FAST impedance measurements, is reached.
System for Administering FAST Protocol
Embodiments of the present invention can include one or more components as illustrated in
For example, a treatment protocol according to the invention could include a plurality of electrodes disposed on any number of probes. According to the desired treatment and/or data acquisition pattern, the plurality of electrodes can be disposed in various positions relative to one another. In a particular example, a plurality of electrodes can be disposed in a relatively circular or square or rectangular pattern. Any configuration of electrodes is possible and the arrangement need not be circular, square or rectangular, but any shape periphery can be used, including triangular, depending on the area to be treated, including any regular or irregular polygon shape, including convex or concave polygon shapes. Any of the electrodes can be a ground electrode and any of the other electrodes in the plurality can be energized. Any number of electrodes can be in the plurality such as from about 1 to 20. Indeed, even 3 electrodes can form a plurality of electrodes, or 4 electrodes can be disposed in a manner to provide two electrode pairs (each pair comprising one ground and one electrode capable of being energized). During treatment, methods of treating can involve energizing the electrodes in any sequence, such as energizing one or more electrode simultaneously, and/or energizing one or more electrode in a particular sequence, such as sequentially, in an alternating pattern, in a skipping pattern, and/or energizing multiple electrodes but less than all electrodes simultaneously, for example.
In embodiments, each probe includes either a monopolar electrode or bipolar electrodes. The amount of exposure of an active portion of the electrode can be adjusted by retracting or advancing an insulating sleeve relative to the electrode. See, for example, U.S. Pat. No. 7,344,533, which is incorporated by reference herein in its entirety. The pulse generator(s) are connected to a treatment control computer 40 having input devices such as keyboard 12 and a pointing device 14, and an output device such as a display device 11, including a graphical user interface (GUI), for viewing information obtained from the FAST protocol. One or more probe is used to treat a lesion, tissue, or area/region of interest (ROI) 300 inside a patient 15 and/or to perform diagnostic and/or therapeutic FAST monitoring in conjunction with such treatment. An imaging device 30 includes a monitor 31 for viewing the lesion 300 inside the patient 15 in real time and for monitoring the diagnostic and/or therapeutic FAST monitoring. Examples of imaging devices 30 include ultrasonic, CT, MRI and fluoroscopic devices as are known in the art.
The present invention includes computer software (treatment monitoring module 54) which assists a user to plan for, execute, and review the results of a medical treatment procedure, as will be discussed in more detail below. For example, the treatment monitoring module 54 assists a user to plan for a medical treatment procedure by enabling a user to more accurately position each of the probes 22 of the therapeutic energy delivery device 20 in relation to the tissue, ROI, or lesion 300 in a way that will generate the most effective treatment zone, and/or provide options for the practitioner/user concerning whether and how to adjust treatment, and/or halt or stop treatment based on the impedance changes being measured by way of the diagnostic and/or therapeutic FAST monitoring. The treatment monitoring module 54 can display the progress of the treatment, such as monitoring with FAST, in real time and can display the results of the treatment procedure and/or results of the diagnostic or therapeutic FAST after it is completed. This information can be displayed in a manner such that it can be used for example by a physician to determine whether the treatment was successful and/or whether it is necessary or desirable to re-treat the patient, continue to treat the patient, or stop treatment based on the FAST results.
Any non-transitory computer-readable media can be used to store the software and/or the output of the software for a particular treatment protocol.
For purposes of this application, the terms “code”, “software”, “program”, “application”, “software code”, “computer readable code”, “software module”, “module” and “software program” are used interchangeably to mean software instructions that are executable by a processor. The “user” can be a physician or other medical professional. The treatment monitoring module 54 executed by a processor outputs various data including text and graphical data to the monitor 11 associated with the generator 10.
Referring now to
In one embodiment, the computer 40 is built into the voltage generator(s) 10. In another embodiment, the computer 40 is a separate unit which is connected to the voltage generator(s) through the communications link 52. In a preferred embodiment, the communication link 52 is a USB link. In one embodiment, the imaging device 30 is a standalone device which is not connected to the computer 40. In the embodiment as shown in
It should be noted that the software can be used independently of the pulse generator(s) 10. For example, the user can monitor the treatment by way of FAST in a different computer as will be explained below and then save the treatment parameters to an external memory device, such as a USB flash drive (not shown). The data from the memory device relating to the treatment parameters can then be downloaded into the computer 40 to be used with the generator 10 for treatment. For example, the data can be evaluated by a human to determine or estimate favorable treatment protocols for a particular patient or programmed into a device for implementing the particular protocol.
In another embodiment, an electronic drive system for delivering bipolar electroporation signals is schematically depicted in
Other systems are available in the literature for generating bipolar pulses, and the invention should not be limited to the system described above. For example, De Vuyst et al. built a generator around an NE555 timer configured as an astable multivibrator capable of producing up to 50 kHz bipolar pulses. De Vuyst, E., M. De Bock, E. Decrock, M. Van Moorhem, C. Naus, C. Mabilde, and L. Leybaert, In situ bipolar Electroporation for localized cell loading with reporter dyes and investigating gap junctional coupling. Biophysical Journal, 2008. 94(2): p. 469-479. However, the frequency of the pulses administered according to embodiments of the invention are an order of magnitude greater, which is easily met by the bandwidth of the AFG 3011. Additionally, the MOSFET switches provide an excellent means to produce high-frequency pulses for high voltage switching. However, MOSFETs are not the only semiconductor devices that can be utilized to produce a pulse. Bipolar Junction Transistors (BJTs), Insulated Gate Bipolar Transistors (IGBTs), and Junction Field Effect Transistors (JFETs) are examples of some of the semiconductor devices that may be used to produce an output pulse.
Embodiments of the invention include an electrical energy monitoring system comprising: one or more probes/electrodes; one or more low voltage generator; one or more high voltage generator; wherein the low voltage and high voltage generators are in operable connection with the probes/electrodes; wherein the low and/or high voltage generators are capable of generating a plurality of electrical pulses; wherein the system is configured to cause electroporation of tissue, obtain one or more low-frequency and/or high-frequency impedance measurement and/or impedance spectrum, identify any change in impedance relative to a reference impedance measurement, and based on the change determine whether a desired endpoint of treatment is reached.
For example, a treatment monitoring system according to the invention for administering electrical pulses can comprise: one or more electrical pulse generator(s); one or more probe(s) capable of connection with the electrical pulse generator(s); one or more controller(s) capable of controlling one or more of the electrical pulse generator(s) and/or one or more of the probe(s) to: administer a plurality of electrical pulses; obtain one or more impedance measurement or spectrum; and identify any impedance change relative to a reference impedance measurement. Additionally, treatment monitoring systems for administering electrical pulses according to embodiments can comprise: one or more probe configured to deliver electrical energy; a low-voltage pulse generator, and optionally a high-voltage pulse generator; an impedance analyzer in communication with one or more of the probes; wherein the impedance analyzer is configured to: obtain one or more impedance measurement or spectrum; and identify any impedance change relative to a reference impedance measurement; a treatment monitoring module configured to adjust, halt or stop delivering of the electrical energy based on the impedance change.
The treatment control module may control the delivery of electrical energy based on the various functions/outputs of the FAST technology as described above. Also, the module is connected to GUI allowing a user to receive real-time feedback on the FAST outputs and provides user options to adjust/halt/stop/continue delivery of electrical pulses based on this feedback.
FAST Board
A FAST board was developed to interlace high-voltage ECT/IRE/H-FIRE pulses with low-voltage diagnostic FAST pulses. This board comprises a microcontroller, a high-voltage pulse generator, one or more relays (here, 4 Reed relays), an H-Bridge low-voltage pulse generator, and driving circuitry (with two additional H-Bridge circuits).
In the device, the microcontroller (Arduino Uno) is used to synchronize all trigger signals. The Arduino Uno is a logic board and cannot supply the necessary current to sustain a 5V/15V signal. Therefore, commercial H-Bridge circuits were used in combination with power supplied by an external DC power supply to produce the 5 V and 15 V signals needed to drive the Reed relays, high-voltage pulse generator, and low-voltage diagnostic FAST pulse generator. In embodiments, the timing is such that there is ˜500 ms delay between the high-voltage and low-voltage pulsing. Any amount of delay between administering high-voltage and low-voltage pulses can be used depending on a particular application. In embodiments, the delay between a high-voltage pulse and a low-voltage pulse is preferably at minimum of about 1 ms and up to however long is desired, such as about 10 s. By adjusting the delay, a single low-voltage pulse can be applied between the high-voltage pulses or a plurality of low-voltage pulses, such as 1,000 low-voltage pulses can be applied (
At all times, the Reed relays form an open circuit unless triggered by the microcontroller. In embodiments, the microcontroller can trigger in the following order:
The use of Reed Relays allows for the physical isolation of the low voltage and high voltage circuitry, so as to not pulse high voltage into the low voltage side. One H-bridge circuit is used to drive the EPULSUS high-voltage generator with a 5V monopolar trigger signal. In the event the Reed Relays malfunction and the HVRR do not close, a 1 kW resistor load (here, two 500 W resistors placed in series) is placed in parallel with the tissue load to prevent high-voltage pulsing into an open circuit. A second H-Bridge is used to drive four reed relays each at 5V. The final H-Bridge is used to deliver 15V diagnostic FAST across the tissue load. The microcontroller synchronizes the timing of these circuits. An exemplary timing protocol is given in
Validation of the FAST board was conducted using four resistors of varying resistance: 5, 50, 500, and 5,000 W. A diagnostic FAST comprising a pulsing scheme of 1-50-1-50 μs (×84)+250-10-250-10 μs (×2) (
The FAST board enables synchronous pulsing as demonstrated in
Other Potential Applications for FAST
Extrapolating these findings to clinical EP, it is possible to describe an EBT where a series of diagnostic FAST interlaced with a series of therapeutic FAST are used to measure high-bandwidth intra-burst and inter-burst impedance throughout treatment. This combination of pulsing can be used to continually monitor the absolute change in tissue impedance with a high-frequency reference to subtract thermal effects, like that shown in
Once temperature effects on impedance are determined, this impedance can then be subtracted to effectively isolate changes in tissue impedance due solely to EP. In a flat plate configuration, this may be further extended to utilizing high frequency impedance to predict and monitor temperature rise during treatment. Finally, recovery dynamics (inter-burst and intra-burst impedance) can be further explored. Previously, Neal et al. described the use of a combination low-frequency (kHz) and high-frequency (MHz) impedance to approximate the nonelectroporated and fully electroporated tissue conductivity for purposes of predicting the electric field distribution and informing treatment planning algorithms. In contrast, here, the inventors have found that change in impedance can be used for determining whether and how to proceed with electroporation therapy. Here, a diagnostic FAST can be utilized for such an approximation, and therapeutic FAST to verify the intra-burst impedance spectrum saturates to this high frequency impedance, as was the case for the potato tissue tested in
Furthermore, cell lysis accomplished with therapeutic FAST can potentially be monitored using the β-dispersion hypothesis. The intra-burst impedance spectrum saturates to that of Re Ri once a high enough voltage is reached, fully bypassing the cell membrane. Once a cell is lysed (i.e. cell membrane is fully compromised), cell lysis is confirmed once the intra-burst impedance spectrum is matched to the inter-burst impedance spectrum. Though cell death with IRE varies from cell lysis—necroptosis—apoptosis, this phenomenon again presents novel opportunities of monitoring treatment progression. Tissue impedance changes during EBTs are indicative of treatment progression from baseline. Therefore, Fourier Analysis SpecTroscopy (FAST) is provided as a methodology for monitoring tissue impedance changes during EP-based therapies in real-time. A diagnostic FAST (1-50-1-50+250-10-250-10 μs), aimed towards monitoring inter-burst impedance, demonstrated impedance capture between 1.8 kHz-4.93 MHz at a resolution 216 data points within this frequency range. A therapeutic FAST (2-5-2-100 μs), aimed towards inducing tissue EP while simultaneously monitoring high voltage intra-burst impedance, demonstrated impedance capture between 18.3 kHz-1.96 MHz at a resolution 170 data points within this frequency range. Therapeutic FAST was used to identify a frequency at which EP effects on tissue impedance are minimized, 1.21 MHz in the case of potatoes.
Additional FAST Waveform Considerations
As discussed previously, the impedance data obtained using FAST matches that from a commercial potentiostat, and the FAST method can be used to translate impedance information into a waveform used for H-FIRE treatment. Another embodiment of the invention includes a method to quantity a specific waveform for treatment with known frequency points gathered from the FAST method.
To determine the theoretical plot of the burst scheme, the Unit Step function in Mathematica was used to define a magnitude spectrum around frequencies of interest in combination (
In the example shown in
Cycled Pulsing FAST Protocol
In embodiments of the invention, multiple electrodes, e.g., an electrode array, can be used to deliver the electroporation pulses and/or the diagnostic FAST pulses. With an electrode array, one or more of the electrical pulses can be administered using a “cycled pulsing” protocol. Examples of cycled pulsing protocols are provided in
Although protocols with an array of four probes are illustrated, any number of electrodes can be used, including a single probe comprising any number of electrodes and/or multiple electrodes arranged in an electrode array, such as 2, 3, 4, 5, 6, 7, 8, 9, or 10 electrodes and so on. In a “cycled pulsing” protocol, active pairs of electrodes are alternated until a total number of desired pulses have been applied. In these examples, a select number of H-FIRE pulses are administered. For example, electrodes 1 and 4 (Table 2, Group 1—see
Example Scenarios for Clinical Implementation of FAST
This treatment constitutes an IRE treatment using a pair (2) of needle electrodes placed into the desired target tissue (tumor). The applied voltage, electrode spacing, and electrode exposure are defined by the clinician. The pulse width is also defined by the clinician. The number of pulses to be applied and duration of treatment is dictated by the FAST technique.
A clinician will insert the IRE electrodes into the tumor tissue. The clinician will initiate the pulse generator software and a low-voltage diagnostic FAST will be automatically implemented to acquire a baseline impedance spectrum of the patient. A high-frequency reference, ˜10 MHz, will serve to quantify the clinical endpoint and will be stored in the pulse generator software.
High-voltage pulsing will commence. A series of pulses will be applied, where diagnostic FAST is interlaced in between each high voltage pulse. The pulse generator is pre-programmed with a halting criterion defining an increase in 5° C. at the electrode-tissue interface as measured using a fiber optic temperature sensor. Pulsing will continue until either the halting criteria is met, or the clinical endpoint is reached.
Clinical Endpoint:
The software continually verifies if the clinical endpoint criteria is met:
The low-frequency impedance measurement, ˜5 kHz, falls within 10% of the reference high-frequency impedance measurement.
The change in low-frequency impedance, Zi−1−Zi (where i is the last pulse delivered and i−1 is the pulse prior to that) referenced to the impedance Zi−1[(Zi−1−Zi)/Zi−1*100%] falls within 5%.
Halting Criteria:
The software halts pulsing for a preprogrammed time such as 10 s to allow for heat dissipation. Following this delay, pulsing will commence.
Pulsing continues intermittently in this way, until one of the two clinical endpoints is met.
Once the clinical endpoint is met, a final diagnostic FAST is delivered to measure the end state of tissue impedance.
This treatment constitutes an IRE treatment using a pair (2) of needle electrodes placed into the desired target tissue (tumor). The applied voltage, electrode spacing, and electrode exposure are defined by the clinician. The pulse width is also defined by the clinician. The number of pulses to be applied and duration of treatment is dictated by the FAST technique.
A clinician will insert the IRE electrodes into the tumor tissue. The clinician will initiate the pulse generator software and a low-voltage diagnostic FAST will be automatically implemented to acquire a baseline impedance spectrum of the patient. A high-frequency reference, ˜10 MHz, will serve to quantify the clinical endpoint and will be stored in the pulse generator software.
High-voltage pulsing will commence. A series of pulses will be applied, where diagnostic FAST is interlaced in between each high voltage pulse. The pulse generator is pre-programmed with a halting criterion defining application of 25 pulses prior to halting, followed by a 20 seconds delay to allow for heat dissipation. This method of pulsing will continue until the clinical endpoint is reached.
Clinical Endpoint:
The software continually verifies if the clinical endpoint criteria is met:
The low-frequency impedance measurement, ˜5 kHz, falls within 10% of the reference high-frequency impedance measurement.
The change in low-frequency impedance, Zi−1−Zi (where i is the last pulse delivered and i−1 is the pulse prior to that) referenced to the impedance Zi−1[(Zi−1−Zi)/Zi−1*100%] falls within 5%.
Pulsing continues intermittently in this way, until one of the two clinical endpoints is met.
Once the clinical endpoint is met, a final diagnostic FAST is delivered to measure the end state of tissue impedance.
The diagnostic FAST pulses can be applied at any time, for example, before, during and/or after any of the electroporation pulses are delivered. Preferably, diagnostic FAST is used in between and/or following any part of the electroporation treatment, such as between individual pulses and/or between bursts of pulses. Diagnostic FAST can also be administered between a single electrode pair or between several electrode pairs.
The present invention has been described with reference to particular embodiments having various features. In light of the disclosure provided above, it will be apparent to those skilled in the art that various modifications and variations can be made in the practice of the present invention without departing from the scope or spirit of the invention. One skilled in the art will recognize that the disclosed features may be used singularly, in any combination, or omitted based on the requirements and specifications of a given application or design. When an embodiment refers to “comprising” certain features, it is to be understood that the embodiments can alternatively “consist of” or “consist essentially of” any one or more of the features. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention.
It is noted in particular that where a range of values is provided in this specification, each value between the upper and lower limits of that range is also specifically disclosed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range as well. The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. It is intended that the specification and examples be considered as exemplary in nature and that variations that do not depart from the essence of the invention fall within the scope of the invention. Further, all of the references cited in this disclosure are each individually incorporated by reference herein in their entireties and as such are intended to provide an efficient way of supplementing the enabling disclosure of this invention as well as provide background detailing the level of ordinary skill in the art.
