The present disclosure relates generally to a fuel flow limiter assembly in a pressurized fuel system, and more particularly to a fuel flow limiter assembly having an integrated fuel filter.
Pressurized fuel systems are well-known and widely used in internal combustion engines. In one example, a pressurized fuel reservoir is supplied with pressurized fuel from a single pump and makes the pressurized fuel available for delivery and injection into combustion cylinders in the engine by way of fuel injectors. Other pressurized fuel injection systems utilize so-called unit pumps where individual cam actuated or hydraulically actuated fuel pressurization pumps are associated with each fuel injector. Various extensions and alternatives to these two basic constructs have been proposed over the years.
In recent years the desirability of ever higher fuel injection pressures has been widely recognized. High fuel pressures can enable tiny amounts of fuel to be injected rapidly and precisely, and provide improved atomization and other properties to mitigate certain undesired emissions.
Such systems tend to be highly sensitive to debris, however, as small particles present in fuel supplied into the system, or produced by components in the system itself, can interfere with the motion of rapidly moving fuel injector and pump components or otherwise cause performance degradation. Engineers have experimented for many years with different strategies for filtering fuel to remove particles, including systems where all of the fuel is filtered upstream of a pressurized fuel reservoir, and also systems where fuel is filtered between a pressurized fuel reservoir and individual fuel injectors. One example pressurized fuel system employing fuel filtration between a pressurized fuel reservoir and a fuel injector is set forth in United States Patent Application Publication No. 20150345448A1 to Gerstner et al. While the strategy set forth in the '448 application may have certain advantages and applications, there is always room for improvement and development of alternative strategies.
In one aspect, a fuel flow limiter assembly includes a limiter body defining a longitudinal axis extending between a first axial body end and a second axial body end, and including an axially extending central bore, and a fuel inlet formed in the first axial body end and fluidly connected to the central bore. The limiter assembly further includes a connector coupled to the second axial body end, and including a fuel outlet fluidly connected to the central bore. The limiter assembly further includes a shutoff piston within the central bore and including a closing hydraulic surface exposed to a fluid pressure of the fuel inlet, and a sealing surface. The shutoff piston is movable within the central bore in a direction of the second axial body end from an open position, to a closed position where the sealing surface is in contact with the connector to block fuel flow from the fuel inlet to the fuel outlet. The limiter assembly further includes a biasing spring trapped between the shutoff piston and the connector and biasing the shutoff piston toward the open position, and a fuel filter supported in the connector. The fuel filter projects from the connector in the direction of the first axial body end in a fuel flow path from the fuel inlet to the fuel outlet.
In another aspect, a fuel system for an internal combustion engine includes a pressurized fuel reservoir, a plurality of fuel injectors fluidly connected to the pressurized fuel reservoir, and a plurality of flow limiter assemblies each positioned fluidly between the pressurized fuel reservoir and at least one of the plurality of fuel injectors. Each of the plurality of flow limiter assemblies defines a longitudinal axis and includes a fuel inlet, a fuel outlet, a central bore, a biasing spring, and a shutoff piston positioned in the central bore, and movable in opposition to a bias of the biasing spring to a closed position based on a fuel pressure drop from the fuel inlet to the fuel outlet. Each of the plurality of flow limiter assemblies further includes a fuel filter having a filter inlet surface exposed to a flow of fuel in the central bore, and a filter outlet surface forming a filtered fuel passage extending to the fuel outlet, in the respective flow limiter assembly.
In still another aspect, a fuel feed subsystem for a fuel injector includes a leakage containment housing structured to couple with a pressurized fuel reservoir, and a fuel flow limiter assembly within the leakage containment housing. The fuel flow limiter assembly includes a limiter body defining a longitudinal axis, and a connector coupled to the limiter body. The limiter body has a fuel inlet formed therein and an axially extending central bore fluidly connected to the fuel inlet. The connector has a fuel outlet formed therein and fluidly connected to the central bore. The fuel flow limiter assembly further includes a biasing spring, and a shutoff piston including a closing hydraulic surface exposed to a fluid pressure of the fuel inlet, and a sealing surface. The shutoff piston is movable within the central bore in opposition to a biasing force of the biasing spring from an open position to a closed position to block fuel flow from the fuel inlet to the fuel outlet. The subsystem further includes a fuel filter resident in the fuel flow limiter assembly and supported in the connector such that the fuel filter projects from the connector in an upstream direction relative to a fuel flow path from the fuel inlet to the fuel outlet.
