1. Field of the Invention
The present invention relates to an improved foam and method of producing such foam for a variety of applications, including semiconductor polishing pads and belts.
2. Description of the Related Art
Silicon wafers are produced as precursors from which microelectronic semiconductor components are produced. The wafers are sliced or cut from cylindrical silicon crystals, parallel to their major surfaces, to produce thin disks, typically 20-30 centimeters in diameter, although larger or smaller wafers are possible. The resulting wafers must be polished to give flat and planar surfaces for proper formation of electronic components to form integrated chip semiconductor devices. Typically, a 20-cm diameter wafer will produce 100 or more microprocessor chips.
The design size of such integrated chips is steadily decreasing, while the number of layers applied, e.g., by various sequences of depositing, patterning, and etching of features onto the silicon surface, is rising. Present semiconductors typically incorporate up to 8 or more metal layers, and it is expected that future designs will contain even more layers. The decrease in the size of the circuitry and the increase in the number of layers applied are leading to even more stringent requirements on the smoothness and planarity of the silicon and semiconductor wafers throughout the chip manufacturing process, since uneven surfaces may undermine the patterning process and the general integrity of the resulting circuit.
In the semiconductor chip fabrication process, it is well-known that there is a need to polish a semiconductor wafer. This polishing is typically-accomplished by a chemical mechanical process (CMP). One standard CMP wafer polishing technique is to position a wafer over a rotating polishing pad that is usually disk-shaped, and is mounted on a large turntable. A chemical-mechanical polishing slurry is usually applied to the surface of the pad, and the wafer is held in place by an overhead wafer carrier while being polished by the rotating pad and slurry. The slurry is generally made up of an aqueous solution with metallic or non-metallic particles such as, for example, aluminum or silica abrasives that create the added friction for the polishing process.
A significantly different approach is the so-called Linear Planarization Technology (LPT), wherein the polishing pad is mounted onto a supporting belt and is used to polish the wafer, in place of the flat turntable form of the polishing tool. The belt used in this method is described in EP-A-0696495 and comprises an endless sheet of steel or other high strength material, having a conventional flat polyurethane polishing pad affixed to it with adhesive. As with the rotating pad, the pad used for LPT CMP polishing receives a chemical-mechanical polishing slurry that is distributed over the surface of the belt.
State of the art semiconductor polishing pads are made from high density polyurethane foams that have a functional porous structure, which aids the distribution of the chemical-mechanical polishing slurry and reduces hydroplaning, for example. Such pads are formed from a polymeric composition that comprise a dispersion of thin-walled, hollow plastic beads or “microspheres,” which can potentially provide a controlled and consistent microcellular structure.
However, there are some limitations to the use of hollow microspheres in polishing pads. The size and shape of the foam's cells are restricted to the limited sizes and shapes of the commercially available microspheres. In addition, microspheres may be too abrasive for some delicate polishing operations, e.g. certain steps in semiconductor manufacturing including, but not limited to, chemical mechanical polishing of soft metal layers. Typically, the microspheres are extremely light weight and flammable, posing significant material handling difficulties, including dust explosion hazards. The lightweight microspheres are also difficult to disperse in the polyurethane resins. They tend to clump and foul process equipment, and often entrain significant amounts of air, which leads to problematic variations in porosity of the cured foam. Also, the microspheres can distort, collapse, or melt if processed at high temperatures that are routinely used in processing polyurethanes and other potential pad materials.
Foam density, a measurement of the mass of froth per unit volume, is one of the most important properties of froth, directly affecting the durability and support of the foam. It is commonly measured and expressed in pounds per cubic foot (pcf) or kilograms per cubic meter (kg/m3), but may also be stated as g/cc. Foam density is directly related to the specific gravity of the foam.
