This disclosure generally relates to spectroscopy techniques and, more particularly, spectroscopy techniques for discriminating between enantiomers of chiral molecules.
Many molecules can exist as stable right-handed or left-handed enantiomers, which can be referred as R- and S-enantiomers. Although such molecules can have substantially identical physical and chemical properties in a symmetric environment, the molecules can have quite different chemical properties when interacting with other chiral molecules. This can be of great importance in biological systems, as the physiological effect of drugs and other biologically active molecules can vary significantly between enantiomers. There is, therefore, considerable interest in a general, sensitive technique for enantiomer-specific chemical detection.
It is against this background that a need arose to develop the embodiments described herein.
Some embodiments of this disclosure relate to extensions of Fourier transform microwave (FTMW) spectroscopy to provide a general, sensitive, enantiomer-specific detection technique for polar chiral molecules. In some implementations, the extensions can be viewed as a version of three wave mixing, by exploiting resonance enhancement in chiral gases with relatively long (e.g., several μs typical) decoherence times. Enantiomers can be distinguished by encoding a chirality-dependent complex Rabi frequency of electric dipole transitions onto a phase of emitted radiation. The extreme selectivity of rotational resonances allows the technique to identify enantiomers even amid a complex mixture, including a mixture that includes many other chiral compounds a situation applicable for many real world samples. The technique can be applied to any gas-phase asymmetric top molecule with non-zero electric dipole moments μa, μb, and μc.
Embodiments of this disclosure include enhancements of Balle-Flygare type and chirped pulse (CP)-FTMW type spectrometers, including spectrometers using vapor cells, supersonic jets, and buffer gas cooling-based sources of cold molecules. In some implementations, broadband, enantiomer-specific resolution of a complex mixture can be achieved at the level of one part per thousand or one part per ten thousand (or even lower concentrations) and in a few minutes of integration. Enantiomer-specific sensitivities at the part per million level for single mixture components can be achieved in resonantly enhanced Balle-Flygare-type spectrometers of some implementations.
In one embodiment, a spectrometer includes: (1) a housing defining a volume into which an analyte gas is introduced, the analyte gas including a chiral component; (2) a microwave generator coupled to the housing and configured to apply a microwave pulse to the analyte gas, the microwave pulse being polarized along a first direction; (3) an electric field generator coupled to the housing and configured to apply a switched electric field to the analyte gas, the electric field being oriented along a second direction different from the first direction; (4) a phase-sensitive microwave detector coupled to the housing and configured to detect an induced microwave emitted by the analyte gas, the induced microwave being polarized along a third direction different from the first direction and the second direction; and (5) an analyzer coupled to the phase-sensitive microwave detector and configured to detect an enantiomer of the chiral component based on a phase of the induced microwave.
In another embodiment, a spectrometer includes: (1) a housing defining a volume into which an analyte gas is introduced, the analyte gas including a chiral component; (2) a microwave generator coupled to the housing and configured to apply a microwave pulse to the analyte gas, the microwave pulse configured to induce a first polarization along a first direction; (3) an electric field generator coupled to the housing and configured to apply a switched electric field to the analyte gas, the electric field configured to induce a second polarization along a second direction different from the first direction; (4) a set of microwave detectors coupled to the housing and configured to detect the first polarization and the second polarization; and (5) an analyzer coupled to the set of microwave detectors and configured to detect a chirality of the chiral component based on a phase of the second polarization.
In a further embodiment, a spectrometer includes: (1) a housing defining a volume into which an analyte gas is introduced, the analyte gas including a chiral component; (2) a first generator coupled to the housing and configured to apply a first pulse to the analyte gas, the first pulse being polarized along a first direction; (3) a second generator coupled to the housing and configured to apply a second pulse to the analyte gas, the second pulse being polarized along a second direction different from the first direction; (4) a phase-sensitive detector coupled to the housing and configured to detect an induced radiation emitted by the analyte gas, the induced radiation being polarized along a third direction different from the first direction and the second direction; and (5) an analyzer coupled to the phase-sensitive detector and configured to detect an enantiomer of the chiral component based on a phase of the induced radiation.
