Information
-
Patent Grant
-
6427667
-
Patent Number
6,427,667
-
Date Filed
Tuesday, May 23, 200024 years ago
-
Date Issued
Tuesday, August 6, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Wolfe; Willis R.
- Gimie; Mahmond
Agents
- Knobbe, Martens, Olson & Bear LLP
-
CPC
-
US Classifications
Field of Search
US
- 123 470
- 123 472
- 123 295
- 123 430
- 277 591
- 277 597
- 277 648
-
International Classifications
-
Abstract
A mounting arrangement for a fuel injector comprises a cylinder head, a mounting bore formed in the cylinder head, a seat surface formed within the mounting bore, a fuel injector positioned within the mounting bore and comprising a seating surface, at least one sealing ring disposed about a portion of the fuel injector and positioned between the seating surface and the seat surface. The ring comprises a thermal insulator material and a resin material. The ring also comprises a deformable eyelet that expands radially inward in response to compressive axial forces. The resin material thermally activates at a temperature within the operating temperature range of the engine.
Description
PRIORITY INFORMATION
The present application is based on and claims priority to Japanese Patent Application No. 11-148459, filed May 27, 1999, the entire contents of which are hereby expressly incorporated by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to fuel injector mounting arrangements for direct injection engines. More particularly, the present invention relates to an improved injector mounting arrangement for use in such engines.
2. Related Art
Fuel injected engines come in a variety of types. For instance, in some fuel injected engines, the fuel injector is positioned within the intake passage to provide an air fuel mixture upstream of a combustion chamber. In other arrangements, a fuel injector may be mounted just outside of an intake valve and directed toward a combustion chamber such that the spray of fuel passes through the intake valve and mixes with the air within the combustion chamber. In other arrangements, the injector is positioned to inject fuel directly into a combustion chamber for mixing with air drawn in through an induction system. In such arrangements, the injector is subjected to high temperatures as well as thermal cycling.
In these direct injection engines, gases created during the combustion process sometimes leak around the fuel injectors mounted in the cylinder head. In addition, the flames created during the ignition of the air-fuel charge within the combustion chamber also force themselves within gaps formed within the mounting arrangement of a fuel injector. The migration of the flame, as well as the thermal conductivity of the materials used to mount the fuel injector and the fuel injector itself, can create a number of problems for proper operation of the fuel injector. For instance, a portion of the fuel injector proximate the tip of the fuel injector can become extremely heated, leading to the deposition of carbon deposits about the fuel injector. The formation of the carbon deposits often prohibits the smooth flow of fuel over time. As a result, the total amount of fuel being injected by the injector decreases, leading to rough idling and hesitation during acceleration. This problem is more common in two cycle engines or other types of engines that are run at high speeds and high temperatures.
With reference now to
FIG. 1
, an earlier fuel injector mounting arrangement is illustrated therein. In this illustrated arrangement, a fuel injector
10
includes a fuel injection nozzle
12
that extends through a portion of a cylinder head
14
. The cylinder head
14
partially encloses a combustion chamber
16
into which the fuel passing through the fuel injector
10
is injected. As illustrated, the nozzle
12
extends through an opening
16
in the cylinder head
14
that is directly exposed to flames F that are propagated during the combustion of the air-fuel mixture within the combustion chamber
16
. As illustrated in
FIG. 1
, a gap is defined between the side surface of the nozzle
12
and the opening
18
. Therefore, flames directly impinge upon portions of the fuel injector nozzle
12
and increase the temperature of the nozzle
12
.
A seal
20
is disposed between the nozzle
12
and a stopping surface
22
of the injector
10
. In addition, the seal
20
seats against a lower surface which forms a seat
24
for the seal
20
on the cylinder head
14
. The illustrated seal
20
has been curved, which creates a slight gap between its innermost end
26
and the nozzle
12
. Thus, the nozzle is further exposed to flames that pass within the gap defined between the nozzle
12
and the cylinder head
14
. Moreover, the seal
20
typically is constructed of metal. Therefore, its thermal conductivity is high.
Because the intense heat within the combustion chamber
16
is transmitted to the fuel injector
10
, the temperature of the nozzle
12
often has a high temperature as well. Accordingly, heavy substances or components of the fuel are deposited and accumulate around the tip of the fuel injector
10
. More particularly, the fuel injector
10
includes a needle valve
28
that controls the flow of fuel through the injector
10
. Moreover, the fuel injector
10
includes a swirler
30
as well as a valve seat
32
. When the needle valve
28
is seated on the valve seat
32
, fuel does not flow through the injector. However, when the needle valve
28
is withdrawn from the valve seat
32
, fuel is allowed to flow past the swirler
30
through an injection port
34
. When the temperature of the injector nozzle
12
is increased, deposits D typically form about the injection port
34
. These deposits inhibit the smooth flow of fuel through the injector port
34
when the needle valve
28
is retracted from the valve seat
32
. In addition, under extreme circumstances, the deposits D can form up through the injector port
34
onto a portion of the valve seat
32
such that the needle valve
28
does not properly seat against the valve seat
32
, leading to a slow trickle of fuel that can cause dieseling during engine shut-down.
SUMMARY OF THE INVENTION
Accordingly, an improved injector mounting arrangement is desired. Preferably, the mounting arrangement reduces the propagation of flames along the sides of the nozzle
12
of the fuel injector
10
. In addition, the mounting arrangement preferably seals the sides of the injector nozzle from both combustion gas propagation as well as flame propagation. Moreover, in some arrangements, the seals preferably thermally insulate at least a portion of the injector from the heat being generated within the combustion chamber.
Accordingly, one aspect of the present invention involves a sealing ring for a fuel injector mounting arrangement in which a fuel injector is mounted for direct injection into a combustion chamber. The ring comprises a first layer of heat insulating material and a second outer layer of a thermally activatable material.