The present application relies on the disclosure of and claims priority to and the benefit of the filing date of U.S. Provisional Patent Application No. 62/895,652, filed Sep. 4, 2019 and U.S. Provisional Patent Application No. 62/878,194, filed Jul. 24, 2019, both of which are hereby incorporated by reference herein in their entireties. Additionally, the present application is related to U.S. Pat. Nos. 8,465,484, 8,814,860, 8,926,606, 8,992,517, 9,198,733, 9,283,051, 9,598,691, 9,867,652, 10,117,707, 10,154,874, 10,238,447, 10,245,098, 10,245,105, 10,272,178, 10,286,108, 10,292,755, 10,448,989, 10,470,822, 10,471,254, 10,537,379, and 10,694,972; U.S. Patent Publication Nos. 2013/0184702, 2015/0289923, 2019/0029749, 2019/0069945, 2020/0093541, 2019/0133671, 2019/0175248, 2019/0175260, 2019/0223938, 2019/0232048, 2019/0233809, 2019/0256839, 2019/0282294, 2019/0328445, 2019/0351224, 2019/0376055, 2020/0046432, and 2020/0197073; International Patent Publication Nos. WO2009/134876, WO2010/118387, WO2010/151277, WO2011/047387, WO2012/0088149, WO2012/071526, WO2015/175570, and WO2020/061192; U.S. patent application Ser. Nos. 13/958,152, 16/865,031, 16/865,772, and 16/915,760, each of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1653819 | Northcott | Dec 1927 | A |
3730238 | Butler | May 1973 | A |
3746004 | Jankelson | Jul 1973 | A |
3871359 | Pacela | Mar 1975 | A |
4016886 | Doss et al. | Apr 1977 | A |
4037341 | Odle et al. | Jul 1977 | A |
4216860 | Heimann | Aug 1980 | A |
4226246 | Fragnet | Oct 1980 | A |
4262672 | Kief | Apr 1981 | A |
4267047 | Henne et al. | May 1981 | A |
4278092 | Borsanyi et al. | Jul 1981 | A |
4299217 | Sagae et al. | Nov 1981 | A |
4311148 | Courtney et al. | Jan 1982 | A |
4336881 | Babb et al. | Jun 1982 | A |
4344436 | Kubota | Aug 1982 | A |
4392855 | Oreopoulos et al. | Jul 1983 | A |
4406827 | Carim | Sep 1983 | A |
4407943 | Cole et al. | Oct 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4447235 | Clarke | May 1984 | A |
4469098 | Davi | Sep 1984 | A |
4489535 | Veltman | Dec 1984 | A |
4512765 | Muto | Apr 1985 | A |
4580572 | Granek et al. | Apr 1986 | A |
4636199 | Victor | Jan 1987 | A |
4672969 | Dew | Jun 1987 | A |
4676258 | Inokuchi et al. | Jun 1987 | A |
4676782 | Yamamoto et al. | Jun 1987 | A |
4687471 | Twardowski et al. | Aug 1987 | A |
4716896 | Ackerman | Jan 1988 | A |
4723549 | Wholey et al. | Feb 1988 | A |
D294519 | Hardy | Mar 1988 | S |
4756838 | Veltman | Jul 1988 | A |
4772269 | Twardowski et al. | Sep 1988 | A |
4798585 | Inoue et al. | Jan 1989 | A |
4810963 | Blake-Coleman et al. | Mar 1989 | A |
4813929 | Semrad | Mar 1989 | A |
4819637 | Dormandy et al. | Apr 1989 | A |
4822470 | Chang | Apr 1989 | A |
4836204 | Landymore et al. | Jun 1989 | A |
4840172 | Augustine et al. | Jun 1989 | A |
4863426 | Ferragamo et al. | Sep 1989 | A |
4885003 | Hillstead | Dec 1989 | A |
4886496 | Conoscenti et al. | Dec 1989 | A |
4886502 | Poirier et al. | Dec 1989 | A |
4889634 | El-Rashidy | Dec 1989 | A |
4903707 | Knute et al. | Feb 1990 | A |
4907601 | Frick | Mar 1990 | A |
4919148 | Muccio | Apr 1990 | A |
4920978 | Colvin | May 1990 | A |
4921484 | Hillstead | May 1990 | A |
4946793 | Marshall, III | Aug 1990 | A |
4976709 | Sand | Dec 1990 | A |
4981477 | Schon et al. | Jan 1991 | A |
4986810 | Semrad | Jan 1991 | A |
4987895 | Heimlich | Jan 1991 | A |
5019034 | Weaver et al. | May 1991 | A |
5031775 | Kane | Jul 1991 | A |
5052391 | Silberstone et al. | Oct 1991 | A |
5053013 | Ensminger et al. | Oct 1991 | A |
5058605 | Slovak | Oct 1991 | A |
5071558 | Itoh | Dec 1991 | A |
5098843 | Calvin | Mar 1992 | A |
5122137 | Lennox | Jun 1992 | A |
5134070 | Casnig | Jul 1992 | A |
5137517 | Loney et al. | Aug 1992 | A |
5141499 | Zappacosta | Aug 1992 | A |
D329496 | Wotton | Sep 1992 | S |
5156597 | Verreet et al. | Oct 1992 | A |
5173158 | Schmukler | Dec 1992 | A |
5186715 | Phillips et al. | Feb 1993 | A |
5186800 | Dower | Feb 1993 | A |
5188592 | Hakki | Feb 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5192312 | Orton | Mar 1993 | A |
5193537 | Freeman | Mar 1993 | A |
5209723 | Twardowski et al. | May 1993 | A |
5215530 | Hogan | Jun 1993 | A |
5224933 | Bromander | Jul 1993 | A |
5227730 | King et al. | Jul 1993 | A |
5242415 | Kantrowitz et al. | Sep 1993 | A |
5273525 | Hofmann | Dec 1993 | A |
D343687 | Houghton et al. | Jan 1994 | S |
5277201 | Stern | Jan 1994 | A |
5279564 | Taylor | Jan 1994 | A |
5281213 | Milder | Jan 1994 | A |
5283194 | Schmukler | Feb 1994 | A |
5290263 | Wigness et al. | Mar 1994 | A |
5308325 | Quinn et al. | May 1994 | A |
5308338 | Helfrich | May 1994 | A |
5318543 | Ross et al. | Jun 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5328451 | Davis et al. | Jul 1994 | A |
5334167 | Cocanower | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
D351661 | Fischer | Oct 1994 | S |
5383917 | Desai et al. | Jan 1995 | A |
5389069 | Weaver | Feb 1995 | A |
5391158 | Peters | Feb 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5405320 | Twardowski et al. | Apr 1995 | A |
5425752 | Vu Nguyen | Jun 1995 | A |
5439440 | Hofmann | Aug 1995 | A |
5458625 | Kendall | Oct 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5484401 | Rodriguez et al. | Jan 1996 | A |
5533999 | Hood et al. | Jul 1996 | A |
5536240 | Edwards et al. | Jul 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5540737 | Fenn | Jul 1996 | A |
5546940 | Panescu et al. | Aug 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5575811 | Reid et al. | Nov 1996 | A |
D376652 | Hunt et al. | Dec 1996 | S |
5582588 | Sakurai et al. | Dec 1996 | A |
5586982 | Abela | Dec 1996 | A |
5588424 | Insler et al. | Dec 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5599294 | Edwards et al. | Feb 1997 | A |
5599311 | Raulerson | Feb 1997 | A |
5616126 | Malekmehr et al. | Apr 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5626146 | Barber et al. | May 1997 | A |
D380272 | Partika et al. | Jun 1997 | S |
5634899 | Shapland et al. | Jun 1997 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5645855 | Lorenz | Jul 1997 | A |
5672173 | Gough et al. | Sep 1997 | A |
5674267 | Mir et al. | Oct 1997 | A |
5683384 | Gough et al. | Nov 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5690620 | Knott | Nov 1997 | A |
5697905 | d'Ambrosio | Dec 1997 | A |
5700252 | Klingenstein | Dec 1997 | A |
5702359 | Hofmann et al. | Dec 1997 | A |
5718246 | Vona | Feb 1998 | A |
5720921 | Meserol | Feb 1998 | A |
5735847 | Gough et al. | Apr 1998 | A |
5752939 | Makoto | May 1998 | A |
5778894 | Dorogi et al. | Jul 1998 | A |
5782882 | Lerman et al. | Jul 1998 | A |
5800378 | Edwards et al. | Sep 1998 | A |
5800484 | Gough et al. | Sep 1998 | A |
5807272 | Kun et al. | Sep 1998 | A |
5807306 | Shapland et al. | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5810742 | Pearlman | Sep 1998 | A |
5810762 | Hofmann | Sep 1998 | A |
5830184 | Basta | Nov 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5836905 | Lemelson et al. | Nov 1998 | A |
5843026 | Edwards et al. | Dec 1998 | A |
5843182 | Goldstein | Dec 1998 | A |
5865787 | Shapland et al. | Feb 1999 | A |
5868708 | Hart et al. | Feb 1999 | A |
5873849 | Bernard | Feb 1999 | A |
5904648 | Arndt et al. | May 1999 | A |
5919142 | Boone et al. | Jul 1999 | A |
5919191 | Lennox et al. | Jul 1999 | A |
5921982 | Lesh et al. | Jul 1999 | A |
5944710 | Dev et al. | Aug 1999 | A |
5947284 | Foster | Sep 1999 | A |
5947889 | Hehrlein | Sep 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5957919 | Aufer | Sep 1999 | A |
5957963 | Dobak, III | Sep 1999 | A |
5968006 | Hofmann | Oct 1999 | A |
5983131 | Weaver et al. | Nov 1999 | A |
5984896 | Boyd | Nov 1999 | A |
5991697 | Nelson et al. | Nov 1999 | A |
5999847 | Elstrom | Dec 1999 | A |
6004339 | Wijay | Dec 1999 | A |
6009347 | Hofmann | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6010613 | Walters et al. | Jan 2000 | A |
6016452 | Kasevich | Jan 2000 | A |
6029090 | Herbst | Feb 2000 | A |
6041252 | Walker et al. | Mar 2000 | A |
6043066 | Mangano et al. | Mar 2000 | A |
6050994 | Sherman | Apr 2000 | A |
6055453 | Hofmann et al. | Apr 2000 | A |
6059780 | Gough et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6068121 | McGlinch | May 2000 | A |
6068650 | Hofmann et al. | May 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6074374 | Fulton | Jun 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6085115 | Weaver et al. | Jul 2000 | A |
6090016 | Kuo | Jul 2000 | A |
6090105 | Zepeda et al. | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
D430015 | Himbert et al. | Aug 2000 | S |
6096035 | Sodhi et al. | Aug 2000 | A |
6102885 | Bass | Aug 2000 | A |
6106521 | Blewett et al. | Aug 2000 | A |
6109270 | Mah et al. | Aug 2000 | A |
6110192 | Ravenscroft et al. | Aug 2000 | A |
6113593 | Tu et al. | Sep 2000 | A |
6116330 | Salyer | Sep 2000 | A |
6120493 | Hofmann | Sep 2000 | A |
6122599 | Mehta | Sep 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
6132397 | Davis et al. | Oct 2000 | A |
6132419 | Hofmann | Oct 2000 | A |
6134460 | Chance | Oct 2000 | A |
6135999 | Fanton et al. | Oct 2000 | A |
6139545 | Utley et al. | Oct 2000 | A |
6150148 | Nanda et al. | Nov 2000 | A |
6159163 | Strauss et al. | Dec 2000 | A |
6178354 | Gibson | Jan 2001 | B1 |
D437941 | Frattini | Feb 2001 | S |
6193715 | Wrublewski et al. | Feb 2001 | B1 |
6198970 | Freed et al. | Mar 2001 | B1 |
6200314 | Sherman | Mar 2001 | B1 |
6208893 | Hofmann | Mar 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6212433 | Behl | Apr 2001 | B1 |
6216034 | Hofmann et al. | Apr 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
D442697 | Hajianpour | May 2001 | S |
6233490 | Kasevich | May 2001 | B1 |
6235023 | Lee et al. | May 2001 | B1 |
D443360 | Haberland | Jun 2001 | S |
6241702 | Lundquist et al. | Jun 2001 | B1 |
6241725 | Cosman | Jun 2001 | B1 |
D445198 | Frattini | Jul 2001 | S |
6258100 | Alferness et al. | Jul 2001 | B1 |
6261831 | Agee | Jul 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6278895 | Bernard | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6283988 | Laufer et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6284140 | Sommermeyer et al. | Sep 2001 | B1 |
6287293 | Jones et al. | Sep 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6298726 | Adachi et al. | Oct 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6300108 | Rubinsky et al. | Oct 2001 | B1 |
D450391 | Hunt et al. | Nov 2001 | S |
6312428 | Eggers et al. | Nov 2001 | B1 |
6326177 | Schoenbach et al. | Dec 2001 | B1 |
6327505 | Medhkour et al. | Dec 2001 | B1 |
6328689 | Gonzalez et al. | Dec 2001 | B1 |
6347247 | Dev et al. | Feb 2002 | B1 |
6349233 | Adams | Feb 2002 | B1 |
6351674 | Silverstone | Feb 2002 | B2 |
6375634 | Carroll | Apr 2002 | B1 |
6387671 | Rubinsky et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6403348 | Rubinsky et al. | Jun 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6411852 | Danek et al. | Jun 2002 | B1 |
6419674 | Bowser et al. | Jul 2002 | B1 |
6428802 | Atala | Aug 2002 | B1 |
6443952 | Mulier et al. | Sep 2002 | B1 |
6463331 | Edwards | Oct 2002 | B1 |
6470211 | Ideker et al. | Oct 2002 | B1 |
6482221 | Hebert et al. | Nov 2002 | B1 |
6482619 | Rubinsky et al. | Nov 2002 | B1 |
6485487 | Sherman | Nov 2002 | B1 |
6488673 | Laufer et al. | Dec 2002 | B1 |
6488678 | Sherman | Dec 2002 | B2 |
6488680 | Francischelli et al. | Dec 2002 | B1 |
6491706 | Alferness et al. | Dec 2002 | B1 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6493592 | Leonard et al. | Dec 2002 | B1 |
6500173 | Underwood et al. | Dec 2002 | B2 |
6503248 | Levine | Jan 2003 | B1 |
6506189 | Rittman et al. | Jan 2003 | B1 |
6514248 | Eggers et al. | Feb 2003 | B1 |
6520183 | Amar | Feb 2003 | B2 |
6526320 | Mitchell | Feb 2003 | B2 |
D471640 | McMichael et al. | Mar 2003 | S |
D471641 | McMichael et al. | Mar 2003 | S |
6530922 | Cosman et al. | Mar 2003 | B2 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537976 | Gupta | Mar 2003 | B1 |
6540695 | Burbank et al. | Apr 2003 | B1 |
6558378 | Sherman et al. | May 2003 | B2 |
6562604 | Rubinsky et al. | May 2003 | B2 |
6569162 | He | May 2003 | B2 |
6575969 | Rittman et al. | Jun 2003 | B1 |
6589161 | Corcoran | Jul 2003 | B2 |
6592594 | Rimbaugh et al. | Jul 2003 | B2 |
6607529 | Jones et al. | Aug 2003 | B1 |
6610054 | Edwards et al. | Aug 2003 | B1 |
6611706 | Avrahami et al. | Aug 2003 | B2 |
6613211 | Mccormick et al. | Sep 2003 | B1 |
6616657 | Simpson et al. | Sep 2003 | B2 |
6627421 | Unger et al. | Sep 2003 | B1 |
D480816 | McMichael et al. | Oct 2003 | S |
6634363 | Danek et al. | Oct 2003 | B1 |
6638253 | Breznock | Oct 2003 | B2 |
6653091 | Dunn et al. | Nov 2003 | B1 |
6666858 | Lafontaine | Dec 2003 | B2 |
6669691 | Taimisto | Dec 2003 | B1 |
6673070 | Edwards et al. | Jan 2004 | B2 |
6678558 | Dimmer et al. | Jan 2004 | B1 |
6689096 | Loubens et al. | Feb 2004 | B1 |
6692493 | Mcgovern et al. | Feb 2004 | B2 |
6694979 | Deem et al. | Feb 2004 | B2 |
6694984 | Habib | Feb 2004 | B2 |
6695861 | Rosenberg et al. | Feb 2004 | B1 |
6697669 | Dev et al. | Feb 2004 | B2 |
6697670 | Chomenky et al. | Feb 2004 | B2 |
6702808 | Kreindel | Mar 2004 | B1 |
6712811 | Underwood et al. | Mar 2004 | B2 |
D489973 | Root et al. | May 2004 | S |
6733516 | Simons et al. | May 2004 | B2 |
6753171 | Karube et al. | Jun 2004 | B2 |
6761716 | Kadhiresan et al. | Jul 2004 | B2 |
D495807 | Agbodoe et al. | Sep 2004 | S |
6795728 | Chornenky et al. | Sep 2004 | B2 |
6801804 | Miller et al. | Oct 2004 | B2 |
6812204 | McHale et al. | Nov 2004 | B1 |
6837886 | Collins et al. | Jan 2005 | B2 |
6847848 | Sterzer et al. | Jan 2005 | B2 |
6860847 | Alferness et al. | Mar 2005 | B2 |
6865416 | Dev et al. | Mar 2005 | B2 |
6881213 | Ryan et al. | Apr 2005 | B2 |
6892099 | Jaafar et al. | May 2005 | B2 |
6895267 | Panescu et al. | May 2005 | B2 |
6905480 | McGuckin et al. | Jun 2005 | B2 |
6912417 | Bernard et al. | Jun 2005 | B1 |
6927049 | Rubinsky et al. | Aug 2005 | B2 |
6941950 | Wilson et al. | Sep 2005 | B2 |
6942681 | Johnson | Sep 2005 | B2 |
6958062 | Gough et al. | Oct 2005 | B1 |
6960189 | Bates et al. | Nov 2005 | B2 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6972013 | Zhang et al. | Dec 2005 | B1 |
6972014 | Eum et al. | Dec 2005 | B2 |
6989010 | Francischelli et al. | Jan 2006 | B2 |
6994689 | Zadno-Azizi et al. | Feb 2006 | B1 |
6994706 | Chornenky et al. | Feb 2006 | B2 |
7011094 | Rapacki et al. | Mar 2006 | B2 |
7012061 | Reiss et al. | Mar 2006 | B1 |
7027869 | Danek et al. | Apr 2006 | B2 |
7036510 | Zgoda et al. | May 2006 | B2 |
7053063 | Rubinsky et al. | May 2006 | B2 |
7054685 | Dimmer et al. | May 2006 | B2 |
7063698 | Whayne et al. | Jun 2006 | B2 |
7087040 | McGuckin et al. | Aug 2006 | B2 |
7097612 | Bertolero et al. | Aug 2006 | B2 |
7100616 | Springmeyer | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7130697 | Chornenky et al. | Oct 2006 | B2 |
7211083 | Chornenky et al. | May 2007 | B2 |
7232437 | Berman et al. | Jun 2007 | B2 |
7250048 | Francischelli et al. | Jul 2007 | B2 |
D549332 | Matsumoto et al. | Aug 2007 | S |
7257450 | Auth et al. | Aug 2007 | B2 |
7264002 | Danek et al. | Sep 2007 | B2 |
7267676 | Chornenky et al. | Sep 2007 | B2 |
7273055 | Danek et al. | Sep 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7331940 | Sommerich | Feb 2008 | B2 |
7331949 | Marisi | Feb 2008 | B2 |
7341558 | Torre et al. | Mar 2008 | B2 |
7344533 | Pearson et al. | Mar 2008 | B2 |
D565743 | Phillips et al. | Apr 2008 | S |
D571478 | Horacek | Jun 2008 | S |
7387626 | Edwards et al. | Jun 2008 | B2 |
7399747 | Clair et al. | Jul 2008 | B1 |
D575399 | Matsumoto et al. | Aug 2008 | S |
D575402 | Sandor | Aug 2008 | S |
7419487 | Johnson et al. | Sep 2008 | B2 |
7434578 | Dillard et al. | Oct 2008 | B2 |
7449019 | Uchida et al. | Nov 2008 | B2 |
7451765 | Adler | Nov 2008 | B2 |
7455675 | Schur et al. | Nov 2008 | B2 |
7476203 | DeVore et al. | Jan 2009 | B2 |
7520877 | Lee et al. | Apr 2009 | B2 |
7533671 | Gonzalez et al. | May 2009 | B2 |
D595422 | Mustapha | Jun 2009 | S |
7544301 | Shah et al. | Jun 2009 | B2 |
7549984 | Mathis | Jun 2009 | B2 |
7565208 | Harris et al. | Jul 2009 | B2 |
7571729 | Saadat et al. | Aug 2009 | B2 |
7632291 | Stephens et al. | Dec 2009 | B2 |
7655004 | Long | Feb 2010 | B2 |
7674249 | Ivorra et al. | Mar 2010 | B2 |
7680543 | Azure | Mar 2010 | B2 |
D613418 | Ryan et al. | Apr 2010 | S |
7718409 | Rubinsky et al. | May 2010 | B2 |
7722606 | Azure | May 2010 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
7765010 | Chornenky et al. | Jul 2010 | B2 |
7771401 | Hekmat et al. | Aug 2010 | B2 |
RE42016 | Chornenky et al. | Dec 2010 | E |
D630321 | Hamilton | Jan 2011 | S |
D631154 | Hamilton | Jan 2011 | S |
RE42277 | Jaafar et al. | Apr 2011 | E |
7918852 | Tullis et al. | Apr 2011 | B2 |
7937143 | Demarais et al. | May 2011 | B2 |
7938824 | Chornenky et al. | May 2011 | B2 |
7951582 | Gazit et al. | May 2011 | B2 |
7955827 | Rubinsky et al. | Jun 2011 | B2 |
RE42835 | Chornenky et al. | Oct 2011 | E |
D647628 | Helfteren | Oct 2011 | S |
8048067 | Davalos et al. | Nov 2011 | B2 |
RE43009 | Chornenky et al. | Dec 2011 | E |
8109926 | Azure | Feb 2012 | B2 |
8114070 | Rubinsky et al. | Feb 2012 | B2 |
8162918 | Ivorra et al. | Apr 2012 | B2 |
8187269 | Shadduck et al. | May 2012 | B2 |
8221411 | Francischelli et al. | Jul 2012 | B2 |
8231603 | Hobbs et al. | Jul 2012 | B2 |
8240468 | Wilkinson et al. | Aug 2012 | B2 |
8251986 | Chornenky et al. | Aug 2012 | B2 |
8267927 | Dalal et al. | Sep 2012 | B2 |
8267936 | Hushka et al. | Sep 2012 | B2 |
8282631 | Davalos et al. | Oct 2012 | B2 |
8298222 | Rubinsky et al. | Oct 2012 | B2 |
8348921 | Ivorra et al. | Jan 2013 | B2 |
8361066 | Long et al. | Jan 2013 | B2 |
D677798 | Hart et al. | Mar 2013 | S |
8425455 | Nentwick | Apr 2013 | B2 |
8425505 | Long | Apr 2013 | B2 |
8454594 | Demarais et al. | Jun 2013 | B2 |
8465464 | Travis et al. | Jun 2013 | B2 |
8465484 | Davalos et al. | Jun 2013 | B2 |
8506564 | Long et al. | Aug 2013 | B2 |
8511317 | Thapliyal et al. | Aug 2013 | B2 |
8518031 | Boyden et al. | Aug 2013 | B2 |
8562588 | Hobbs et al. | Oct 2013 | B2 |
8603087 | Rubinsky et al. | Dec 2013 | B2 |
8632534 | Pearson et al. | Jan 2014 | B2 |
8634929 | Chornenky et al. | Jan 2014 | B2 |
8647338 | Chornenky et al. | Feb 2014 | B2 |
8715276 | Thompson et al. | May 2014 | B2 |
8753335 | Moshe et al. | Jun 2014 | B2 |
8814860 | Davalos et al. | Aug 2014 | B2 |
8835166 | Phillips et al. | Sep 2014 | B2 |
8845635 | Daniel et al. | Sep 2014 | B2 |
8880195 | Azure | Nov 2014 | B2 |
8903488 | Callas et al. | Dec 2014 | B2 |
8906006 | Chornenky et al. | Dec 2014 | B2 |
8926606 | Davalos et al. | Jan 2015 | B2 |
8958888 | Chornenky et al. | Feb 2015 | B2 |
8968542 | Davalos et al. | Mar 2015 | B2 |
8992517 | Davalos et al. | Mar 2015 | B2 |
9005189 | Davalos et al. | Apr 2015 | B2 |
9078665 | Moss et al. | Jul 2015 | B2 |
9149331 | Deem et al. | Oct 2015 | B2 |
9173704 | Hobbs et al. | Nov 2015 | B2 |
9198733 | Neal, II et al. | Dec 2015 | B2 |
9283051 | Garcia et al. | Mar 2016 | B2 |
9414881 | Callas et al. | Aug 2016 | B2 |
9598691 | Davalos | Mar 2017 | B2 |
9700368 | Callas et al. | Jul 2017 | B2 |
9764145 | Callas et al. | Sep 2017 | B2 |
9867652 | Sano et al. | Jan 2018 | B2 |
9943599 | Gehl et al. | Apr 2018 | B2 |
10117701 | Davalos et al. | Nov 2018 | B2 |
10117707 | Garcia et al. | Nov 2018 | B2 |
10154874 | Davalos et al. | Dec 2018 | B2 |
10238447 | Neal et al. | Mar 2019 | B2 |
10245098 | Davalos et al. | Apr 2019 | B2 |
10245105 | Davalos et al. | Apr 2019 | B2 |
10272178 | Davalos et al. | Apr 2019 | B2 |
10286108 | Davalos et al. | May 2019 | B2 |
10292755 | Davalos et al. | May 2019 | B2 |
10448989 | Arena et al. | Oct 2019 | B2 |
10470822 | Garcia et al. | Nov 2019 | B2 |
10471254 | Sano et al. | Nov 2019 | B2 |
10537379 | Sano et al. | Jan 2020 | B2 |
10694972 | Davalos et al. | Jun 2020 | B2 |
10702326 | Neal et al. | Jul 2020 | B2 |
10828085 | Davalos et al. | Nov 2020 | B2 |
10828086 | Davalos et al. | Nov 2020 | B2 |
10959772 | Davalos et al. | Mar 2021 | B2 |
11254926 | Garcia et al. | Feb 2022 | B2 |
11272979 | Garcia et al. | Mar 2022 | B2 |
11311329 | Davalos et al. | Apr 2022 | B2 |