Other aspects and embodiments of this disclosure are also contemplated. The foregoing summary and the following detailed description are not meant to restrict the disclosure to any particular embodiment but are merely meant to describe some embodiments of this disclosure.
For a better understanding of the nature and objects of some embodiments of this disclosure, reference should be made to the following detailed description taken in conjunction with the accompanying drawings.
The following definitions apply to some of the aspects described with respect to some embodiments of this disclosure. These definitions may likewise be expanded upon herein.
As used herein, the singular terms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an object can include multiple objects unless the context clearly dictates otherwise.
As used herein, the term “set” refers to a collection of one or more objects. Thus, for example, a set of objects can include a single object or multiple objects. Objects of a set also can be referred to as members of the set. Objects of a set can be the same or different. In some instances, objects of a set can share one or more common characteristics.
As used herein, the terms “substantially” and “substantial” refer to a considerable degree or extent. When used in conjunction with an event or circumstance, the terms can refer to instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation, such as accounting for typical tolerance levels or variability of the embodiments described herein.
The apparatus 100 operates according to an extension of techniques of FTMW spectroscopy as described further below. This extension can be referred as an enantiomer-dependent, one-color Stark FTMW spectroscopy in some implementations. In effect, an enantiomer-dependent sign of a complex Rabi frequency can be transferred into a sign or phase of a real observable, in this case an ensemble polarization and hence the phase of induced radiation.
Specifying a molecule's three rotational constants, A, B, and C, and three corresponding dipole moments, μa, μb, and μc, can be sufficient to specify the molecule's chirality. Reversing the sign of any one of μa, μb, and μc typically results in a description of the opposite enantiomer. In some implementations, axes can be defined such that one enantiomer has all of μa, μb, and μc positive, and the other has all of μa, μb, and μc negative. Axes also can be chosen such that μa and μb are positive for both enantiomers, so the R- and S-enantiomers are distinguished by the sign of μc. In either case, the sign of μa,μb,μc changes between enantiomers. The techniques described here can be generally applied to any gas-phase asymmetric top molecule with nonzero μa, μb, and μc, encompassing a broad range of relatively complex molecules that can be vaporized.
The energy levels and rotational transition strengths of a molecule interacting with an electric field typically depend on A, B, C and the absolute value of the dipole moments, |μa|, |μb|, and |μc|. Measurements of these levels or transitions strengths therefore typically cannot determine the chirality of the molecule. In contrast, a complex Rabi frequency representing electric dipole transitions between chiral states can differ in sign for opposite enantiomers. By exploiting a 3-level system where electric dipole transitions are allowed on most or all transitions, this complex Rabi frequency and, hence, an enantiomer can be determined from a phase of a (real) macroscopic oscillating electric field produced by a molecular ensemble.
As illustrated in
In traditional FTMW spectroscopy, an analyte gas is exposed to a short, intense microwave pulse P1 of linearly polarized microwaves from an antenna A. In some implementations, the pulse P1 is substantially monochromatic, although deviations from monochromaticity are also contemplated. The pulse P1 is generated by a microwave synthesizer 106 and amplified by a switchable amplifier 108. Another polarized microwave source or generator can be used in place of, or in combination with, the microwave synthesizer 106 and the switchable amplifier 108. The intensity and frequency of this pulse are such that a population of molecules of either R-X or S-X in a given state |f> will be partially polarized by driving the molecules into a superposition of the state |f> and a connected state |g>. The molecules will then produce an oscillating electric field ∈1 at a frequency vfg, and this field is collected by the antenna A and recorded or otherwise processed, typically via phase-sensitive heterodyne detection techniques. This radiation persists for a decoherence time τdecoh, after which the molecules are re-thermalized via collisions, and the experiment can be repeated. τdocoh typically varies from about 10−3 to 10−5 seconds in traditional FTMW spectroscopy. In a typical application, many iterations of the experiment can be averaged in order to achieve a higher sensitivity. Analyte molecules can be identified because each species of molecules radiates in a characteristic set of frequencies, corresponding to allowed transitions vfg for various |f> and |g>. In traditional FTMW spectroscopy, R-X and S-X generally radiate at the same frequencies and thus cannot be distinguished. Another microwave detector, such as a phase-sensitive microwave detector, can be used in place of, or in combination with, the antenna A.