Another aspect of the present invention involves a direct injected engine comprising a cylinder, a cylinder head being mounted to said cylinder and a piston being disposed within said cylinder. A combustion chamber is defined at least in part by said piston, said cylinder and said cylinder head. A mounting bore extends through said cylinder head with a fuel injector depending through said mounting bore. The mounting bore includes a stepped seat surface. The fuel injector comprises a nozzle extending between a tip and a seating surface. The nozzle comprises a fuel injection port that is disposed at the tip to inject fuel directly into said combustion chamber. At least one sealing ring is disposed between said about said fuel injector between said seating surface and said seat surface. The sealing ring comprises a thermal insulating component and has a smaller outer diameter than an outer diameter of said seat surface.
A further aspect of the present invention involves a method of sealing a fuel injector within a cylinder head. The method comprises placing at least one sealing ring into a mounting bore of said cylinder head, positioning a fuel injector through said sealing ring, applying a compressive force to secure said fuel injector in position within said mounting bore, and heating said cylinder head to melt a component of said ring.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features, aspects and advantages of the present invention will now be described with reference to the drawings of several preferred embodiments, which embodiments are intended to illustrate and not to limit the present invention, and in which drawings:
FIG. 1
is a prior art fuel injector mounting arrangement featuring a cup seal extending about a portion of a nozzle of the fuel injector;
FIG. 2
is a multi-part view showing: (A) in the lower right hand portion, a side elevation view of an outboard motor employing certain features, aspects and advantages of the present invention; (B) in the upper view, a partially schematic view of the engine of the outboard motor with its induction and fuel injection system shown in part schematically; and (C) in the lower left hand portion, a rear elevation view of the outboard motor with portions removed and other portions broken away and shown in section along the line C—C in the upper view B so as to more clearly show the construction of the engine. An ECU (electric control unit) for the motor links the three views together;
FIG. 3
is an enlarged partially sectioned side elevation view of a fuel injector and spark plug positioned within a cylinder head of the engine of
FIG. 2
;
FIG. 4
is a further enlarged cross-sectioned view of a fuel injector mounted to the cylinder head in accordance with certain features, aspects and advantages of the present invention;
FIG. 5
is a yet further enlarged cross-sectioned view of the fuel injector mounting arrangement of
FIG. 4
;
FIG. 6
is a sectioned side elevation view of a pair of sealing rings having certain features, aspects and advantages in accordance with the present invention;
FIGS. 7 and 8
are enlarged section views of exemplary interfaces between materials used in the mounting arrangement of
FIG. 4
;
FIG. 9
is a graphical depiction of surface pressure versus the thickness of the seals used in the mounting arrangement of
FIG. 4
;
FIG. 10
is a top plan view of a cap used in the mounting arrangement of
FIG. 4
;
FIG. 11
is a sectioned side elevation view of the cap of
FIG. 10
;
FIG. 12
is a top plan view of another cap having certain features, aspects and advantages in accordance with the present invention; and
FIG. 13
is a sectioned side elevation view of the cap of FIG.
12
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
With reference now to
FIG. 2
, an outboard motor with a fuel supply system having certain features, aspects and advantages of the present invention will be described. While the present invention will be described in the context of the outboard motor, it is anticipated that the present fuel injector mounting arrangement can have utility in other environments of use. For instance, the fuel injector mounting arrangement can be used in any vehicular application featuring a fuel injection system. Moreover, the present fuel injector mounting arrangement can also be used in stationary engines such as those found on generators, for instance.
In the lower right hand view of
FIG. 2
(i.e., FIG.
2
(A)), the outboard motor is depicted in side elevation view and is identified generally by the reference numeral
50
. The outboard motor
50
preferably includes a clamping arrangement
52
. The clamping arrangement
52
is used to attach the outboard motor
50
to the hull of the watercraft (not shown) in any manner known to those of ordinary skill in the art. The outboard motor
50
preferably is connected to the hull of the watercraft such that it may be steered about a generally vertical axis and tilted or trimmed about a generally horizontal axis.
The outboard motor
50
generally comprises a drive shaft housing
54
and a powerhead
56
, which is positioned generally above and generally is supported by the
40
drive shaft housing
54
. The powerhead
56
preferably includes a powering internal combustion engine, which is indicated generally by the reference numeral
58
. The engine
58
is also shown in the remaining two views of
FIG. 2
(i.e., FIGS.
2
(B) and
2
(C)) and, therefore, will be described in more detail below with reference to these portions of FIG.
2
.
The illustrated powerhead
56
generally includes a protective cowling which comprises a main cowling portion
60
and a lower tray portion
62
. The main cowling portion
60
preferably includes a suitable air inlet arrangement (not shown) to introduce atmospheric air into the interior of the protective cowling. The air present within the protective cowling can then be drafted into an engine intake system or induction system, which is generally indicated by the reference numeral
64
(see FIG.
2
(B)) and, which will be described in greater detail directly below.
The main cowling portion
60
preferably is detachably connected to the lower tray portion
62
of the powerhead
56
. The detachable connection preferably is generally positioned proximate an exhaust guide plate
66
. The exhaust guide plate
66
encircles an upper portion of the drive shaft housing
54
and forms a portion of an exhaust system, which will be described below. Positioned beneath the illustrated drive shaft housing
54
is a lower unit
68
in which a propeller
70
is journaled for rotation. As these constructions are well known to those of ordinary skill in the art, further description of them is deemed unnecessary.
As is typical with outboard motor practice, the illustrated engine
58
is supported in the powerhead
56
so that a crankshaft
72
(see FIG.
2
(B)) can rotate about a generally vertically extending axis. The vertical mounting of the crankshaft facilitates the connection of the crankshaft
72
to a driveshaft (not shown) that depends into and through the driveshaft housing
54
. The driveshaft drives the propeller
70
through a forward, neutral and reverse transmission (not shown) contained in the lower unit
68
. Of course, other suitable types of transmissions also can be used with certain features, aspects and advantages of the present invention.
With reference now to FIG.
