Frequency-scalable NLTL-based mm-wave vector signal de-modulator

Information

  • Patent Grant
  • 10469296
  • Patent Number
    10,469,296
  • Date Filed
    Wednesday, August 8, 2018
    5 years ago
  • Date Issued
    Tuesday, November 5, 2019
    4 years ago
Abstract
An in-phase (I) and quadrature (Q) demodulator includes an input for receiving a signal, a reference frequency source, and a sampler connected with the input. The sampler includes a sampler strobe connected with the reference frequency source, and a non-linear transmission line (NLTL) connected with the sampler strobe. The NLTL receives a strobe signal generated by the sampler strobe and multiplies a frequency of the strobe signal to generate a sampler signal. When the sampler receives a signal from the input, the sampler is configured to generate and output an intermediate frequency (IF) signal using the sampler signal. A splitter of the demodulator separates the IF signal into an in-phase (I) component and a quadrature (Q) component. Mixers receive the I and Q components and generate I and Q output signals shifted 90° in phase.
Description
TECHNICAL FIELD

The present invention relates in general to measuring instruments, and in particular to vector signal analyzers and devices and methods for generating in-phase and quadrature signal measurements.


BACKGROUND

Radio frequency (RF) signals from the millimeter (mm)-wave spectrum (e.g. V Band, E Band, W Band, etc.) have been in use in military applications as well as a growing number of consumer applications. For example, automotive electronic safety systems, such as collision-avoidance radar systems, operate at frequencies from the mm-wave spectrum. Further, the allocation of mm-wave bands for upcoming fifth-generation (5G) cellular wireless communications systems is expected to vastly increase the use of available wide bandwidths in support of communications and entertainment services to be offered to consumers by service providers. Testing these higher-frequency mm-wave systems requires suitable test equipment with not only sufficient frequency range but also sufficient acquisition bandwidth.


A vector signal analyzer is an instrument that measures the magnitude and phase of an input signal at a frequency within the intermediate frequency (IF) bandwidth of the instrument. Many measuring instruments, such as vector signal analyzers, employ a quadrature demodulator that provides an in-phase (I) signal and a quadrature (Q) signal that are exactly 90° out of phase. The I and Q signals are vector quantities and the amplitude and phase shift of a signal received in response to, for example, to a test signal transmitted to a device under test (DUT) can be calculated based on the I and Q signals. The demodulator generates a sum and difference term for analysis by the vector signal analyzer. However, to generate a usable IF signal, a mm-wave signal received at a transceiver of an instrument must be downconverted.


Existing millimeter (mm)-wave IQ demodulators for vector signal analyzers have many imperfections and are often some combination of expensive, bulky, heavy, unwieldy, or limited in IF/RF bandwidth and physical reach.





BRIEF DESCRIPTION OF THE DRAWINGS

Further details of the present invention are explained with the help of the attached drawings in which:



FIG. 1 is a circuit diagram of a vector signal demodulator, in accordance with the prior art.



FIG. 2 is a circuit diagram of a frequency-scalable, NLTL-based mm-wave vector signal demodulator, in accordance with an embodiment.



FIG. 3 is a circuit diagram of a frequency-scalable, NLTL-based mm-wave vector signal demodulator, in accordance with another embodiment.





DETAILED DESCRIPTION

The following description is of the best modes presently contemplated for practicing various embodiments of the present invention. The description is not to be taken in a limiting sense but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be ascertained with reference to the claims.


In the following description, numerous specific details are set forth to provide a thorough description of the invention. However, it will be apparent to those skilled in the art that the invention may be practiced without these specific details. In other instances, well-known features have not been described in detail so as not to obscure the invention.



FIG. 1 illustrates a simplified circuit diagram for a vector signal analyzer 10, in accordance with the prior art. Vector signal analyzers are useful in measuring and demodulating digitally modulated signals to determine the quality of modulation. For example, a vector signal analyzer can be useful for design validation and compliance testing of electronic devices.