11382681 | Arena et al. | Jul 2022 | B2 |
11406820 | Sano et al. | Aug 2022 | B2 |
11453873 | Davalos et al. | Sep 2022 | B2 |
11607271 | Garcia et al. | Mar 2023 | B2 |
11607537 | Latouche et al. | Mar 2023 | B2 |
11638603 | Sano et al. | May 2023 | B2 |
11655466 | Neal et al. | May 2023 | B2 |
11737810 | Davalos et al. | Aug 2023 | B2 |
11890046 | Neal et al. | Feb 2024 | B2 |
11903690 | Davalos et al. | Feb 2024 | B2 |
11925405 | Davalos et al. | Mar 2024 | B2 |
11974800 | Sano et al. | May 2024 | B2 |
12059197 | Davalos et al. | Aug 2024 | B2 |
20010039393 | Mori et al. | Nov 2001 | A1 |
20010044596 | Jaafar | Nov 2001 | A1 |
20010046706 | Rubinsky et al. | Nov 2001 | A1 |
20010047167 | Heggeness | Nov 2001 | A1 |
20010051366 | Rubinsky et al. | Dec 2001 | A1 |
20020002393 | Mitchell | Jan 2002 | A1 |
20020010491 | Schoenbach et al. | Jan 2002 | A1 |
20020022864 | Mahvi et al. | Feb 2002 | A1 |
20020040204 | Dev et al. | Apr 2002 | A1 |
20020049370 | Laufer et al. | Apr 2002 | A1 |
20020052601 | Goldberg et al. | May 2002 | A1 |
20020055731 | Atala et al. | May 2002 | A1 |
20020065541 | Fredricks et al. | May 2002 | A1 |
20020072742 | Schaefer et al. | Jun 2002 | A1 |
20020077314 | Falk et al. | Jun 2002 | A1 |
20020077676 | Schroeppel et al. | Jun 2002 | A1 |
20020082543 | Park et al. | Jun 2002 | A1 |
20020099323 | Dev et al. | Jul 2002 | A1 |
20020104318 | Jaafar et al. | Aug 2002 | A1 |
20020111615 | Cosman et al. | Aug 2002 | A1 |
20020112729 | DeVore et al. | Aug 2002 | A1 |
20020115208 | Mitchell et al. | Aug 2002 | A1 |
20020119437 | Grooms et al. | Aug 2002 | A1 |
20020133324 | Weaver et al. | Sep 2002 | A1 |
20020137121 | Rubinsky et al. | Sep 2002 | A1 |
20020138075 | Edwards et al. | Sep 2002 | A1 |
20020138117 | Son | Sep 2002 | A1 |
20020143365 | Herbst | Oct 2002 | A1 |
20020147462 | Mair et al. | Oct 2002 | A1 |
20020156472 | Lee et al. | Oct 2002 | A1 |
20020161361 | Sherman et al. | Oct 2002 | A1 |
20020183684 | Dev et al. | Dec 2002 | A1 |
20020183735 | Edwards et al. | Dec 2002 | A1 |
20020183740 | Edwards et al. | Dec 2002 | A1 |
20020188242 | Wu | Dec 2002 | A1 |
20020193784 | McHale et al. | Dec 2002 | A1 |
20020193831 | Edward | Dec 2002 | A1 |
20030009110 | Tu et al. | Jan 2003 | A1 |
20030016168 | Jandrell | Jan 2003 | A1 |
20030055220 | Legrain | Mar 2003 | A1 |
20030055420 | Kadhiresan et al. | Mar 2003 | A1 |
20030059945 | Dzekunov et al. | Mar 2003 | A1 |
20030060856 | Chornenky et al. | Mar 2003 | A1 |
20030078490 | Damasco et al. | Apr 2003 | A1 |
20030088189 | Tu et al. | May 2003 | A1 |
20030088199 | Kawaji | May 2003 | A1 |
20030096407 | Atala et al. | May 2003 | A1 |
20030105454 | Cucin | Jun 2003 | A1 |
20030109871 | Johnson et al. | Jun 2003 | A1 |
20030127090 | Gifford et al. | Jul 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030135242 | Mongeon et al. | Jul 2003 | A1 |
20030149451 | Chomenky et al. | Aug 2003 | A1 |
20030153960 | Chornenky et al. | Aug 2003 | A1 |
20030154988 | DeVore et al. | Aug 2003 | A1 |
20030159700 | Laufer et al. | Aug 2003 | A1 |
20030166181 | Rubinsky et al. | Sep 2003 | A1 |
20030170898 | Gundersen et al. | Sep 2003 | A1 |
20030194808 | Rubinsky et al. | Oct 2003 | A1 |
20030195385 | DeVore | Oct 2003 | A1 |
20030195406 | Jenkins et al. | Oct 2003 | A1 |
20030199050 | Mangano et al. | Oct 2003 | A1 |
20030208200 | Palanker et al. | Nov 2003 | A1 |
20030208236 | Heil et al. | Nov 2003 | A1 |
20030212394 | Pearson et al. | Nov 2003 | A1 |
20030212412 | Dillard et al. | Nov 2003 | A1 |
20030225360 | Eppstein et al. | Dec 2003 | A1 |
20030228344 | Fields et al. | Dec 2003 | A1 |
20040009459 | Anderson et al. | Jan 2004 | A1 |
20040019371 | Jaafar et al. | Jan 2004 | A1 |
20040055606 | Hendricksen et al. | Mar 2004 | A1 |
20040059328 | Daniel et al. | Mar 2004 | A1 |
20040059389 | Chornenky et al. | Mar 2004 | A1 |
20040068228 | Cunningham | Apr 2004 | A1 |
20040116965 | Falkenberg | Jun 2004 | A1 |
20040133194 | Eum et al. | Jul 2004 | A1 |
20040138715 | Groeningen et al. | Jul 2004 | A1 |
20040146877 | Diss et al. | Jul 2004 | A1 |
20040153057 | Davison | Aug 2004 | A1 |
20040176855 | Badylak | Sep 2004 | A1 |
20040193042 | Scampini et al. | Sep 2004 | A1 |
20040193097 | Hofmann et al. | Sep 2004 | A1 |
20040199159 | Lee et al. | Oct 2004 | A1 |
20040200484 | Springmeyer | Oct 2004 | A1 |
20040206349 | Alferness et al. | Oct 2004 | A1 |
20040210248 | Gordon et al. | Oct 2004 | A1 |
20040230187 | Lee et al. | Nov 2004 | A1 |
20040236376 | Miklavcic et al. | Nov 2004 | A1 |
20040243107 | Macoviak et al. | Dec 2004 | A1 |
20040267189 | Mavor et al. | Dec 2004 | A1 |
20040267340 | Cioanta et al. | Dec 2004 | A1 |
20050004507 | Schroeppel et al. | Jan 2005 | A1 |
20050010209 | Lee et al. | Jan 2005 | A1 |
20050010259 | Gerber | Jan 2005 | A1 |
20050013870 | Freyman et al. | Jan 2005 | A1 |
20050020965 | Rioux et al. | Jan 2005 | A1 |
20050043726 | McHale et al. | Feb 2005 | A1 |
20050048651 | Ryttsen et al. | Mar 2005 | A1 |
20050049541 | Behar et al. | Mar 2005 | A1 |
20050061322 | Freitag | Mar 2005 | A1 |
20050066974 | Fields et al. | Mar 2005 | A1 |
20050112141 | Terman | May 2005 | A1 |
20050143817 | Hunter et al. | Jun 2005 | A1 |
20050165393 | Eppstein | Jul 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050171523 | Rubinsky et al. | Aug 2005 | A1 |
20050171574 | Rubinsky et al. | Aug 2005 | A1 |
20050182462 | Chornenky et al. | Aug 2005 | A1 |
20050197619 | Rule et al. | Sep 2005 | A1 |
20050261672 | Deem et al. | Nov 2005 | A1 |
20050267407 | Goldman | Dec 2005 | A1 |
20050282284 | Rubinsky et al. | Dec 2005 | A1 |
20050283149 | Thorne et al. | Dec 2005 | A1 |
20050288684 | Aronson et al. | Dec 2005 | A1 |
20050288702 | McGurk et al. | Dec 2005 | A1 |
20050288730 | Deem et al. | Dec 2005 | A1 |
20060004356 | Bilski et al. | Jan 2006 | A1 |
20060004400 | McGurk et al. | Jan 2006 | A1 |
20060009748 | Mathis | Jan 2006 | A1 |
20060015147 | Persson et al. | Jan 2006 | A1 |
20060020347 | Barrett et al. | Jan 2006 | A1 |
20060024359 | Walker et al. | Feb 2006 | A1 |
20060025760 | Podhajsky | Feb 2006 | A1 |
20060074413 | Behzadian | Apr 2006 | A1 |
20060079838 | Walker et al. | Apr 2006 | A1 |
20060079845 | Howard et al. | Apr 2006 | A1 |
20060079883 | Elmouelhi et al. | Apr 2006 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060089635 | Young et al. | Apr 2006 | A1 |
20060121610 | Rubinsky et al. | Jun 2006 | A1 |
20060142801 | Demarais et al. | Jun 2006 | A1 |
20060149123 | Vidlund et al. | Jul 2006 | A1 |
20060173490 | Lafontaine et al. | Aug 2006 | A1 |
20060182684 | Beliveau | Aug 2006 | A1 |
20060195146 | Tracey et al. | Aug 2006 | A1 |
20060212032 | Daniel et al. | Sep 2006 | A1 |
20060212078 | Demarais et al. | Sep 2006 | A1 |
20060217703 | Chornenky et al. | Sep 2006 | A1 |
20060224188 | Libbus et al. | Oct 2006 | A1 |
20060235474 | Demarais | Oct 2006 | A1 |
20060247619 | Kaplan et al. | Nov 2006 | A1 |
20060264752 | Rubinsky et al. | Nov 2006 | A1 |
20060264807 | Westersten et al. | Nov 2006 | A1 |
20060269531 | Beebe et al. | Nov 2006 | A1 |
20060276710 | Krishnan | Dec 2006 | A1 |
20060278241 | Ruano | Dec 2006 | A1 |
20060283462 | Fields et al. | Dec 2006 | A1 |
20060293713 | Rubinsky et al. | Dec 2006 | A1 |
20060293725 | Rubinsky et al. | Dec 2006 | A1 |
20060293730 | Rubinsky et al. | Dec 2006 | A1 |
20060293731 | Rubinsky et al. | Dec 2006 | A1 |
20060293734 | Scott et al. | Dec 2006 | A1 |
20070010805 | Fedewa et al. | Jan 2007 | A1 |
20070016125 | Wong et al. | Jan 2007 | A1 |
20070016183 | Lee et al. | Jan 2007 | A1 |
20070016185 | Tullis et al. | Jan 2007 | A1 |
20070021803 | Deem et al. | Jan 2007 | A1 |
20070025919 | Deem et al. | Feb 2007 | A1 |
20070043345 | Davalos et al. | Feb 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070078391 | Wortley et al. | Apr 2007 | A1 |
20070088347 | Young et al. | Apr 2007 | A1 |
20070093789 | Smith | Apr 2007 | A1 |
20070096048 | Clerc | May 2007 | A1 |
20070118069 | Persson et al. | May 2007 | A1 |
20070129711 | Altshuler et al. | Jun 2007 | A1 |
20070129720 | Demarais et al. | Jun 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070151848 | Novak et al. | Jul 2007 | A1 |
20070156135 | Rubinsky et al. | Jul 2007 | A1 |
20070191889 | Lang | Aug 2007 | A1 |
20070203486 | Young | Aug 2007 | A1 |
20070230757 | Trachtenberg et al. | Oct 2007 | A1 |
20070239099 | Goldfarb et al. | Oct 2007 | A1 |
20070244521 | Bomzin et al. | Oct 2007 | A1 |
20070287950 | Kjeken et al. | Dec 2007 | A1 |
20070295336 | Nelson et al. | Dec 2007 | A1 |
20070295337 | Nelson et al. | Dec 2007 | A1 |
20080015571 | Rubinsky et al. | Jan 2008 | A1 |
20080021371 | Rubinsky et al. | Jan 2008 | A1 |
20080027314 | Miyazaki et al. | Jan 2008 | A1 |
20080027343 | Fields et al. | Jan 2008 | A1 |
20080033340 | Heller et al. | Feb 2008 | A1 |
20080033417 | Nields et al. | Feb 2008 | A1 |
20080045880 | Kjeken et al. | Feb 2008 | A1 |
20080052786 | Lin et al. | Feb 2008 | A1 |
20080065062 | Leung et al. | Mar 2008 | A1 |
20080071262 | Azure | Mar 2008 | A1 |
20080097139 | Clerc et al. | Apr 2008 | A1 |
20080097422 | Edwards et al. | Apr 2008 | A1 |
20080103529 | Schoenbach et al. | May 2008 | A1 |
20080121375 | Richason et al. | May 2008 | A1 |
20080125772 | Stone et al. | May 2008 | A1 |
20080132826 | Shadduck et al. | Jun 2008 | A1 |
20080132884 | Rubinsky et al. | Jun 2008 | A1 |
20080132885 | Rubinsky et al. | Jun 2008 | A1 |
20080140064 | Vegesna | Jun 2008 | A1 |
20080146934 | Czygan et al. | Jun 2008 | A1 |
20080154259 | Gough et al. | Jun 2008 | A1 |
20080167649 | Edwards et al. | Jul 2008 | A1 |
20080171985 | Karakoca | Jul 2008 | A1 |
20080190434 | Wai | Aug 2008 | A1 |
20080200911 | Long | Aug 2008 | A1 |
20080200912 | Long | Aug 2008 | A1 |
20080208052 | LePivert et al. | Aug 2008 | A1 |
20080210243 | Clayton et al. | Sep 2008 | A1 |
20080214986 | Ivorra et al. | Sep 2008 | A1 |
20080236593 | Nelson et al. | Oct 2008 | A1 |
20080249503 | Fields et al. | Oct 2008 | A1 |
20080262489 | Steinke | Oct 2008 | A1 |
20080269586 | Rubinsky et al. | Oct 2008 | A1 |
20080269838 | Brighton et al. | Oct 2008 | A1 |
20080275465 | Paul et al. | Nov 2008 | A1 |
20080281319 | Paul et al. | Nov 2008 | A1 |
20080283065 | Chang et al. | Nov 2008 | A1 |
20080288038 | Paul et al. | Nov 2008 | A1 |
20080300589 | Paul et al. | Dec 2008 | A1 |
20080306427 | Bailey | Dec 2008 | A1 |
20080312599 | Rosenberg | Dec 2008 | A1 |
20090018206 | Barkan et al. | Jan 2009 | A1 |
20090024075 | Schroeppel et al. | Jan 2009 | A1 |
20090029407 | Gazit et al. | Jan 2009 | A1 |
20090038752 | Weng et al. | Feb 2009 | A1 |
20090062788 | Long et al. | Mar 2009 | A1 |
20090062792 | Vakharia et al. | Mar 2009 | A1 |
20090062795 | Vakharia et al. | Mar 2009 | A1 |
20090081272 | Clarke et al. | Mar 2009 | A1 |
20090105703 | Shadduck | Apr 2009 | A1 |
20090114226 | Deem et al. | May 2009 | A1 |
20090125009 | Zikorus et al. | May 2009 | A1 |
20090138014 | Bonutti | May 2009 | A1 |
20090143705 | Danek et al. | Jun 2009 | A1 |
20090157166 | Singhal et al. | Jun 2009 | A1 |
20090163904 | Miller et al. | Jun 2009 | A1 |
20090171280 | Samuel et al. | Jul 2009 | A1 |
20090177111 | Miller et al. | Jul 2009 | A1 |
20090186850 | Kiribayashi et al. | Jul 2009 | A1 |
20090192508 | Laufer et al. | Jul 2009 | A1 |
20090198231 | Esser et al. | Aug 2009 | A1 |
20090228001 | Pacey | Sep 2009 | A1 |
20090247933 | Maor et al. | Oct 2009 | A1 |
20090248012 | Maor et al. | Oct 2009 | A1 |
20090269317 | Davalos | Oct 2009 | A1 |
20090275827 | Aiken et al. | Nov 2009 | A1 |
20090281477 | Mikus et al. | Nov 2009 | A1 |
20090292342 | Rubinsky et al. | Nov 2009 | A1 |
20090301480 | Elsakka et al. | Dec 2009 | A1 |
20090306544 | Ng et al. | Dec 2009 | A1 |
20090306545 | Elsakka et al. | Dec 2009 | A1 |
20090318905 | Bhargav et al. | Dec 2009 | A1 |
20090326366 | Krieg | Dec 2009 | A1 |
20090326436 | Rubinsky et al. | Dec 2009 | A1 |
20090326570 | Brown | Dec 2009 | A1 |
20100004623 | Hamilton, Jr. et al. | Jan 2010 | A1 |
20100006441 | Renaud et al. | Jan 2010 | A1 |
20100023004 | Francischelli et al. | Jan 2010 | A1 |
20100030211 | Davalos et al. | Feb 2010 | A1 |
20100049190 | Long et al. | Feb 2010 | A1 |
20100057074 | Roman et al. | Mar 2010 | A1 |
20100069921 | Miller et al. | Mar 2010 | A1 |
20100087813 | Long | Apr 2010 | A1 |
20100130975 | Long | May 2010 | A1 |
20100147701 | Field | Jun 2010 | A1 |
20100152725 | Pearson et al. | Jun 2010 | A1 |
20100160850 | Ivorra et al. | Jun 2010 | A1 |
20100168735 | Deno et al. | Jul 2010 | A1 |
20100174282 | Demarais et al. | Jul 2010 | A1 |
20100179530 | Long et al. | Jul 2010 | A1 |
20100196984 | Rubinsky et al. | Aug 2010 | A1 |
20100204560 | Salahieh et al. | Aug 2010 | A1 |
20100204638 | Hobbs et al. | Aug 2010 | A1 |
20100222677 | Placek et al. | Sep 2010 | A1 |
20100228234 | Hyde et al. | Sep 2010 | A1 |
20100228247 | Paul et al. | Sep 2010 | A1 |
20100241117 | Paul et al. | Sep 2010 | A1 |
20100249771 | Pearson et al. | Sep 2010 | A1 |
20100250209 | Pearson et al. | Sep 2010 | A1 |
20100255795 | Rubinsky et al. | Oct 2010 | A1 |
20100256628 | Pearson et al. | Oct 2010 | A1 |
20100256630 | Hamilton, Jr. et al. | Oct 2010 | A1 |
20100261994 | Davalos et al. | Oct 2010 | A1 |
20100286690 | Paul et al. | Nov 2010 | A1 |
20100298823 | Cao et al. | Nov 2010 | A1 |
20100331758 | Davalos et al. | Dec 2010 | A1 |
20110017207 | Hendricksen et al. | Jan 2011 | A1 |
20110034209 | Rubinsky et al. | Feb 2011 | A1 |
20110064671 | Bynoe | Mar 2011 | A1 |
20110092973 | Nuccitelli et al. | Apr 2011 | A1 |
20110106221 | Neal et al. | May 2011 | A1 |
20110112531 | Landis et al. | May 2011 | A1 |
20110118727 | Fish et al. | May 2011 | A1 |
20110118732 | Rubinsky et al. | May 2011 | A1 |
20110130834 | Wilson et al. | Jun 2011 | A1 |
20110144524 | Fish et al. | Jun 2011 | A1 |
20110144635 | Harper et al. | Jun 2011 | A1 |
20110144657 | Fish et al. | Jun 2011 | A1 |
20110152678 | Aljuri et al. | Jun 2011 | A1 |
20110166499 | Demarais et al. | Jul 2011 | A1 |
20110176037 | Benkley, III | Jul 2011 | A1 |
20110202053 | Moss et al. | Aug 2011 | A1 |
20110217730 | Gazit et al. | Sep 2011 | A1 |
20110251607 | Kruecker et al. | Oct 2011 | A1 |
20110301587 | Deem et al. | Dec 2011 | A1 |
20120034131 | Rubinsky et al. | Feb 2012 | A1 |
20120059255 | Paul et al. | Mar 2012 | A1 |
20120071870 | Salahieh et al. | Mar 2012 | A1 |
20120071872 | Rubinsky et al. | Mar 2012 | A1 |
20120071874 | Davalos et al. | Mar 2012 | A1 |
20120085649 | Sano et al. | Apr 2012 | A1 |
20120089009 | Omary et al. | Apr 2012 | A1 |
20120090646 | Tanaka et al. | Apr 2012 | A1 |
20120095459 | Callas et al. | Apr 2012 | A1 |
20120109122 | Arena et al. | May 2012 | A1 |
20120130289 | Demarais et al. | May 2012 | A1 |
20120150172 | Ortiz et al. | Jun 2012 | A1 |
20120165813 | Lee et al. | Jun 2012 | A1 |
20120179091 | Ivorra et al. | Jul 2012 | A1 |
20120226218 | Phillips et al. | Sep 2012 | A1 |
20120226271 | Callas et al. | Sep 2012 | A1 |
20120265186 | Burger et al. | Oct 2012 | A1 |
20120277741 | Davalos et al. | Nov 2012 | A1 |
20120303020 | Chornenky et al. | Nov 2012 | A1 |
20120310236 | Placek et al. | Dec 2012 | A1 |
20130023871 | Collins | Jan 2013 | A1 |
20130030239 | Weyh et al. | Jan 2013 | A1 |
20130090646 | Moss et al. | Apr 2013 | A1 |
20130108667 | Soikum et al. | May 2013 | A1 |
20130110106 | Richardson | May 2013 | A1 |
20130184702 | Neal, II et al. | Jul 2013 | A1 |
20130196441 | Rubinsky et al. | Aug 2013 | A1 |
20130197425 | Golberg et al. | Aug 2013 | A1 |
20130202766 | Rubinsky et al. | Aug 2013 | A1 |
20130218157 | Callas et al. | Aug 2013 | A1 |
20130253415 | Sano et al. | Sep 2013 | A1 |
20130281968 | Davalos et al. | Oct 2013 | A1 |
20130345697 | Garcia et al. | Dec 2013 | A1 |
20130345779 | Maor et al. | Dec 2013 | A1 |
20140017218 | Scott et al. | Jan 2014 | A1 |
20140039489 | Davalos et al. | Feb 2014 | A1 |
20140046322 | Callas et al. | Feb 2014 | A1 |
20140066913 | Sherman | Mar 2014 | A1 |
20140081255 | Johnson et al. | Mar 2014 | A1 |
20140088578 | Rubinsky et al. | Mar 2014 | A1 |
20140121663 | Pearson et al. | May 2014 | A1 |
20140121728 | Dhillon et al. | May 2014 | A1 |
20140163551 | Maor et al. | Jun 2014 | A1 |
20140207133 | Model et al. | Jul 2014 | A1 |
20140276748 | Ku et al. | Sep 2014 | A1 |
20140296844 | Kevin et al. | Oct 2014 | A1 |
20140309579 | Rubinsky et al. | Oct 2014 | A1 |
20140378964 | Pearson | Dec 2014 | A1 |
20150088120 | Garcia et al. | Mar 2015 | A1 |
20150088220 | Callas et al. | Mar 2015 | A1 |
20150112333 | Chorenky et al. | Apr 2015 | A1 |
20150126922 | Willis | May 2015 | A1 |
20150152504 | Lin | Jun 2015 | A1 |
20150164584 | Davalos et al. | Jun 2015 | A1 |
20150173824 | Davalos et al. | Jun 2015 | A1 |
20150201996 | Rubinsky et al. | Jul 2015 | A1 |
20150265349 | Moss et al. | Sep 2015 | A1 |
20150289923 | Davalos et al. | Oct 2015 | A1 |
20150320478 | Cosman, Jr. et al. | Nov 2015 | A1 |
20150320488 | Moshe et al. | Nov 2015 | A1 |
20150320999 | Nuccitelli et al. | Nov 2015 | A1 |
20150327944 | Robert et al. | Nov 2015 | A1 |
20160022957 | Hobbs et al. | Jan 2016 | A1 |
20160066977 | Neal, II | Mar 2016 | A1 |
20160074114 | Pearson et al. | Mar 2016 | A1 |
20160113708 | Moss et al. | Apr 2016 | A1 |
20160143698 | Garcia et al. | May 2016 | A1 |
20160235470 | Callas et al. | Aug 2016 | A1 |
20160287313 | Rubinsky et al. | Oct 2016 | A1 |
20160287314 | Arena et al. | Oct 2016 | A1 |
20160338758 | Davalos et al. | Nov 2016 | A9 |
20160338761 | Chornenky et al. | Nov 2016 | A1 |
20160354142 | Pearson et al. | Dec 2016 | A1 |
20160367310 | Onik et al. | Dec 2016 | A1 |
20170035501 | Chornenky et al. | Feb 2017 | A1 |
20170189579 | Davalos | Jul 2017 | A1 |
20170209620 | Davalos et al. | Jul 2017 | A1 |
20170266438 | Sano | Sep 2017 | A1 |
20170319851 | Athos et al. | Nov 2017 | A1 |
20170348525 | Sano et al. | Dec 2017 | A1 |
20170360326 | Davalos | Dec 2017 | A1 |
20180036529 | Jaroszeski | Feb 2018 | A1 |
20180071014 | Neal et al. | Mar 2018 | A1 |
20180125565 | Sano et al. | May 2018 | A1 |
20180132922 | Neal, II | May 2018 | A1 |
20180161086 | Davalos et al. | Jun 2018 | A1 |
20180198218 | Regan et al. | Jul 2018 | A1 |
20190023804 | Onik et al. | Jan 2019 | A1 |
20190029749 | Garcia | Jan 2019 | A1 |
20190046255 | Davalos et al. | Feb 2019 | A1 |
20190069945 | Davalos et al. | Mar 2019 | A1 |
20190076528 | Soden et al. | Mar 2019 | A1 |
20190083169 | Single et al. | Mar 2019 | A1 |
20190133671 | Davalos et al. | May 2019 | A1 |
20190175248 | Neal, II | Jun 2019 | A1 |
20190175260 | Davalos | Jun 2019 | A1 |
20190223938 | Arena et al. | Jul 2019 | A1 |
20190232048 | Latouche et al. | Aug 2019 | A1 |
20190233809 | Neal et al. | Aug 2019 | A1 |
20190256839 | Neal et al. | Aug 2019 | A1 |
20190282294 | Davalos et al. | Sep 2019 | A1 |
20190328445 | Sano et al. | Oct 2019 | A1 |
20190351224 | Sano et al. | Nov 2019 | A1 |
20190376055 | Davalos et al. | Dec 2019 | A1 |
20200046432 | Garcia et al. | Feb 2020 | A1 |
20200046967 | Ivey et al. | Feb 2020 | A1 |
20200093541 | Neal et al. | Mar 2020 | A9 |
20200197073 | Sano et al. | Jun 2020 | A1 |
20200260987 | Davalos et al. | Aug 2020 | A1 |
20200323576 | Neal et al. | Oct 2020 | A1 |
20200405373 | O'Brien et al. | Dec 2020 | A1 |
20210022795 | Davalos et al. | Jan 2021 | A1 |
20210052882 | Wasson et al. | Feb 2021 | A1 |
20210113265 | D'Agostino et al. | Apr 2021 | A1 |
20210137410 | O'Brien et al. | May 2021 | A1 |
20210186600 | Davalos et al. | Jun 2021 | A1 |
20210361341 | Neal et al. | Nov 2021 | A1 |
20210393312 | Davalos et al. | Dec 2021 | A1 |
20220151688 | Garcia et al. | May 2022 | A1 |
20220161027 | Aycock et al. | May 2022 | A1 |
20220290183 | Davalos et al. | Sep 2022 | A1 |
20220362549 | Sano et al. | Nov 2022 | A1 |
20230157759 | Garcia et al. | May 2023 | A1 |
20230212551 | Neal et al. | Jul 2023 | A1 |
20230248414 | Sano et al. | Aug 2023 | A1 |
20230355293 | Davalos et al. | Nov 2023 | A1 |
20230355968 | Davalos et al. | Nov 2023 | A1 |
20240008911 | Davalos et al. | Jan 2024 | A1 |
20240074804 | Neal et al. | Mar 2024 | A1 |
20240173063 | Neal, II et al. | May 2024 | A1 |
20240268878 | Davalos et al. | Aug 2024 | A1 |
20240277245 | Davalos et al. | Aug 2024 | A1 |
20240299076 | O'Brien et al. | Sep 2024 | A1 |
Number | Date | Country |
---|---|---|
7656800 | Apr 2001 | AU |