Referring to
Engine system 10 also includes a pressurized fuel system 16 having a fuel tank 18, a low pressure pump 20, a high pressure pump 22, and a pressurized fuel reservoir 24. A plurality of fuel injectors 26 are coupled to pressurized fuel reservoir 24 and positioned to directly inject liquid fuel into combustion cylinders 14. Each fuel injector 26 includes an outlet check 28, and an electrically actuated control valve assembly 30. Fuel system 16 also includes a plurality of fuel feed lines 32 extending between reservoir 24 and fuel injectors 26. Feed lines 32 may include so-called quill connectors in one embodiment. A pressure sensor 38 may be coupled with reservoir 24 and structured to monitor fuel pressure therein in a generally known manner. Fuel system 16 may be implemented as a so-called common rail fuel system, where a single monolithic pressurized fuel reservoir is provided to simultaneously feed pressurized fuel at an injection pressure to all of fuel injectors 26. In other embodiments a plurality of separate pressurized fuel reservoirs in the nature of accumulators might be used with each associated with one or more fuel injectors. An electronic control unit 40 is shown coupled with high pressure pump 24, with pressure sensor 38 and with each of fuel injectors 26 to monitor and electronically control operation of these and other components in a generally known manner. Based on a pressure signal from pressure sensor 38, electronic control unit 40 may control high pressure fuel pump 24 to maintain fuel pressure at a desired level. Fuel system 16 also includes a plurality of fuel flow limiter assemblies 34 each positioned fluidly between pressurized fuel reservoir 24 and one of fuel injectors 26, in the illustrated embodiment, features and functionality of which will be further apparent from the following description.
Referring also now to
Referring also now to
Also shown in
Referring also now to
Referring also to
Also in the illustrated embodiment limiter body 58 includes a counterbore 98 formed in second axial body end 64. Connector 70 may be formed as a one-piece junction block positioned in counterbore 98, and has a connector seat 100, such as a conical seat, formed therein and extending circumferentially around fuel outlet 72. Connector 70, including a one-piece junction block as noted above but potentially multiple parts, includes a spring bore 102 coaxially arranged with fuel outlet 72 about longitudinal axis 60, and extending between fuel outlet 72 and central bore 66.
Also visible in
Referring to the drawings generally, engine system 10 may be operated by reciprocating pistons in combustion cylinders 14, and injecting pressurized fuel from pressurized fuel reservoir 24 supplied to each of fuel injectors 26 directly into combustion cylinders 14. Under normal operation outlet checks 28 in each of fuel injectors 26 will remain closed between injection events, and commanded to open for fuel injection using electronic control unit 40 to energize control valve assemblies 30. During fuel injection events fuel will flow through each of the respective flow limiter assemblies 34 to the associated fuel injector 26. Based upon a fuel pressure drop across each flow limiter assembly 34 during fuel injection, the respective shutoff piston 74 may move away from the open position in opposition to a biasing force of biasing spring 80. Ordinarily the fuel injection event will end and biasing spring 80 will urge shutoff piston 74 back toward the fully open position without it reaching its closed portion. Fuel filter 82 filters fuel flowing through central bore 66 to fuel outlet 72 in the manner generally described herein.
In some instances, fuel injectors may experience performance degradation or damage, including valve sticking, electrical actuator failure, problems caused by debris, or other issues, resulting in excess or unmitigated fuel flow from pressurized fuel reservoir 24 into the associated combustion cylinder 14. In such instances, rather than returning towards an open or fully open position at the end of a fuel injection event shutoff piston 74 will move, based on the fuel pressure drop from fuel inlet 68 to fuel outlet 72, to the fully closed position, such that sealing surface 78 in contact with connector 70 effectively shuts off fuel flow and shuts down the associated combustion cylinder. Integrating the functions of flow limiting and filtration can reduce the number of parts and components required in a fuel system such as fuel system 16, while obtaining or retaining full fuel shutoff functionality in association with each combustion cylinder.
The present description is for illustrative purposes only, and should not be construed to narrow the breadth of the present disclosure in any way. Thus, those skilled in the art will appreciate that various modifications might be made to the presently disclosed embodiments without departing from the full and fair scope and spirit of the present disclosure. Other aspects, features and advantages will be apparent upon an examination of the attached drawings and appended claims. As used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more.” Where only one item is intended, the term “one” or similar language is used. Also, as used herein, the terms “has,” “have,” “having,” or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.