The vector signal analyzer operates by first down converting the signal spectra. As shown, the vector signal analyzer uses a down convert stage comprising a fundamental mixer 16 that receives a modulated radio frequency (RF) signal from an input such as an antenna or waveguide and a local oscillator (LO) signal from a voltage-controlled oscillator 14 (i.e., LO generator or signal source) and down converts the RF signal using the LO signal to an intermediate frequency (IF) signal, for example targeting a center frequency of a band-pass filter.


After down conversion, the IF signal is filtered in order to band-limit the signal and prevent aliasing. The IF signal is then digitized using an analog-to-digital converter (ADC). Once the signal is digitized, it is separated into in-phase (I) and quadrature (Q) components using an IQ quadrature detector 20. Several measurements are made by a processor 22 and displayed using the I and Q signal components and digital signal processing (DSP) techniques. For example, a fast Fourier transform (FFT) is used to compute the frequency spectrum of the signal. Error vector magnitude can be computed from a constellation diagram that maps the magnitude of I and Q components to the vertical and horizontal directions, with the error vector magnitude computed as the distance between the ideal and measured constellation points on the diagram.


As applications have grown that make use of signals from the mm-wave spectrum, the need for vector signal analyzers that are capable of demodulating and analyzing input signals having frequencies in the mm-wave range has grown. Current vector signal analyzers that make use of fundamental mixers, such as shown in FIG. 1, require more complex LO chains to down convert the input signals in stages from the much higher frequencies to IF signals usable for demodulation and analysis. The complex LO chains impact the size and complexity of the circuit, increasing the size and cost of the hardware implementation of the vector signal analyzer, as well as increasing the heat dissipated by the vector signal analyzer.



FIGS. 2 and 3 illustrate circuit diagrams comprising a miniature, frequency scalable, ultra-wideband IQ demodulator, in accordance with embodiments. The demodulator includes a non-linear transmission line (NLTL)-driven sampler integrated with a broadband IF chain (>5 GHz) and a direct-conversion receiver. Relative to an entirely mixer-based IQ demodulator, the circuit includes reduced LO-chain complexity, reduced size, reduced heat dissipation and reduced hardware cost.


Unlike existing mixer-based mm-wave IQ demodulators for measuring instruments such as vector signal analyzers, embodiments in accordance with the present invention include a NLTL-based sampling receiver that enables miniaturization of the IQ demodulator while achieving ultra-wideband performance and providing frequency scalability.


Referring to FIG. 2, the demodulator 100 includes an input 112 for receiving mm-wave signals, a reference frequency source 118, and a sampler 150 connected with the input and having a sampler strobe 154 connected with the reference frequency source. The sampler includes a non-linear transmission line (NLTL) 156 comprising a varactor diode-loaded transmission line that includes mm-wave cut-off frequencies allowing sampling of mm-wave signals received, for example in response to transmitted test signals, at very short time intervals. The NLTL receives as input an LO signal from the sampler strobe and multiplies the frequency of the LO signal to mm-wave frequencies.


The input to the demodulator can comprise any input for receiving a mm-wave signal. For example, the input can comprise a waveguide (e.g., a rectangular waveguide), an antenna, a coaxial connector connected with a transmission line, a probe, etc. Sampled signals are mixed with a mm-wave signal generated from the LO signal propagated through the NLTL to generate an IF signal that can be amplified and filtered.


An IF signal chain, for example as shown with a bandwidth greater than 2 GHz, is connected with the sampler to receive a sampled signal. A splitter and digitization portion 160 of the demodulator separates an in-phase (I) component and a quadrature (Q) component of the sampled signal. The I and Q components of the sampled signal are referenced to a reference signal generated by the reference frequency source, with an LO signal source generating an LO signal based on the reference signal that is provided to a pair of mixers that receive, respectively, the I component and the Q component to generate an I output signal and a Q output signal exactly 90° out of phase. The I output signal and the Q output signal are provided to respective analog-to-digital converters (ADC) with digital outputs provided to a processor 162.