Although there are several conventional ways to create high density polyurethane foam, including mechanical frothing and chemical blowing processes, pads produced by the conventional methods have not been successful in semiconductor polishing. While the polishing pads produced by the conventional method may be suitable for polishing glass and other low technology applications, they have not been as successful in semiconductor polishing, which is a more precise and more delicate application, because of the variability in pad cell structure and pad properties. Often times, the density of the foam produced by these conventional frothing methods varies greatly due to the conventional methods' inability to consistently produce foam within a preferable range of specific gravities or because of impurities, e.g. oxygen, contained within the foam. Another significant drawback of the prior art frothing methods is the time involved in producing the froth. Consequently, there is a need for a time efficient method of manufacturing froth falling within an optimal specific gravity range.
A method of producing froth used to produce a microcellular polishing pad or belt in a more expedient and efficient manner than the conventional prior art methods.
A method of producing froth used to produce a microcellular polishing pad or belt in which the froth produced has greater cell density than the froth produced using the conventional prior art methods.
A method of producing froth used to produce a microcellular polishing pad or belt which allows for better control, i.e., tighter range, over the specific gravity of the resulting froth.
A method of producing froth used to produce a microcellular polishing pad or belt which minimizes the volatile components and oxygen contamination in the froth.
A method of producing froth used to produce a microcellular polishing pad or belt wherein the froth density and average cell size can be varied independently of each other.
Another object of the invention is to provide a froth with a greater cell density and more uniform cell structure than the prior art froth.
Another object of the invention is to provide a froth having a preferred specific gravity.
Another object of the invention is to provide a froth that is essentially free of volatile components and contaminants.
Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principle of the invention.
This invention comprises high density foam semiconductor polishing pads and belts with controlled, reproducible microcellular structures that have been produced by a novel method of mechanical frothing. This invention provides an improved method for producing semiconductor polishing pads with consistent cell structure and properties, that perform equal to or better than the state-of-the-art polishing pads. The method also provides increased degrees of freedom and convenience in producing pads with different desired cell structures.
This invention also comprises a novel method of mechanically frothing the prepolymer material used for making foam semiconductor polishing pads and belts with controlled, reproducible microcellular structure. This invention provides a fast and efficient method for producing froth while also providing improved control over the specific gravity of the resulting froth. By providing more control over the specific gravity of the froth as well as minimizing the volatile components and contaminants that are contained within the froth, the present invention provides a pad or belt with a more consistent cell structure and greater cell density than the state-of-the-art pads. Due to the increase in cell density and a more consistent cell structure, the pads and belts of the present invention allow for increased polishing rates and more even planarization of the workpiece. In addition, the present invention also provides increased degrees of freedom and convenience with respect to the pressure under which the resulting froth and pads are produced.
It should be noted at this point that the term “pad,” as used herein, refers to polishing disks, polishing belts and any other geometric shape that may serve to polish semiconductor wafers. As a result, the term “pad” may be used interchangeably with the term “belt.” Moreover, the term “polishing disk” refers generally to any polishing pad that is used on a rotating, moving or stationary platen, regardless of the pad's shape. In other words, even though most polishing pads used on rotating platens are in fact disk-shaped, the term “polishing disk,” as used herein, is not confined to that shape.
For a more complete understanding of the objects of the present invention, the Detailed Description of the Invention will be taken with the drawings, wherein:
This invention comprises a method for making high density foam semiconductor polishing pads and belts with controlled, reproducible microcellular structure by mechanical frothing. This invention also comprises foam and pads with increased cell density and uniform distribution of cells having a preferred specific gravity. Preferably, the specific gravity of the foam is within the range of 0.7-1.0 g/cc. More preferably, the specific gravity of the foam is within the range of 0.80-0.95 g/cc. The preferable range of specific gravity of the pad is 05-1.2 g/cc. Preferably, the specific gravity for the pad is 0.7-1.0 g/cc. Even more preferable, the specific gravity for the pad made from the foam of the present invention is 0.85-0.95 g/cc.
