Fuel delivery systems and methods.
Equipment at a well being fractured requires large amounts of fuel. Conventionally, if the equipment needs to be at the well site during a very large fracturing job, the fuel tanks of the equipment may need to be filled up several times, and this is done by the well-known method of manually discharging fluid from a fuel source into each fuel tank one after the other. If one of the fuel tanks runs out of fuel during the fracturing job, the fracturing job may need to be repeated, or possibly the well may be damaged. The larger the fracturing job, the more likely equipment is to run out of fuel. Dangers to the existing way of proceeding include: extreme operating temperatures and pressures, extreme noise levels, and fire hazard from fuel and fuel vapors.
A fuel delivery system and method is presented for reducing the likelihood that a fuel tank of equipment at a well site during fracturing of a well will run out of fuel. There is therefore provided a fuel delivery system for delivery of fuel to fuel tanks of equipment at a well site during fracturing of a well, the fuel delivery system comprising a fuel source having plural fuel outlets, a hose on each fuel outlet of the plural fuel outlets, each hose being connected to a fuel cap on a respective one of the fuel tanks for delivery of fuel to the fuel tank; and a valve arrangement at each fuel outlet controlling fluid flow through the hose at the respective fuel outlet. The valve arrangement may be a single valve, for example manually controlled. The fuel source may comprise one or more manifolds with associated pumps and fuel line or lines. Hoses from the manifolds may be secured to the fuel tanks by a cap with ports, which may include a port for fuel delivery, a port for a fluid level sensor and a port for release of air from the fuel tank during fuel delivery. The fluid level sensor combined with an automatically operated valve as part of the valve arrangement on the fuel outlets from the fuel source may be used for automatic control of fuel delivery. A manual override is preferably also provided to control fuel flow from the fuel outlets.
A method is also provided for fuel delivery to fuel tanks of equipment at a well site by pumping fuel from a fuel source through hoses in parallel to each of the fuel tanks; and controlling fluid flow through each hose independently of flow in other hoses.
A cap or fill head for a fuel tank is disclosed, comprising: a housing having a throat and a top end; a first port in the top end provided with a connection for securing a hose to the cap; and a second port in the top end holding a fuel level sensor.
These and other aspects of the device and method are set out in the claims, which are incorporated here by reference.
Embodiments will now be described with reference to the figures, in which like reference characters denote like elements, by way of example, and in which:
Immaterial modifications may be made to the embodiments described here without departing from what is covered by the claims. In the claims, the word “comprising” is used in its inclusive sense and does not exclude other elements being present. The indefinite article “a” before a claim feature does not exclude more than one of the feature being present. Each one of the individual features described here may be used in one or more embodiments and is not, by virtue only of being described here, to be construed as essential to all embodiments as defined by the claims.
Equipment at a well site use for a fracturing job may comprise several pumpers and blenders. A representative pumper 10 is shown in
The fuel delivery system 14 includes a fuel source 16. The fuel source 16 may be formed in part by one or more tanks 18, 20 that are used to store fuel. The tanks 18, 20 may be mounted on the same trailer as the rest of the fuel delivery system 14 or on other trailers. The tanks 18, 20 should be provided with anti-siphon protection. The fuel source 16 has plural fuel outlets 22. Respective hoses 24 are connected individually to each fuel outlet 22. Each hose 24 is connected to a fuel cap or fill head 26 on a respective one of the fuel tanks 12 for delivery of fuel to the fuel tank 12 through the hose 24. Hoses 24 may each have a sight glass (Visi-Flo™, not shown) to check flow and observe air-to-fuel transition. Sight glasses may be used on hoses 24 or elsewhere in the system. Pressure meters (not shown) may be provided for example on each of the hoses 24 from the manifold to determine head pressure as well as deadhead pressure from the pumps 32, 34. A valve arrangement, comprising for example valve 28 and/or valve 58, is provided at each fuel outlet 22 to control fluid flow through the hose 24 connected to each respective fuel outlet 22 to permit independent operation of each hose 24. The valve arrangement preferably comprises at least a manually controlled valve 28, such as a ball valve, and may comprise only a single valve on each outlet 22 in some embodiments. The hoses 24 are preferably stored on reels 30. The reels 30 may be manual reels, or may be spring loaded. In order to accommodate the weight of hoses 24 on reels 30, the skid or trailer frame may have to be braced (not shown) sufficiently in order to prevent the hose 24 from forcing the frame open. Hose covers, such as aluminum covers (not shown), may be provided for capping hoses 24 that are not connected to fuel tanks 12, as a precaution in the event of a leak from a hose 24 or to prevent leakage in the event fuel is mistakenly sent through a hose 24 not connected to a respective fuel tank 12.