2002315095 | Dec 2002 | AU |
2003227960 | Dec 2003 | AU |
2005271471 | Feb 2006 | AU |
2006321570 | Jun 2007 | AU |
2006321574 | Jun 2007 | AU |
2006321918 | Jun 2007 | AU |
2009243079 | Jan 2011 | AU |
2015259303 | Nov 2016 | AU |
2297846 | Feb 1999 | CA |
2378110 | Feb 2001 | CA |
2445392 | Nov 2002 | CA |
2458676 | Mar 2003 | CA |
2487284 | Dec 2003 | CA |
2575792 | Feb 2006 | CA |
2631940 | Jun 2007 | CA |
2631946 | Jun 2007 | CA |
2632604 | Jun 2007 | CA |
2722296 | Nov 2009 | CA |
2751462 | Nov 2010 | CA |
1525839 | Sep 2004 | CN |
101534736 | Sep 2009 | CN |
102238921 | Nov 2011 | CN |
102421386 | Apr 2012 | CN |
106715682 | May 2017 | CN |
112807074 | May 2021 | CN |
863111 | Jan 1953 | DE |
4000893 | Jul 1991 | DE |
60038026 | Feb 2009 | DE |
0218275 | Apr 1987 | EP |
0339501 | Nov 1989 | EP |
0378132 | Jul 1990 | EP |
0533511 | Mar 1993 | EP |
0998235 | May 2000 | EP |
0528891 | Jul 2000 | EP |
1196550 | Apr 2002 | EP |
1439792 | Jul 2004 | EP |
1442765 | Aug 2004 | EP |
1462065 | Sep 2004 | EP |
1061983 | Nov 2004 | EP |
1493397 | Jan 2005 | EP |
1506039 | Feb 2005 | EP |
0935482 | May 2005 | EP |
1011495 | Nov 2005 | EP |
1796568 | Jun 2007 | EP |
1207797 | Feb 2008 | EP |
1406685 | Jun 2008 | EP |
1424970 | Dec 2008 | EP |
2280741 | Feb 2011 | EP |
2381829 | Nov 2011 | EP |
2413833 | Feb 2012 | EP |
2488251 | Aug 2012 | EP |
2642937 | Oct 2013 | EP |
1791485 | Dec 2014 | EP |
2373241 | Jan 2015 | EP |
1962710 | Aug 2015 | EP |
1962708 | Sep 2015 | EP |
1962945 | Apr 2016 | EP |
3143124 | Mar 2017 | EP |
3852868 | Jul 2021 | EP |
2300272 | Jun 2008 | ES |
2315493 | Apr 2009 | ES |
2001510702 | Aug 2001 | JP |
2003505072 | Feb 2003 | JP |
2003506064 | Feb 2003 | JP |
2004203224 | Jul 2004 | JP |
2004525726 | Aug 2004 | JP |
2004303590 | Oct 2004 | JP |
2005501596 | Jan 2005 | JP |
2005526579 | Sep 2005 | JP |
2008508946 | Mar 2008 | JP |
4252316 | Apr 2009 | JP |
2009518130 | May 2009 | JP |
2009518150 | May 2009 | JP |
2009518151 | May 2009 | JP |
2009532077 | Sep 2009 | JP |
2010503496 | Feb 2010 | JP |
2011137025 | Jul 2011 | JP |
2011137025 | Jul 2011 | JP |
2012510332 | May 2012 | JP |
2012515018 | Jul 2012 | JP |
2012521863 | Sep 2012 | JP |
2014501574 | Jan 2014 | JP |
2017518805 | Jul 2017 | JP |
6594901 | Oct 2019 | JP |
2019193668 | Nov 2019 | JP |
7051188 | Apr 2022 | JP |
101034682 | May 2011 | KR |
9104014 | Apr 1991 | WO |
9634571 | Nov 1996 | WO |
9639531 | Dec 1996 | WO |
9810745 | Mar 1998 | WO |
9814238 | Apr 1998 | WO |
9901076 | Jan 1999 | WO |
9904710 | Feb 1999 | WO |
0020554 | Apr 2000 | WO |
0107583 | Feb 2001 | WO |
0107584 | Feb 2001 | WO |
0107585 | Feb 2001 | WO |
0110319 | Feb 2001 | WO |
0148153 | Jul 2001 | WO |
2001048153 | Jul 2001 | WO |
0170114 | Sep 2001 | WO |
0181533 | Nov 2001 | WO |
02078527 | Oct 2002 | WO |
02089686 | Nov 2002 | WO |
02100459 | Dec 2002 | WO |
2003020144 | Mar 2003 | WO |
2003047684 | Jun 2003 | WO |
03099382 | Dec 2003 | WO |
2004037341 | May 2004 | WO |
2004080347 | Sep 2004 | WO |
2005065284 | Jul 2005 | WO |
2006017666 | Feb 2006 | WO |
2006031541 | Mar 2006 | WO |
2006130194 | Dec 2006 | WO |
2007067628 | Jun 2007 | WO |
2007067937 | Jun 2007 | WO |
2007067938 | Jun 2007 | WO |
2007067939 | Jun 2007 | WO |
2007067940 | Jun 2007 | WO |
2007067941 | Jun 2007 | WO |
2007067943 | Jun 2007 | WO |
2007070361 | Jun 2007 | WO |
2007100727 | Sep 2007 | WO |
2007123690 | Nov 2007 | WO |
2008063195 | May 2008 | WO |
2008034103 | Nov 2008 | WO |
2009046176 | Apr 2009 | WO |
2007137303 | Jul 2009 | WO |
2009134876 | Nov 2009 | WO |
2009135070 | Nov 2009 | WO |
2009137800 | Nov 2009 | WO |
2010064154 | Jun 2010 | WO |
2010080974 | Jul 2010 | WO |
2010117806 | Oct 2010 | WO |
2010118387 | Oct 2010 | WO |
2010132472 | Nov 2010 | WO |
2010151277 | Dec 2010 | WO |
2011047387 | Apr 2011 | WO |
2011062653 | May 2011 | WO |
2011072221 | Jun 2011 | WO |
2012051433 | Apr 2012 | WO |
2012071526 | May 2012 | WO |
2012071526 | May 2012 | WO |
2012088149 | Jun 2012 | WO |
2015175570 | Nov 2015 | WO |
2016100325 | Jun 2016 | WO |
2016164930 | Oct 2016 | WO |
2017117418 | Jul 2017 | WO |
2020061192 | Mar 2020 | WO |
2022066768 | Mar 2022 | WO |
2023172773 | Sep 2023 | WO |
2024081749 | Apr 2024 | WO |
Entry |
---|
Huang, et al., Micro-Electroporation: Improving the Efficiency and Understanding of Electrical Permeabilization of Cells, Biomedical Microdevices, vol. 2, pp. 145-150, 1999. |
Hughes, et al., An Analysis of Studies Comparing Electrical Impedance Tomography with X-Ray Videofluoroscopy in the Assessment of Swallowing, Physiol. Meas. 15, 1994, pp. A199-A209. |
Ibey et al., “Selective cytotoxicity of intense nanosecond-duration electric pulses in mammalian cells.” Biochimica Et Biophysica Acta-General Subjects, vol. 1800, pp. 1210-1219 (2010). |
Issa, et al., The TUNA Procedure for BPH: Review of the Technology: The TUNA Procedure for BPH: Basic Procedure and Clinical Results, Reprinted from Infections in Urology, Jul./Aug. 1998 and Sep./Oct. 1998. |
Ivanuša, et al., MRI Macromolecular Contrast Agents as Indicators of Changed Tumor Blood Flow, Radiol. Oncol. 2001; 35(2): 139-47. |
Ivey, J. W., E. L. Latouche, M. B. Sano, J. H. Rossmeisl, R. V. Davalos, and S. S. Verbridge, “Targeted cellular ablation based on the morphology of malignant cells,” Sci. Rep., vol. 5, pp. 1-17, 2015. |
Ivorra et al., “In vivo electric impedance measurements during and after electroporation of rat live.” Bioelectrochemistry, vol. 70, pp. 287-295 (2007). |
Ivorra et al., “In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome.” Physics in Medicine and Biology, vol. 54, pp. 5949-5963 (2009). |
Ivorra, “Bioimpedance monitoring for physicians: an overview.” Biomedical Applications Group, 35 pages (2002). |
Ivorra, A., ed. “Tissue Electroporation as a Bioelectric Phenomenon: Basic Concepts. Irreversible Electroporation”, ed. B. Rubinsky., Springer Berlin Heidelberg. 23-61 (2010). |
Jarm et al., “Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases.” Expert Rev Anticancer Ther. vol. 10, pp. 729-746 (2010). |
Jaroszeski, et al., In Vivo Gene Delivery by Electroporation, Advanced Drug Delivery Review, vol. 35, pp. 131-137, 1999. |
Jensen et al., “Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18FFDG-microPET or external caliper.” BMC medical Imaging vol. 8:16, 9 Pages (2008). |
Jordan, D.W., et al., “Effect of pulsed, high-power radiofrequency radiation on electroporation of mammalian cells”. Ieee Transactions on Plasma Science, 32(4): p. 1573-1578 (2004). |
Jossinet et al., Electrical Impedance Endo-Tomography: Imaging Tissue From Inside, IEEE Transactions on Medical Imaging, vol. 21, No. 6, Jun. 2002, pp. 560-565. |
Katsuki, S., et al., “Biological effects of narrow band pulsed electric fields”, Ieee Transactions on Dielectrics and Electrical Insulation,. 14(3): p. 663-668 (2007). |
Kingham et al., “Ablation of perivascular hepatic malignant tumors with irreversible electroporation.” Journal of the American College of Surgeons, 2012. 215(3), p. 379-387. |
Kinosita and Tsong, “Formation and resealing of pores of controlled sizes in human erythrocyte membrane.” Nature, vol. 268 (1977) pp. 438-441. |
Kinosita and Tsong, “Voltage-induced pore formation and hemolysis of human erythrocytes.” Biochimica et Biophysica Acta (BBA)-Biomembranes, 471 (1977) pp. 227-242. |
Kinosita et al., “Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope.” Biophysical Journal, vol. 53, pp. 1015-1019 (1988). |
Kinosita, et al., Hemolysis of Human Erythrocytes by a Transient Electric Field, Proc. Natl. Acad. Sci. USA, vol. 74, No. 5, pp. 1923-1927, 1977. |
Kirson et al., “Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors.” Proceedings of the National Academy of Sciences vol. 104, pp. 10152-10157 (2007). |
Kolb, J.F., et al., “Nanosecond pulsed electric field generators for the study of subcellular effects”, Bioelectromagnetics, 27(3): p. 172-187 (2006). |
Kotnik and Miklavcic, “Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields.” Biophysical Journal, vol. 90(2), pp. 480-491 (2006). |
Kotnik et al., “Sensitivity of transmembrane voltage induced by applied electric fields—A theoretical analysis”, Bioelectrochemistry and Bioenergetics, vol. 43, Issue 2, 1997, pp. 285-291. |
Kotnik, T. and D. Miklavcic, “Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields”, Bioelectromagnetics, 21(5): p. 385-394 (2000). |
Kotnik, T., et al., “Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part II. Reduced electrolytic contamination”, Bioelectrochemistry, 54(1): p. 91-5 (2001). |
Kotnik, T., et al., “Role of pulse shape in cell membrane electropermeabilization”, Biochimica Et Biophysica Acta-Biomembranes, 1614(2): p. 193-200 (2003). |
Kranjc, M., S. Kranjc, F. Bajd, G. Sersa, I. Sersa, and D. Miklavcic, “Predicting irreversible electroporation-induced tissue damage by means of magnetic resonance electrical impedance tomography,” Scientific reports, vol. 7, No. 1, pp. 1-10, 2017. |
Labeed et al., “Differences in the biophysical properties of membrane and cytoplasm of apoptotic cells revealed using dielectrophoresis.” Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 1760, pp. 922-929 (2006). |
Lackovic, I., et al., “Three-dimensional Finite element Analysis of Joule Heating in Electrochemotherapy and in vivo Gene Electrotransfer”, Ieee Transactions on Dielectrics and Electrical Insulation, 16(5): p. 1338-1347 (2009). |
Latouche, E. L., M. B. Sano, M. F. Lorenzo, R. V. Davalos, and R. C. G. Martin, “Irreversible electroporation for the ablation of pancreatic malignancies: A patient-specific methodology,” J. Surg. Oncol., vol. 115, No. 6, pp. 711-717, 2017. |
Laufer et al., “Electrical impedance characterization of normal and cancerous human hepatic tissue.” Physiological Measurement, vol. 31, pp. 995-1009 (2010). |
Lebar et al., “Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers.” IEEE Transactions on NanoBioscience, vol. 1 (2002) pp. 116-120. |
Lee, E. W et al. Advanced Hepatic Ablation Technique for Creating Complete Cell Death : Irreversible Electroporation. Radiology 255, 426-433, doi:10.1148/radiol.10090337 (2010). |
Lee, E.W., et al., “Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation”, Technol Cancer Res Treat 6: 287-294 (2007). |
Lee, R. C., D. J. Canaday, and S. M. Hammer. Transient and stable ionic permeabilization of isolated skeletal muscle cells after electrical shock. J. Burn Care Rehabil. 14:528-540, 1993. |
Li, W., et al., “The Effects of Irreversible Electroporation (IRE) on Nerves” PloS One, Apr. 2011, 6(4), e18831. |
Liu, et al., Measurement of Pharyngeal Transit Time by Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, pp. 197-200. |
Long, G., et al., “Targeted Tissue Ablation With Nanosecond Pulses”. Ieee Transactions on Biomedical Engineering, 58(8) (2011). |
Lundqvist, et al., Altering the Biochemical State of Individual Cultured Cells and Organelles with JItramicroelectrodes, Proc. Natl. Acad. Sci. USA, vol. 95, pp. 10356-10360, Sep. 1998. |
Lurquin, Gene Transfer by Electroporation, Molecular Biotechnology, vol. 7, 1997. |
Lynn, et al., A New Method for the Generation and Use of Focused Ultrasound in Experimental Biology, The Journal pf General Physiology, vol. 26, 179-193, 1942. |
Maek Lebar and Miklavi, “Cell electropermeabilization to small molecules in vitro: control by pulse parameters.” Radiology and Oncology, vol. 35(3), pp. 193-202 (2001). |
Mahmood, F., et al., “Diffusion-Weighted MRI for Verification of Electroporation-Based Treatments”, Journal of Membrane Biology 240: 131-138 (2011). |
Mahnic-Kalamiza, et al., “Educational application for visualization and analysis of electric field strength in multiple electrode electroporation,” BMC Med Educ, vol. 12:102, 13 pages, 2012. |
Malpica et al., “Grading ovarian serous carcinoma using a two-tier system.” The American Journal of Surgical Pathology, vol. 28, pp. 496-504 (2004). |
Maor et al., The Effect of Irreversible Electroporation on Blood Vessels, Tech. in Cancer Res. and Treatment, vol. 6, No. 4, Aug. 2007, pp. 307-312. |
Maor, E., A. Ivorra, and B. Rubinsky, Non Thermal Irreversible Electroporation: Novel Technology for Vascular Smooth Muscle Cells Ablation, PLoS ONE, 2009, 4(3): p. e4757. |
Maor, E., A. Ivorra, J. Leor, and B. Rubinsky, Irreversible electroporation attenuates neointimal formation after angioplasty, IEEE Trans Biomed Eng, Sep. 2008, 55(9): p. 2268-74. |
(Arena, Christopher B. et al.) Co-pending U.S. Appl. No. 15/186,653, filed Jun. 20, 2016, and published as U.S. Publication No. 2016/0287314 on Oct. 6, 2016, Specification, Claims, Figures. |
(Arena, Christopher B. et al.) Co-pending U.S. Appl. No. 16/372,520, filed Apr. 2, 2019, which published as 20190223938 on Jul. 25, 2019, Specification, Claims, Figures. |
(Arena, Christopher B. et al.) Co-Pending Application No. PCT/US11/66239, filed Dec. 20, 2011, Specification, Claims, Figures. |
(Arena, Christopher B. et al.) Co-Pending Application No. U.S. Appl. No. 13/332,133, filed Dec. 20, 2011 and published as U.S. Publication No. 2012/0109122 on May 3, 2012, Specification, Claims, Figures. |
(Davalos, Rafael et al.) Co-pending U.S. Appl. No. 10/571,162, filed Oct. 18, 2006 (published as 2007/0043345 on Feb. 22, 2007), Specification, Figures, Claims. |
(Davalos, Rafael et al.) Co-Pending U.S. Appl. No. 12/757,901, filed Apr. 9, 2010, Specification, Claims, Figures. |
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US04/43477, filed Dec. 21, 2004, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending Application No. PCT/US10/53077, filed Oct. 18, 2010, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 12/491,151, filed Jun. 24, 2009, and published as U.S. Publication No. 2010/0030211 on Feb. 4, 2010, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 12/609,779, filed Oct. 30, 2009, and published as U.S. Publication No. 2010/0331758 on Dec. 30, 2010, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 13/919,640, filed Jun. 17, 2013, and published as U.S. Publication No. 2013/0281968 on Oct. 24, 2013, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 14/686,380, filed Apr. 14, 2015 and Published as US 2015/0289923 on Oct. 15, 2015, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 15/424,335, filed Feb. 3, 2017, and published as U.S. Publication No. 2017/0189579 on Jul. 6, 2017, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 15/536,333, filed Jun. 15, 2017, and published as U.S. Publication No. 2017/0360326 on Dec. 21, 2017, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 15/881,414, filed Jan. 26, 2018, and published as U.S. Publication No. 2018/0161086 on Jun. 14, 2018, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/177,745, filed Nov. 1, 2018, and published as U.S. Publication No. 2019/0069945 on Mar. 7, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/232,962, filed Dec. 26, 2018, and published as U.S. Publication No. 2019/0133671 on May 9, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/275,429, filed Feb. 14, 2019, which published as 2019/0175260 on Jun. 13, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/352,759, filed Mar. 13, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/535,451, filed Aug. 8, 2019, and Published as U.S. Publication No. 2019/0376055 on Dec. 12, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 16/865,031, filed May 1, 2020, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 17/069,359, filed Oct. 13, 2020, Specification, Claims, Drawings. |
(Davalos, Rafael V. et al.) Co-Pending Application No. AU 2009243079, filed Apr. 29, 2009 (see PCT/US2009/042100 for documents as filed), Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending Application No. PCT/US09/62806, filed Oct. 30, 2009, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending Application No. PCT/US10/30629, filed Apr. 9, 2010, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending application No. PCT/US19/51731 filed Sep. 18, 2019, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 14/017,210, filed Sep. 3, 2013, and published as U.S. Publication No. 2014/0039489 on Feb. 6, 2014, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 14/627,046, filed Feb. 20, 2015, and published as U.S. Publication No. 2015/0164584 on Jun. 18, 2015, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending International Application No. PCT/US15/65792, filed Dec. 15, 2015, Specification, Claims, Drawings. |
(Davalos, Rafael V.) Co-Pending U.S. Appl. No. 12/432,295, filed Apr. 29, 2009, and published as U. S. Publication No. 2009/0269317-A1 on Oct. 29, 2009, Specification, Figures, Claims. |
(Davalos, Rafael V.) Co-pending U.S. Appl. No. 15/423,986, filed Feb. 3, 2017, and published as U.S. Publication No. 2017/0209620 on Jul. 27, 2017, Specification, Claims, Figures. |
(Davalos, Rafael V.) Co-Pending Application No. CA 2,722,296, filed Apr. 29, 2009, Amended Claims (7 pages), Specification, Figures (See PCT/US2009/042100 for Specification and figures as filed). |
(Davalos, Rafael V.) Co-Pending Application No. EP 09739678.2 filed Apr. 29, 2009, Amended Claims (3 pages), Specification and Figures (See PCT/US2009/042100). |
(Davalos, Rafael V.) Co-Pending Application No. PCT/US09/42100, filed Apr. 29, 2009, Specification, Claims, Figures. |
(Davalos, Rafael V.) Co-Pending U.S. Appl. No. 14/012,832, filed Aug. 28, 2013, and published as U.S. Publication No. 2013/0345697 on Dec. 26, 2013, Specification, Claims, Figures. |
(Davalos, Rafael V.) Co-Pending U.S. Appl. No. 14/558,631, filed Dec. 2, 2014, and published as U.S. Publication No. 2015/0088120 on Mar. 26, 2015, Specification, Claims, Figures. |
Kgarcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 15/011,752, filed Feb. 1, 2016, and published as U.S. Publication No. 2016/0143698 on May 26, 2016, Specification, Claims, Figures. |
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 16/655,845, filed Oct. 17, 2019, Specification, Claims, Figures. |
(Garcia, Paulo A. et al.) Co-pending U.S. Appl. No. 16/152,743, filed Oct. 5, 2018, Specification, Claims, Figures. |
(Latouche, Eduardo et al.) Co-pending U.S. Appl. No. 16/210,771, filed Dec. 5, 2018, and which published as US Patent Publication No. 2019/0232048 on Aug. 1, 2019, Specification, Claims, Figures. |
(Mahajan, Roop L. et al.) Co-Pending U.S. Appl. No. 13/958,152, filed Aug. 2, 2013, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-Pending U.S. Appl. No. 12/906,923, filed Oct. 18, 2010, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-Pending U.S. Appl. No. 14/808,679, filed Jul. 24, 2015 and Published as U.S. Publication No. 2015/0327944 on Nov. 19, 2015, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 16/375,878, filed Apr. 5, 2019, which published on Aug. 1, 2019 as US 2019-0233809 A1, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 16/404,392, filed May 6, 2019, and published as U. S. Publication No. 2019/0256839 on Aug. 22, 2019, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 16/865,772, filed May 4, 2020, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-Pending U.S. Appl. No. 13/550,307, filed Jul. 16, 2012, and published as U.S. Publication No. 2013/0184702 on Jul. 18, 2013, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-Pending U.S. Appl. No. 14/940,863, filed Nov. 13, 2015 and Published as US 2016/0066977 on Mar. 10, 2016, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 16/280,511, filed Feb. 20, 2019, and published as U. S. Publication No. 2019/0175248 on Jun. 13, 2019, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-Pending Application No. EP 10824248.8, filed May 9, 2012, Amended Claims (3 pages), Specification and Figures (See PCT/US10/53077). |
Marszalek et al., “Schwan equation and transmembrane potential induced by alternating electric field.” Biophysical Journal, vol. 58, pp. 1053-1058 (1990). |
Martin, n.R.C.G., et al., “Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma.” Journal of the American College of Surgeons, 2012. 215(3): p. 361-369. |
Martinsen, O. G. and Grimnes, S., Bioimpedance and bioelectricity basics. Academic press, 2011. |
Marty, M., et al., “Electrochemotherapy—An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study,” European Journal of Cancer Supplements, 4, 3-13, 2006. |