In an embodiment, calculations of the amplitude and phase shift of a received signal sampled by the demodulator can be performed, for example, by a field-programmable gate array (FPGA)-based processor. Alternatively, the calculations can be performed by, for example, a general purpose computer, or alternatively by a general-purpose computing on graphics processing units (GPGPU)-based processor. Processing can include the application of fast Fourier transforms (FFTs), demodulation, etc.


In an embodiment, a vector signal analyzer including the demodulator can be connected with an external computer 174 that comprises computer processing and control as well as display. For example, the vector signal analyzer can be connected with a laptop or desktop via a tether 170 connected to a communications interface 172 of the computer.


In a further embodiment, the demodulator can be connected with a measuring instrument via the tether. Such tethers can include scalable-length tethers, such as described in U.S. patent application Ser. No. 16/024,788 entitled “Nonlinear Transmission Line (NLTL)-Based Miniature Reflectometers with Reduced Heat Dissipation and Scalable Tether Length”, which is incorporated herein by reference.



FIG. 3 is a circuit diagram for a demodulator 200 in accordance with a further embodiment. The demodulator includes an input 212 for receiving mm-wave signals that is switchable between frequency bands. The input can be switched based on the band of interest and the sampler of the demodulator can generate the appropriate IF signal based on the selected band, for example.


In accordance with embodiments, a frequency-scalable, NLTL-based, vector-signal (IQ) demodulator can be integrated with various measuring instruments, for example, including a vector signal analyzer. In accordance with an embodiment, the NLTL-based demodulator can also be integrated in a measuring instrument for magnitude and phase calibration.


In accordance with embodiments, an NLTL-based demodulator can be used, for example, in instruments targeting transceiver testing, and can be integrated into original equipment manufacturer (OEM) systems. For example, embodiments of NLTL-based demodulators can be integrated with one or more probes for on-wafer testing of transceiver microchips.


In accordance with embodiments, an NLTL-based demodulator can be used in equipment for over-the-air (OTA) measurements. For example, embodiments of a NLTL-based demodulator can be integrated with many different types of antennas including beam steerable antennas, dual polarization antennas, etc. OTA measurements can be used in such applications as power measurement, interference hunting, direction finding, etc. In accordance with an embodiment, the demodulator can comprise two or more RF inputs (e.g. when integrated with dual polarization antennas).


In accordance with an embodiment, multiple miniature, frequency-scalable, NLTL-based, vector-signal (IQ) demodulators can be synchronized in operation.


In accordance with an embodiment, the demodulator can support tethered operation.


Embodiments of NLTL-based demodulators can be used with and integrated into equipment for any application for characterizing mm-wave signals, and should not be limited to those examples provided herein.


In some embodiments, the present invention includes a computer program product which is a storage medium or computer readable medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the present invention. The storage medium can include, but is not limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical disks, ROMs, RAMS, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory devices, magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.


The previous description of the preferred embodiments is provided to enable any person skilled in the art to make or use the embodiments of the present invention. While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.