2
(C), the illustrated engine
58
is of the V6 type and operates on a 2-stroke crankcase compression principle. Although the present fuel injector mounting arrangement is primarily described in conjunction with an engine having this cylinder number and this cylinder configuration, it will be readily apparent to those of ordinary skill in the art that the present fuel injector mounting arrangement can be utilized with engines having other cylinder numbers and other cylinder configurations. For instance, the cylinders can be arranged and aligned in some arrangements, and the engine can comprise as few as one or more than eight cylinders in various arrangements. Moreover, certain features of the present fuel injector mounting arrangement also may find utility with engines operating on other operating principles, such as a rotary principle and a 4-cycle principle.
With reference now to FIG.
2
(B), the illustrated engine
58
is generally comprised of a cylinder block
74
that is formed with a pair of cylinder banks. Each of these cylinder banks preferably is formed with three vertically spaced horizontally-extending cylinder bores
76
. In some arrangements, separate cylinder bodies can be used in place of the cylinder block that accommodates more than one cylinder bore. For instance, each cylinder body may accommodate but a single cylinder bore and a number of cylinder bodies can be aligned side by side yet be formed separate from one another.
A set of corresponding pistons
78
preferably are arranged and configured to reciprocate within the cylinder bores
76
. The illustrated pistons
78
in turn are connected to the small ends of connecting rods
80
. The big ends of the connecting rods
80
preferably are journaled about the throws of the crankshaft
72
in a well known manner.
With continued reference to FIG.
2
(B), the illustrated crankshaft
72
is journaled in any suitable manner for rotation within a crankcase chamber (not shown). Desirably, the crankcase chamber (not shown) is formed, at least in part, by a crankcase member
84
that may be connected to the cylinder block
74
or the cylinder bodies in any suitable manner. As is typical with 2-stroke engines, the illustrated crankshaft
72
and the crankcase chamber (not shown) preferably are formed with dividing seals or dividing walls such that each section of the crankcase chamber (not shown) associated with one of the cylinder bores
76
can be sealed from the other sections that are associated with other cylinder bores. This type of construction is well known to those of ordinary skill in the art.
With reference now to FIG.
2
(B), a cylinder head assembly, indicated generally by the reference numeral
86
, preferably is connected to an end of each of the cylinder banks that is spaced from the crankcase member
84
. With reference now to
FIG. 3
, each cylinder head assembly
86
generally is comprised of a main cylinder head member
88
and a cylinder head cover member
90
. The cylinder head cover member
90
is attached to the cylinder head member
88
in any suitable manner. As illustrated in
FIG. 3
, the cylinder head member
88
preferably includes a recess
92
that corresponds with each of the cylinder bores
76
. As will be appreciated, each of the recesses
92
cooperates with a respective cylinder bore
76
and a head of a reciprocating piston
78
to define a variable volume combustion chamber in the illustrated arrangement. The cylinder head member
90
completes the illustrated cylinder head assembly and includes a number of ports for mounting of various components into the combustion chamber. As will be recognized by those of ordinary skill in the art, the cylinder head components
88
,
90
preferably are secured to each other into the respective cylinder banks using any suitable manner.
With reference again to FIG.
2
(B), the air induction system
64
is provided for delivering an air charge to the sections of the crankcase chamber (not shown) associated with each of the cylinder bores
76
. In the illustrated arrangement, communication between the sections of the crankcase chamber and the air contained within the cowling occurs at least in part via an intake port
94
formed in the crankcase member
84
. The intake port
94
can register with a crankcase chamber section corresponding to each of the cylinder bores
76
such that air can be supplied independently to each of the crankcase chamber sections. Of course, other arrangements are also possible.
The induction system
64
also includes an air silencing and inlet device, which is shown schematically in FIG.
2
(B), indicated generally by the reference numeral
96
. In one arrangement, the device
96
is contained within the cowling member
60
at the cowling's forward end and has a rearwardly-facing air inlet opening (not shown) through which air is introduced into the silencer
96
. Air can be drawn into the silencer
96
from within the cowling
60
via an inlet opening
97
.
The air inlet device
96
supplies the induced air to a plurality of throttle bodies, or induction devices,
100
. Each of the throttle bodies
100
preferably has a throttle valve provided therein. The illustrated throttle valves are desirably supported on throttle valve shafts that are linked to each other for simultaneous opening and closing of the throttle valves in a manner that is well known to those of ordinary skill in the art. It is anticipated, however, that a single supply passage can extend to more than one or even all of the chambers such that the number of throttle valves can be one or more than one depending upon the application.
Lubricant pumps
102
preferably are provided for spraying lubricant into the air inlet device
96
for lubricating moving components of the engine
58
in manners well known to those of ordinary skill in the art. Preferably, the lubricant pumps
102
are controlled by an ECU
108
, which will be described in more detail later. In addition, although it is not shown, some forms of direct lubrication can be employed for delivery of lubricant directly to certain components of the engine
58
.
As is typical in 2-cycle engine practice, the illustrated intake ports
94
include reed-type check valves
104
. The check valves
104
permit inducted air to flow into the sections of the crankcase chamber when the pistons
78
are moving upwardly in their respective cylinder bores
76
. The reed-type check valves
104
, however, do not permit back flow of the air. Therefore, as the pistons
78
move downwardly within the respective cylinder bores
76
, the air charge will be compressed in the sections of the crankcase chamber. As is known, the air charge is then delivered into the combustion chamber
110
through suitable scavenge passages (not shown). This construction is well known to those of ordinary skill in the art.
With reference now to
FIG. 3
, a spark plug
111
is mounted within the cylinder head
86
and has an electrode
112
disposed within the combustion chamber
110
. The spark plug
111
is fired under the control of the ECU
108
in any suitable manner. For instance, the ECU
108
may use a CDI system to control ignition timing according to any of a number of control routines known to those of ordinary skill in the art. The spark plug
111
ignites an air-fuel charge that is formed by mixing the fuel directly with the intake air provided in the combustion chamber
110
as described above.
