The present application claims priority 35 U.S.C. § 119 to German Patent Publication No. DE 10 2013 017 285.3 (filed on Oct. 17, 2013) and European Patent Publication No. EP 13189499.0 (filed on Oct. 21, 2013), which are each hereby incorporated by reference in their respective entireties.
Embodiments relate to a closure system, in particular, for a fuel tank of a utility vehicle, and which includes a filler neck and a guide socket arranged inside the filler neck, a closure cap to be introduced between the filler neck and the guide socket.
Closure systems are known, per se, and normally use flat seals for sealing between the closure cap and the filler neck. Such seals, however, require a high screwing torque. As a result, it may arise that the closure cap is not screwed on as far as the end stops provided and consequently the closure cap is not fully sealed relative to the filler neck.
Embodiments relate to enhanced closure systems of the type aforementioned, and particularly, to a closure system which reliably prevents the escape of fuel from a fuel tank. In this case, the function of a seal between the closure cap and the filler neck is intended to remain guaranteed over a lengthy period of time and not be reduced as a result of use and/or during a filling sequence of the tank.
In accordance with embodiments, a closure system may include at least one of: a filler neck; a guide socket arranged inside the filler neck; a closure cap to be introduced between the filler neck and the guide socket and which is to be fastened to the filler neck via a screw or bayonet connection; and an annular seal received in an annular groove of the closure cap and which is secured to an inner face of the filler neck and arranged sufficiently deeply between the filler neck and the guide socket such that a nozzle placed between the filler neck and the guide socket does not reach thereto.
In accordance with embodiments, a closure cap is to be fastened to a filler neck, in particular, via a bayonet closure. The bayonet closure, for example, may act between a sealing housing of the closure cap and the filler neck, such that when the closure cap is closed, an annular seal is sealed between the closure cap, in particular, the sealing housing of the closure cap and the filler neck.
In accordance with embodiments, the annular seal is fastened to the filler neck and, when the closure cap is closed, is received in an annular groove of the closure cap. Accordingly, when the closure cap is removed, the annular seal is not capable of being reached by a nozzle badly positioned between the filler neck and the guide socket. This is by virtue of the fact that the arrangement thereof between the filler neck and the guide socket. Moreover, no damage results since the spacing between the filler neck and the guide socket as well as the depth of the annular seal in the gap between the filler neck and the guide socket are selected such that a nozzle of conventional geometry, and in particular, conventional wall thickness, is not capable of reaching the annular seal.
Developments of the invention are set forth in the dependent claims, the description as well as the accompanying drawings.
In accordance with embodiments, the closure cap is to be fastened to the filler neck by way of a bayonet closure. The closure cap, in particular, a sealing housing of the closure cap, comprises one bayonet ramp, or even a pair of bayonet ramps. The filler neck has a cam which is to be guided in the bayonet ramp, or a pair cams in the case of a pair of bayonet ramps. The bayonet closure may, in particular, be designed to permit rapid opening and closing over a 90 degree rotation. The closure may be provided with self-locking and with a captive securing mechanism or device in order to prevent inadvertent release of the closure cap from the filler neck.
In accordance with embodiments, the closure cap has a sealing lip toward the filler neck. The sealing lip may be formed either from the closure cap, i.e., designed integrally therewith, or as a flexible material component connected to the closure cap by a positive or material connection. As a result, no foreign particles may collect above the annular seal and fall into the tank when opened.
In accordance with embodiments, the closure cap has a valve for aeration and/or deaeration in order to prevent negative pressure and/or overpressure in the tank.
In accordance with embodiments, the closure cap has a lock, and thus, may be locked.
In accordance with embodiments, the filler neck has a plurality of holes at the side for deaeration during a filling sequence of the tank. In this case, a self-closing flap preferably conceals the lock in order to prevent environmental influences, in particular, moisture, debris, dust, etc. from penetrating therein.
In accordance with embodiments, further components may also be integrated into the filler neck, such as, for example, a tank flap which is self-closing by way of a spring actuation or a further suitable construction, such as a silicone damper, and/or a replaceable filter, in particular as a diesel filter.
In accordance with embodiments, a closure system may include at least one of: a filler neck; a guide socket arranged inside the filler neck; a closure cap to be introduced between the filler neck and the guide socket and which is fastenable to the filler neck; an annular seal to be received in an annular groove of the closure cap and which is secured to an inner face of the filler neck, wherein the annular seal is arranged between the filler neck and the guide socket such that a nozzle placed between the filler neck and the guide socket does not reach thereto.
In accordance with embodiments, a closure system may include at least one of: a filler neck; a guide socket fixed on an outer face thereof to and arranged inside the filler neck; a closure cap fastenable to the filler neck so as to be arranged between the filler neck and the guide socket; a first seal to be received in an annular groove of the closure cap and which is secured to an inner face of the filler neck; and a second seal at the closure cap and arranged at an outer diameter of the filler neck, wherein the first seal is arranged between the filler neck and the guide socket such that a nozzle placed between the filler neck and the guide socket does not reach thereto.
Embodiments will be illustrated by way of example in the drawings and explained in the description below.
In
As illustrated in the detailed view of
As illustrated in
As illustrated in more detail in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
The term “coupled” or “connected” may be used herein to refer to any type of relationship, direct or indirect, between the components in question, and may apply to electrical, mechanical, fluid, optical, electromagnetic, electromechanical or other connections. In addition, the terms “first,” “second,” etc. are used herein only to facilitate discussion, and carry no particular temporal or chronological significance unless otherwise indicated.
Those skilled in the art will appreciate from the foregoing description that the broad techniques of the embodiments may be implemented in a variety of forms. Therefore, while the embodiments have been described in connection with particular examples thereof, the true scope of the embodiments should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification, and following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 017 285 | Oct 2013 | DE | national |
13189499 | Oct 2013 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
1922930 | Darms | Aug 1933 | A |
4164302 | Gerdes | Aug 1979 | A |
4231240 | Fujita | Nov 1980 | A |
4342208 | Evans | Aug 1982 | A |
4567994 | Hofmann | Feb 1986 | A |
4881578 | Rich | Nov 1989 | A |
5042678 | Munguia | Aug 1991 | A |
6568553 | Hagano | May 2003 | B2 |
6651707 | Zimmer | Nov 2003 | B2 |
6814251 | Hagano | Nov 2004 | B2 |
7624889 | Tharp | Dec 2009 | B2 |
9096120 | Jean | Aug 2015 | B2 |
20110168705 | Siddiqui | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
201941721 | Aug 2011 | CN |
202685922 | Jan 2013 | CN |
19934422 | Feb 2001 | DE |
102007043033 | Mar 2009 | DE |
0885764 | Dec 1998 | EP |
1162099 | Dec 2001 | EP |
1264725 | Dec 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20150108131 A1 | Apr 2015 | US |