Claims
  • 1. An in-phase (I) and quadrature (Q) demodulator, comprising: an input for receiving a signal into the I and Q demodulator;a reference frequency source;a sampler connected with the input and including a sampler strobe connected with the reference frequency source, anda non-linear transmission line (NLTL) connected with the sampler strobe, wherein the NLTL receives a strobe signal generated by the sampler strobe and multiplies a frequency of the strobe signal to generate a sampler signal;wherein when the sampler receives the signal from the input, the sampler is configured to generate and output an intermediate frequency (IF) signal using the sampler signal;a splitter for separating the IF signal into an in-phase (I) component and a quadrature (Q) component;a first mixer that receives the I component and a local oscillator (LO) signal generated based on the reference frequency source and outputs an I output signal; anda second mixer that receives the Q components and the LO signal shifted 90° in phase and outputs a Q output signal.
  • 2. The demodulator of claim 1, further comprising: a first analog-to-digital converter (ADC) that receives the I output signal and generates a digital I output signal;a second ADC that receives the Q output signal and generates a digital Q output signal; anda field-programmable gate array (FPGA)-based processor that receives the digital I output signal and the digital Q output signal;wherein the FPGA-based processor is configured to apply digital signal processing (DSP) techniques to calculate an amplitude and a phase shift of the signal received at the input.
  • 3. The demodulator of claim 1, further comprising: a first analog-to-digital converter (ADC) that receives the I output signal and generates a digital I output signal;a second ADC that receives the Q output signal and generates a digital Q output signal; anda general-purpose computing on graphics processing units (GPGPU)-based processor that receives the digital I output signal and the digital Q output signal;wherein the GPGPU-based processor is configured to apply digital signal processing (DSP) techniques to calculate an amplitude and a phase shift of the signal received at the input.
  • 4. The demodulator of claim 1, wherein the NLTL comprises a varactor diode-loaded transmission line.
  • 5. The demodulator of claim 1, wherein the input is switchable between frequency bands.
  • 6. A vector signal analyzer, comprising; a signal transmitter; anda receiver having an in-phase (I) and quadrature (Q) demodulator including an input,a reference frequency source,a sampler connected with the input and including a sampler strobe connected with the reference frequency source, anda non-linear transmission line (NLTL) connected with the sampler strobe, wherein the NLTL receives a strobe signal generated by the sampler strobe and multiplies a frequency of the strobe signal to generate a sampler signal,wherein when the sampler receives a signal from the input, the sampler is configured to generate and output an intermediate frequency (IF) signal using the sampler signal,a splitter for separating the IF signal into an in-phase (I) component and a quadrature (Q) component,a first mixer that receives the I component and a local oscillator (LO) signal generated based on the reference frequency source and outputs an I output signal, anda second mixer that receives the Q components and the LO signal shifted 90° in phase and outputs a Q output signal.
  • 7. The vector signal analyzer of claim 6, wherein the receiver further includes a first analog-to-digital converter (ADC) that receives the I output signal and generates a digital I output signal,a second ADC that receives the Q output signal and generates a digital Q output signal, anda field-programmable gate array (FPGA)-based processor that receives the digital I output signal and the digital Q output signal,wherein the FPGA-based processor is configured to apply digital signal processing (DSP) techniques to calculate an amplitude and a phase shift of the signal received at the input.
  • 8. The vector signal analyzer of claim 6, wherein the receiver further includes a first analog-to-digital converter (ADC) that receives the I output signal and generates a digital I output signal,a second ADC that receives the Q output signal and generates a digital Q output signal, anda general-purpose computing on graphics processing units (GPGPU)-based processor that receives the digital I output signal and the digital Q output signal,wherein the GPGPU-based processor is configured to apply digital signal processing (DSP) techniques to calculate an amplitude and a phase shift of the signal received at the input.
  • 9. The vector signal analyzer of claim 6, wherein the NLTL of the demodulator comprises a varactor diode-loaded transmission line.
  • 10. The vector signal analyzer of claim 6, wherein the input of the receiver is switchable between frequency bands.
  • 11. The vector signal analyzer of claim 7, further comprising a tether connectable with a communication interface of an external computer adapted to display calculations of the vector signal analyzer.
  • 12. The vector signal analyzer of claim 7, further comprising a display for displaying calculations of the vector signal analyzer.
  • 13. A method of measuring an electrical response of a device comprising: using a vector signal analyzer including a receiver having a demodulator,wherein the demodulator includes an input for receiving a signal,a reference frequency source,a sampler connected with the input and including a sampler strobe connected with the reference frequency source, anda non-linear transmission line (NLTL) connected with the sampler strobe, wherein the NLTL receives a strobe signal generated by the sampler strobe and multiplies a frequency of the strobe signal to generate a sampler signal,wherein when the sampler receives the signal from the input, the sampler is configured to generate and output an intermediate frequency (IF) signal using the sampler signal,a splitter for separating the IF signal into an in-phase (I) component and a quadrature (Q) component,a first mixer that receives the I component and a local oscillator (LO) signal generated based on the reference frequency source and outputs an I output signal, anda second mixer that receives the Q components and the LO signal shifted 90° in phase and outputs a Q output signal; andreceiving the signal from the device at the input of the demodulator; andgenerating measurement data for the device based on the I output signal and the Q output signal of the demodulator.
  • 14. The method of claim 13, wherein generating measurement data for the device includes calculating an amplitude and a phase shift of the signal received at the input of the demodulator.
  • 15. The method of claim 13, wherein the receiver further includes a first analog-to-digital converter (ADC) that receives the I output signal and generates a digital I output signal,a second ADC that receives the Q output signal and generates a digital Q output signal, anda field-programmable gate array (FPGA)-based processor that receives the digital I output signal and the digital Q output signal,wherein the FPGA-based processor is configured to apply digital signal processing (DSP) techniques to calculate an amplitude and a phase shift of the signal received at the input.
  • 16. The method of claim 13, further comprising: connecting the vector signal analyzer to an external computer using a tether; anddisplaying, on a display of the external computer, the measurement data for the device.
CLAIM OF PRIORITY