In the embodiment shown in
The fuel caps 26 are shown in
The sensor 54 preferably communicates with a control station 56 on the trailer 14 via a wireless communication channel, though a wired channel may also be used. For this purpose, the fuel level sensor 54 preferably includes a wireless transceiver 55, such as an Accutech™ Multi-Input Field Unit or other suitable communication device. Transceiver 55 may be provided with a mounting bracket (not shown) or clip for attachment to fuel tank 12. This may be advantageous in the event that fuel tank 12 does not have sufficient headspace to allow transceiver 55 to be positioned as shown in
The port 50 may be used to house a conduit 27 such as a drop tube, pipe, or flexible hose that extends down through the cap 26 to the bottom of the fuel tank 12, and which is connected via a connection 62, for example a dry connection, to one of the hoses 24. The conduit 27 should extend nearly to the bottom of the fuel tank 12 to allow for bottom to top filling, which tends to reduce splashing or mist generation. The conduit 27 may be provided in a length sufficient to eliminate generation of static electricity. A telescoping stinger could be used for the conduit 27. If the fuel tank 12 has an extra opening, for example as a vent, this vent may also be used for venting during filling instead of or in addition to the port 48, with the vent line 52 installed in this opening directing vapor to the ground. Where only the extra opening on the fuel tank 12 is used, the cap 26 need only have two ports. In another embodiment requiring only two ports, venting may be provided on the cap 26 by slots on the side of the cap 26, and with the other ports used for fuel delivery and level sensing. To provide the slots, the top end of a conventional cap with slots may have its top removed and replaced with the top end 46 of the cap 26, with or without the additional vent 48, depending on requirements. A pressure relief nozzle may be provided on hoses 24, or at any suitable part of the system in order to reduce the chance of pressure release upon disconnect or connection. A drain cock (not shown) may also be used to ensure that all pipes/hoses can be drained before removal. Each manifold may have a low-level drain.
The fuel delivery system 14 may be provided with automatic fuel delivery by providing the valve arrangement on the outlets 22 with an electrically operable valve 58 on each fuel outlet 22 shown in
Pump 32, 34 operation may be made automatic by automatically turning the pump(s) off after pressure in the system has risen to a predetermined level. For example, this may be done by adding a pressure switch (not shown) to the system, for example to the pump, which pressure switch would stop the power to the pump when all the valves, such as valves 28, 58, are closed and the pump has built up pressure to a predetermined level. As soon as one of the valves is opened the pressure from the pump line would drop off and the pressure switch would allow power back to the pump unit, allowing the pump to start and push fuel through the lines. Once all valves are shut again the pump would build pressure up to the predetermined pressure and the pressure switch would sense the rise in pressure and shut the power to the pump down again. In another embodiment, controller 56 may be set up to turn off the pump if all valves are closed. The pressure switch may be used as a redundant device in such an embodiment.
In the preferred embodiment, each hose 24 is connected to a fuel outlet 22 by a dry connection 60 and to a cap 26 by a dry connection 62. The hoses 24 may be 1 inch hoses and may have any suitable length depending on the well site set up. Having various lengths of hose 24 on board the trailer 14 may be advantageous. One or more spill containment pans (not shown) may be provided with the system, for example a pan of sufficient size to catch leaking fluids from the system during use. The pan or pans may be positioned to catch fluids leaking from each or both manifolds, and hose reels 30. Each manifold may have a pan, or a single pan may be used for both manifolds.