For enantiomer-specific detection, the apparatus 100 is configured to switch on or off an electric field Ex that is applied to the volume 104 of molecules polarized by P1. The field Ex is switched on or off after the pulse P1 (e.g., after the end, the peak, or a majority or substantial fraction of P1) and before the time when the radiation is collected; the field therefore should be switched faster than the decoherence time τdecoh. Ex is substantially orthogonal to the polarization of P1 in the illustrated embodiment. This switched electric field induces a second oscillating electric field ∈2 at a frequency vfg, with this second field ∈2 substantially orthogonal to both P1 and Ex. ∈2 is collected by a second antenna, namely antenna B, and recorded or otherwise processed along with ∈1. The sign (or phase) and the magnitude of ∈2 are extracted to provide a quantitative indicator of enantiomeric excess. The sign of the field ∈2 induced by R-X is substantially opposite the sign of ∈2 induced by S-X. Stated in another way, the phase of the field ∈2 is shifted by about π radians between R-X and S-X, and indicates a dominant enantiomer (e.g., the sign of the enantiomeric excess). The magnitude of the induced field ∈2 indicates an extent of the enantiomeric excess. ∈2 approaches zero if R-X and S-X are present in equal amounts. The electric field Ex is applied by a voltage source +HV, and is switched by a controller 110. Another electric field source or generator can be used in place of, or in combination with, the voltage source +HV and the controller 110. Enantiomers R-X and S-X are distinguished via phase-sensitive detection from the antenna B, which is oriented to detect y-polarized microwaves that are conveyed to a low noise amplifier (LNA) 112. The LNA 112 is isolated from the polarization pulse due to its orthogonal polarization, which can remove the requirement for a protection switch. Processing of the signals from the LNA 112 is carried out by an analyzer 114, which can be implemented in hardware, software, or a combination of hardware and software. Another microwave detector, such as a phase-sensitive microwave detector, can be used in place of, or in combination with, the antenna B.
In some implementations, the volume 104 corresponds to a vapor cell held at or around a temperature such that X has a significant vapor pressure (e.g., at or above 10−6 torr), and a gas is introduced through a valve at a pressure at or below this vapor pressure. In other implementations, the gas is introduced into the volume 104 (corresponding to a vacuum chamber) via a seeded supersonic jet, providing an intense, pulsed source of molecules cooled to a temperature below (e.g., far below) room temperature (e.g., about 1-10 K or about 1-5 K). In yet other implementations, the volume 104 corresponds to a buffer gas cell held at or around cryogenic temperatures, and a gas phase sample of the analyte is introduced via an aperture in the side of the volume 104. Introduction of the analyte into a cryogenic buffer gas cell also can be performed using a thermal beam.