This application claims the benefit of priority to U.S. Provisional application titled “FREQUENCY-SCALABLE NLTL-BASED MM-WAVE VECTOR SIGNAL DE-MODULATOR”, Application No. 62/543,320, filed Aug. 9, 2017, which application is herein incorporated by reference.

US Referenced Citations (117)
Number Name Date Kind
5378939 Marsland Jan 1995 A
5801525 Oldfield Sep 1998 A
5812039 Oldfield Sep 1998 A
5909192 Finch Jun 1999 A
5977779 Bradley Nov 1999 A
6049212 Oldfield Apr 2000 A
6291984 Wong Sep 2001 B1
6316945 Kapetanic Nov 2001 B1
6331769 Wong Dec 2001 B1
6496353 Chio Dec 2002 B1
6504449 Constantine Jan 2003 B2
6509821 Oldfield Jan 2003 B2
6525631 Oldfield Feb 2003 B1
6529844 Kapetanic Mar 2003 B1
6548999 Wong Apr 2003 B2
6650123 Martens Nov 2003 B2
6665628 Martens Dec 2003 B2
6670796 Mori Dec 2003 B2
6680679 Stickle Jan 2004 B2
6700366 Truesdale Mar 2004 B2
6700531 Abou-Jaoude Mar 2004 B2
6714898 Kapetanic Mar 2004 B1
6766262 Martens Jul 2004 B2
6832170 Martens Dec 2004 B2
6839030 Noujeim Jan 2005 B2
6882160 Martens Apr 2005 B2
6888342 Bradley May 2005 B2
6894581 Noujeim May 2005 B2
6917892 Bradley Jul 2005 B2
6928373 Martens Aug 2005 B2
6943563 Martens Sep 2005 B2
7002517 Noujeim Feb 2006 B2
7011529 Oldfield Mar 2006 B2
7016024 Bridge Mar 2006 B2
7019510 Bradley Mar 2006 B1
7054776 Bradley May 2006 B2
7068046 Martens Jun 2006 B2
7088111 Noujeim Aug 2006 B2
7108527 Oldfield Sep 2006 B2
7126347 Bradley Oct 2006 B1
7284141 Stickle Oct 2007 B2
7304469 Bradley Dec 2007 B1
7307493 Feldman Dec 2007 B2
7509107 Bradley Mar 2009 B2
7511496 Schiano Mar 2009 B2
7511577 Bradley Mar 2009 B2
7521939 Bradley Apr 2009 B2
7545151 Martens Jun 2009 B2
7683602 Bradley Mar 2010 B2
7683633 Noujeim Mar 2010 B2
7705582 Noujeim Apr 2010 B2
7746052 Noujeim Jun 2010 B2
7764141 Noujeim Jul 2010 B2
7872467 Bradley Jan 2011 B2
7924024 Martens Apr 2011 B2
7957462 Aboujaoude Jun 2011 B2
7983668 Tiernan Jul 2011 B2
8027390 Noujeim Sep 2011 B2
8058880 Bradley Nov 2011 B2
8145166 Barber Mar 2012 B2
8156167 Bradley Apr 2012 B2
8159208 Brown Apr 2012 B2
8169993 Huang May 2012 B2
8185078 Martens May 2012 B2
8278944 Noujeim Oct 2012 B1
8294469 Bradley Oct 2012 B2
8305115 Bradley Nov 2012 B2
8306134 Martens Nov 2012 B2
8410786 Bradley Apr 2013 B1
8417189 Noujeim Apr 2013 B2
8457187 Aboujaoude Jun 2013 B1
8493111 Bradley Jul 2013 B1
8498582 Bradley Jul 2013 B1