The fuel is preferably provided via respective fuel injector
114
. This is schematically illustrated in FIG.
3
. The fuel injectors
114
preferably are of the solenoid type and preferably are electronically or electrically operated under the control of the ECU
108
. As with the ignition system, the fuel injection system can be controlled by the ECU according to any of a number of suitable control strategies. The control of the fuel injectors
114
can include the timing of the fuel injector injection cycle, the duration of the injection cycle, and other operating parameters of the fuel injector
114
.
As illustrated in
FIG. 3
, the fuel injector
114
preferably is mounted directly in the cylinder head
86
in a location that provides optimal fuel vaporization or diffusion under all or most running conditions. Of course, other mounting positions can also be used. For instance, various locations about the cylinder head
86
can be used, as well as positioning the fuel injector
114
within an intake passage leading into this combustion chamber
110
in a 4-cycle application, for instance.
With reference again to FIG.
2
(B), fuel is supplied to the fuel injectors
114
by a fuel system which features a low pressure portion
116
and a high pressure portion
118
. The low pressure portion
116
includes a main fuel supply tank
120
that can be provided in the hull of the watercraft with which the outboard motor
50
is associated. Fuel can be drawn from this tank
120
through a supply conduit
122
using a first low pressure pump
124
. In some arrangements, a plurality of secondary low pressure pumps
126
also can be used to draw the fuel from the fuel tank
120
. The pumps can be manually operated pumps, diaphragm-type pumps operated by variations in pressure in the sections of the crankcase chamber, or any other suitable type of pump. Preferably, the pumps
124
,
126
provide a relatively low pressure draw on the fuel supply. In addition, in the illustrated arrangement, a fuel filter
128
is positioned along the conduit
122
at an appropriate location within the main cowling
60
such that the fuel filter may be easily serviced.
For the secondary low pressure pumps
126
, the fuel is supplied to a prepressurized or low pressure vapor separator
130
. The vapor separator
130
can be mounted on the engine
58
in any suitable location. In addition, in some arrangements, the vapor separator
130
is separate from the engine, but positioned within the cowling portion
60
at an appropriate location. The fuel is supplied to the vapor separator
130
through a supply line
132
. At the vapor separator end of the supply line
132
, there preferably is provided a valve which is not shown that can be operated by a float
134
so as to maintain a substantially uniform level of fuel in the vapor separator tank
130
.
A fuel pump
136
can be provided in the vapor separator
130
and can be controlled by ECU
108
in any suitable manner. In the illustrated arrangement, the connection between the ECU
108
and the fuel pump
136
is schematically illustrated with the line. While the schematic illustration shows a hard wired connection should be appreciated by those of ordinary skill in the art that other electrical connections, such as infrared radio waves and the like can be used. This description of the connection between the ECU and the fuel pump
136
will also apply to a variety of components which are also connected to the ECU
108
and will be described below.
The fuel pump
136
preferably pre-pressurizes the fuel that is delivered through a fuel supply line
138
to a high pressure pumping apparatus
140
. The fuel pump
136
, which can be driven by an electric motor in some arrangements, preferably develops a pressure of about 3-10 kg per cm
2
. A low pressure regulator
142
can be positioned along the line
138
proximate the vapor separator
130
to limit the pressure of the fuel that is delivered to the high pressure pumping apparatus
140
by dumping some portion of the fuel back into the vapor separator
130
. This is illustrated by the lines in FIG.
2
(B).
The illustrated high pressure fuel delivery system
140
includes a high pressure fuel pump
144
that can develop a pressure of, for example, 50-100 kg per cm
2
or more. A pump drive unit
146
preferably is provided for driving the high pressure fuel pump
144
. Of course, any other suitable driving arrangement can also be used.
The high pressure fuel pump
144
preferably includes a fuel inlet and outlet module. The inlet and outlet module (not shown) can include an inlet passage
160
connected with the line
138
and an outlet passage
162
that is connected with a fuel injector supply system indicated generally at
164
, and an overflow passage connected back to a low pressure side of the high pressure fuel pump
144
. The overflow passage is indicated with the reference numeral
165
.
Fuel can be supplied from the high pressure pump
144
to the fuel injector supply system
164
through the supply passage
162
. The illustrated fuel injector supply system generally is comprised of a main fuel manifold
168
that extends substantially horizontally. The main fuel manifold
168
in turn delivers fuel to a pair of generally vertically-extending fuel rails
170
in the illustrated arrangement. The fuel rails
170
preferably deliver fuel to the fuel injectors
114
. This is better illustrated in FIG.
3
. As illustrated, a high pressure hose
169
which can be positioned either between the fuel rail
170
and the fuel manifold
168
or between the high pressure pump
144
and the fuel rail
170
provides fuel to the fuel rail
170
. The fuel from the fuel rail
170
is then provided to the fuel injector in any suitable manner.
In the illustrated arrangement, pressure of the fuel supplied by the fuel pump
144
to the fuel injectors
114
is regulated to a generally fixed value by a high pressure regulator
188
which dumps fuel back to the vapor separator
130
through a pressure relief line
190
in which a fuel heat exchanger or cooler
192
is provided. Generally, the fuel is desirably kept under constant or substantially constant pressure so that the volume of injected fuel can be at least partially determined by changes of duration of injection under the condition that the pressure for injection is always approximately the same.
After the charge is ignited, burns and expands, the pistons
78
are driven downwardly in the respective cylinder bores
76
until the pistons
78
reach a lower-most position. During the downward movement of the pistons
78
, the exhaust ports (not shown) are uncovered by the piston
78
to allow communication between the combustion chamber
110
and an exhaust system. The illustrated exhaust system features an exhaust manifold section
200
for each of the cylinder banks. A plurality of runners
202
extend from the cylinder bore
76
into the manifold collectors
200
. The exhaust gases flow through the branch pipes
202
into the manifold collector section
200
of the respective exhaust manifolds that are formed within the cylinder block in the illustrated arrangement. The exhaust manifold collector sections
200
then communicate with exhaust passages formed in exhaust guide plate
66
on which the engine
58
is mounted.