Miklavčič, et al., A Validated Model of an in Vivo Electric Field Distribution in Tissues for Electrochemotherapy and for DNA Electrotransfer for Gene Therapy, Biochimica et Biophysica Acta 1523 (2000), pp. 73-83. |
Miklavčič, et al., The Importance of Electric Field Distribution for Effective in Vivo Electroporation of Tissues, Biophysical Journal, vol. 74, May 1998, pp. 2152-2158. |
Miller, L., et al., Cancer cells ablation with irreversible electroporation, Technology in Cancer Research and Treatment 4 (2005) 699-706. |
Min, M., A. Giannitsis, R. Land, B. Cahill, U. Pliquett, T. Nacke, D. Frense, G. Gastrock, and D. Beckmann, “Comparison of rectangular wave excitations in broad band impedance spectroscopy for microfluidic applications,” in World Congress on Medical Physics and Biomedical Engineering, Sep. 7-12, 2009, Munich, Germany. Springer, 2009, pp. 85-88. |
Min, M., U. Pliquett, T. Nacke, A. Barthel, P. Annus, and R. Land, “Broadband excitation for short-time impedance spectroscopy,” Physiological measurement, vol. 29, No. 6, p. S185, 2008. |
Mir et al., “Mechanisms of Electrochemotherapy” Advanced Drug Delivery Reviews 35:107-118 (1999). |
Mir, et al., Effective Treatment of Cutaneous and Subcutaneous Malignant Tumours by Electrochemotherapy, British Journal of Cancer, vol. 77, No. 12, pp. 2336-2342, 1998. |
Mir, et al., Electrochemotherapy Potentiation of Antitumour Effect of Bleomycin by Local Electric Pulses, European Journal of Cancer, vol. 27, No. 1, pp. 68-72, 1991. |
Mir, et al., Electrochemotherapy, a Novel Antitumor Treatment: First Clinical Trial, C.R. Acad. Sci. Paris, Ser. III, vol. 313, pp. 613-618, 1991. |
Mir, L.M. and Orlowski, S., The basis of electrochemotherapy, in Electrochemotherapy, electrogenetherapy, and transdermal drug delivery: electrically mediated delivery of molecules to cells, M.J. Jaroszeski, R. Heller, R. Gilbert, Editors, 2000, Humana Press, p. 99-118. |
Mir, L.M., et al., Electric Pulse-Mediated Gene Delivery to Various Animal Tissues, in Advances in Genetics, Academic Press, 2005, p. 83-114. |
Mir, Therapeutic Perspectives of In Vivo Cell Electropermeabilization, Bioelectrochemistry, vol. 53, pp. 1-10, 2000. |
Mulhall et al., “Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis.” Analytical and Bioanalytical Chemistry, vol. 401, pp. 2455-2463 (2011). |
Narayan, et al., Establishment and Characterization of a Human Primary Prostatic Adenocarcinoma Cell Line (ND-1), The Journal of Urology, vol. 148, 1600-1604, Nov. 1992. |
Naslund, Cost-Effectiveness of Minimally Invasive Treatments and Transurethral Resection (TURP) in Benign Prostatic Hyperplasia (BPH), (Abstract), Presented at 2001 AUA National Meeting,, Anaheim, CA, Jun. 5, 2001. |
Naslund, Michael J., Transurethral Needle Ablation of the Prostate, Urology, vol. 50, No. 2, Aug. 1997. |
Neal II et al., “A Case Report on the Successful Treatment of a Large Soft-Tissue Sarcoma with Irreversible Electroporation,” Journal of Clinical Oncology, 29, pp. 1-6, 2011. |
Neal II et al., “Experimental Characterization and Numerical Modeling of Tissue Electrical Conductivity during Pulsed Electric Fields for Irreversible Electroporation Treatment Planning,” Biomedical Engineering, IEEE Transactions on Biomedical Engineering, vol. 59, pp. 1076-1085, 2012. |
Neal II, R. E., et al. In Vitro and Numerical Support for Combinatorial Irreversible Electroporation and Electrochemotherapy Glioma Treatment. Annals of Biomedical Engineering, Oct. 29, 2013, 13 pages. |
Neal II, R. E., et al., “Successful Treatment of a Large Soft Tissue Sarcoma with Irreversible Electroporation”, Journal of Clinical Oncology, 29:13, e372-e377 (2011). |
Neal II, R. E., et al., “Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode.” Breast Cancer Research and Treatment, 2010. 123(1): p. 295-301. |
Neal II, Robert E. and R.V. Davalos, The Feasibility of Irreversible Electroporation for the Treatment of Breast Cancer and Other Heterogeneous Systems, Ann Biomed Eng, 2009, 37(12): p. 2615-2625. |
Neal Re II, et al. (2013) Improved Local and Systemic Anti-Tumor Efficacy for Irreversible Electroporation in Immunocompetent versus Immunodeficient Mice. PLoS ONE 8(5): e64559. https://doi.org/10.1371/journal.pone.0064559. |
Nesin et al., “Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses.” Biochimica et Biophysica Acta (BBA)—Biomembranes, vol. 1808, pp. 792-801 (2011). |
Neumann, et al., Gene Transfer into Mouse Lyoma Cells by Electroporation in High Electric Fields, J. Embo., vol. 1, No. 7, pp. 841-845, 1982. |
Neumann, et al., Permeability Changes Induced by Electric Impulses in Vesicular Membranes, J. Membrane Biol., vol. 10, pp. 279-290, 1972. |
Nikolova, B., et al., “Treatment of Melanoma by Electroporation of Bacillus Calmette-Guerin”. Biotechnology & Biotechnological Equipment, 25(3): p. 2522-2524 (2011). |
Nuccitelli, R., et al., “A new pulsed electric field therapy for melanoma disrupts the tumor's blood supply and causes complete remission without recurrence”, Int J Cancer, 125(2): p. 438-45 (2009). |
O'Brien et al., “Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity.” European Journal of Biochemistry, vol. 267, pp. 5421-5426 (2000). |
O'Brien, T. J. et al., “Effects of internal electrode cooling on irreversible electroporation using a perfused organ model,” Int. J. Hyperth., vol. 35, No. 1, pp. 44-55, 2018. |
Okino, et al., Effects of High-Voltage Electrical Impulse and an Anticancer Drug on In Vivo Growing Tumors, Japanese Journal of Cancer Research, vol. 78, pp. 1319-1321, 1987. |
Onik, et al., Sonographic Monitoring of Hepatic Cryosurgery in an Experimental Animal Model, AJR American J. of Roentgenology, vol. 144, pp. 1043-1047, May 1985. |
Onik, et al., Ultrasonic Characteristics of Frozen Liver, Cryobiology, vol. 21, pp. 321-328, 1984. |
Onik, G. and B. Rubinsky, eds. “Irreversible Electroporation: First Patient Experience Focal Therapy of Prostate Cancer. Irreversible Electroporation”, ed. B. Rubinsky 2010, Springer Berlin Heidelberg, pp. 235-247. |
Onik, G., P. Mikus, and B. Rubinsky, “Irreversible electroporation: implications for prostate ablation.” Technol Cancer Res Treat, 2007. 6(4): p. 295-300. |
Organ, L.W., Electrophysiological principles of radiofrequency lesion making, Apply. Neurophysiol., 1976. 39: p. 69-76. |
Ott, H. C., et al., “Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart”, Nature Medicine, Nature Publishing Group, New York, NY, US, vol. 14, No. 2, Feb. 1, 2008, pp. 213-221. |
Pakhomova, O. N., Gregory, B., Semenov I., and Pakhomov, A. G., BBA—Biomembr., 2014, 1838, 2547-2554. |
Paszek et al., “Tensional homeostasis and the malignant phenotype.” Cancer Cell, vol. 8, pp. 241-254 (2005). |
Pavselj, N. et al. The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans Biomed Eng 52, 1373-1381 (2005). |
Pavselj, N., et al., “A numerical model of skin electroporation as a method to enhance gene transfection in skin. 11th Mediterranean Conference on Medical and Biological Engineering and Computing”, vols. 1 and 2, 16(1-2): p. 597-601 (2007). |
PCT Application No. PCT/2011/062067, International Preliminary Report on Patentability dated May 28, 2013. |
PCT Application No. PCT/2011/066239, International Preliminary Report on Patentability dated Jun. 25, 2013. |
PCT Application No. PCT/US09/62806, International Search Report (Jan. 19, 2010), Written Opinion (Jan. 19, 2010), and International Preliminary Report on Patentability (Jan. 4, 2010), 15 pgs. |
PCT Application No. PCT/US10/53077, International Search Report (Aug. 2, 2011), Written Opinion (Aug. 2, 2011), and International Preliminary Report on Patentability (Apr. 17, 2012). |
Pending Application No. JP 2016-567747 Amendment filed Jul. 18, 2019, 7 pgs. |
Pending Application No. JP 2016-567747 English translation of amended claims filed Jul. 18, 2019, 6 pgs. |
Pending Application No. JP 2016-567747, First Office Action (Translation) dated Feb. 21, 2019, 5 pages. |
Pending Application No. JP 2016-567747, First Office Action dated Feb. 21, 2019, 4 pages. |
Pending Application No. JP 2019-133057, amended claims (English language version) filed Aug. 14, 2019, 5 pages. |
Pending Application No. JP 2019-133057, Office Action dated Sep. 14, 2020, 5 pages (and English translation, 6 pages). |
Phillips, M., Maor, E. & Rubinsky, B. Non-Thermal Irreversible Electroporation for Tissue Decellularization. J. Biomech. Eng, doi: 10.1115/1.4001882 (2010). |
Piñero, et al., Apoptotic and Necrotic Cell Death Are Both Induced by Electroporation in HL60 Human Promyeloid Leukaemia Cells, Apoptosis, vol. 2, No. 3, 330-336, Aug. 1997. |
Polak et al., “On the Electroporation Thresholds of Lipid Bilayers: Molecular Dynamics Simulation Investigations.” The Journal of Membrane Biology, vol. 246, pp. 843-850 (2013). |
Pucihar et al., “Numerical determination of transmembrane voltage induced on irregularly shaped cells.” Annals of Biomedical Engineering, vol. 34, pp. 642-652 (2006). |
Qiao et al. Electrical properties of breast cancer cells from impedance measurement of cell suspensions, 2010, Journal of Physics, 224, 1-4 (2010). |
Rajagopal, V. and S.G. Rockson, Coronary restenosis: a review of mechanisms and management, The American Journal of Medicine, 2003, 115(7): p. 547-553. |
Reberek, M. and D. Miklavćić, “Advantages and Disadvantages of Different Concepts of Electroporation Pulse Generation,” Automatika 52(2011) 1, 12-19. |
Ringel-Scaia, V. M. et al., High-frequency irreversible electroporation is an effective tumor ablation strategy that Induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine, 2019, 44, 112-125. |
Rols, M.P., et al., Highly Efficient Transfection of Mammalian Cells by Electric Field Pulses: Application to Large Volumes of Cell Culture by Using a Flow System, Eur. J. Biochem. 1992, 206, pp. 115-121. |
Ron et al., “Cell-based screening for membranal and cytoplasmatic markers using dielectric spectroscopy.” Biophysical chemistry, 135 (2008) pp. 59-68. |
Rossmeisl et al., “Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brain.” Journal of Veterinary Science vol. 14, pp. 433-440 (2013). |
Rossmeisl, “New Treatment Modalities for Brain Tumors in Dogs and Cats.” Veterinary Clinics of North America: Small Animal Practice 44, pp. 1013-1038 (2014). |
Rossmeisl, John H. et al. Safety and feasibility of the NanoKnife system for irreversible electroporation ablative treatment of canine spontaneous intracranial gliomas. J. Neurosurgery 123.4 (2015): 1008-1025. |
Rubinsky et al., “Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation.” The Journal of Urology, 180 (2008) pp. 2668-2674. |
Rubinsky, B., “Irreversible Electroporation in Medicine”, Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. 1, 2007, pp. 255-259. |
Rubinsky, B., ed, Cryosurgery. Annu Rev. Biomed. Eng. vol. 2 2000. 157-187. |
Rubinsky, B., et al., “Irreversible Electroporation: A New Ablation Modality—Clinical Implications” Technol. Cancer Res. Treatment 6(1), 37-48 (2007). |
Sabuncu et al., “Dielectrophoretic separation of mouse melanoma clones.” Biomicrofluidics, vol. 4, 7 pages (2010). |
SAI Infusion Technologies, “Rabbit Ear Vein Catheters”, https://www.sai-infusion.com/products/rabbit-ear-catheters, Aug. 10, 2017 webpage printout, 5 pages. |
Salford, L.G., et al., “A new brain tumour therapy combining bleomycin with in vivo electropermeabilization”, Biochem. Biophys. Res. Commun., 194(2): 938-943 (1993). |
Salmanzadeh et al., “Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells” Biomicrofluidics 7, 011809 (2013), 12 pages. |
Salmanzadeh et al., “Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis.” Biomicrofluidics, vol. 6, 13 Pages (2012). |
Salmanzadeh et al., “Sphingolipid Metabolites Modulate Dielectric Characteristics of Cells in a Mouse Ovarian Cancer Progression Model.” Integr. Biol., 5(6), pp. 843-852 (2013). |
Sanchez, B., G. Vandersteen, R. Bragos, and J. Schoukens, “Basics of broadband impedance spectroscopy measurements using periodic excitations,” Measurement Science and Technology, vol. 23, No. 10, p. 105501, 2012. |
Sanchez, B., G. Vandersteen, R. Bragos, and J. Schoukens, “Optimal multisine excitation design for broadband electrical impedance spec-troscopy,” Measurement Science and Technology, vol. 22, No. 11, p. 115601, 2011. |
Sano et al., “Contactless Dielectrophoretic Spectroscopy: Examination of the Dielectric Properties of Cells Found in Blood.” Electrophoresis, 32, pp. 3164-3171, 2011. |
Sano et al., “In-vitro bipolar nano- and microsecond electro-pulse bursts for irreversible electroporation therapies.” Bioelectrochemistry vol. 100, pp. 69-79 (2014). |
Sano et al., “Modeling and Development of a Low Frequency Contactless Dielectrophoresis (cDEP) Platform to Sort Cancer Cells from Dilute Whole Blood Samples.” Biosensors & Bioelectronics, 8 pages (2011). |
Sano, M. B., et al., “Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion”, Biomedical Engineering Online, Biomed Central LTD, London, GB, vol. 9, No. 1, Dec. 10, 2010, p. 83. |
Saur et al., “CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer.” Gastroenterology, vol. 129, pp. 1237-1250 (2005). |
Schmukler, Impedance Spectroscopy of Biological Cells, Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical Engineers, Proceedings of the 16th Annual Internal Conference of the EEE, vol. 1, p. A74, downloaded from IEEE Xplore website, 1994. |
Schoenbach et al., “Intracellular effect of ultrashort electrical pulses.” Bioelectromagnetics, 22 (2001) pp. 440-448. |
Seibert et al., “Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice.” Cancer Research, vol. 43, pp. 2223-2239 (1983). |
Seidler et al., “A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors.” Proceedings of the National Academy of Sciences, vol. 105, pp. 10137-10142 (2008). |
Sel, D. et al. Sequential finite element model of tissue electropermeabilization. IEEE Transactions on Biomedical Engineering 52, 816-827, doi:10.1109/tbme.2005.845212 (2005). |
Sel, D., Lebar, A. M. & Miklavcic, D. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization. IEEE Trans Biomed Eng 54, 773-781 (2007). |
Sersa, et al., Reduced Blood Flow and Oxygenation in SA-1 Tumours after Electrochemotherapy with Cisplatin, British Journal of Cancer, 87, 1047-1054, 2002. |
Sersa, et al., Tumour Blood Flow Modifying Effects of Electrochemotherapy: a Potential Vascular Targeted Mechanism, Radiol. Oncol., 37(1): 43-8, 2003. |
Shao, Qi et al. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions, International Journal of Hyperthermia, 2019, DOI: 10.1080/02656736.2018.1539253. |
Sharma, A. , et al., “Review on Thermal Energy Storage with Phase Change Materials and Applications”, Renewable Sustainable Energy Rev. 13(2), 318-345 (2009). |
Sharma, et al., Poloxamer 188 Decreases Susceptibility of Artificial Lipid Membranes to Electroporation, Biophysical Journal, vol. 71, No. 6, pp. 3229-3241, Dec. 1996. |
Shiina, S., et al, Percutaneous ethanol injection therapy for hepatocellular carcinoma: results in 146 patients. AJR, 1993, 160: p. 1023-8. |
Pending U.S. Appl. No. 17/172,731, Preliminary Amendment, filed Jun. 27, 2022, 9 pages. |
Pending U.S. Appl. No. 17/172,731, Preliminary Amendment, filed Sep. 17, 2021, 7 pages. |
Pending U.S. Appl. No. 17/172,731, Response to Feb. 15, 2023 Non-Final Office Action, dated May 15, 2023, 8 pages. |
Pending U.S. Appl. No. 17/172,731, Response to Jul. 12, 2023 Final Office Action, dated Oct. 12, 2023, 10 pages. |
Pending U.S. Appl. No. 17/277,662 Non-Final Office Action dated May 5, 2023, 9 pages. |
Pending U.S. Appl. No. 17/277,662 Notice of Allowance dated Oct. 2, 2023, 7 pages. |
Pending U.S. Appl. No. 17/277,662 Preliminary Amendment filed Mar. 18, 2021, 8 pages. |
Pending U.S. Appl. No. 17/277,662 Response to May 5, 2023 Non-Final Office Action, dated Aug. 7, 2023, 8 pages. |
Pending U.S. Appl. No. 17/338,960, Ex Parte Quayle Action dated May 24, 2023, 6 pages. |
Pending U.S. Appl. No. 17/338,960, Response to May 24, 2023 Ex Parte Quayle Action, dated Aug. 8, 2023, 6 pages. |
Pending U.S. Appl. No. 17/338,960, Response to Notice to File Missing Parts and Amendment, filed Aug. 16, 2021, 7 pages. |
Pending U.S. Appl. No. 17/591,992, Preliminary Amendment dated Sep. 20, 2023, 9 pages. |
Pending U.S. Appl. No. 18/027,824, Preliminary Amendment dated Mar. 22, 2023, 8 pages. |
Pending U.S. Appl. No. 18/100,835, Preliminary Amendment filed Jan. 26, 2023, 8 pages. |
Pending U.S. Appl. No. 18/100,835, Second Preliminary Amendment filed Feb. 6, 2023, 6 pages. |
Pending U.S. Appl. No. 18/120,158, Preliminary Amendment dated Mar. 13, 2023, 195 pages. |
Pending U.S. Appl. No. 18/123,719, Preliminary Amendment dated Jun. 6, 2023, 6 pages. |
Pending U.S. Appl. No. 18/130,330, Preliminary Amendment dated Jun. 20, 2023, 8 pages. |
Pending U.S. Appl. No. 18/348,605, Preliminary Amendment dated Oct. 31, 2023, 7 pages. |
Pending U.S. Appl. No. 18/502,967, Preliminary Amendment filed Nov. 6, 2023, 6 pages. |
Pending Application No. 19861489.3 Extended European Search Report dated May 16, 2022 (8 pages). |
Pending Application No. 19861489.3 Response to Communication pursuant to Rules 161(2) and 162 EPC, filed Nov. 16, 2021, 7 pages. |
Pending Application No. 19861489.3 Response to May 16, 2022 Extended European Search Report, dated Dec. 13, 2022, 136 pages. |
Pending Application No. AU 2015259303, Certificate of Grant dated Feb. 10, 2022, 1 page. |
Pending Application No. AU 2015259303, Notice of Acceptance and Allowed Claims, dated Oct. 15, 2021, 7 pages. |
Pending Application No. AU 2015259303, Response to First Examination Report dated Sep. 20, 2021, 126 pages. |
Pending Application No. CN 201580025135.6, First Office Action, dated Sep. 25, 2019 (Chinese and English Versions, each 6 pages). |
Pending Application No. CN 201580025135.6, Response to First Office Action, Feb. 7, 2020, (Chinese Vrsion, 13 pages, and English Version, 10 pages). |
Pending Application No. CN 201580025135.6, Second Office Action, dated Apr. 29, 2020 (Chinese Version, 4 pages, and English Version, 7 pages). |
Pending Application No. CN 202011281572.3, Amendment filed Sep. 8, 2021 (16 pages) with English Version of the Amended Claims (7 pages). |
Pending Application No. EP 15793361.5, Communication Pursuant to Article 94(3) EPC, dated Apr. 4, 2023, 4 pages. |
Pending Application No. EP 15793361.5, Communication Pursuant to Article 94(3) EPC, dated May 3, 2021, 4 pages. |
Pending Application No. EP 15793361.5, Response to Apr. 4, 2023 Communication Pursuant to Article 94(3) EPC, dated Oct. 16, 2023, 13 pages. |
Pending Application No. EP 15793361.5, Response to May 3, 2021 Communication Pursuant to Article 94(3) EPC, dated Nov. 12, 2021, 12 pages. |
Pending Application No. JP 2019-133057, Office Action dated Sep. 1, 2021, 3 pages (and English translation, 4 pages). |
Pending Application No. JP 2019-133057, Request for Amendment and Appeal filed Dec. 23, 2021 (8 pages) with English Translation of the Amended Claims (2 pages). |
Pending Application No. JP 2019-133057, Response to Sep. 14, 2020 Office Action filed Mar. 18, 2021 (6 pages) with English Version of claims and response (5 pages). |
Pending Application No. PCT/US21/51551, International Search Report and Written Opinion dated Dec. 29, 2021, 14 pages. |
Pending Application No. PCT/US23/15118, International Search Report and Written Opinion dated Jul. 31, 2023, 18 pages. |
Pending Application No. PCT/US23/15118, Invitation to Pay Additional Fees dated May 17, 2023, 3 pages. |
Polajžer, T. et al., “Cancellation effect is present in high-frequency reversible and irreversible electroporation,” Bioelectrochemistry, vol. 132, 2020, 11 pages. |
Reilly, J. P. et al., “Sensory Effects of Transient Electrical Stimulation—Evaluation with a Neuroelectric Model,” IEEE Trans. Biomed. Eng., vol. BME-32, No. 12, 1001-1011, 1985, 11 pages. |
Rogers, W. R. et al., “Strength-duration curve an electrically excitable tissue extended down to near 1 nanosecond,” IEEE Trans. Plasma Sci., vol. 32, No. 4 II, 1587-1599, 2004, 13 pages. |
Rubinsky, L. et al., “Electrolytic Effects During Tissue Ablation by Electroporation,” Technol. Cancer Res. Treat., vol. 15, No. 5, NP95-103, 2016, 9 pages. |
Sano, M. B. et al., “Burst and continuous high frequency irreversible electroporation protocols evaluated in a 3D tumor model,” Phys. Med. Biol., vol. 63, No. 13, 2018, 17 pages. |