The method of the present invention involves agitating a liquid polymer resin at a controlled temperature and pressure in order to produce a stable froth. Next, the resin froth is metered into a mix head where it is typically combined with the desired amount of curative before being injected or poured into a mold.
The resin material is typically polyurethane but can be any suitable thermoset polymeric material. In the case of urethanes, any suitable formulation is acceptable, including the incorporation or utilization of various fillers, catalysts, additives, and surfactants. Catalysts and blowing agents can be used to create an open-celled structure in the polishing pad or to enlarge the cells after the mixture is poured into the mold. It has been found that nucleation surfactants, that are commonly used in the manufacture of low density blow foams, are useful for producing a stable froth, which is critical to the present invention. One particularly useful nucleating surfactant is a block polymer containing at least one block comprising polydimethylsiloxane and at least one other block comprising polyether, polyester, polyamide, or polycarbonate segments. Other surfactants may include a surfactant having a block copolymer with one block containing silicon atoms and another block containing polyether, polyester, polyamide, polycarbonate, polyurethane or polyurea links, or any other surfactant that stabilizes the small bubbles of gas in the froth that is being produced. The stable froth produced with the aid of the nucleation surfactants forms easily with simple agitation schemes and maintains its integrity when put through processing equipment with varying temperature, pressures, and shear conditions.
Any suitable gas can be used as the frothing agent. Typically, dry nitrogen or dry air are used in the frothing vessel, although carbon dioxide, argon or an inert gas (e.g., hydrocarbons, HFCs, HCFCs etc) may also be used.
Different cell sizes and different overall densities or porosities can be achieved by selecting the process temperatures, pressures and agitation schemes. Different pressures can be used at different points or times in the process. For example, frothing dispensing, and molding pressures can all be different. Preferably the stable froth is produced at a temperature of ambient to 100° C. and at a pressure of ambient to 100 psig. Preferably the stable froth is metered to the mix head under a pressure of ambient to 200 psig.
Various molds or tooling designs may be employed to aid in maintaining or controlling the overall foam density and cell structure of the molded part.
Any suitable mixing, foaming, or dispensing equipment is acceptable, including those utilizing recirculation schemes.
An alternate variation of the present invention involves preparing the stable froth in continuous or semi-continuous fashion, in-line between a resin holding tank and the dispensing mix head.
Referring to
As mentioned above, nucleation surfactants are useful for producing a stable froth, which is critical to the present invention. For example a block copolymer containing at least one block comprising polydimethylsiloxane or siloxane polyalkyleneoxide and at least one other block comprising polyether, polyester, polyamide, or polycarbonate segments may be used to stabilize the small bubbles of gas that are produced by the combination of the prepolymer and frothing agent.
The tank 1, which is described in greater detail below in reference to
Whereas previous frothing methods only produced froths at pressures greater than atmospheric, the present invention produces froth at any absolute pressure down to near complete vacuum. The manufacture of froth under either vacuum or pressure allows for a larger range of specific gravities of the resulting froth, as shown in Example 1 below.
Hence, the froth produced under vacuum will have a preferred density which results in a more uniform cell structure and higher cell density than conventional frothing methods. It also provides greater control and flexibility over conventional frothing by allowing the overall density of the froth to be varied independently from the average cell size. This ability to vary the density of the froth independently of the average cell size provides manufacturers a great deal of flexibility to produce froth specifically suited to the individual requirements of certain types of industries and applications, all at a lower cost. For example, although specific reference is made to the semiconductor industry in the above embodiment, the froth of the present invention may be used in other industries such as the pharmaceutical, chemical, and food industries.
Referring back to
Prior to entering the mixhead, the curative (e.g., Ethacure 300 from Albemarle) is heated and degassed in a separate process tank. The curative tank is normally held under vacuum between pours, but will be pressurized prior to dispensing. The pressure in the tank, along with the close tolerance gear pumps, accurately meters the curative from the curative tank to the mixhead. Care is taken to keep all the materials protected from contact or exposure to moisture. This is accomplished by using closed tanks and containers and by blanketing with dry nitrogen gas instead of ambient room air.