A pair of exhaust pipes
204
depend from the exhaust guide plate
66
and extend the exhaust passages into an expansion chamber (not shown) formed within the drive shaft housing
54
. From this expansion chamber, the exhaust gases are discharged to the atmosphere through a suitable exhaust outlet. As is well known in the outboard motor practice, the suitable exhaust outlet may include an under water, high speed exhaust gas discharge and an above the water, low speed exhaust gas discharge. Because these types of systems are well known to those of ordinary skill in the art, a further description of them is not believed to be necessary to permit those of ordinary skill in the art to practice the present invention.
As indicated above, the ECU
108
samples a variety of data for use in performing any of a number of control strategies. Because these control strategies are outside the scope of the present invention, the control strategies will not be discussed. However, the sensors from which data is input will be introduced. The illustrated ECU
108
receives input from a watercraft speed sensor
300
which preferably is mounted on a portion of the watercraft to indicate the speed of the watercraft through the body of water in which the watercraft is operating. The ECU
108
also receives input from the watercraft position sensor
302
. The watercraft position sensor
302
preferably indicates the water level on the outside of the watercraft such that the degree of submergence of the watercraft can be ascertained by the ECU
108
. The ECU
108
also receives an input from an atmospheric pressure sensor
304
. The atmospheric pressure sensor
304
inputs a value corresponding to the pressure in which the watercraft is operating.
With reference now to FIG.
2
(A), the ECU
108
also receives input from an engine mount height sensor
306
. The engine height mount sensor
306
indicates to the ECU
108
the relative height between the engine or the outboard motor
50
and the watercrafts to which the outboard motor
50
is mounted in addition, the ECU
108
receives a signal from a trim angle sensor
308
. As is known, the trim angle sensor
308
sends a signal to the ECU
108
that is indicative of the tilt or trim angle of the outboard motor
50
relative to the watercraft on which the outboard motor
50
is mounted.
With continued reference to FIG.
2
(A), the outboard motor
50
also features an engine vibration sensor
310
which indicates to the ECU
108
the extent of vibrations set up by the outboard motor
50
and more particularly, the engine
58
operating within the outboard motor
50
. In addition, the ECU
108
receives a signal from a coolant temperature sensor
312
that indicates the temperature of the coolant being circulated through the engine
58
. The ECU
108
also receives an input from a transmission shift sensor
314
. The transmission shift sensor
314
outputs a signal to the ECU
108
indicative of a drive state of the transmission. For instance, the sensor
314
can output a signal indicative of the transmission being in a neutral arrangement or in a forward or reverse driving arrangement.
With reference now to FIG.
2
(C), the engine
58
also includes an oxygen sensor
316
. The oxygen sensor
316
outputs a signal to the ECU
108
representative of the oxygen content within the exhaust gas flow. As is known to those of ordinary skill in the art, the content of oxygen within the exhaust flow can be used to determine how complete the combustion occurring within the combustion chamber
110
actually is. The engine
58
also includes an engine temperature sensor
318
that outputs a signal to the ECU
108
indicative of the temperature of the engine during operation. Moreover, the engine
58
includes a back pressure sensor
320
positioned along the exhaust system to indicate the back pressure being developed within the exhaust system of the engine
58
. As will be recognized by those of ordinary skill in the art, the back pressure developed within the exhaust system can vary depending upon the depth of the underwater discharge and whether the above water discharge becomes submerged.
With reference now to FIG.
2
(B), the engine also features a pair of sensors to determine the engine operating speed and the specific cylinder being fired at any particular time. In the illustrated arrangement, the engine includes a crankshaft speed sensor
322
which outputs a signal to the ECU
108
indicative of a rotational speed of the crankshaft. As is known, the rotational speed of the crankshaft
322
corresponds to the engine speed. In addition, the engine
58
includes a cylinder identification sensor
324
. The cylinder identification sensor
324
transmits a signal to the ECU
108
that indicates which cylinder is being fired at what time during operation of the engine
58
. As will be recognized by those of ordinary skill in the art, in some applications, a single sensor can be used to both indicate which cylinder is operating as well as the engine speed.
The fuel supply system also includes a pressure sensor
326
. The pressure sensor
326
preferably is positioned between the fuel rail or fuel supply manifold
168
and the pressure regulator
188
. The pressure sensor
326
provides a signal to the ECU
108
which is indicative of the pressure within the fuel supply system. Moreover, the air induction system includes a sensor
328
that outputs a signal to the ECU
108
which is indicative of a throttle opening angle. This signal can also be used to determine the speed of change of the throttle angle.
While the control system generally comprises the ECU
108
and the above listed sensors which sense various operating conditions for the engine, as well as ambient conditions and/or conditions of the outboard motor that may affect general engine performance, other sensors can also be used with the present invention. While certain of the sensors have been shown schematically in
FIG. 2
, and were described with reference to that figure, it should be readily apparent to those of ordinary skill in the art that other types of sensing arrangements also can be provided for performing the same functions and/or different functions. Moreover, it is also practicable to provide other sensors, such as an engine knock sensor, a watercraft pitch sensor, and an atmospheric temperature sensor in accordance with various control strategies. Of course, the signals, while being depicted with wire connections, also can be transmitted using radio waves, infrared transmitter and receiver pairs, and other suitable or similar techniques.
The ECU
108
, as has been noted, outputs signals to the fuel injectors
114
, the spark plugs
111
and a portion of the fuel injector supply system, such as the fuel pump
136
for their respective control. These control signals are indicated schematically in FIG.
2
. Again, these signals can be transmitted in any suitable manner such as those described above.
Having described an exemplary outboard motor and internal combustion engine with which the present invention finds utility, the present invention will now be described with reference to
FIGS. 3-13
. It should be noted, however, that while the present invention has been described in the context of a 2-stroke powered outboard motor, the present invention can also find utility in gasoline, diesel, and other fuel supplied engines that run on the 2-stroke, 4-stroke, and/or rotary operational principles.
