For a better understanding of the invention, some preferred embodiments are described herein, purely by way of example with the aid of the annexed plate of drawings.
The metering valve 8 comprises a control chamber 11 having a calibrated pipe 12 for outlet of the fuel under pressure from such control chamber 11. The calibrated pipe 12 is normally kept closed by a shutter 13, which is pushed against a contrast surface 14 by a helical compression spring 16, which will be described more clearly hereinafter. The calibrated pipe 12 is opened by the antagonistic action exerted by an actuator, formed by an electromagnet 17, which acts on a disk-shaped armature 18, fixed to the shutter 13. The electromagnet 17 and the armature 18 are housed in the tubular stretch 4 of the hollow body 2.
The electromagnet 17 comprises a magnetic core 19 with a toroidal shape, having an axial through slot 21, housed in which is the spring 16. The core 19 comprises a cylindrical part 20 and a flange 22, with which it bears upon the shoulder 7, through a spacer ring 23. The core 19 moreover has an annular slot 24, designed to house an electric coil 26. The annular slot 24 (
The coil 26 is formed by a series of turns 27 wound around a bobbin 28 (see also
The electromagnet 17 further comprises two plugs 34 for electrical supply of the coil 26, which are parallel to the axis 3 and are set transversely at a distance from one another. Each plug 34 has a first end portion 36, electrically connected, in a known way, to a corresponding terminal of the coil 26. Each plug 34 further comprises a central portion 37, and a second end portion 38 projecting, in use, beyond the tubular stretch 4 (
The electromagnet 17 further comprises a monolithic block 42 made of non-magnetic plastic material, embedded in which are the cylindrical part 20 of the core 19, and the intermediate portions 37 of the plugs 34. Preferably, the non-magnetic material may be a polyamide reinforced with fibre glass, for example ZYTEL® or STANYL® plastic resins. In particular, the block 42 has a first portion 43 that englobes the cylindrical part 20 of the core 19 and rests against the flange 22 of the core 19. The portion 43 has an outer diameter which approximates by defect the inner diameter of the tubular stretch 4 (see also
The block 42 comprises also a second portion 46 having an outer diameter smaller than that of the portion 43, to which it is radiused via an annular shoulder 47 orthogonal to the axis 3. The portion 46 projects on the outside of the tubular stretch 4, and the shoulder 47 is set at a distance from a top end edge 48 of said stretch 4 by a pre-set amount. The portion 46 has two blind axial cavities 49, each set in a position corresponding to the portion 38 of the corresponding plugs 34. The block 42 further comprises a through central slot 50, which forms with the slot 21 of the core a discharge pipe for the fuel coming out of the calibrated pipe 12. The slot 50 houses a part of the spring 16 and has a shoulder 55 bearing upon which is the spring 16 itself.
The shoulder 47 of the block 42 defines a resting surface for a compression spring 51, conveniently of the Belleville-washer or crinkle-washer type, which is forced against such shoulder 47 by a ring nut 52 shaped like a cup turned upside down. In particular, the ring nut 52 has an internally threaded side wall 53, which is screwed on an outer threading of the tubular stretch 4. The ring nut 52 moreover has an annular end wall 54, which surrounds with radial play the portion 46 of the block 42, and is set, in use, bearing upon the top edge 48 of the tubular stretch 4. The annular wall 54 defines an axial contrast surface for the spring 51.
The end portion 38 of each plug 34 is designed to be coupled electrically to a respective terminal 56. The two terminals 56 are carried by two corresponding terminal blocks 57 housed in an electrical-insulation cap or lid 58. In use, the end portion 38 of each plug 34 projects from the corresponding blind axial cavity 49 of the block 42, fitted around such end portion 38 is a gas seal 59. Then, fitted on the portions 38 of the plugs 34 are the two terminal blocks 57, and the lid 58 is fitted on the tubular stretch 4 of the hollow body 2.
In a preferred embodiment, the coil 26 is formed in such a way that its outer surface 33 is lapped by the fuel that comes out of the calibrated pipe 12. In particular, the outer surface 33 of the coil 26 forms, with the outer surface 30 of the annular slot 24, a gap 61, which said fuel enters.
According to the embodiment of
In the variant illustrated in
According to the embodiment of
The injector 1 can be manufactured using a method of manufacture that includes injection of the non-magnetic material of the block 42 into a mould, in which the core 19 and the coil 26 will already be present, so as to englobe the cylindrical part 20 of the core 19, the central part 37 of the plugs 34 and at least the projecting part 67 of the appendages 39 of the bobbin 28. This method of manufacture comprises the following steps:
Next, the following further steps are carried out:
From what has been seen above the advantages of the injector 1 and of the corresponding method of manufacture according to the invention as compared to the known art are evident. In particular, the fuel coming out of the calibrated pipe 12, by constantly lapping the outer surface 33 of the coil 26, rapidly dissipates the heat produced by the passage of current in its turns 27, so that the working life of the injector 1 is increased. In addition, the method of manufacture enables the passages 63, 66 for the fuel towards the gap 61 between the coil 26 and the annular slot 24 to be easily obtained, and assembly of the various components of the injector 1 to be simplified.
It is understood that various modifications and improvements may be made to the fuel injector and to the corresponding method of manufacture described above, without thereby departing from the scope of the claims. For example, the block 42 of non-magnetic material can assume different shapes, or else be replaced with two or more parts that will enable fixing of the plugs 34 to the core 19 and fixing of the latter in the tubular stretch 4 of the hollow body 2.
Number | Date | Country | Kind |
---|---|---|---|
06425404.8 | Jun 2006 | EP | regional |