Once the froth and curative are metered into the mixhead, various additional components such as fillers, catalysts, additives, blowing agents and surfactants may be incorporated. Catalysts and blowing agents can be used to create an open-celled structure in the polishing pad or to enlarge the cells after the mixture is poured into the molds. The froth, curative and various additives are then thoroughly mixed before proceeding through a manifold, where this material is injected into a mold cavity, typically at the bottom of the mold. The molds are usually open on top, so that the material overflows the mold at the end of the pour.
The material will set-up into a solid in the hot mold in about 5 minutes. The casting is removed from the mold and sometimes placed on a retaining ring (to maintain its form) in an oven and fully cured for a prescribed time (typically 16-24 hours for urethanes) prior to being sent through to secondary machining steps such as turning, grinding, grooving, end-point detection punching, and other trimming and laminating steps.
Different cell sizes and different overall cell densities or porosities can be achieved by selecting the process temperatures, pressures, and agitation schemes. Different pressures can be used at different points or times in the process. Frothing, dispensing, and molding pressures can all be different. For example, the froth may be produced at pressures ranging from an 18″ Hg vacuum to 10 psig. Preferably, the froth is produced at a vacuum pressure of 4″ Hg to 16″ Hg. More preferably, the froth is produced at a vacuum pressure of 6″ Hg to 12″ Hg. Even more preferably, the froth is produced at a vacuum pressure of 8″ Hg. Any temperature that result in a froth viscosity of 500-1500 centipoises may be used. Preferably, the froth is produced at a temperature that results in a viscosity of about 1,000 centipoises. More preferably, the stable froth is produced at a temperature of 150° F.
As nitrogen gas enters from dip tube 4 located below the impeller 3 at the lower portion 13 of the tank 1, an electric motor 8 rotates the shaft 2 and the impeller 3. The motor 8 can be set to rotate the shaft 2 and impeller 3 at any speed. Preferably, the impeller rotates at a speed of 400-1100 rpms. More preferably, the impeller rotates at a speed of 803 rpms. The impeller of the preferred embodiment consists of a horizontal disk 10 with vertical blades 11 attached to the perimeter of the disc.
The use of high sheer impellers for gas dispersion applications is well known in the art. These impellers are typically constructed of metal or plastic.
Referring back to
As illustrated in
Also, as discussed above, manufacturing froth at pressures of slight vacuum to near complete vacuum facilitates improved control over the specific gravity of the resulting froth, which improves the overall density of the polishing pad or belt made from such froth and permits the polishing pad or belt to maintain its integrity when it is put through processing equipment with varying temperatures and stresses.
The following non-limitative examples illustrate the invention:
To demonstrate the superior control over the specific gravity of the froth of the present invention, froth was prepared at varying vacuum pressures; the temperature and nitrogen inflow remained constant. The specific gravity of the froth was measured at vacuum pressures of 18″ Hg, 12″ Hg, 9″ Hg, 8″ Hg, 4″ Hg, and 0″ Hg.
63.3 kg of Adiprene® LF 750D (available from Crompton Corporation, Middlebury, Conn.), a polyurethane resin, was added to a controlled process tank at a temperature of 150° F. 316 g of polydimethylsiloxane surfactant (UAX-1600, available from Witco Corporation) was incorporated into the Adiprene® resin. The tank agitator was set to a rotational speed of 803 rpm using a 6″ 4-blade impeller. Nitrogen gas was metered in at a rate of 5 scfh through a sparge located at the bottom of the tank. A pressure regulator was used to control the pressure of the tank.
After 2.5 hours of constant agitation at 18″ Hg, the impeller was temporarily turned off, the influx of nitrogen gas was momentarily stopped and tank was brought to atmospheric pressure. A first sample of the froth, obtained from the bottom of the tank, was measured to have a specific gravity of 0.96.