Sano, M. B. et al., “Reduction of Muscle Contractions During Irreversible Electroporation Therapy Using High-Frequency Bursts of Alternating Polarity Pulses: A Laboratory Investigation in an Ex Vivo Swine Model,” J. Vasc. Interv. Radiol., vol. 29, No. 6, 893-898.e4, Jun. 2018, 18 pages. |
U.S. Appl. No. 14/808,679 (U.S. Pat. No. 11,655,466), file history through Aug. 2022, 253 pages. |
U.S. Appl. No. 16/152,743 (U.S. Pat. No. 11,272,979), file history through Jan. 2022, 89 pages. |
U.S. Appl. No. 16/210,771 U.S. Pat. No. 11,607,537), file history through Dec. 2022, 139 pages. |
U.S. Appl. No. 16/275,429 (U.S. Pat. No. 10,959,772), file history through Feb. 2021, 18 pages. |
U.S. Appl. No. 16/280,511, file history through Aug. 2021, 31 pages. |
U.S. Appl. No. 16/352,759 (U.S. Pat. No. 11,311,329), file history through Mar. 2022, 258 pages. |
U.S. Appl. No. 16/372,520 (U.S. Pat. No. 11,382,681), file history through Jun. 2022, 107 pages. |
U.S. Appl. No. 16/404,392 (U.S. Pat. No. 11,254,926), file history through Jan. 2022, 153 pages. |
U.S. Appl. No. 16/443,351 (U.S. Pat. No. 11,638,603), file history through Mar. 2023, 114 pages. |
U.S. Appl. No. 16/520,901 (U.S. Pat. No. 11,406,820) file history through May 2022, 39 pages. |
U.S. Appl. No. 16/535,451 (U.S. Pat. No. 11,453,873), file history through Aug. 2022, 85 pages. |
U.S. Appl. No. 16/655,845 (U.S. Pat. No. 11,607,271), file history through Jan. 2023, 68 pages. |
U.S. Appl. No. 17/069,359 (U.S. Pat. No. 11,737,810), file history through Apr. 2023, 27 pages. |
Valdez, C. M. et al., “The interphase interval within a bipolar nanosecond electric pulse modulates bipolar cancellation,” Bioelectromagnetics, vol. 39, No. 6, 441-450, 2018, 28 pages. |
Verma, A. et al., “Primer on Pulsed Electrical Field Ablation: Understanding the Benefits and Limitations,” Circ. Arrhythmia Electrophysiol., No. September, pp. 1-16, 2021, 16 pages. |
Vižintin, A. et al., “Effect of interphase and interpulse delay in high-frequency irreversible electroporation pulses on cell survival, membrane permeabilization and electrode material release,” Bioelectrochemistry, vol. 134, Aug. 2020, 14 pages. |
Wandel, A. et al. “Optimizing Irreversible Electroporation Ablation with a Bipolar Electrode,” Journal of Vascular and Interventional Radiology, vol. 27, Issue 9, 1441-1450.e2, 2016. |
Yarmush, M. L. et al., “Electroporation-Based Technologies for Medicine: Principles, Applications, and Challenges,” Annu. Rev. Biomed. Eng., vol. 16, No. 1, 295-320, 2014, 29 pages. |
Zhao, J. et al. “Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer”, Nature Communications (2019) 10:899, 14 pages. |
Pending U.S. Appl. No. 17/000,049, Non-Final Office Action dated Dec. 11, 2023, 13 pages. |
Szot et al., “3D in vitro bioengineered tumors based on collagen I hydrogels.” Biomaterials vol. 32, pp. 7905-7912 (2011). |
Talele, S. and P. Gaynor, “Non-linear time domain model of electropermeabilization: Effect of extracellular conductivity and applied electric field parameters”, Journal of Electrostatics, 66(5-6): p. 328-334 (2008). |
Talele, S. and P. Gaynor, “Non-linear time domain model of electropermeabilization: Response of a single cell to an arbitrary applied electric field”, Journal of Electrostatics, 65(12): p. 775-784 (2007). |
Talele, S., et al., “Modelling single cell electroporation with bipolar pulse parameters and dynamic pore radii”. Journal of Electrostatics, 68(3): p. 261-274 (2010). |
Teissie, J. and T.Y. Tsong, “Electric-Field Induced Transient Pores in Phospholipid-Bilayer Vesicles”. Biochemistry, 20(6): p. 1548-1554 (1981). |
Tekle, Ephrem, R. Dean Astumian, and P. Boon Chock, Electroporation by using bipolar oscillating electric field: An Improved method for DNA transfection of NIH 3T3 cells, Proc. Natl. Acad. Sci., vol. 88, pp. 4230-4234, May 1991, Biochemistry. |
Thompson, et al., To determine whether the temperature of 2% lignocaine gel affects the initial discomfort which may be associated with its instillation into the male urethra, BJU International (1999), 84, 1035-1037. |
Thomson et al., “Investigation of the safety of irreversible electroporation in humans,” J Vasc Interv Radiol, 22, pp. 611-621, 2011. |
Tibbitt et al., “Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture”, Jul. 2009, Biotechnol Bioeng, 103 (4),655-663. |
U.S. Appl. No. 12/432,295 (U.S. Pat. No. 9,598,691), file history through Jan. 2017, 334 pages. |
U.S. Appl. No. 12/491,151 (U.S. Pat. No. 8,992,517), file history through Feb. 2015, 113 pages. |
U.S. Appl. No. 12/609,779 (U.S. Pat. No. 8,465,484), file history through May 2013, 100 pages. |
U.S. Appl. No. 12/757,901 (U.S. Pat. No. 8,926,606), file history through Jan. 2015, 165 pages. |
U.S. Appl. No. 12/906,923 (U.S. Pat. No. 9,198,733), file history through Nov. 2015, 55 pages. |
U.S. Appl. No. 13/332,133 (U.S. Pat. No. 10,448,989), file history through Sep. 2019, 226 pages. |
U.S. Appl. No. 13/550,307 (U.S. Pat. No. 10,702,326), file history through May 2020, 224 pages. |
U.S. Appl. No. 13/919,640 (U.S. Pat. No. 8,814,860), file history through Jul. 2014, 41 pages. |
U.S. Appl. No. 13/958,152, file history through Dec. 2019, 391 pages. |
U.S. Appl. No. 13/989,175 (U.S. Pat. No. 9,867,652), file history through Dec. 2017, 200 pages. |
U.S. Appl. No. 14/012,832 (U.S. Pat. No. 9,283,051), file history through Nov. 2015, 17 pages. |
U.S. Appl. No. 14/017,210 (U.S. Pat. No. 10,245,098), file history through Jan. 2019, 294 pages. |
U.S. Appl. No. 14/558,631 (U.S. Pat. No. 10,117,707), file history through Jul. 2018, 58 pages. |
U.S. Appl. No. 14/627,046 (U.S. Pat. No. 10,245, 105), file history through Feb. 2019, 77 pages. |
U.S. Appl. No. 14/940,863 (U.S. Pat. No. 10,238,447), file history through Oct. 2019, 23 pages. |
U.S. Appl. No. 15/011,752 (U.S. Pat. No. 10,470,822), file history through Jul. 2019, 54 bages. |
U.S. Appl. No. 15/186,653 (U.S. Pat. No. 10,292,755), file history through Mar. 2019, 21 pages. |
U.S. Appl No. 15/310,114 (U.S. Pat. No. 10,471,254), file history through Aug. 2019, 44 pages. |
U.S. Appl. No. 15/423,986 (U.S. Pat. No. 10,286,108), file history through Jan. 2019, 124 pages. |
U.S. Appl. No. 15/424,335 (U.S. Pat. No. 10,272,178), file history through Feb. 2019, 57 pages. |
U.S. Appl. No. 15/536,333 (U.S. Pat. No. 10,694,972), file history through Apr. 2020, 78 pages. |
U.S. Appl. No. 15/843,888 (U.S. Pat. No. 10,537,379), file history through Sep. 2019, 83 pages. |
U.S. Appl. No. 15/881,414 (U.S. Pat. No. 10,154,874), file history through Nov. 2018, 43 pages. |
U.S. Appl. No. 16/177,745 (Patented), file history through Jun. 2020, 57 pages. |
U.S. Appl. No. 16/232,962 (Patented), file history through Jun. 2020, 44 pages. |
Van Den Bos, W. et al., “MRI and contrast-enhanced ultrasound imaging for evaluation of focal irreversible electroporation treatment: results from a phase i-ii study in patients undergoing ire followed by radical prostatectomy,” European radiology, vol. 26, No. 7, pp. 2252-2260, 2016. |
Verbridge et al., “Oxygen-Controlled Three-Dimensional Cultures to Analyze Tumor Angiogenesis.” Tissue Engineering, Part A vol. 16, pp. 2133-2141 (2010). |
Vernier, P.T., et al., “Nanoelectropulse-driven membrane perturbation and small molecule permeabilization”, Bmc Cell Biology, 7 (2006). |
Vidamed, Inc., Transurethral Needle Ablation (TUNA): Highlights from Worldwide Clinical Studies, Vidamed's Office TUNA System, 2001. |
Voyer, D., A. Silve, L. M. Mir, R. Scorretti, and C. Poignard, “Dynamical modeling of tissue electroporation,” Bioelectrochemistry, vol. 119, pp. 98-110, 2018. |
Wasson, Elisa M. et al. The Feasibility of Enhancing Susceptibility of Glioblastoma Cells to IRE Using a Calcium Adjuvant. Annals of Biomedical Engineering, vol. 45, No. 11, Nov. 2017 pp. 2535-2547. |
Weaver et al., “A brief overview of electroporation pulse strength-duration space: A region where additional Intracellular effects are expected.” Bioelectrochemistry vol. 87, pp. 236-243 (2012). |
Weaver, Electroporation: A General Phenomenon for Manipulating Cells and Tissues, Journal of Cellular Biochemistry, 51: 426-435, 1993. |
Weaver, et al., Theory of Electroporation: A Review, Bioelectrochemistry and Bioenergetics, vol. 41, pp. 136-160, 1996. |
Weaver, J. C., Electroporation of biological membranes from multicellular to nano scales, IEEE Trns. Dielectr. Electr. Insul. 10, 754-768 (2003). |
Weaver, J.C., “Electroporation of cells and tissues”, IEEE Transactions on Plasma Science, 28(1): p. 24-33 (2000). |
Weisstein: Cassini Ovals. From MathWorld—A. Wolfram Web Resource; Apr. 30, 2010; http://mathworld.wolfram.com/ (updated May 18, 2011). |
Wimmer, Thomas, et al., “Planning Irreversible Electroporation (IRE) in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?”, Cardiovasc Intervent Radiol. Feb. 2015 ; 38(1): 182-190. doi:10.1007/s00270-014-0905-2. |
Yang et al., “Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion.” Biophysical Journal, vol. 76, pp. 3307-3314 (1999). |
Yao et al., “Study of transmembrane potentials of inner and outer membranes induced by pulsed-electric-field model and simulation.” IEEE Trans Plasma Sci, 2007. 35(5): p. 1541-1549. |
PCT Application No. PCT/US15/30429, International Search Report and Written Opinion dated Oct. 16, 2015, 19 pages. |
PCT Application No. PCT/US15/30429, International Report on Patentability dated Nov. 15, 2016. |
PCT Application No. PCT/US15/65792, International Search Report (Feb. 9, 2016), Written Opinion (Feb. 9, 2016), and International Preliminary Report on Patentability (Jun. 20, 2017), 15 pages. |
PCT Application No. PCT/US19/51731, International Search Report and Written Opinion dated Feb. 20, 2020, 19 pgs. |
PCT Application No. PCT/US19/51731, Invitation to Pay Additional Search Fees dated Oct. 28, 2019, 2 pgs. |
PCT Application No. PCT/US2004/043477, International Search Report (Aug. 26, 2005), Written Opinion (Aug. 26, 2005), and International Preliminary Report on Patentability (Jun. 26, 2006). |
PCT Application No. PCT/US2009/042100, International Search Report (Jul. 9, 2009), Written Opinion (Jul. 9, 2009), and International Preliminary Report on Patentability (Nov. 2, 2010). |
PCT Application No. PCT/US2010/029243, International Search Report, 4 pgs, (Jul. 30, 2010), Written Opinion, 7 pgs, (Jul. 30, 2010), and International Preliminary Report on Patentability, 8 pgs, (Oct. 4, 2011). |
PCT Application No. PCT/US2010/030629, International Search Report (Jul. 15, 2010), Written Opinion (Jul. 15, 2010), and International Preliminary Report on Patentability (Oct. 11, 2011). |
PCT Application No. PCT/US2011/062067, International Search Report and Written Opinion dated Jul. 25, 2012. |
PCT Application No. PCT/US2011/066239, International Search Report (Aug. 22, 2012), and Written Opinion (Aug. 22, 2012). |
Pending U.S. Appl. No. 14/686,380, Final Office Action dated May 9, 2018, 14 pages. |
Pending U.S. Appl. No. 14/686,380, Final Office Action dated Oct. 6, 2020, 14 pages. |
Pending U.S. Appl. No. 14/686,380, Final Office Action dated Sep. 3, 2019, 28 pages. |
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated Feb. 13, 2020, 11 pages. |
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated May 1, 2019, 18 pages. |
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated Nov. 22, 2017, 11 pages. |
Pending U.S. Appl. No. 14/686,380, Response to Feb. 13, 2020 Non-Final Office Action, filed Jul. 1, 2020, 8 pages. |
Pending U.S. Appl. No. 14/686,380, Response to Jul. 19, 2017 Restriction Requirement, dated Sep. 15, 2017, 2 pages. |
Pending U.S. Appl. No. 14/686,380, Response to May 9, 2018 Final Office Action with RCE, dated Aug. 30, 2018, 14 pages. |
Pending U.S. Appl. No. 14/686,380, Response to Non-Final Office Action Filed Aug. 1, 2019, 11 pages. |
Pending U.S. Appl. No. 14/686,380, Response to Nov. 22, 2017 Non-Final Office Action dated Mar. 28, 2018, 11 pages. |
Pending U.S. Appl. No. 14/686,380, Response to Sep. 3, 2019 Final Office Action, filed Jan. 3, 2020, 10 pages. |
Pending U.S. Appl. No. 14/686,380, Restriction Requirement Jul. 19, 2017, 7 pages. |
Pending U.S. Appl. No. 14/808,679, Interview Summary, Apr. 26, 2019, 3 pages. |
Pending U.S. Appl. No. 14/808,679, Preliminary Amendment Jul. 24, 2015, 6 pages. |
Pending U.S. Appl. No. 14/808,679, Restriction Requirement dated Mar. 19, 2018, 7 pages. |
Pending U.S. Appl. No. 14/808,679, 3rd Renewed Petition, Dec. 9, 2019 and Petition Decision Dec. 18. 2019, 11 pages. |
Pending U.S. Appl. No. 14/808,679, Final Office Action dated Jan. 11, 2019, 12 pages. |
Pending U.S. Appl. No. 14/808,679, Interview Summary dated Apr. 26, 2019, 3 pages. |
Pending U.S. Appl. No. 14/808,679, Non-Final Office Action dated Jun. 12, 2020, 10 pages. |
Pending U.S. Appl. No. 14/808,679, Non-Final Office Action dated Sep. 10, 2018, 12 pages. |
Pending U.S. Appl. No. 14/808,679, Petition Decision, dated Oct. 1, 2019, 5 pages. |
Pending U.S. Appl. No. 14/808,679, Petition Decision, dated Oct. 23, 2019, 6 pages. |
Pending U.S. Appl. No. 14/808,679, Petition Decision, Dec. 3, 2019, 5 pages. |
Pending U.S. Appl. No. 14/808,679, Petition for Priority and Supplemental Response, filed May 8, 2019, 25 pages. |
Pending U.S. Appl. No. 14/808,679, Petition Supplement, Sep. 25, 2019, 10 pages. |
Pending U.S. Appl. No. 14/808,679, Petition, May 8, 2019, 2 pages. |
Pending U.S. Appl. No. 14/808,679, Preliminary Amendment, filed Jul. 27, 2015, 9 pages. |
Pending U.S. Appl. No. 14/808,679, RCE filed Apr. 11, 2019, 8 pages. |
Pending U.S. Appl. No. 14/808,679, Renewed Petition, filed Oct. 9, 2019, 1 pages. |
Pending U.S. Appl. No. 14/808,679, Response to Mar. 19, 2018 Restriction Requirement dated May 21, 2018, 2 pages. |
Pending U.S. Appl. No. 14/808,679, Response to Non-Final Office Action dated Jun. 12, 2020, filed Sep. 14, 2020, 9 pages. |
Pending U.S. Appl. No. 14/808,679, Response to Sep. 10, 2018 Non-Final Office Action dated Dec. 10, 2018, 9 pages. |
Pending U.S. Appl. No. 14/808,679, Second Renewed Petition, filed Oct. 31, 2019, 3 pages. |
Pending U.S. Appl. No. 14/808,679, Supplemental Response, May 8, 2019, 16 pages. |
Pending U.S. Appl. No. 16/152,743 Preliminary Amendment filed Oct. 5, 2018, 7 pages. |
Pending U.S. Appl. No. 16/152,743, Non-Final Office Action dated Sep. 25, 2020, 10 pages. |
Pending U.S. Appl. No. 16/152,743, Second Preliminary Amendment filed May 2, 2019, 6 pages. |
Pending U.S. Appl. No. 16/210,771, Non-Final Office Action dated Sep. 3, 2020, 9 pages. |
Pending U.S. Appl. No. 16/210,771, Preliminary Amendment filed Dec. 5, 2018, 8 pages. |
Pending U.S. Appl. No. 16/210,771, Response to Restriction Requirement, filed Jul. 8, 2020, 7 pages. |
Pending U.S. Appl. No. 16/210,771, Restriction Requirement, dated Jun. 9, 2020, 7 pages. |
Pending U.S. Appl. No. 16/210,771, Second Preliminary Amendment filed Oct. 14, 2019, 7 pages. |
Pending U.S. Appl. No. 16/275,429 Notice of Allowance dated Nov. 10, 2020, 9 pages. |
Pending U.S. Appl. No. 16/275,429 Preliminary Amendment Filed Mar. 28, 2019, 6 pages. |
Pending U.S. Appl. No. 16/280,511, Preliminary Amendment filed Nov. 2, 2020, 6 pages. |
Pending U.S. Appl. No. 16/372,520 Preliminary Amendment filed Apr. 9, 2019, 7 pages. |
Pending U.S. Appl. No. 16/375,878, Preliminary Amendment, filed Apr. 9, 2019, 9 pages. |
Pending U.S. Appl. No. 16/375,878, Second Preliminary Amendment, filed Feb. 5, 2020, 3 pages. |
Pending U.S. Appl. No. 16/404,392, Final Office Action dated Mar. 20, 2020, 8pgs. |
Pending U.S. Appl. No. 16/404,392, Non-Final Office Action dated Sep. 6, 2019, 8pgs. |
Pending U.S. Appl. No. 16/404,392, Petition for Priority, filed Jun. 4, 2019, 2 pages. |
Pending U.S. Appl. No. 16/404,392, Preliminary Amendment, filed Jun. 4, 2019, 9 pages. |
Pending U.S. Appl. No. 16/404,392, Preliminary Amendment, filed Jun. 6, 2019, 5 pages. |
Pending U.S. Appl. No. 16/404,392, Response to Final Office action dated Mar. 20, 2020, filed Sep. 18, 2020, 7 pages. |
Pending U.S. Appl. No. 16/404,392, Response to Non-Final Office action dated Sep. 6, 2019, filed Dec. 6, 2019, 8 pages. |
Pending U.S. Appl. No. 16/443,351, Preliminary amendment filed Feb. 3, 2020. |
Pending U.S. Appl. No. 16/520,901, Preliminary Amendment filed Aug. 14, 2019. |
Pending U.S. Appl. No. 16/520,901, Second Preliminary Amendment filed Feb. 4, 2020. |
Pending U.S. Appl. No. 16/535,451 Preliminary Amendment filed Aug. 8, 2019, 3 pages. |
Pending U.S. Appl. No. 16/535,451 Second Preliminary Amendment filed Oct. 9, 2019, 15 pages. |
Pending U.S. Appl. No. 16/535,451 Third Preliminary Amendment filed Nov. 5, 2019, 4 pages. |
Pending U.S. Appl. No. 16/655,845, Preliminary Amendment filed Oct. 16, 2020, 6 pages. |
Pending U.S. Appl. No. 16/747,219, Preliminary Amendment filed Jan. 20, 2020, 5 pages. |
Pending U.S. Appl. No. 16/865,031, Preliminary Amendment filed May 1, 2020, 7 pages. |
Pending U.S. Appl. No. 16/865,772, Preliminary Amendment filed May 4, 2020, 6 pages. |
Pending U.S. Appl. No. 16/915,760, Preliminary Amendment filed Jul. 6, 2020, 5 pages. |
Pending Application No. AU 2009243079, First Examination Report, Jan. 24, 2014, 4 pages. |
Pending Application No. AU 2009243079, Voluntary Amendment filed Dec. 6, 2010, 35 pages. |
Pending Application No. AU 2015259303, First Examination Report dated Oct. 26, 2020, 6 pages. |
Pending Application No. CA 2,722,296 Examination Report dated Apr. 2, 2015, 6 pages. |
Pending Application No. CN 201580025135.6 English translation of Apr. 29, 2020 Office action, 7 pages. |
Pending Application No. CN 201580025135.6 English translation of Sep. 25, 2019 Office action. |
Pending Application No. CN 201580025135.6 Preliminary Amendment filed with application Nov. 14, 2016. |
Pending Application No. CN 201580025135.6 Response to Sep. 25, 2019 Office action, filed Feb. 10, 2020, English language version and original document. |
Pending Application No. EP 09739678.2 Extended European Search Report dated May 11, 2012, 7 pages. |
Pending Application No. EP 09739678.2, Communication pursuant to Rule 94.3, Apr. 16, 2014, 3 pages. |
Pending Application No. EP 09739678.2, Office Action dated Apr. 16, 2014, 3 pages. |
Pending Application No. EP 09739678.2, Response to Extended European Search Report and Communication pursuant to Rules 70(2) and 70a(2) EPC, dated Dec. 10, 2012. |
Pending Application No. EP 10824248.8, Extended Search Report (Jan. 20, 2014), 6 pages. |
Pending Application No. EP 10824248.8, Invitation Pursuant to rule 62a(1) EPC (Sep. 25, 2013), 2 pages. |
Pending Application No. EP 10824248.8, Communication Pursuant to Rule 70(2) dated Feb. 6, 2014, 1 page. |
Pending Application No. EP 10824248.8, Response to Invitation Pursuant to rule 62a(1) EPC (Sep. 25, 2013), Response filed Nov. 18, 2013. |
Pending Application No. EP 11842994.3, Communication Pursuant to Rules 70(2) and 70a(2) EPC dated Apr. 28, 2014, 1 page. |
Pending Application No. EP 11842994.3, Extended European Search Report dated Apr. 9, 2014, 34 bages. |
Pending Application No. EP 15793361.5, Claim amendment filed Jul. 18, 2018, 13 pages. |
Pending Application No. EP 15793361.5, European Search Report dated Dec. 4, 2017, 9 pages. |
Pending Application No. JP 2013-541050, Voluntary Amendment filed Oct. 29, 2013, 4 pages (with English Version of the Claims, 2 pages). |
(O'Brien, Timothy J. et al.) Co-Pending U.S. Appl. No. 16/915,760, filed Jun. 29, 2020, Specification, Claims, Figures. |
(Pearson, Robert M. et al) Co-pending Application No. PCT/US2010/029243, filed Mar. 30, 2010, published as WO 2010/117806 on Oct. 14, 2010, Specification, Claims, Figures. |
(Pearson, Robert M. et al.) Co-pending U.S. Appl. No. 12/751,826, filed Mar. 31, 2010 (published as 2010/0250209 on Sep. 30, 2010), Specification, Claims, Figures. |
(Pearson, Robert M. et al.) Co-pending U.S. Appl. No. 12/751,854, filed Mar. 31, 2010 (published as 2010/0249771 on Sep. 30, 2010), Specification, Claims, Figures. |