The analyte in the volume 104 is exposed to a short, intense pulse P1 of microwaves, including a component at a frequency ωfg=(E(|f>)−E(|g>))/h, where |f> and |g> are two rotational states of X connected by an allowed electric dipole transition, and vfg=ωfg/2π. Pulse P1 is linearly polarized substantially along the z axis. In the discussion below, it is assumed that this allowed transition is a c-type transition, but similar analysis holds for a-type and b-type transitions as well. The intensity and frequency of this pulse is such that typical molecules in the |f> state of either R-X or S-X will experience an approximate π/2 pulse, leaving the molecules in a state:
In the above equation, ω1 is typically set to be substantially equal to ωfg. Before an induced signal can decay, a substantially spatially uniform electric field substantially parallel to the x axis (and substantially orthogonal to P1) is applied. In a system with nonzero μa, μb, and μc, this field will mix the states |f> and |g> with other states that are connected by electric dipole transitions to both of these states. The radiation emitted by this admixed state includes a component polarized along the y axis, namely ∈2. ∈2 is proportional to μa, μb, μc, and thus changes sign with a particular enantiomer. If both enantiomers of a given species are present in equal amounts, ∈2 approaches 0.
In some implementations, an electric field Ex is switched on between a polarization pulse P1 and a detection period. An example timing sequence for such an implementation is shown in
Applied fields Ez (microwave) and Ex are shown in
In some implementations, an electric field Ex is switched on before a polarization pulse P1, the polarization pulse P1 is applied, and the electric field Ex is then switched off between the polarization pulse P1 and the detection period. An example timing sequence for such an implementation is shown in
In some implementations, the volume 104 is at least partially defined or contained within a microwave cavity formed by a set of cavity mirrors or reflectors 116 and 118 as shown in
As explained above, a volume (into which an analyte gas is introduced) can be implemented as a buffer gas cell held at or around cryogenic temperatures.
Referring to
Embodiments of this disclosure also can be implemented to extend the techniques of chirped-pulse FTMW spectroscopy to realize a broadband, enantiomer-sensitive chemical analyzer to detect and quantify specific enantiomers of multiple mixture components substantially simultaneously.
Referring to
Embodiments of this disclosure also can be implemented to perform an extension of FTMW spectroscopy referred as enantiomer-dependent, two-color FTMW spectroscopy.
Referring to
In effect, microwave pulses P1 and P2 with substantially orthogonal polarizations can be used on a-type and b-type transitions respectively to prepare a molecule in a superposition, which includes levels connected via a c-type transition. The electric field of the radiation emitted on that transition is proportional to μa,μb,μc, and hence shows about ±180° phase shift between enantiomers. In a racemic mixture, the radiation from opposite enantiomers can substantially cancel, and little or no radiation can be emitted from the c-type transition.
In the case of detuned, two-color FTMW spectroscopy, pulse sequences can be optimized to yield stronger enantiomer-dependent signals. An example of such a pulse sequence is shown in
A suitable cavity for the pulse sequence shown in
In the case of double resonance, two-color FTMW spectroscopy, both pulses one with z polarization and one with x polarization can be targeted at resonances of molecules, thereby allowing a-type, b-type, and c-type transitions to be addressed directly. The x-polarized pulse can correspond to an axial radio frequency (RF) field of lower frequency compared to the z-polarized pulse. In some implementations, the applied axial field is of a low enough frequency that a substantially spatially uniform field is applied to an entire sample. For example, a 15 cm cell can be subjected to an axial field at a frequency of no greater than about 1,000 MHz.
More specifically, the levels A, B, and C can conform to the following conditions:
A molecule with a suitable triad of levels A, B, and C can exhibit:
In a given triad, the low frequency transition and one of the high frequency transitions are subject to drive pulses, while induced radiation on the other high frequency transition is monitored. In some cases, as shown in
The following is a list of examples of suitable triads of levels for a wide range of chiral molecules. In each case, a “drive” transition is one of the higher frequency transitions, and a “twist” transition is the lower frequency transition (<400 MHz).
1-2 Propanediol:
As shown in
The apparatus 1200 affords a number of advantages, including:
Embodiments of this disclosure also can be implemented to provide coupling to cavity modes of substantially orthogonal polarization via apertures or arrays of slits.