The agitator was once again set to a rotational speed of 803 rpm and the nitrogen gas was metered in at a rate of 5 scfh. The vacuum pressure was adjusted to 12″ Hg. All other variables such as temperature and nitrogen flow remained constant. After one hour of agitation at 12″ Hg, the agitator and nitrogen flow were turned off and the tank was brought to atmospheric pressure. A second sample of the froth, obtained from the bottom of the tank, was measured to have a specific gravity of 0.92.
The agitator was set to a rotational speed of 803 rpm and the nitrogen gas was metered in at a rate of 5 scfh. The vacuum pressure was adjusted to 9″ Hg. All other variables such as temperature and nitrogen flow remained constant. After one hour of agitation at 9″ Hg, the agitator and nitrogen flow were turned off and the tank was brought to atmospheric pressure. A third sample of the froth, obtained from the bottom of the tank, was measured to have a specific gravity of 0.87.
The agitator was once again set to a rotational speed of 803 rpm and the nitrogen gas was metered in at a rate of 5 scfh. The vacuum pressure was adjusted to 8″ Hg. All other variables such as temperature and nitrogen flow remained constant. After one hour of agitation at 8″ Hg, the agitator and nitrogen flow were turned off and the tank was brought to atmospheric pressure. A fourth sample of the froth, obtained from the bottom of the tank, was measured to have a specific gravity of 0.86.
The agitator was once again turned on and set to a rotational speed of 803 rpm and the nitrogen gas was metered in at a rate of 5 scfh. The vacuum pressure was adjusted to 4″ Hg. All other variables such as temperature and nitrogen flow remained constant. After one hour of agitation at 4″ Hg, the agitator and nitrogen flow were turned off and the tank was brought to atmospheric pressure. A fifth sample of the froth, obtained from the bottom of the tank, was measured to have a specific gravity of 0.84.
The agitator was again set to a rotational speed of 803 rpm and the nitrogen gas was metered in at a rate of 5 scfh. The pressure was adjusted to 0″ Hg, which is atmospheric pressure in this example. All other variables such as temperature and nitrogen flow remained constant. After one hour of agitation at 0″ Hg, the agitator and nitrogen flow were turned off. A sixth sample of the froth, obtained from the bottom of the tank, was measured to have a specific gravity of 0.79.
Graph 1 is diagrammatic illustration of the data obtained from Example 1 above. The y-axis represents the specific gravity of the froth in g/cc, and the x-axis is a measure of the vacuum pressure in ″ Hg, wherein 30″ Hg represents complete vacuum and 0″ Hg represents atmospheric pressure. Referring to the plotted data of Example 1, it is clear that the production of froth under vacuum results in a froth within a range of 0.96 to above 0.79. More preferably, Graph 1 illustrates that a froth prepared at a vacuum of 16″ Hg to 4″ Hg resulted in a froth having specific gravities within the range of 0.8-0.9 g/cc, which represents a preferred range of specific gravities for semiconductor polishing belts and pads. It is only when the pressure of the tank approached atmospheric pressure and beyond, that the specific gravity of the froth fell out of the preferred range. Consequently, the results of Example 1 and the accompanying graph clearly demonstrate that the froth of the present invention may be produced within a tight range of specific gravity, in a time-efficient manner.
With a 5″ diameter, 4-blade impeller installed, add 60 kg of Adiprene® LF 750D to a temperature controlled process tank. Add 300 g of UAX-1600 surfactant. Turn the tank temperature controller on with a setpoint of 150° F. Turn on the tank agitator to a speed of 1011 rpm. Turn on the nitrogen sparge to the bottom of the tank with a flow rate of 2 scfh. Vent the headspace of the tank to control at atmospheric pressure. Allow to agitate for at least 4 hours. The resulting froth will have approximately a 0.74 specific gravity.