(Sano, Michael B. et al) Co-Pending Application No. PCT/US2015/030429, Filed May 12, 2015, Published on Nov. 19, 2015 as WO 2015/175570, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-Pending U.S. Appl. No. 13/989,175, filed May 23, 2013, and published as U.S. Publication No. 2013/0253415 on Sep. 26, 2013, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-Pending U.S. Appl. No. 15/310,114, filed Nov. 10, 2016, and published as U.S. Publication No. 2017/0266438 on Sep. 21, 2017, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 15/843,888, filed Dec. 15, 2017, and published as U.S. Publication No. 2018/0125565 on May 10, 2018, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 16/443,351, filed Jun. 17, 2019 (published as 20190328445 on Oct. 31, 2019), Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 16/520,901, filed Jul. 24, 2019, and published as U.S. Publication No. 2019/0351224 on Nov. 21, 2019, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-Pending U.S. Appl. No. 16/747,219, filed Jan. 20, 2020, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-Pending Application No. AU 2015259303, filed Oct. 24, 2016, Specification, Figures, Claims. |
(Sano, Michael B. et al.) Co-Pending Application No. CN 201580025135.6, filed Nov. 14, 2016, Specification, Claims, Figures (Chinese language and english language versions). |
(Sano, Michael B. et al.) Co-Pending Application No. EP 11842994.3, filed Jun. 24, 2013, Amended Claims (18 pages), Specification and Figures (See PCT/US11/62067). |
(Sano, Michael B. et al.) Co-Pending Application No. EP 15793361.5, filed Dec. 12, 2016, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending application No. HK 17112121.8, filed Nov. 20, 2017 and published as Publication No. HK1238288 on Apr. 27, 2018, Specification, Claims, Figures (See PCT/US15/30429 for English Version of documents as filed). |
(Sano, Michael B. et al.) Co-Pending Application No. JP 2013-541050, filed May 22, 2013, Claims, Specification, and Figures (See PCT/US11/62067 for English Version). |
(Sano, Michael B. et al.) Co-Pending Application No. JP 2016-567747, filed Nov. 10, 2016, Specification, Claims, Figures (see PCT/US15/30429 for English Version of documents as filed). |
(Sano, Michael B. et al.) Co-pending Application No. JP 2019-133057 filed Jul. 18, 2019, 155 pgs, Specification, Claims, Figures (See PCT/US15/30429 for English Version of documents as filed). |
(Sano, Michael B. et al.) Co-Pending Application No. PCT/US11/62067, filed Nov. 23, 2011, Specification, Claims, Figures. |
(Wasson, Elisa M. et al.) Co-pending U.S. Appl. No. 17/000,049, filed Aug. 21, 2020, Specification, Claims, Figures. |
Abiror, I.G., et al., “Electric Breakdown of Bilayer Lipid-Membranes .1. Main Experimental Facts and Their Qualitative Discussion”, Bioelectrochemistry and Bioenergetics, 6(1): p. 37-52 (1979). |
Agerholm-Larsen, B., et al., “Preclinical Validation of Electrochemotherapy as an Effective Treatment for Brain Tumors”, Cancer Research 71: 3753-3762 (2011). |
Alberts et al., “Molecular Biology of the Cell,” 3rd edition, Garland Science, New York, 1994, 1 page. |
Al-Sakere et al., “Tumor ablation with irreversible electroporation,” PLoS ONE, 2, e1135, 2007, 8 pages. |
Amasha, et al., Quantitative Assessment of Impedance Tomography for Temperature Measurements in Microwave Hyperthermia, Clin. Phys. Physiol. Meas., 1998, Suppl. A, 49-53. |
Andreason, Electroporation as a Technique for the Transfer of Macromolecules into Mammalian Cell Lines, J. Tiss. Cult. Meth., 15:56-62, 1993. |
Appelbaum, L., et al., “US Findings after Irreversible Electroporation Ablation: Radiologic-Pathologic Correlation” Radiology 262(1), 117-125 (2012). |
Arena et al. “High-Frequency Irreversible Electroporation (H-FIRE) for Non-thermal Ablation without Muscle Contraction.” Biomed. Eng. Online, vol. 10, 20 pages (2011). |
Arena, C.B., et al., “A three-dimensional in vitro tumor platform for modeling therapeutic irreversible electroporation.” Biophysical Journal, 2012.103(9): p. 2033-2042. |
Arena, Christopher B., et al., “Towards the development of latent heat storage electrodes for electroporation-based therapies”, Applied Physics Letters, 101, 083902 (2012). |
Arena, Christopher B., et al., “Phase Change Electrodes for Reducing Joule Heating During Irreversible Electroporation”. Proceedings of the ASME 2012 Summer Bioengineering Conference, SBC2012, Jun. 20-23, 2012, Fajardo, Puerto Rico. |
Asami et al., “Dielectric properties of mouse lymphocytes and erythrocytes.” Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1010 (1989) pp. 49-55. |
Bagla, S. and Papadouris, D., “Percutaneous Irreversible Electroporation of Surgically Unresectable Pancreatic Cancer: A Case Report” J. Vascular Int. Radiol. 23(1), 142-145 (2012). |
Baker, et al., Calcium-Dependent Exocytosis in Bovine Adrenal Medullary Cells with Leaky Plasma Membranes, Nature, vol. 276, pp. 620-622, 1978. |
Ball, C., K.R. Thomson, and H. Kavnoudias, “Irreversible electroporation: a new challenge in “out of-operating theater” anesthesia.” Anesth Analg, 2010. 110(5): p. 1305-9. |
Bancroft, et al., Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications, Tissue Engineering, vol. 9, No. 3, 2003, p. 549-554. |
Baptista et al., “The Use of Whole Organ Decellularization for the Generation of a Vascularized Liver Organoid,” Heptatology, vol. 53, No. 2, pp. 604-617 (2011). |
Barber, Electrical Impedance Tomography Applied Potential Tomography, Advances in Biomedical Engineering, Beneken and Thevenin, eds., IOS Press, pp. 165-173, 1993. |
Beebe, S.J., et al., “Diverse effects of nanosecond pulsed electric fields on cells and tissues”, DNA and Cell Biology, 22(12): 785-796 (2003). |
Beebe, S.J., et al., Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. PPPS-2001 Pulsed Power Plasma Science 2001, 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference, Digest of Technical Papers (Cat. No. 01CH37251). IEEE, Part vol. 1, 2001, pp. 211-215, vol. I, Piscataway, NJ, USA. |
Beebe, S.J., et al.,, “Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells”, FASEB J, 17(9): p. 1493-5 (2003). |
Beitel-White, N., S. Bhonsle, R. Martin, and R. V. Davalos, “Electrical characterization of human biological tissue for irreversible electroporation treatments,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018, pp. 4170-4173. |
Belehradek, J., et al., “Electropermeabilization of Cells in Tissues Assessed by the Qualitative and Quantitative Electroloading of Bleomycin”, Biochimica Et Biophysica Acta-Biomembranes, 1190(1): p. 155-163 (1994). |
Ben-David, E. et al., “Irreversible Electroporation: Treatment Effect Is Susceptible to Local Environment and Tissue Properties,” Radiology, vol. 269, No. 3, 2013, 738-747. |
Ben-David, E., et al., “Characterization of Irreversible Electroporation Ablation in In Vivo Procine Liver” Am. J. Roentgenol. 198(1), W62-W68 (2012). |
Benz, R., et al. “Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study”. J Membr Biol, 48(2): p. 181-204 (1979). |
Bhonsle, S. et al., “Characterization of Irreversible Electroporation Ablation with a Validated Perfused Organ Model,” J. Vasc. Interv. Radiol., vol. 27, No. 12, pp. 1913-1922.e2, 2016. |
Bhonsle, S., M. F. Lorenzo, A. Safaai-Jazi, and R. V. Davalos, “Characterization of nonlinearity and dispersion in issue impedance during high-frequency electroporation,” IEEE Transactions on Biomedical Engineering, vol. 65, No. 10, pp. 2190-2201, 2018. |
Blad, et al., Impedance Spectra of Tumour Tissue in Comparison with Normal Tissue; a Possible Clinical Application for Electrical Impedance Tomography, Physiol. Meas. 17 (1996) A105-A115. |
Pending U.S. Appl. No. 14/686,380, Response to Oct. 6, 2020 Final Office Action with RCE, dated Jan. 6, 2020, 11 pages. |
Pending U.S. Appl. No. 14/686,380, Amendment after Notice of Appeal, dated Oct. 12, 2021, 6 pages. |
Pending U.S. Appl. No. 14/686,380, Non-Final Office Action dated May 7, 2021, 17 pages. |
Pending U.S. Appl. No. 16/375,878, Applicant-Initiated Interview Summary dated Aug. 23, 2022, 7 pages. |
Pending U.S. Appl. No. 16/375,878, Final Office Action dated Apr. 15, 2022, 8 pages. |
Pending U.S. Appl. No. 16/375,878, Final Office Action dated Aug. 18, 2023, 11 pages. |
Pending U.S. Appl. No. 16/375,878, Non-Final Office Action dated Jan. 23, 2023, 8 pages. |
Pending U.S. Appl. No. 16/375,878, Non-Final Office Action dated Jun. 24, 2021, 8 pages. |
Pending U.S. Appl. No. 16/375,878, Notice of Allowance dated Nov. 15, 2023, 6 pages. |
Pending U.S. Appl. No. 16/375,878, Response to Apr. 15, 2022 Final Office Action, dated Aug. 15, 2022, 8 pages. |
Pending U.S. Appl. No. 16/375,878, Response to Aug. 18, 2023 Final Office Action, dated Oct. 18, 2023, 9 pages. |
Pending U.S. Appl. No. 16/375,878, Response to Jan. 23, 2023 Non-Final Office Action, dated Apr. 24, 2023, 10 pages. |
Pending U.S. Appl. No. 16/375,878, Response to Jun. 24, 2021 Non-Final Office Action, dated Dec. 22, 2021, 8 pages. |
Pending U.S. Appl. No. 16/747,219, Applicant-Initiated Interview Summary dated Aug. 3, 2022, 4 pages. |
Pending U.S. Appl. No. 16/747,219, Final Office Action dated Nov. 10, 2022, 12 pages. |
Pending U.S. Appl. No. 16/747,219, Non-Final Office Action dated Mar. 31, 2022, 12 pages. |
Pending U.S. Appl. No. 16/747,219, Non-Final Office Action dated May 25, 2023, 13 pages. |
Pending U.S. Appl. No. 16/747,219, Preliminary Amendment filed Jan. 4, 2021, 5 pages. |
Pending U.S. Appl. No. 16/747,219, Response to Mar. 31, 2022 Non-Final Office Action, dated Aug. 1, 2022, 8 pages. |
Pending U.S. Appl. No. 16/747,219, Response to May 25, 2023 Non-Final Office Action, dated Aug. 25, 2023, 9 pages. |
Pending U.S. Appl. No. 16/747,219, Response to Nov. 10, 2022 Final Office Action, dated Feb. 10, 2023, 6 pages. |
Pending U.S. Appl. No. 16/865,031, Final Office Action dated May 24, 2023, 18 pages. |
Pending U.S. Appl. No. 16/865,031, Non-Final Office Action dated Nov. 28, 2022, 16 pages. |
Pending U.S. Appl. No. 16/865,031, Notice of Allowance dated Oct. 4, 2023, 10 pages. |
Pending U.S. Appl. No. 16/865,031, Response to May 24, 2023 Final Office Action, dated Jul. 25, 2023, 8 pages. |
Pending U.S. Appl. No. 16/865,031, Response to Nov. 28, 2022 Non-Final Office Action, dated Feb. 27, 2023, 10 pages. |
Pending U.S. Appl. No. 16/865,031, Second Preliminary Amendment, filed Sep. 17, 2021, 10 pages. |
Pending U.S. Appl. No. 16/865,772, Final Office Action dated Aug. 22, 2022, 18 pages. |
Pending U.S. Appl. No. 16/865,772, Final Office Action dated Aug. 4, 2023, 19 pages. |
Pending U.S. Appl. No. 16/865,772, Non-Final Office Action dated Apr. 11, 2022, 16 pages. |
Pending U.S. Appl. No. 16/865,772, Non-Final Office Action dated Jan. 20, 2023, 17 pages. |
Pending U.S. Appl. No. 16/865,772, Response to Apr. 11, 2022 Non-Final Office Action, dated Jul. 11, 2022, 8 pages. |
Pending U.S. Appl. No. 16/865,772, Response to Aug. 22, 2022 Final Office Action, dated Dec. 22, 2022, 8 pages. |
Pending U.S. Appl. No. 16/865,772, Response to Jan. 20, 2023 Non-Final Office Action, dated Apr. 20, 2023, 8 pages. |
Pending U.S. Appl. No. 16/865,772, Second Preliminary Amendment filed Jun. 30, 2020, 4 pages. |
Pending U.S. Appl. No. 16/865,772, Third Preliminary Amendment, filed Sep. 17, 2021, 6 pages. |
Pending U.S. Appl. No. 16/915,760, Applicant-Initiated Interview Summary dated Aug. 8, 2023, 2 pages. |
Pending U.S. Appl. No. 16/915,760, Final Office Action dated Aug. 10, 2023, 9 pages. |
Pending U.S. Appl. No. 16/915,760, Final Office Action dated Jun. 2, 2023, 8 pages. |
Pending U.S. Appl. No. 16/915,760, Non-Final Office Action dated Jan. 19, 2023, 8 pages. |
Pending U.S. Appl. No. 16/915,760, Notice of Allowance dated Nov. 29, 2023, 7 pages. |
Pending U.S. Appl. No. 16/915,760, Response to Aug. 10, 2023 Final Office Action, dated Nov. 10, 2023, 6 pages. |
Pending U.S. Appl. No. 16/915,760, Response to Jan. 19, 2023 Non-Final Office Action, dated Apr. 19, 2023, 8 pages. |
Pending U.S. Appl. No. 16/915,760, Response to Sep. 20, 2022 Restriction Requirement, filed Nov. 21, 2022, 2 pages. |
Pending U.S. Appl. No. 16/915,760, Restriction Requirement dated Sep. 20, 2022, 6 pages. |
Pending U.S. Appl. No. 17/000,049, Response to Jul. 31, 2023 Restriction Requirement dated Nov. 9, 2023, 8 pages. |
Pending U.S. Appl. No. 17/000,049, Restriction Requirement dated Jul. 31, 2023, 6 pages. |
Pending U.S. Appl. No. 17/172,731, Final Office Action dated Jul. 12, 2023, 11 pages. |
Pending U.S. Appl. No. 17/172,731, Non-Final Office Action dated Feb. 15, 2023, 7 pages. |
Pending U.S. Appl. No. 17/172,731, Non-Final Office Action dated Oct. 31, 2023, 13 pages. |
Erez, et al., Controlled Destruction and Temperature Distributions in Biological Tissues Subjected to Monoactive Electrocoagulation, Transactions of the ASME: Journal of Mechanical Design, vol. 102, Feb. 1980. |
Ermolina et al., “Study of normal and malignant white blood cells by time domain dielectric spectroscopy.” IEEE Transactions on Dielectrics and Electrical Insulation, 8 (2001) pp. 253-261. |
Esser, A.T., et al., “Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue”. Technol Cancer Res Treat, 6(4): p. 261-74 (2007). |
Esser, A.T., et al., “Towards Solid Tumor Treatment by Nanosecond Pulsed Electric Fields”, Technology in Cancer Research & Treatment, 8(4): p. 289-306 (2009). |
Faroja, M., et al., “Irreversible Electroporation Ablation: Is the entire Damage Nonthermal?”, Radiology, 266(2), 162-470 (2013). |
Fischbach et al., “Engineering tumors with 3D scaffolds.” Nat Meth 4, pp. 855-860 (2007). |
Flanagan et al., “Unique dielectric properties distinguish stem cells and their differentiated progeny.” Stem Cells, vol. 26, pp. 656-665 (2008). |
Fong et al., “Modeling Ewing sarcoma tumors in vitro with 3D scaffolds.” Proceedings of the National Academy of Sciences vol. 110, pp. 6500-6505 (2013). |
Foster RS, “High-intensity focused ultrasound in the treatment of prostatic disease”, European Urology, 1993, vol. 23 Suppl 1, pp. 29-33. |
Foster, R.S., et al., Production of Prostatic Lesions in Canines Using Transrectally Administered High-Intensity Focused Ultrasound. Eur. Urol., 1993; 23: 330-336. |
Fox, et al., Sampling Conductivity Images via MCMC, Mathematics Department, Auckland University, New Zealand, May 1997. |
Frandsen, S. K., H. Gissel, P. Hojman, T. Tramm, J. Eriksen, and J. Gehl. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res. 72:1336-41, 2012. |
Freeman, S.A., et al., Theory of Electroporation of Planar Bilayer-Membranes—Predictions of the Aqueous Area, Change in Capacitance, and Pore-Pore Separation. Biophysical Journal, 67(1): p. 42-56 (1994). |
Garcia et al., “Irreversible electroporation (IRE) to treat brain cancer.” ASME Summer Bioengineering Conference, Marco Island, FL, Jun. 25-29, 2008, 2 pages. |
Garcia P.A., et al., “7.0-T Magnetic Resonance Imaging Characterization of Acute Blood-Brain-Barrier Disruption Achieved with Intracranial Irreversible Electroporation”, PLOS ONE, Nov. 2012, 7:11, e50482. |
Garcia P.A., et al., “Pilot study of irreversible electroporation for intracranial surgery”, Conf Proc IEEE Eng Med Biol Soc, 2009:6513-6516, 2009. |
Garcia, et al., “A Parametric Study Delineating Irreversible Electroporation from Thermal Damage Based on a Minimally Invasive Intracranial Procedure,” Biomed Eng Online, vol. 10:34, 22 pages, 2011. |
Garcia, P. A., et al., “Towards a predictive model of electroporation-based therapies using pre-pulse electrical measurements,” Conf Proc IEEE Eng Med Biol Soc, vol. 2012, pp. 2575-2578, 2012. |
Garcia, P. A., et al., “Non-thermal Irreversible Electroporation (N-TIRE) and Adjuvant Fractioned Radiotherapeutic Multimodal Therapy for Intracranial Malignant Glioma in a Canine Patient” Technol. Cancer Res. Treatment 10(1), 73-83 (2011). |
Garcia, P. et al. Intracranial nonthermal irreversible electroporation: in vivo analysis. J Membr Biol 236, 127-136 (2010). |
Garcia, Paulo A., Robert E. Neal II and Rafael V. Davalos, Chapter 3, Non-Thermal Irreversible Electroporation for Tissue Ablation, In: Electroporation in Laboratory and Clinical Investigations ISBN 978-1-61668-327-6 Editors: Enrico P. Spugnini and Alfonso Baldi, 2010, 22 pages. |
Garcia-Sanchez, T., A. Azan, I. Leray, J. Rosell-Ferrer, R. Bragos, and L. M. Mir, “Interpulse multifrequency electrical Impedance measurements during electroporation of adherent differentiated myotubes,” Bioelectrochemistry, vol. 105, pp. 123-135, 2015. |
Gascoyne et al., “Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis.” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1149, pp. 119-126 (1993). |
Gauger, et al., A Study of Dielectric Membrane Breakdown in the Fucus Egg, J. Membrane Biol., vol. 48, No. 3, pp. 249-264, 1979. |
Gawad, S., T. Sun, N. G. Green, and H. Morgan, “Impedance spectroscopy using maximum length sequences: Application to single cell analysis,” Review of Scientific Instruments, vol. 78, No. 5, p. 054301, 2007. |
Gehl, et al., In Vivo Electroporation of Skeletal Muscle: Threshold, Efficacy and Relation to Electric Field Distribution, Biochimica et Biphysica Acta 1428, 1999, pp. 233-240. |
Gençer, et al., Electrical Impedance Tomography: Induced-Current Imaging Achieved with a Multiple Coil System, IEEE Transactions on Biomedical Engineering, vol. 43, No. 2, Feb. 1996. |
Gilbert, et al., Novel Electrode Designs for Electrochemotherapy, Biochimica et Biophysica Acta 1334, 1997, pp. 9-14. |
Gilbert, et al., The Use of Ultrasound Imaging for Monitoring Cryosurgery, Proceedings 6th Annual Conference, EEE Engineering in Medicine and Biology, 107-111, 1984. |
Gilbert, T. W., et al., “Decellularization of tissues and organs”, Biomaterials, Elsevier Science Publishers, Barking, GB, vol. 27, No. 19, Jul. 1, 2006, pp. 3675-3683. |
Gimsa et al., “Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm.” Biophysical Journal, vol. 71, pp. 495-506 (1996). |
Glidewell, et al., The Use of Magnetic Resonance Imaging Data and the Inclusion of Anisotropic Regions in Electrical Impedance Tomography, Biomed, Sci. Instrum. 1993; 29: 251-7. |
Golberg, A. and Rubinsky, B., “A statistical model for multidimensional irreversible electroporation cell death in tissue.” Biomed Eng Online, 9, 13 pages, 2010. |
Gothelf, et al., Electrochemotherapy: Results of Cancer Treatment Using Enhanced Delivery of Bleomycin by Electroporation, Cancer Treatment Reviews 2003: 29: 371-387. |
Gowrishankar T.R., et al., “Microdosimetry for conventional and supra-electroporation in cells with organelles”. Biochem Biophys Res Commun, 341(4): p. 1266-76 (2006). |
Granot, Y., A. Ivorra, E. Maor, and B. Rubinsky, “In vivo imaging of irreversible electroporation by means of electrical impedance tomography,” Physics in Medicine & Biology, vol. 54, No. 16, p. 4927, 2009. |
Griffiths, et al., A Dual-Frequency Electrical Impedance Tomography System, Phys. Med. Biol., 1989, vol. 34, No. 10, pp. 1465-1476. |
Griffiths, The Importance of Phase Measurement in Electrical Impedance Tomography, Phys. Med. Biol., 1987, vol. 32, No. 11, pp. 1435-1444. |
Griffiths, Tissue Spectroscopy with Electrical Impedance Tomography: Computer Simulations, IEEE Transactions on Biomedical Engineering, vol. 42, No. 9, Sep. 1995. |
Gumerov, et al., The Dipole Approximation Method and Its Coupling with the Regular Boundary Element Method for Efficient Electrical Impedance Tomography, Boundary Element Technology XIII, 1999. |
Hapala, Breaking the Barrier: Methods for Reversible Permeabilization of Cellular Membranes, Critical Reviews in Biotechnology, 17(2): 105-122, 1997. |
Helczynska et al., “Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ.” Cancer Research, vol. 63, pp. 1441-1444 (2003). |
Heller, et al., Clinical Applications of Electrochemotherapy, Advanced Drug Delivery Reviews, vol. 35, pp. 119-129, 1999. |
Hjouj, M., et al., “Electroporation-Induced BBB Disruption and Tissue Damage Depicted by MRI”, Neuro-Oncology 13: Issue suppl 3, abstract ET-32 (2011). |
Hjouj, M., et al., “MRI Study on Reversible and Irreversible Electroporation Induced Blood Brain Barrier Disruption”, PLOS ONE, Aug. 2012, 7:8, e42817. |
Hjouj, Mohammad et al., “Electroporation-Induced BBB Disruption and Tissue Damage Depicted by MRI,” Abstracts from 16th Annual Scientific Meeting of the Society for Neuro-Oncology in Conjunction with the AANS/CNS Section on Tumors, Nov. 17-20, 2011, Orange County California, Neuro-Oncology Supplement, vol. 13, Supplement 3, p. ii114. |
Ho, et al., Electroporation of Cell Membranes: A Review, Critical Reviews in Biotechnology, 16(4): 349-362, 1996. |