Referring to
An additional modification of the apparatus 1400 is directed to a technique to reduce systematic errors via reversals of an applied electric field. An enantiomer-dependant signal ∈y changes sign when the sign of an applied electric field Ex is reversed. Many systematic errors, such as phase shifts from non-uniform fields and crosstalk between nominally orthogonal channels, are substantially identical for opposite signs of Ex. The reversal in ∈y can be exploited by subtracting traces taken with substantially equal and opposite signs of the applied field Ex, thereby cancelling the systematic errors while doubling the enantiomer-dependent signal.
In the embodiment of
Referring to
Although most microwaves that are transmitted through the slits can be collected by the horns 1505 and 1506, a fraction of the microwaves can be reflected back towards the mirrors 1503 and 1504. In turn, a fraction of these reflected microwaves can be re-transmitted into the cavity. This reflected fraction can be enhanced, such as by placing sheets of a dielectric material (such as denoted by 1507 in
In the case of cavity-enhanced, enantiomer-specific spectroscopy, both the strength of a polarization pulse and a resulting signal can be enhanced by a high quality factor Q of a cavity. Q can be specified as a ratio between a frequency of a cavity mode and a linewidth of that mode. Q typically cannot be raised arbitrarily, since a weak microwave signal is typically detected once the cavity has “rung down”, which can last for a time period proportional to an inverse of the linewidth. In some embodiments, a cavity can be implemented to allow rapid switching between “high Q” and “low Q”. Such a Q-switched cavity can be operated according to the following sequence:
Such a Q-switched cavity can provide the benefits of a high Q cavity (e.g., high polarization and high sensitivity), without a dead time typically associated with ringing down of cavities. A Q-switched cavity can be implemented by weakly coupling the cavity to a coaxial cable, such as via an antenna, an aperture, or an array of slits, and coupling the coaxial cable to a rapidly switchable microwave switch, such as a pin diode.
The apparatuses 100, 600, 700, 800, 1200, 1400, and 1500 can be calibrated according to one of at least a pair of calibration techniques. In one technique, calibration is carried out for each enantiomer R-X and S-X by introducing a known amount of pure R-X and S-X into a spectrometer. Signals from an unknown analyte can then be compared to the calibration signals. In another technique, a known amount of one or more pure chiral substances Y are introduced into the spectrometer. The chiral substances Y have sufficiently dense rotational spectra such that a phase-sensitive response of a cavity and microwave components can be mapped out over a substantial fraction of a bandwidth (e.g., substantially the entire bandwidth) of the spectrometer. The enantiomer-dependent response from any species X can then be predicted from this response function and the calculated or known molecular constants of X.
Certain embodiments of this disclosure differ from circular dichroism spectroscopy. Circular dichroism spectroscopy typically depends on interference effects between electric dipole transitions and either magnetic dipole transitions or electric quadrupole transitions. Without these weaker transitions, responses of molecules to left circularly polarized light and right circularly polarized light typically cannot be distinguished. Optical rotation effects, therefore, typically vanish in the long wavelength limit where the wavelength is greater or much greater than the size of the molecules, as is typically the case for the microwave regime. In contrast, the extensions of FTMW spectroscopy in some embodiments can be based primarily or solely on electric dipole transitions. Additionally, the extensions of some embodiments can involve a resonant interaction between microwaves of a pulse P1 and analyte molecules. This resonant interaction is allowed by the relatively long decoherence time in gas phase molecules; in contrast, circular dichroism spectroscopy is typically non-resonant and performed on liquid samples with very short decoherence times.