In operation of a fuel delivery system to deliver fuel to selected fuel tanks of equipment at a well site during fracturing of a well, the method comprises pumping fuel from a fuel source such as the fuel source 14 through hoses 24 in parallel to each of the fuel tanks 12 and controlling fluid flow through each hose 24 independently of flow in other hoses 24. Fluid flow in each hose 24 is controlled automatically or manually in response to receiving signals representative of fuel levels in the fuel tanks. Fuel spills at each fuel tank 12 are prevented by providing fuel flow to each fuel tank 12 through the fuel caps 26 on the fuel tanks 12. Emergency shut down may be provided through the manually operated valves 28. The caps 26 may be carried with the trailer 14 to a well site and the caps on the fuel tanks at the well site are removed and replaced with the caps 44. The trailer 14 and any additional fuel sources remain on the well site throughout the fracturing job in accordance with conventional procedures. The emergency shut down may be provided for example to shut all equipment including valves and pumps, and may activate the positive air shutoff on the generator.
The number of outlets 22 on a manifold 36, 38 may vary and depends largely on space restrictions. Five outlets 22 per manifold 36, 38 is convenient for a typical large fracturing job and not all the outlets 22 need be used. Using more than one manifold permits redundancy in case one manifold develops a leak. The hoses 24 are run out to equipment 10 through an opening in the trailer wall in whatever arrangement the well operator has requested that the fracturing equipment be placed around the well. For example, one manifold 36 may supply fluid to equipment 10 lined up on one side of a well, while another manifold 38 may supply fluid to equipment 10 lined up on the other side. The hoses 24 may be conventional fuel delivery hoses, while other connections within the trailer 14 may be hard lines. The trailer 14 may be of the type made by Sea-Can Containers of Edmonton, Canada. The fuel sources 18, 20 may be loaded on a trailer separate from the trailer 14 and may constitute one or more body job tanker trucks or other suitable tanker or trailer mounted fuel tank for the storage of fuel. The fuel sources 18, 20 may be stacked vertically on the trailer 14 or arranged side by side depending on space requirements. The fuel sources 18, 20, etc., should be provided with more than enough fuel for the intended fracturing job. For some fracturing jobs, two 4500 liter tanks might suffice, such as two Transtank Cube 4s (trademark) available from Transtank Equipment Solutions.
The control station 56 may be provided with a full readout or display for each fuel tank 12 being filled that shows the level of fuel in the fuel tank 12 including when the fuel tank 12 is near empty and near full. An alternative is to provide only fuel empty (low sensor dry) or fuel full (high sensor wet) signals. The fuel level sensor 54 may be provided with power from a generator or generators in series (not shown) on the trailer 14 (not preferred), via a battery installed with the sensor 54 or directly from a battery (not shown) on the equipment 12. If a battery is used, it may need to be small due to space constraints on the cap 44. Various types of fuel sensor may be used for the fuel sensor 54. A float sensor is considered preferable over a transducer due to reliability issues. As shown schematically in
The manual valves 28 should be readily accessible to an operator on the trailer 14. This can be arranged with the manifolds 36, 38 mounted on a wall of the trailer with the outlets 22 extending inward of the trailer wall. Pressure gauges (not shown) may be supplied on each of the outlets 22, one on the manifold side and one downstream of the valve 28. As fuel levels in the fuel tanks 12 drop, a pressure differential between the pressure gauges can be used to determine a low fuel condition in the fuel tanks 12 and the fuel tanks 12 may be individually filled by an operator. During re-fueling at a fracturing job, the manual valves 28 may remain open, and the operator may electrically signal the automatic valves 58 to open, using an appropriate console (not shown) linked to the valves 58. The level sensor 54 at the fuel tank 12 may be used to indicate a high level condition. An automatic system may be used to close the valves 58 automatically in the case of a high fluid level detection or the operator may close the valves 58 using the console (not shown). In the case of solenoid valves being used for the valves 58, either cutting or providing power to the valves 58 may be used to cause the closing of the valves 58, depending on operator preference. A screen or filter may be provided upstream of the solenoids, in order to prevent debris from entering and potentially damaging the solenoid.