Hoejholt, K. L. et al. Calcium electroporation and electrochemotherapy for cancer treatment: Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy. Scientific Reports (Mar. 18, 2019) 9:4758, p. 1-12. |
Holder, et al., Assessment and Calibration of a Low-Frequency System for Electrical Impedance Tomography (EIT), Optimized for Use in Imaging Brain Function in Ambulant Human Subjects, Annals of the New York Academy of Science, vol. 873, Issue 1, Electrical BI, pp. 512-519, 1999. |
Hu, Q., et al., “Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse”, Physical Review E, 71(3) (2005). |
(Aycock, Kenneth N. et al.) Co-pending U.S. Appl. No. 17/535,742, filed Nov. 26, 2021, Specification, Claims, and Figures. |
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US21/51551, filed Sep. 22, 2021, Specification, Claims, Figures. |
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US23/15118, filed Mar. 13, 2023, Specification, Claims, Figures. |
(Davalos, Rafael et al.) Co-Pending Application No. PCT/US23/76626, filed Oct. 11, 2023, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 17/172,731, filed Feb. 10, 2021, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 17/277,662, filed Mar. 18, 2021, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 18/027,824, filed Mar. 22, 2023, Specification, Claims, and Figures. |
(Davalos, Rafael V. et al.) Co-Pending U.S. Appl. No. 18/130,330, filed Apr. 3, 2023, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 18/348,605, filed Jul. 7, 2023, Specification, Claims, Drawings. |
(Davalos, Rafael V. et al.) Co-pending Application No. 19861489.3 filed Apr. 16, 2021, Specification, figures (See PCT/US19/51731), and claims (3 pages). |
(Garcia, Paulo A. et al.) Co-Pending U.S. Appl. No. 18/100,835, filed Jan. 24, 2023, Specification, Claims, Figures. |
(Garcia, Paulo A. et al.) Co-pending U.S. Appl. No. 17/591,992, filed Feb. 3, 2022, Specification, Claims, Figures. |
(Neal, Robert E. et al.) Co-pending U.S. Appl. No. 18/120,158, filed Mar. 10, 2023, Specification, Claims, Figures. |
(Neal, Robert et al.) Co-pending U.S. Appl. No. 18/502,967, filed Nov. 6, 2023, Specification, Claims, Figures. |
(Neal, Robert et al.) Co-pending U.S. Appl. No. 17/338,960, filed Jun. 4, 2021, Specification, Claims, Figures. |
(Neal, Robert et al.) Co-pending U.S. Appl. No. 18/528,051, filed Dec. 4, 2023, Specification, Claims, Figures. |
(O'Brien, Timothy J. et al.) Co-Pending U.S. Appl. No. 17/152,379, filed Jan. 19, 2021, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 17/862,486, filed Jul. 12, 2022, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-pending U.S. Appl. No. 18/123,719, filed Mar. 20, 2023, Specification, Claims, Figures. |
(Sano, Michael B. et al.) Co-Pending Application No. CN 202011281572.3, filed Nov. 16, 2020, Specification, Claims, Figures (Chinese version, 129 pages (see also WO 2015/175570), English Version of claims, 2 pages). |
Alinezhadbalalami, N. et al., “Generation of Tumor-activated T cells Using Electroporation”, Bioelectrochemistry 142 (2021) 107886, Jul. 13, 2021, 11 pages. |
Arena, C. B. et al., “Theoretical Considerations of Tissue Electroporation With High-Frequency Bipolar Pulses,” IEEE Trans. Biomed. Eng., vol. 58, No. 5, 1474-1482, 2011, 9 pages. |
Bhonsle, S. P. et al., “Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses,” Biomed. Eng. (NY)., vol. 14, No. Suppl 3, 14 pages, 2015. |
Buist et al., “Efficacy of multi-electrode linear irreversible electroporation,” Europace, vol. 23, No. 3, pp. 464-468, 2021, 5 pages. |
Butikofer, R. et al., “Electrocutaneous Nerve Stimulation-I: Model and Experiment,” IEEE Trans. Biomed. Eng., vol. BME-25, No. 6, 526-531, 1978,6 pages. |
Butikofer, R. et al., “Electrocutaneous Nerve Stimulation-II: Stimulus Waveform Selection,” IEEE Trans. Biomed. Eng., vol. BME-26, No. 2, 69-75, 1979, abstract only, 2 pages. |
Cosman, E. R. et al., “Electric and Thermal Field Effects in Tissue Around Radiofrequency Electrodes,” Pain Med., vol. 6, No. 6, 405-424, 2005, 20 pages. |
Groen, M. H. A. et al., “In Vivo Analysis of the Origin and Characteristics of Gaseous Microemboli during Catheter-Mediated Irreversible Electroporation,” Europace, 2021, 23(1), 139-146. |
Guenther, E. et al., “Electrical breakdown in tissue electroporation,” Biochem. Biophys. Res. Commun., vol. 467, No. 4, 736-741, Nov. 2015, 15 pages. |
Macherey, O. et al., “Asymmetric pulses in cochlear implants: Effects of pulse shape, polarity, and rate,” JARO—J. Assoc. Res. Otolaryngol., vol. 7, No. 3, 253-266, 2006, 14 pages. |
McIntyre, C. C. et al., “Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle,” J. Neurophysiol., vol. 87, No. 2, 995-1006, 2002, 12 pages. |
McNeal, D. R., “Analysis of a Model for Excitation of Myelinated Nerve,” IEEE Trans. Biomed. Eng., vol. BME-23, No. 4, 329-337, 1976, 9 pages. |
Mercadal, B. et al., “Avoiding nerve stimulation in irreversible electroporation: A numerical modeling study,” Phys. Med. Biol., vol. 62, No. 20, 8060-8079, 2017, 28 pages. |
Mercadal, Borja et al. “Dynamics of Cell Death After Conventional IRE and H-FIRE Treatments”, Annals of Biomedical Engineering, vol. 48, No. 5, 2020, p. 1451-1462. |
Miklavčič, D. et al., “The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy,” Bioelectrochemistry, vol. 65, 121-128, 2004, 8 pages. |
Partridge, B. R. et al., “High-Frequency Irreversible Electroporation for treatment of Primary Liver Cancer: A Proof-of-Principle Study in Canine Hepatocellular Carcinoma,” J. Vasc. Interv. Radiol., vol. 31, No. 3, 482-491.e4, Mar. 2020, 19 pages. |
Patent No. JP 7051188, Notice of Reasons for Revocation dated Jan. 30, 2023 (3 pages) with English translation (5 pages). |
Patent No. JP 7051188, Opposition dated Jul. 4, 2022 (16 pages) with English translation (13 pages). |
Patent No. JP 7051188, Response to Jan. 30, 2023 Notice of Reasons for Revocation, dated Apr. 27, 2023 (9 pages) with English translation (10 pages). |
Patent No. JP 7051188, Response to Opposition dated Aug. 22, 2023 (21 pages) with English translation (25 pages). |
PCT Application No. PCT/US19/51731, International Preliminary Report on Patentability dated Mar. 23, 2021, 13 pages. |
Pending U.S. Appl. No. 14/686,380, Advisory Action dated Oct. 20, 2021, 3 pages. |
Pending U.S. Appl. No. 14/686,380, Amendment After Board Decision dated Apr. 3, 2023, 8 pages. |
Pending U.S. Appl. No. 14/686,380, Appeal Brief filed Nov. 5, 2021, 21 pages. |
Pending U.S. Appl. No. 14/686,380, Appeal Decision dated Jan. 30, 2023, 15 pages. |
Pending U.S. Appl. No. 14/686,380, Applicant Initiated Interview Summary dated Feb. 9, 2021, 3 pages. |
Pending U.S. Appl. No. 14/686,380, Applicant Initiated Interview Summary dated Mar. 8, 2021, 2 pages. |
Pending U.S. Appl. No. 14/686,380, Examiner's Answer to Appeal Brief, dated Feb. 18, 2022, 16 pages. |
Pending U.S. Appl. No. 14/686,380, Notice of Non-Compliant Amendment dated May 25, 2023, 3 pages. |
Pending U.S. Appl. No. 14/686,380, Reply Brief, dated Apr. 12, 2022, 4 pages. |
Zhang, Y., et al., MR imaging to assess immediate response to irreversible electroporation for targeted ablation of liver issues: preclinical feasibility studies in a rodent model. Radiology, 2010. 256(2): p. 424-32. |
Zhao, Y., S. Bhonsle, S. Dong, Y. Lv, H. Liu, A. Safaai-Jazi, R. V. Davalos, and C. Yao, “Characterization of conductivity changes during high-frequency irreversible electroporation for treatment planning,” IEEE Transactions on Biomedical Engineering, vol. 65, No. 8, pp. 1810-1819, 2017. |
Zimmermann, et al., Dielectric Breakdown of Cell Membranes, Biophysical Journal, vol. 14, No. 11, pp. 881-899, 1974. |
Zlotta, et al., Long-Term Evaluation of Transurethral Needle Ablation of the Prostate (TUNA) for Treatment of Benign Prostatic Hyperplasia (BPH): Clinical Outcome After 5 Years. (Abstract) Presented at 2001 AUA National Meeting, Anaheim, CA—Jun. 5, 2001. |
Zlotta, et al., Possible Mechanisms of Action of Transurethral Needle Ablation of the Prostate on Benign Prostatic Hyperplasia Symptoms: a Neurohistochemical Study, Reprinted from Journal of Urology, vol. 157, No. 3, Mar. 1997, pp 894-899. |
Bolland, F., et al., “Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering”, Biomaterials, Elsevier Science Publishers, Barking, GB, vol. 28, No. 6, Nov. 28, 2006, pp. 1061-1070. |
Bonakdar, M., E. L. Latouche, R. L. Mahajan, and R. V. Davalos, “The feasibility of a smart surgical probe for verification of IRE treatments using electrical impedance spectroscopy,” IEEE Trans. Biomed. Eng., vol. 62, No. 11, pp. 2674-2684, 2015. |
Boone, K., Barber, D. & Brown, B. Review—Imaging with electricity: report of the European Concerted Action on Impedance Tomography. J. Med. Eng. Technol. 21, 201-232 (1997). |
Boussetta, N., N. Grimi, N. I. Lebovka, and E. Vorobiev, “Cold” electroporation in potato tissue induced by pulsed electric field, Journal of food engineering, vol. 115, No. 2, pp. 232-236, 2013. |
Bower et al., “Irreversible electroporation of the pancreas: definitive local therapy without systemic effects.” Journal of surgical oncology, 2011. 104(1): p. 22-28. |
BPH Management Strategies: Improving Patient Satisfaction, Urology Times, May 2001, vol. 29, Supplement 1. |
Brown, et al., Blood Flow Imaging Using Electrical Impedance Tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, 175-179. |
Brown, S.G., Phototherapy of tumors. World J. Surgery, 1983. 7: p. 700-9. |
Bulvik, B. E. et al. “Irreversible Electroporation versus Radiofrequency Ablation: A Comparison of Local and Systemic Effects in a Small Animal Model,” Radiology, vol. 280, No. 2, 2016, 413-424. |
Cannon et al., “Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures.” Journal of Surgical Oncology, 6 pages (2012). |
Carpenter A.E. et al., “CellProfiler: image analysis software for identifying and quantifying cell phenotypes.” Genome Biol. 2006; 7(10): R100. Published online Oct. 31, 2006, 11 pages. |
Castellvi, Q., B. Mercadal, and A. Ivorra, “Assessment of electroporation by electrical impedance methods,” in Handbook of electroporation. Springer-Verlag, 2016, pp. 671-690. |
Cemazar M, Parkins CS, Holder AL, Chaplin DJ, Tozer GM, et al., “Electroporation of human microvascular endothelial cells: evidence for an anti-vascular mechanism of electrochemotherapy”, Br J Cancer 84: 565-570 (2001). |
Chandrasekar, et al., Transurethral Needle Ablation of the Prostate (TUNA)—a Propsective Study, Six Year Follow Up, (Abstract), Presented at 2001 National Meeting, Anaheim, CA, Jun. 5, 2001. |
Chang, D.C., “Cell Poration and Cell-Fusion Using an Oscillating Electric-Field”. Biophysical Journal, 56(4): p. 641-652 (1989). |
Charpentier, K.P., et al., “Irreversible electroporation of the pancreas in swine: a pilot study.” HPB: the official journal of the International Hepato Pancreato Biliary Association, 2010. 12(5): p. 348-351. |
Chen et al., “Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.” Lab on a Chip, vol. 11, pp. 3174-3181 (2011). |
Chen, M.T., et al., “Two-dimensional nanosecond electric field mapping based on cell electropermeabilization”, PMC Biophys, 2(1):9 (2009). |
Clark et al., “The electrical properties of resting and secreting pancreas.” The Journal of Physiology, vol. 189, pp. 247-260 (1967). |
Coates, C.W., et al., “The Electrical Discharge of the Electric Eel, Electrophorous Electricus,” Zoologica, 1937, 22(1), pp. 1-32. |
Cook, et al., ACT3: A High-Speed, High-Precision Electrical Impedance Tomograph, IEEE Transactions on Biomedical Engineering, vol. 41, No. 8, Aug. 1994. |
Corovic et al., “Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations,” Biomed Eng Online, 6, 14 pages, 2007. |
Cowley, Good News for Boomers, Newsweek, Dec. 30, 1996/Jan. 6, 1997. |
Cox, et al., Surgical Treatment of Atrial Fibrillation: A Review, Europace (2004) 5, S20-S-29. |
Creason, S. C., J. W. Hayes, and D. E. Smith, “Fourier transform faradaic admittance measurements iii. comparison of measurement efficiency for various test signal waveforms,” Journal of Electroanalytical chemistry and interfacial electrochemistry, vol. 47, No. 1, pp. 9-46, 1973. |
Crowley, Electrical Breakdown of Biomolecular Lipid Membranes as an Electromechanical Instability, Biophysical Journal, vol. 13, pp. 711-724, 1973. |
Dahl et al., “Nuclear shape, mechanics, and mechanotransduction.” Circulation Research vol. 102, pp. 1307-1318 (2008). |
Daskalov, I., et al., “Exploring new instrumentation parameters for electrochemotherapy—Attacking tumors with bursts of biphasic pulses instead of single pulses”, IEEE Eng Med Biol Mag, 18(1): p. 62-66 (1999). |
Daud, A.I., et al., “Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma,” Journal of Clinical Oncology, 26, 5896-5903, Dec. 20, 2008. |
Davalos et al., “Electrical impedance tomography for imaging tissue electroporation,” IEEE Transactions on Biomedical Engineering, 51, pp. 761-767, 2004. |
Davalos et al., “Theoretical analysis of the thermal effects during in vivo tissue electroporation.” Bioelectrochemistry, vol. 61(1-2): pp. 99-107, 2003. |
Davalos, et al., A Feasibility Study for Electrical Impedance Tomography as a Means to Monitor T issue Electroporation for Molecular Medicine, IEEE Transactions on Biomedical Engineering, vol. 49, No. 4, Apr. 2002. |
Davalos, et al., Tissue Ablation with Irreversible Electroporation, Annals of Biomedical Engineering, vol. 33, No. 2, p. 223-231, Feb. 2005. |
Davalos, R. V. & Rubinsky, B. Temperature considerations during irreversible electroporation. International Journal of Heat and Mass Transfer 51, 5617-5622, doi:10.1016/j.ijheatmasstransfer.2008.04.046 (2008). |
Davalos, Real-Time Imaging for Molecular Medicine through Electrical Impedance Tomography of Electroporation, Dissertation for Ph.D. in Engineering-Mechanical Engineering, Graduate Division of University of California, Berkeley, 2002. |
De Senneville, B. D. et al., “MR thermometry for monitoring tumor ablation,” European radiology, vol. 17, No. 9, pp. 2401-2410, 2007. |
De Vuyst, E., et al., “In situ bipolar Electroporation for localized cell loading with reporter dyes and investigating gap functional coupling”, Biophysical Journal, 94(2): p. 469-479 (2008). |
Dean, Nonviral Gene Transfer to Skeletal, Smooth, and Cardiac Muscle in Living Animals, Am J. Physiol Cell Physiol 289: 233-245, 2005. |
Demirbas, M. F., “Thermal Energy Storage and Phase Change Materials: An Overview” Energy Sources Part B 1(1), 85-95 (2006). |
Dev, et al., Medical Applications of Electroporation, IEEE Transactions of Plasma Science, vol. 28, No. 1, pp. 206-223, Feb. 2000. |
Dev, et al., Sustained Local Delivery of Heparin to the Rabbit Arterial Wall with an Electroporation Catheter, Catheterization and Cardiovascular Diagnosis, Nov. 1998, vol. 45, No. 3, pp. 337-343. |
Duraiswami, et al., Boundary Element Techniques for Efficient 2-D and 3-D Electrical Impedance Tomography, Chemical Engineering Science, vol. 52, No. 13, pp. 2185-2196, 1997. |
Duraiswami, et al., Efficient 2D and 3D Electrical Impedance Tomography Using Dual Reciprocity Boundary Element Techniques, Engineering Analysis with Boundary Elements 22, (1998) 13-31. |
Duraiswami, et al., Solution of Electrical Impedance Tomography Equations Using Boundary Element Methods, Boundary Element Technology XII, 1997, pp. 226-237. |
Edd et al., “Mathematical modeling of irreversible electroporation for treatment planning.” Technology in Cancer Research and Treatment, vol. 6, No. 4, pp. 275-286 (2007). |
Edd, J., et al., In-Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporaton, IEEE Trans. Biomed. Eng. 53 (2006) p. 1409-1415. |
Ellis TL, Garcia PA, Rossmeisl JH, Jr., Henao-Guerrero N, Robertson J, et al., “Nonthermal irreversible electroporation for intracranial surgical applications. Laboratory investigation”, J Neurosurg 114: 681-688 (2011). |
Eppich et al., “Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants.” Nature Biotechnology 18, pp. 882-887 (2000). |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 18/402,231, filed Jan. 2, 2024, Specification, Claims, Figures. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 18/404,473, filed Jan. 4, 2024, Specification, Claims, Figures. |
(O'Brien, Timothy J. et al.) Co-Pending U.S. Appl. No. 18/608,958, filed Mar. 19, 2024, Specification, Claims, Figures. |
Bondarenko, A. and G. Ragoisha, Eis spectrum analyser (the program is available online at http://www.abc.chemistry.bsu.by/vi/analyser/) (Accessed Aug. 28, 2020). |
Lv, Y. et al. “The Englargement of Ablation Area by Electrolytic Irreversible Electroporation (E-IRE) Using Pulsed Field with Bias DC Field”, Annals of Biomedical Engineering, vol. 50, No. 12, Dec. 2022, 10 pages. |
Pending U.S. Appl. No. 16/747,219, Notice of Allowance dated Dec. 26, 2023, 12 pages. |
Pending U.S. Appl. No. 17/000,049, Final Office Action dated Mar. 29, 2024, 15 pages. |
Pending U.S. Appl. No. 17/000,049, Response to Dec. 11, 2023 Non-Final Office Action, dated Mar. 11, 2024, 9 pages. |
Pending U.S. Appl. No. 17/172,731, Response to Oct. 31, 2023 Non-Final Office Action, dated Jan. 31, 2024, 7 pages. |
Pending U.S. Appl. No. 17/591,992, Non-Final Office Action dated Feb. 23, 2024, 9 pages. |
Pending U.S. Appl. No. 17/591,992, Non-Final Office Action dated Jan. 24, 2024, 7 pages. |
Pending U.S. Appl. No. 18/130,330, Second Preliminary Amendment dated Feb. 26, 2024, 3 pages. |
Pending U.S. Appl. No. 18/402,231, Preliminary Amendment dated Mar. 5, 2024, 5 pages. |
Pending Application No. EP 15793361.5, Communication dated Feb. 8, 2024, 4 pages. |
Pending Application No. JP 2016-567747, Decision to Grant with English Version of allowed claims, dated Aug. 26, 2019, 9 pages. |
Pending Application No. PCT/US23/76626, Invitation to Pay Additional Fees dated Feb. 21, 2024, 2 pages. |
U.S. Appl. No. 14/686,380, file history through Dec. 2023, 265 pages. |
U.S. Appl. No. 16/865,772, file history through Aug. 2023, 110 pages. |
(Davalos, Rafael V. et al.) Co-pending U.S. Appl. No. 18/767,746) filed Jul. 9, 2024, Specification, Claims, Figures. |
Pending U.S. Appl. No. 17/000,049, Examiner Interview Summary dated Jul. 8, 2024, 7 pages. |
Pending U.S. Appl. No. 17/152,379, Non-Final Office Action dated Apr. 23, 2024, 14 pages. |
Pending U.S. Appl. No. 17/172,731, Notice of Allowance dated Jun. 27, 2027, 7 pages. |
Pending U.S. Appl. No. 17/172,731, Response to Apr. 10, 2024 Final Office Action, dated Jun. 10, 2024, 6 pages. |
Pending U.S. Appl. No. 17/591,992, Response to Feb. 23, 2024 Non-Final Office Action dated May 23, 2024, 10 pages. |
Pending U.S. Appl. No. 18/100,835, Restriction Requirement dated Jun. 28, 2024, 6 pages. |
Pending U.S. Appl. No. 18/120,158, Non-Final Office Action dated Jun. 20, 2024, 13 pages. |
Pending U.S. Appl. No. 18/404,473, Preliminary Amendment dated May 13, 2024, 6 pages. |
Pending U.S. Appl. No. 18/502,967, Non-Final Office Action dated Jun. 18, 2024, 25 pages. |
Pending Application No. PCT/US23/76626, International Search Report and Written Opinion, dated Apr. 17, 2024, 12 pages. |
Pending U.S. Appl. No. 17/152,379), Response to Apr. 23, 2024 Non-Final Office Action, filed Aug. 23, 2024, 7 pages. |
Pending U.S. Appl. No. 17/591,992, Final Office Action dated Jul. 30, 2024, 10 pages. |
Pending U.S. Appl. No. 18/120,158, Response to Jun. 20, 2024 Non-Final Office Action, dated Sep. 20, 2024, 8 pages. |
Pending U.S. Appl. No. 18/348,605, Non-Final Office Action dated Sep. 5, 2024, 10 pages. |
Pending U.S. Appl. No. 18/502,967, Response to Jun. 18, 2024 Non-Final Office Action dated Sep. 18, 2024, 12 pages. |
Pending U.S. Appl. No. 18/846,198, Preliminary Amendment dated Sep. 11, 2024, 8 pages. |
Pending Application No. EP 15793361.5, Brief Communication from the EPO, dated Aug. 19, 2024, 1 page. |
Pending Application No. EP 15793361.5, EPO Result of Consultation, Aug. 12, 2024, 3 pages. |
Pending Application No. EP 15793361.5, Response to Feb. 8, 2024 Communication, Filed Aug. 2, 2024, 40 pages. |
Pending Application No. EP 15793361.5, Supplemental Response to Feb. 8, 2024 Communication, Filed Aug. 16, 2024, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20210023362 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
62895652 | Sep 2019 | US | |
62878194 | Jul 2019 | US |