Although certain embodiments are explained in the foregoing, other embodiments are contemplated and encompassed by this disclosure. For example, in addition to a Balle-Flygare type spectrometer, other types of spectrometers can be enhanced to provide enantiomer-specific detection, such as a coaxially oriented beam-resonator arrangement (COBRA)-type spectrometer or a coaxially aligned electrodes for Stark effect applied in resonators (CAESAR)-type spectrometer. In addition to a FTMW spectrometer, spectrometers also can be configured to perform other types of rotational spectroscopy, such as microwave-microwave double resonance spectroscopy, infrared-microwave double-resonance spectroscopy, or microwave-UV double-resonance spectroscopy. For example, a polarizing microwave pulse in the z direction can be replaced with a z-polarized infrared laser pulse. Enantiomers can be detected via phase-sensitive heterodyne detection of a y-polarized infrared free induction decay. Alternatively, or in conjunction, addition of a second, phase-controlled y-polarized infrared pulse in place of a detection operation can preferentially leave one enantiomer in an excited vibrational state. Molecules in this state subsequently can be photo-dissociated or otherwise selectively addressed via a third light source, resulting in net enantiopurification of an originally racemic sample.
The following examples describe specific aspects of some embodiments of this disclosure to illustrate and provide a description for those of ordinary skill in the art. The examples should not be construed as limiting this disclosure, as the examples merely provide specific methodology useful in understanding and practicing some embodiments of this disclosure.
Enantiomer-Specific Detection of the Chirality of 1,2-Propanediol
The enantiomer-specific detection technique is demonstrated in this example using R-, S-, and racemic 1,2-propanediol. The two enantiomers of chiral 1,2-propanediol are shown in
A schematic of the experimental setup is shown in
The experimental procedure is as follows. Molecules enter the cryogenic cell substantially continuously from a warm (about 300 K) feed tube. Upon entering the cell, the molecules begin to cool through collisions with a cold helium buffer gas. By the time the molecules diffuse into a central region of the cell, the molecules have reached a rotational temperature of about 7 K. The cold molecules remain in a gas phase as they diffuse through the cell for several milliseconds, until the molecules arrive at a cold cell wall, where the molecules freeze. A resulting detected signal primarily or substantially solely results from the cold, gas phase molecules. The experimental sequence of applied electric fields begins with the application of Ex. The cavity is then driven with a strong, linearly polarized microwave field with Ez(t)=z-hat Emw cos(ωt). The excitation frequency ω is tuned to the |000>|110> rotational transition of the ground-state conformation of 1,2-propanediol at about 12,212 MHz. The maximum magnitude of Ez and the pulse length τpulse are adjusted to yield |Ω|τpulse<π/2 for all molecules, where Ω is the Rabi frequency. This microwave pulse induces an oscillating electric dipole polarization in the z direction in the molecular ensemble. About 200 ns after the end of the microwave pulse, the electric field Ex is set to zero. Ex is switched within about 200 ns—rapidly compared to the molecular decoherence rate but slowly compared to ω. The change in Ex induces a sizable fraction of the oscillating molecular dipole to radiate with y polarization.
Under these experimental conditions, the chirality-dependent y polarization has about 10% of the amplitude of the z polarization. The induced field ∈y, which has an enantiomer-dependent phase, is amplified and recorded. The molecules continue to radiate in this manner until the molecules re-thermalize rotationally via collisions with helium atoms, typically after about 5 μs. This completes one experimental cycle, which can be started again by turning Ex back on. As in traditional FTMW spectroscopy, molecules in distinct parts of the cavity radiate constructively into the original cavity mode used to polarize the sample. This feature is retained here because modes with orthogonal polarization share a substantially identical spatial structure. The chirality-dependent signal Ey is proportional to ExEz. In order to cancel some systematic offsets in the detected microwave field, the change of sign of ∈y with Ex is exploited by subtracting traces taken with equal and opposite values of Ex.