Hoses from the outlets 22 may be stored on reels 30 mounted on two or more shelves within the trailer 14. Filters (not shown) may be provided on the lines between the fuel sources 18, 20 and the pumps 32, 34. An example of a suitable filter is a five-micron hydrosorb filter. Another example of a filter is a canister-style filter added immediately after the pump. A fuel meter (not shown) may also be placed on the lines between the fuel sources 18, 20 and the pumps 32, 34 so that the operator may determine the amount of fuel used on any particular job. The pumps 32, 34 and electrical equipment on the trailer 14 are supplied with power from a conventional generator or generators (not shown), which may conveniently be mounted on the trailer. Size of the pumps 32, 34 should be selected to ensure an adequate fill time for the fuel tanks 12, such as 10 minutes, with the generator or generators (not shown) to supply appropriate power for the pumps and other electrically operated equipment on the trailer 14. Pumps 32, 34 may be removable in order to be changed out if required. For example, the pumps 32, 34 may be connected by non-permanent wiring. Pumps 32, 34 may be centrifugal pumps, such as Gorman-Rupp™ or Blackmer™ pumps. Lights and suitable windows in the trailer 14 are provided so that the operator has full view of the equipment mounted on the trailer and the equipment 10 being refueled. The spatial orientation of the control station 56, reels 30, manifolds 36, 38, tanks 18, 20 and other equipment such as the generators is a matter of design choice for the manufacturer and will depend on space requirements.
Preferably, during re-fueling of the fracturing equipment, fracturing equipment should not be pressurized and the fuel sources should not be located close to the fracturing equipment. Additional mechanical shut-off mechanisms may also be included, such as a manual shut-off on the remote ends of the hoses, for example at the dry connection 62. Hydro-testing may be carried out on all elements of the system, including the manifolds and piping. Hydro-testing may be carried out at a suitable time, for example at time of manufacture or before each use. For example, the system may be pressured up and left overnight to check for leakage. In addition, quality control procedures may be carried out, for example including doing a diesel flush in the system to clear all debris. A compressor (not shown) or source of compressed fluid such as inert gas may be provided for clearing the lines and the system of fuel before transport. In another embodiment, the pumps 32, 34 may be used to clear the lines, for example by pumping pumps 32, 34 in reverse to pull flow back into the tanks 18, 20.
Referring to
Quick connect coupling 47 may comprise an annular bowl 63 shaped to couple with camlock 53. Annular bowl 63 may be used with other quick connection couplings, and allows top end 46 to be installed at any desired radial angle. An o-ring 65 may be present in bottom end 57 for sealing against intermediate portion 61 upon locking of camlock 53. One or more of ports 48, 49, and 50 may be in a lateral surface 67, such as an annular surface as shown, of top end 46. As shown in
Referring to
A cabin (not shown) may be added to the system, for example comprising a heater, desk, and access to relevant control equipment. The cabin may have a window with a line-of-sight to the frac equipment. A dashboard may be visible from the cabin, the dashboard containing readouts of system characteristics such as fuel tank 12 levels. A gas detection system (not shown) may be used to detect the presence of leaking gas. In some embodiments, one or more of the hoses 24 may be provided with an auto nozzle fitting attachment to fill pieces of equipment other than fuel tank 12, in order to obviate the need for an on-site fuel source other than the fuel system disclosed herein. An electrical box (not shown) may be mounted on the skid or trailer with rubber or resilient mounts to reduce vibrational issues.
Some types of equipment such as frac pumpers have two tanks, which may be connected by equalization lines. In such cases, fuel cap 26 may be connected into the tank 12 opposite the tank 12 under engine draw, in order to reduce the turbulence caused by fuel filling which may cause air to be taken into the fuel intake, which may affect the performance of the pumper. The return flow from the engine generally goes into the opposite tank from which fuel is drawn.
Number | Date | Country | Kind |
---|---|---|---|
2693567 | Feb 2010 | CA | national |
Number | Date | Country | |
---|---|---|---|
61305320 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15997340 | Jun 2018 | US |
Child | 17687386 | US | |
Parent | 15144547 | May 2016 | US |
Child | 15997340 | US | |
Parent | 13028991 | Feb 2011 | US |
Child | 15144547 | US |