Batch Preparation: Add 40,000 g of Adiprene® LF 750D from Uniroyal Chemical Company, urethane prepolymer, to a process tank equipped with heating and variable speed agitation. Add 2,000 g of UAX-6123, a nucleating surfactant form Witco Corporation. Pressurize tank with nitrogen at 7 psig, agitate with simple impeller to create moderate vortex, and heat to 150° F.
Dispensing: Stop agitation or resin mixture, and pressurize Ethacure® 300, diamine curative from Albemarle Corporation, with nitrogen to 50 psig. Dispense and thoroughly mix resin mixture and curative simultaneously in a ratio of 102 parts to 21.5 parts by weight. Adjust backpressure in mixhead to avoid cavitation and to allow smooth dispensing and expansion of the foam. The resultant microcellular foam has approximately 0.68 specific gravity.
Batch Preparation: Add 40,000 g of Adiprene® LF 750D from Uniroyal Chemical Company, urethane prepolymer, to a process tank equipped with heating and variable speed agitation. Add 200 g of UAX-6123, a nucleating surfactant form Witco Corporation. Pressurize tank with nitrogen at 4 psig, agitate with simple impeller to create moderate vortex, and heat to 150° F.
Dispensing: Stop agitation or resin mixture, and pressurize with nitrogen to 50 psig. In a separate tank, pressurize Ethacure® 300, diamine curative from Albemarle Corporation, with nitrogen to 50 psig. Dispense and thoroughly mix resin mixture and curative simultaneously in a ratio of 100.5 parts to 21.5 parts by weight. Adjust backpressure in mixhead to avoid cavitation and to allow smooth dispensing and expansion of the foam. The resultant microcellular foam has approximately 0.92 specific gravity.
Batch Preparation: Add 25,139 g of Adiprene® LF 750D from Uniroyal Chemical Company, urethane prepolymer, to a process tank equipped with heating and variable speed agitation. Add 1,295 g of UAX-6123, a nucleating surfactant form Witco Corporation. Pressurize tank with nitrogen at 50 psig, agitate with simple impeller to create moderate vortex, and heat to 150° F.
Dispensing: Stop agitation or resin mixture, and dispense foam only at 50 psig. The resultant uncured microcellular foam is very stable, with no coalescence or separation. The uncured foam has approximately 0.41 specific gravity.
While the preferred embodiments of the invention shown and described above have proven useful in producing a stable dense froth used to manufacture pads and belts with controlled, reproducible microcellular structure, further modifications of the present invention herein disclosed will occur to persons skilled in the art to which the invention pertains, and all such modifications are deemed to be within the scope and spirit of the present invention defined by the applicable claims.
This application is a continuation-in-part of a U.S. patent application Ser. No. 09/317,973, entitled “Foam Semiconductor Polishing Belts and Pads,” filed May 25, 1999, which is now U.S. Pat. No. 6,514,301, which is a nonprovisional application claiming priority to U.S. Provisional Application No. 60/087,740, filed Jun. 2, 1998.