Experimental Details:
In the experiments, a flow rate of about 1.5×1018 helium atoms s−1 into the cell provides an estimated in-cell helium density of about 1014 atoms cm−3. About 5×1017 1,2 propanediol molecules s−1 are sprayed towards the cell. The 1,2-propanediol density within the cell is estimated to be about 1012 molecules cm−3. The experimental repetition rate of about 7 kHz is based on a maximum switching frequency of high voltage switches used; without this restriction, or when Ex is set to zero, the rate is based on the molecular re-thermalization rate of about 200 kHz. The applied electric field Ex is ±65 V/cm (±500 volts on mirror 2). This high voltage is switched via Behlke HTS 151 high voltage MOSFET switches. The polarizing pulse is typically about 200 ns in duration, and a maximum microwave field Ez is estimated to be about 0.5 V/cm from measurements of the Rabi frequency Ω. The cavity was run in a T11(n=6) mode, although another mode (e.g., T00 mode) also can be used. Mirror 2 of the cavity was mounted on flexible bellows and could be moved axially by about 1 cm, tuning the cavity. This tuning was accomplished via three thermally isolating, flexible shafts connected via rotary feedthroughs to knobs outside the cavity. The aluminum cavity has a measured finesse of about 105, a length of about 8.1 cm, and a radius of curvature on its spherical mirror of about 22.5 cm. An input aperture for the molecules has a diameter of about 1.1 cm, and the coupling apertures A and B have diameters of about 0.8 cm. The waveguides connected via apertures A and B are WR-62, operating from about 12 GHz to about 18 GHz. ∈y is detected after waiting about 2 μs for the cavity to ring down. The signal is amplified by a LNA (Pasternack PE1524) connected immediately outside the vacuum chamber with no protection diodes or switches. The amplified signal is mixed down to about 20 MHz, further amplified, and digitized by a fast signal averager (Agilent U1084). Each data point in
The molecular constants used in this example are A=8572.055 MHz, B=3640.106 MHz, and C=2790.966 MHz for the rotational constants, and μa=1.201 Debye, μb=1.916 Debye, and μc==0.365 Debye for the dipole moment components.
Sensitive Chiral Analysis via Rotational Three Wave Mixing
This example sets forth a demonstration of chirality-induced three wave mixing in the microwave regime. Bulk three wave mixing is realized in a chiral environment, and provides a sensitive, species-selective probe of enantiomeric excess. Rotational transitions used have narrow resonances, and doubly resonant conditions, which are used to observe three wave mixing, provides extremely selective identification of enantiomers, even within a complex mixture of chiral molecular species. The technique is demonstrated here on 1,2-propanediol but can be used to sensitively measure enantiomeric excess in a broad class of chiral molecules, including 1,3-butanediol, carvone, limonene, and alaninol. In this example, sum-frequency generation, a type of three wave mixing, is demonstrated using two orthogonal resonant applied fields at frequencies v1 and v2 to induce mutually orthogonal radiation at the sum frequency v3=v1+v2. The phase of this induced radiation changes sign with enantiomer, and the amplitude of this induced radiation yields a sensitive, quantitative measure of enantiomeric excess.
A z-polarized electric field Ez at the frequency v1 is used to drive a c-type transition, and a x-polarized electric field Ex at the frequency v2 is used to drive an a-type transition. These pulses induce y-polarized radiation ∈y at the frequency v3=v1+v2 from a b-type transition. In the weak-pulse limit, ∈y is proportional to μa,μb,μc, and changes sign with enantiomer. For an enantiopure sample, a predicted amplitude of |∈y| is comparable to the largest amplitude fields produced in “traditional” FTMW spectroscopy, while for a racemic sample |∈y|=0.
A schematic of the experimental setup is shown in
The experimental procedure is as follows. A substantially continuous stream of gas phase 1,2-propanediol molecules (Sigma-Aldrich) enter a cold cell (about 6 K) from a warm feed tube (about 300 K). The molecules cool through collisions with a cold helium buffer gas. The cold molecules remain in the gas phase for several milliseconds, until the molecules diffuse to a cold cell wall, where they freeze. The molecules are subjected to two substantially simultaneous 3 μsec duration electric field pulses Ez and Ex. Ez has the frequency v1, which chirps from about 14,791→about 14,799 MHz, including the |211>→|221> transition in 1,2-propanediol at about 14,796 MHz. Ex has the frequency v2 of about 100.5 MHz tuned to the |221>→|220> transition, and has a strength |Ex|≈1.5 V/cm. The combination of pulses Ez and Ex resonantly drives molecules that are initially in the |211> state into a superposition |Ψ>=α1|211>+α2|221>α3|220>, with enantiomer-dependent complex coefficients α1. When all external fields are turned off, the ensemble radiates with nonzero polarization P in all three polarization directions. Pz oscillates at v12, Px oscillates at v23, and Py oscillates at v13. The induced microwave fields ∈z and ∈y, corresponding to Pz and Py, are collected by the microwave horns and amplified, producing voltages Vz and Vy respectively.