8593158 Bradley Nov 2013 B1
8629671 Bradley Jan 2014 B1
8630591 Martens Jan 2014 B1
8666322 Bradley Mar 2014 B1
8718586 Martens May 2014 B2
8760148 Bradley Jun 2014 B1
8816672 Bradley Aug 2014 B1
8816673 Barber Aug 2014 B1
8884664 Bradley Nov 2014 B1
8903149 Noujeim Dec 2014 B1
8903324 Bradley Dec 2014 B1
8942109 Dorenbosch Jan 2015 B2
9103856 Brown Aug 2015 B2
9103873 Martens Aug 2015 B1
9176174 Bradley Nov 2015 B1
9176180 Bradley Nov 2015 B1
9210598 Bradley Dec 2015 B1
9239371 Bradley Jan 2016 B1
9287604 Noujeim Mar 2016 B1
9331633 Robertson May 2016 B1
9366707 Bradley Jun 2016 B1
9455792 Truesdale Sep 2016 B1
9560537 Lundquist Jan 2017 B1
9571142 Huang Feb 2017 B2
9588212 Bradley Mar 2017 B1
9594370 Bradley Mar 2017 B1
9606212 Martens Mar 2017 B1
9696403 Elder-Groebe Jul 2017 B1
9733289 Bradley Aug 2017 B1
9753071 Martens Sep 2017 B1
9768892 Bradley Sep 2017 B1
9860054 Bradley Jan 2018 B1
9964585 Bradley May 2018 B1
9967085 Bradley May 2018 B1
9977068 Bradley May 2018 B1
10003453 Bradley Jun 2018 B1
10006952 Bradley Jun 2018 B1
10064317 Bradley Aug 2018 B1
10116432 Bradley Oct 2018 B1
20060250135 Buchwald Nov 2006 A1
20070273458 Pepper Nov 2007 A1
20100330944 Martens Dec 2010 A1
20110037667 Varjonen Feb 2011 A1
20160050032 Emerson Feb 2016 A1
Non-Patent Literature Citations (8)
Entry
“71-76 GHz Millimeter-wave Transceiver System, Revision: 1.2”, National Instruments, 2015, 11 pages.
“802.11ad Integrated RF Test Solution—Data Sheet”, Keysight Technologies, published Feb. 3, 2017, 13 pages.
“Cobaltfx mm-Wave VNA Test & Measurement Solution”, Farran Technology, http://www.farran.com/shop/fev_fx/, 5 pages.
Noujeim, et al. “Reduced-Complexity E-Band VNAs with Tethered Far-Reaching Reflectometers”, Proceedings of the 46th European Microwave Conference, Oct. 4-6, 2016, 4 pages.
Roberts, et al. “A Compact, Tethered E-Band VNA Reflectometer”, 2016 IEEE MTT-S International Microwave Symposium (IMS), May 22-27, 2016, 3 pages.
“Vector Network Analyzer Extenders”, http://vadiodes.com/en/products/vector-network-analyzer-extension-modules, 7 pages.
“VectorStar Broadband VNA: ME7838A/E/D”, Anritsu Company, https://www.anrtisu.com/en-US/test-measurement/products/me7838a, 3 pages.
“VNA Extension Modules”, https://www.omlinc.com/products/vna-extension-modules, 2016, 3 pages.
Provisional Applications (1)
Number Date Country
62543320 Aug 2017 US