With reference now to
FIG. 3
, a presently preferred arrangement of the fuel injector mounting arrangement is illustrated therein. As illustrated, the fuel injector
114
is mounted to inject fuel directly into the combustion chamber
110
. With reference now to
FIG. 4
, the illustrated cylinder head is formed with a stepped bore
400
through which the fuel injector
114
depends. The illustrated bore
400
includes three steps, however, other arrangements also can be used. Advantageously, the illustrated three steps aid in mounting and protecting the fuel injector
114
in manners that will be described.
Preferably, the mounting bore
400
includes an upper most step
402
, which provides a level surface on which a collar portion
404
of the illustrated fuel injector
114
is supported. Specifically, during manufacture, a cast cylinder head can have a small amount of material removed to form the generally smooth and level mounting surface defined by the upper most step
402
, in the illustrated arrangement. In some arrangements, a seal (not shown) can be positioned between the step
402
and the collar
404
.
The illustrated arrangement also features a clamp
408
that cooperates with the cylinder head
88
to secure the fuel injector in position. The clamp
408
advantageously provides a counterforce to an upwardly directed force caused by the increased pressure developed within the combustion chamber
110
during operation of the engine. The clamp
408
is secured in position using a threaded fastener
410
in the illustrated arrangement. Of course, other suitable mounting arrangements also can be used. Desirably, the clamp
408
extends about at least a portion of the fuel injector and, in the illustrated arrangement, encircles about half of a body case portion
412
of the fuel injector that extends outward (i.e., away from the combustion chamber
110
) from the collar portion
404
. The illustrated clamp
408
, thus, forms a yoke about at least a portion of the fuel injector
408
.
With reference to
FIG. 4
, the illustrated fuel injector
114
is preferably driven to inject fuel using a solenoid
414
. Thus, the charge forming device in the illustrated engine comprises solenoid-driven fuel injectors. Of course, the present invention can also be used with other types of fuel injectors. For instance, accumulator fuel injectors also can be mounted in accordance with certain features, aspects and advantages of the present invention.
With reference again to
FIG. 3
, a portion of the mounting bore
400
receives a lower portion
420
of the fuel injector
114
. The illustrated mounting bore includes an intermediate step, or injector seat, which is generally indicated by reference numeral
422
. A seal
424
preferably is positioned between a portion of the fuel injector
114
and the seat
422
. As will be explained below, the illustrated seal generally comprises at least one and, preferably, at least two sealing rings
426
. In the illustrated arrangement, the ring or rings
426
are disposed between the seat
422
and a contact surface
428
of the fuel injector
114
. In addition, in the illustrated arrangement, the seals are disposed about a nozzle portion
430
of the fuel injector
114
, which portion
430
houses at least a portion of a flow metering needle
432
of the fuel injector
114
.
The needle
432
of the fuel injector
114
selectively seats on a valve seat
434
in the illustrated arrangement. When the needle
432
is in contact with the seat
434
, fuel flow through a fuel injection port
436
of the fuel injector
114
is stopped. Conversely, when the illustrated needle
432
is removed from the seat
434
, such as when the needle is moved by the motive forces of the solenoid
414
, fuel is free to flow from a high pressure portion of the fuel supply system into the combustion chamber through the fuel injection port
436
. The fuel flows past a swirler
437
, such as those generally known in the art. The illustrated fuel injection port desirably is formed within the tip
438
of the fuel injector
114
. The port can be sized, shaped and positioned in any suitable manner, such as those which are well-known to those having ordinary skill in the relevant arts.
With continued reference to
FIGS. 4 and 5
, a cap
440
preferably substantially encases at least a portion of the tip
438
and the nozzle portion
430
of the fuel injector. The cap
440
, which will be described below in greater detail, forms an insulating shield from the extreme temperature fluctuations that occur immediately following ignition or detonation of the air-fuel charge contained within the combustion chamber
110
. Preferably, the cap
440
is contained substantially within a sub-bore portion
442
of the mounting bore
400
. More preferably, the sub-bore portion
442
is defined between a first step or stopper
444
and a second step, which is the seat
422
in the illustrated arrangement. In this arrangement, the cap
440
generally forms a sleeve that extends through the sub-bore
422
and substantially encases the lower nozzle portion of the fuel injector. Moreover, the seals
426
are disposed above the upper extremity of the illustrated cap
440
.
With reference now to
FIG. 6
, a presently preferred construction of the illustrated seals
426
. Each of the illustrated seals is generally constructed of a sheet material
450
, which preferably has a high insulation value. For instance, in the illustrated arrangement, the sheet material
450
is asbestos or a suitable asbestos substitute. The sheet material
450
preferably is at least partially covered with a resin layer
452
. In the illustrated arrangement, the sheet material
450
is completely encased within the resin layer
452
; however, as will be recognized, in some applications, a portion of the sheet material is covered. For instance, in some applications, the surface of the sheet material that will be in contact with either the seat
422
or the sealing surface
428
of the fuel injector
114
will receive the resin material.
The resin layer
452
acts to better seal the sealing rings
426
against the surface machined components in the mounting arrangement. For instance, as illustrated in
FIG. 7
, the surface of the resin layer
452
preferably is formed smoothly. After mounting and, in some arrangements, operation of the engine, the resin layer
452
conforms with the surface to which it is mated. In the illustrated arrangement, the resin layer
452
mates with the sealing surface
428
of the fuel injector
114
or the seat
422
of the cylinder head
88
. More particularly, when the engine is first operated after installation, the rings are heated by the engine, the rings partially melt and then the rings harden as they cool. Thus, the integrity of the seal is increased after the first operation of the engine. The rings also can be heated using an engine heater or the like. As will be appreciated, the surfaces against which the resin layer
452
mates generally have been machined and, therefore, are not perfectly smooth surfaces. Thus, the resin layer
452
yields and conforms to pits, valleys, surface scratches, grooves and the like to better seal with the respective surfaces
422
,
428
. The resin layer
452
can be a thermal plastic material or a thermal setting material, depending upon the application. In one arrangement, a thermal setting material is used to reduce the likelihood of cyclical degradation while, in another application, a thermal plastic material is used.