Vz and Vy are recorded in a phase-repeatable way. To this end, Ez is produced by single-sideband-modulating a free running carrier signal S1 at a frequency vS1 of about 14,760 MHz with a 31-39 MHz phase-repeatable chirp C1, which is in turn generated by direct digital synthesis and is also used to phase-stably trigger a data acquisition system. Ex is produced by a switched amplifier driven by a free running oscillator S2 at the frequency v2. Vz is mixed with S1 to produce a phase-repeatable, enantiomer-independent signal V1 at a frequency v12 vS1 of about 35.8 MHz, while Vy is mixed with S1 and then with S2 to produce a phase-repeatable, enantiomer-dependent signal V3 at a frequency v13−vS1−vS2, also at about 35.8 MHz. A fast signal averager (Agilent U1084A) triggered on the first rising edge of the baseband chirp C1 digitizes and averages the signal. The entire pulse sequence is repeated at about 50 KHz, and many traces of Vz and Vy are accumulated and averaged.
The sign of V3 is enantiomer-dependent; in a racemic sample, induced radiation from S- and R-enantiomers is opposite and no detectable signal is recorded. It should be noted that a racemic mixture typically will not radiate at the sum frequency v1+v2 despite any geometric errors in the device, as three wave mixing is strictly forbidden for a non-chiral bulk material. This zero background for a racemic sample provides an advantage of this technique, making it particularly sensitive in detecting slight enantiomeric excess.
An embodiment of this disclosure relates to a non-transitory computer-readable storage medium having computer code thereon for performing various computer-implemented operations. The term “computer-readable storage medium” is used herein to include any medium that is capable of storing or encoding a sequence of instructions or computer codes for performing the operations, methodologies, and techniques described herein. The media and computer code may be those specially designed and constructed for the purposes of an embodiment of this disclosure, or they may be of the kind well known and available to those having skill in the computer software arts. Examples of computer-readable storage media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media such as floptical disks; and hardware devices that are specially configured to store and execute program code, such as application-specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”), and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher-level code that are executed by a computer using an interpreter or a compiler. For example, an embodiment may be implemented using Java, C++, or other object-oriented programming language and development tools. Additional examples of computer code include encrypted code and compressed code. Moreover, an embodiment may be downloaded as a computer program product, which may be transferred from a remote computer (e.g., a server computer) to a requesting computer (e.g., a client computer or a different server computer) via a transmission channel. Another embodiment may be implemented in hardwired circuitry in place of, or in combination with, machine-executable software instructions.
While the invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention as defined by the appended claims. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, method, or process to the objective, spirit and scope of the invention. All such modifications are intended to be within the scope of the claims appended hereto. In particular, while the methods disclosed herein have been described with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the invention. Accordingly, unless specifically indicated herein, the order and grouping of the operations are not limitations of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/673,917, filed on Jul. 20, 2012, and the benefit of U.S. Provisional Application No. 61/761,582, filed on Feb. 6, 2013, the disclosures of which are incorporated herein by reference in their entirety.
This invention was made with Government support under Grant No. C10D10472, awarded by the National Science Foundation. The Government has certain rights in this invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US13/31779 | 3/14/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61673917 | Jul 2012 | US | |
61761582 | Feb 2013 | US |