This application is the U.S. National Stage of International Application No. PCT/EP2008/055762, filed May 9, 2008 and claims the benefit thereof. The International Application claims the benefits of European Patent Office application No. 07009960.1 EP filed May 18, 2007, both of the applications are incorporated by reference herein in their entirety.
The invention relates to a fuel distributor, in particular for a burner and a swirler.
The main purpose of the burner is to mix fuel and air together to obtain stable and efficient combustion with good flame stability and the smallest possible amount of NOx emissions. Therefore, the burner design must ensure that the proper amounts of fuel and air are introduced in the right locations within the burner and that these amounts of fuel and air are thoroughly mixed, so that complete combustion takes place with a minimum amount of excess air in order to achieve optimum overall efficiency.
The two burner principles, which could be combined to use their respective advantages, are the premix combustion burner and the diffusion flame burner.
In the premix combustion burner, the air, required for combustion, is mixed with the burner fuel before delivery to the combustion zone. The better the mixing of fuel and air the less hot zones with a fuel/air ratio exceeding the stoichiometric requirements exist. Since flame temperature is the dominant factor driving NOx production it follows that the more fuel lean the mixture, the lower the NOx produced.
In the diffusion flame burner, the fuel is not mixed with the air ahead of the combustion zone, but delivered as pure fuel in the immediate vicinity of the combustion zone. Diffusion flame burners provide good flame stability. The NOx production is relatively high.
Low emission gas turbine engines often use a combustor with two operating modes including a pilot nozzle that forms a diffusion flame and a plurality of main nozzles for discharging a fuel/air mixture to form premixed flames as the main combustion around the diffusion flame. The U.S. Pat. No. 5,901,555 describes a conventional gas turbine with the main burners divided into a plurality of groups in accordance with the load. The flow rate of the pilot fuel is increased when the gas turbine load is low, to achieve stable combustion. When the gas turbine load is high, the ratio of the pilot fuel is decreased, to decrease the amount of NOx. Separately controllable fuel lines, valves, pipe work and a control logic are required to achieve the appropriate fuel flows to the pilot and main nozzles, increasing the cost of the engine.
An object of the invention is to provide an improved fuel distributor.
This object is achieved by the claims. The dependent claims describe advantageous developments and modifications of the invention.
An inventive fuel distributor uses the pressure gradient across the combustion system to control the proportion of fuel provided to different areas of the combustion system. These areas could provide pilot fuel at low loads, or better mixing of the fuel and air at high loads.
The system comprises a cavity with an inlet opening and at least two fuel injection openings. The fuel distributor relies on having a larger injection opening arranged in the cavity of the fuel distributor in an upstream section, relative to the flow of compressor air, and a smaller injection opening arranged in the cavity in a downstream section, relative to the flow of compressor air, and serving as feed near combustor pressure.
In an advantageous embodiment of the invention a restrictor is arranged at the inlet opening to balance between the fuel flows through the at least one smaller outlet opening and the at least one larger third opening, respectively.
In a further advantageous embodiment, the restrictor is adjustable to adapt the pressure for different fuel types.
Since at low fuel pressure fuel basically leaves the distributor at the outlet opening that is exposed to the lowest external air pressure, it is advantageous to use this outlet opening as pilot fuel injection opening.
For the same reason, it is advantageous to use the third opening with a larger cross-sectional area and exposed to higher external air pressure as main fuel injection opening.
In an advantageous embodiment the principle of the fuel distributor is applied to a diffusion flame burner, where the fuel distributor has a tubular form with the outlet opening at the end of the tube facing the combustion chamber and with third openings arranged upstream the tube, relative to the flow of the fuel. At low fuel flows, the majority of the fuel will enter the combustion chamber through the outlet opening. Compressor air can enter the fuel distributor through the third openings and give some premixing of the fuel and the air. As the fuel flow increases, the pressure in the cavity increases and fuel will spill out through the third openings and will mix with compressor air and enter the combustion chamber.
In another advantageous embodiment, the principle of the fuel distributor is applied to a swirler. The cavity of the fuel distributor is arranged in the base plate of the swirler. The fuel openings and the third openings are arranged in the mixing ducts, that is, in the passages of the swirler. The openings may be arranged in the base plate of the swirler or in the swirler vanes. If arranged in the swirler vanes, the arrangement could be at different heights to improve the fuel distribution over the swirler vane height. Smaller fuel outlet openings would be closer to the swirler exit hole with lower pressure. Larger third openings would rather be in an upstream part of the swirler passages relative to the flow of compressor air, with higher pressure. The fuel outlet openings would serve as pilot and the third openings as main fuel injection openings.
In yet another advantageous embodiment, the pressure drop of the air between an outlet opening and a third opening in a mixing duct or a swirler passage is controlled by making the mixing duct or swirler passage convergent or divergent.
With such a design of the fuel distribution system emissions of NOx are reduced. The inventive fuel distributor provides an increasing level of premix as the fuel flow increases. The inventive fuel distributor even provides some premixing of fuel and air at low flows, thus further reducing NOx emissions. Furthermore, the fuel/air mixing within a premix duct like e.g. a swirler passage can be varied as the fuel flow changes without the use of control valves, thus reducing costs and increasing reliability.
The invention will now be further described with reference to the accompanying drawings in which:
In the drawings like references identify like or equivalent parts.
Referring to
Referring to
At high loads the proportion of fuel 8 entering the swirler passage 14 through the third opening 6 is increased, as shown in
Referring to
Number | Date | Country | Kind |
---|---|---|---|
70099601 | May 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/055762 | 5/9/2008 | WO | 00 | 11/17/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/141955 | 11/27/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5901555 | Mandai et al. | May 1999 | A |
6279543 | Niethammer et al. | Aug 2001 | B1 |
7490471 | Lynch et al. | Feb 2009 | B2 |
20070130954 | Lynch et al. | Jun 2007 | A1 |
20080083229 | Haynes et al. | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
0870989 | Oct 1998 | EP |
0936406 | Aug 1999 | EP |
1394471 | Mar 2004 | EP |
1507119 | Feb 2005 | EP |
2122684 | Nov 1998 | RU |
2145402 | Feb 2000 | RU |
2260747 | Sep 2005 | RU |
Number | Date | Country | |
---|---|---|---|
20100146979 A1 | Jun 2010 | US |