Number | Name | Date | Kind |
---|---|---|---|
2834748 | Bailey et al. | May 1958 | A |
2846458 | Haluska | Aug 1958 | A |
2868824 | Haluska | Jan 1959 | A |
2917480 | Bailey et al. | Dec 1959 | A |
3706681 | Bachura et al. | Dec 1972 | A |
3755212 | Dunlap et al. | Aug 1973 | A |
3772224 | Marlin et al. | Nov 1973 | A |
3803064 | Fishbein et al. | Apr 1974 | A |
3821130 | Barron et al. | Jun 1974 | A |
3862879 | Barron et al. | Jan 1975 | A |
3928258 | Alexander | Dec 1975 | A |
3929026 | Hofmann | Dec 1975 | A |
3940349 | Corbett | Feb 1976 | A |
3943075 | Fishbein et al. | Mar 1976 | A |
3947386 | Prokai et al. | Mar 1976 | A |
3957842 | Prokai et al. | May 1976 | A |
4022722 | Prokai et al. | May 1977 | A |
4022941 | Prokai et al. | May 1977 | A |
4038238 | Cravens | Jul 1977 | A |
4138228 | Hartfelt et al. | Feb 1979 | A |
4216177 | Otto | Aug 1980 | A |
4275172 | Barth et al. | Jun 1981 | A |
4374209 | Rowlands | Feb 1983 | A |
4412962 | Bessette et al. | Nov 1983 | A |
4546118 | Simpson et al. | Oct 1985 | A |
4576612 | Shukla et al. | Mar 1986 | A |
4613345 | Thicke et al. | Sep 1986 | A |
4649074 | Borel | Mar 1987 | A |
4728552 | Jensen, Jr. | Mar 1988 | A |
4753838 | Kimura et al. | Jun 1988 | A |
4767793 | Schisler et al. | Aug 1988 | A |
4771078 | Schisler et al. | Sep 1988 | A |
4796749 | Lefferts | Jan 1989 | A |
4814409 | Blevins, II et al. | Mar 1989 | A |
4828542 | Hermann | May 1989 | A |
4841680 | Hoffstein et al. | Jun 1989 | A |
4857368 | Klein | Aug 1989 | A |
4882363 | Neuhaus et al. | Nov 1989 | A |
4927432 | Budinger et al. | May 1990 | A |
4954141 | Takiyama et al. | Sep 1990 | A |
4962562 | Englund et al. | Oct 1990 | A |
5020283 | Tuttle | Jun 1991 | A |
5098621 | Hermann | Mar 1992 | A |
5145879 | Budnik et al. | Sep 1992 | A |
5177908 | Tuttle | Jan 1993 | A |
5197999 | Thomas | Mar 1993 | A |
5212910 | Breivogel et al. | May 1993 | A |
5234867 | Schultz et al. | Aug 1993 | A |
5257478 | Hyde et al. | Nov 1993 | A |
5287663 | Pierce et al. | Feb 1994 | A |
5329734 | Yu | Jul 1994 | A |
5334622 | Bergvist | Aug 1994 | A |
5401785 | Kumagai et al. | Mar 1995 | A |
5487697 | Jensen | Jan 1996 | A |
5489233 | Cook et al. | Feb 1996 | A |
5491174 | Grier et al. | Feb 1996 | A |
5514456 | Lefferts | May 1996 | A |
5525640 | Gerkin et al. | Jun 1996 | A |
5534106 | Cote et al. | Jul 1996 | A |
5565149 | Page et al. | Oct 1996 | A |
5578362 | Reinhardt et al. | Nov 1996 | A |
5602190 | Lamberts et al. | Feb 1997 | A |
5604267 | Duffy | Feb 1997 | A |
5605760 | Roberts | Feb 1997 | A |
5622662 | Veiga et al. | Apr 1997 | A |
5692947 | Talieh et al. | Dec 1997 | A |
5735731 | Lee | Apr 1998 | A |
5789454 | McVey | Aug 1998 | A |
5807903 | Stanga et al. | Sep 1998 | A |
5844010 | Burkhart et al. | Dec 1998 | A |
5859081 | Duffy | Jan 1999 | A |
5883142 | Chojnacki et al. | Mar 1999 | A |
5900164 | Budinger et al. | May 1999 | A |
6019919 | Sulzbach et al. | Feb 2000 | A |
6071978 | Eisen et al. | Jun 2000 | A |
6169122 | Blizard et al. | Jan 2001 | B1 |
Number | Date | Country |
---|---|---|
829328 | Mar 1988 | EP |
696495 | Feb 1996 | EP |
645226 | May 1997 | EP |
1029888 | Aug 2000 | EP |
2244714 | Dec 1991 | GB |
9616436 | May 1996 | WO |
9835786 | Aug 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20030148722 A1 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
60087740 | Jun 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09317973 | May 1999 | US |
Child | 10266552 | US |