With reference again to
FIG. 6
, the illustrated sealing rings
426
each also include an eyelet
460
. The eyelet
460
extends through a central aperture
462
formed in the sealing ring
426
. Of course, in the illustrated arrangement, the central aperture
462
is formed substantially in the geometrical center of the sealing ring
426
; however, in some applications, the aperture
462
can be offset if desired. The eyelet
460
preferably is made of a soft metal or other suitable material. For instance, in the illustrated arrangement, the eyelet
460
is formed of aluminum Advantageously, the illustrated eyelets
460
are formed asymmetrically for reasons that will become apparent. More specifically, the eyelets
460
cover more of the outer surfaces
464
of the illustrated rings
426
than the opposite surfaces. In addition, an inner edge
466
that extends through the aperture
462
advantageously has a radius. The structure can vary; however, the selected structure, such as the illustrated structure, results in a construction which, when manufactured from a malleable material, deforms in at least inwardly a radial direction in response to axial forces, such as those illustrated with arrows F. In the preferred arrangement, the expansion is substantially constrained to an inward expansion such that the ring seal is not locked against an outer wall of the bore. This facilitates removal of the ring seal during servicing.
With reference again to
FIGS. 4 and 5
, when the injector
114
is installed in the mounting bore
400
, at least a pair of rings
426
are disposed over the nozzle portion
430
of the fuel injector
114
. The sealing rings
426
need not completely fill the outer periphery of the mounting bore
400
, as illustrated; however, in some applications, the rings
426
can have a larger outer diameter. Preferably, substantial distance is maintained between the inner wall of the bore
400
and an outer surface of the rings
426
such that the rings
426
can be easily removed from the bore
400
when the fuel injector
114
is replaced.
With the rings
426
positioned over the nozzle
430
, the fuel injector in positioned within the bore
400
. Thus, the rings
426
are sandwiched between the seat
422
and the sealing surface
428
. As the injector
114
is secured in position with the clamp
408
, such as by tightening the threaded fastener
410
, the sealing rings
426
are squeezed between the seat
422
and the sealing surface
428
. The squeezing or compressive forces deform the eyelet
460
. In a preferred arrangement, the deformation causes the eyelets to flatten against the injector nozzle
430
, as illustrated in FIG.
5
. Thus, any gap between the illustrated rings
426
(or eyelets
460
) is substantially eliminated. In addition, the rings, when compressed, effectively grip the nozzle
430
of the fuel injector
114
and can be removed with the fuel injector
114
in a single step. Thus, replacement of the fuel injector and sealing arrangement is greatly simplified.
As will be appreciated, in any given dimensional configuration, varying the thickness of the sealing rings
426
will vary the amount of surface pressure, or compressive forces, developed when mounting the fuel injector
114
. With reference now to
FIG. 9
, a graphical depiction of the compressive forces relative to the thickness of the illustrated rings
426
is illustrated therein. If the surface pressure exceeds a first preset pressure X, then a portion of the fuel injector can be deformed and the fuel injector may not function properly. More specifically, if the fuel injector
114
is deformed, then the fuel throughput of the fuel injector
114
likely will be decreased and the preset amount of fuel will not be properly injected into the engine. Conversely, if the pressure is below a second preset pressure N, then the sealing rings
426
may not adequately seat against the injector nozzle
430
. In the illustrated arrangement, the difference between the two preset pressures X, N corresponds to a difference of 0.1 mm per ring in thickness at the rings
426
. Thus, either the thickness of the rings, or the design of the fuel injector
114
and the cylinder head
88
can be determined to maintain the surface pressure within the acceptable range. Preferably, to expand the envelope and to accommodate manufacturing tolerances, the acceptable amount of compression is doubled by using two rings
426
. Of course, a single ring can be used; however, the use of two rings increases the available tolerance range due to the characteristics of the composite materials of the rings. Preferably, the total thickness of the pair of rings
426
in the illustrated arrangement is at least about ⅓ of the diameter of the nozzle
430
.
With reference now to
FIGS. 10-13
, two presently preferred caps
440
are illustrated therein. The caps
440
preferably are formed by removing material; however, it will be understood that the caps
440
can be formed in any other suitable manner (i.e., upset forming, forging, molding, turning, etc.). Each cap generally comprises at least one side wall
470
and a base ring
472
. The two components can be integrally formed or can be separately formed and attached together.
With reference to
FIG. 5
, the illustrated base ring
472
of the cap
440
advantageously covers the peripheral portions of the injector nozzle
430
. As such, the base rings
472
are generally flat and have an opened center through which the fuel is injected into the combustion chamber
110
. The two base rings
472
of the illustrated caps
440
differ in the flatness of the base rings
472
. Generally, the difference in the rings
472
results from the manufacturing processes used to make the rings; however, both rings perform their role adequately.
The side wall
470
in the illustrated arrangement is substantially cylindrical. It is anticipated that the side wall
470
can also be other shapes depending upon the application. The side wall
470
is sized and configured to extend along a portion of the nozzle
430
, as described above. In addition, an inner diameter of the side wall
470
is slightly greater than an outside diameter of the nozzle
430
. One presently preferred construction preferably forms a gap (which can be greater than about 0.1 mm) between the inner diameter of the side wall
470
and the nozzle
430
. More preferably, the side wall
470
is sized such that the gap between the side wall
470
and the nozzle
430
is larger than a gap between the side wall
470
and the sub-bore portion
442
. Generally, the cap
440
is loosely fitted over the nozzle
430
and is capable of movement relative to the nozzle
430
. In this manner, when the engine begins operation, the base ring
472
moves toward the nozzle
430
due to the pressure developing within the combustion chamber
110
. Thus, the base ring
472
is driven toward the nozzle
430
to better seal against the nozzle
430
. Such a construction advantageously reduces the propagation of flames alongside of the nozzle
430
.
Generally, during prolonged operation of the engine, heavy components of the fuel are deposited between the cap
440
and the cylinder head
88
. Thus, the cap
440
is secured in the slightly raised position (i.e., the position to which it is driven by the combustion chamber pressure). Advantageously, in this position, the gap formed between the cap
440
and the nozzle
430
forms an insulating layer of air between nozzle of the fuel injector
114
and the mounting arrangement. Thus, heat is not directly transferred to the fuel injector
114
from the combustion chamber
110
.
Thus, the present mounting arrangement greatly improves the seal between the cylinder head
88
and the fuel injector
114
. In addition, the present mounting arrangement creates an insulating pocket of air between the fuel injector nozzle and the cylinder head while supporting the fuel injector above the seat of the cylinder head with heat insulating materials.
Although the present invention has been described in terms of certain preferred arrangements, other arrangements and applications apparent to those of ordinary skill in the art also are within the scope of this invention. Thus, various changes, modifications, and alterations may be made in the above-described embodiments without departing from the spirit and scope of the invention. Moreover, not all the features, aspects, and advantages are necessarily required to practice the present invention. Therefore, some of the features, aspects, and advantages may be separately practiced from other features, aspects, and advantages while still practicing a part or all of the above-described invention. Accordingly, the scope of the present invention is intended to be defined only by the claims that follow.
Claims
- 1. A direct injected engine comprising a cylinder, a cylinder head being mounted to said cylinder, a piston being disposed within said cylinder, a combustion chamber being defined at least in part by said piston, said cylinder and said cylinder head, a mounting bore extending through said cylinder head, a fuel injector copending through said mounting bore, said mounting bore including a stepped seat surface, said fuel injector comprising a nozzle extending between a tip and a seating surface, said nozzle comprising a fuel injection port that is disposed to inject fuel directly into said combustion chamber, at least one sealing ring being disposed about said fuel injector between said seating surface and said seat surface, said sealing ring comprising a thermal insulating component and having a smaller outer diameter than an outer diameter of said seat surface.
- 2. The engine of claim 1, wherein said ring comprises a deformable component that is adapted to deform in an inward radial direction in response to axial forces.
- 3. The engine of claim 2, wherein said deformable component is an eyelet.
- 4. The engine of claim 3, wherein said eyelet is made of a malleable metal.
- 5. The engine of claim 1, wherein said ring comprises a resin layer that is positioned adjacent said seat surface.
- 6. The engine of claim 1, wherein said ring comprises a resin layer that is positioned adjacent said seating surface.
- 7. The engine of claim 1, wherein said ring comprises a resin layer that is positioned adjacent said seating surface and said seat surface.
- 8. The engine of claim 1, comprising a pair of rings.
- 9. The engine of claim 8, wherein said rings each comprise an eyelet, said eyelets being asymmetric such that a said eyelet covers more of a first side of the associated ring than of a second side and said first sides of said rings are positioned apart from one another while said second sides of said rings are positioned toward one another.
- 10. The engine of claim 1, further comprising an injector nozzle cap, said cap having a ring shaped base and a side wall, said side wall encircling a portion of said nozzle and said base covering a peripheral portion of said tip.
- 11. The engine of claim 10, wherein said base is substantially flat.
- 12. The engine of claim 10, wherein said base is slightly curved such that said base forms a convex surface extending toward said combustion chamber.
- 13. A direct injected engine comprising a cylinder, a cylinder head being mounted to said cylinder, a piston being disposed within said cylinder, a combustion chamber being defined at least in part by said piston, said cylinder and said cylinder head, a mounting bore extending through said cylinder head, a fuel injector depending through said mounting bore, said mounting bore including a stepped seat surface, said fuel injector comprising a nozzle extending between a tip and a seating surface, said nozzle comprising a fuel injection port that is disposed to inject fuel directly into said combustion chamber, at least one sealing ring being disposed about said fuel injector between said seating surface and said seat surface, said sealing ring comprising a first layer of heat insulating material, a second outer layer of a thermally activatable material and having an outer diameter less than an outer diameter of said seat surface.
- 14. The engine of claim 13, wherein said heat insulating material is asbestos.
- 15. The engine of claim 13, wherein said thermally activatable material is a thermal set plastic.
- 16. The engine of claim 13, wherein said thermally activatable material comprises resin.
- 17. The engine of claim 13, wherein said second layer substantially encases said first layer.
- 18. The engine of claim 13 further comprising an aperture extending through said sealing ring and an eyelet extending through said aperture.
- 19. The engine of claim 18, wherein said eyelet is made of a malleable material.
- 20. The engine of claim 18, wherein said eyelet is asymmetrical such that said eyelet covers a greater portion of a first side of said ring than a second side of said ring.
- 21. The engine of claim 18, wherein said eyelet is made of a metal.
- 22. The engine of claim 18, wherein said eyelet has a radius surface extending between a first side of said ring and a second side of said ring.
- 23. A direct injected engine comprising a cylinder, a cylinder head being mounted to said cylinder, a combustion chamber being defined at least in part by said cylinder head, a mounting bore extending through said cylinder head, said mounting bore comprising a stepped seat surface, a fuel injector having an upper portion and a lower portion, the lower portion extending into said mounting bore, said lower portion comprising a seating surface and a fuel injection nozzle, said fuel injection nozzle disposed to inject fuel directly into said combustion chamber, a pair of sealing rings being disposed about said fuel injector between said seating surface and said seat surface, said sealing rings each comprising a first layer of heat insulating material a second outer layer of a thermally activatable material, and each sealing ring having an outer diameter less than an outer diameter of said seat surface.
- 24. The engine of claim 14, wherein said heat insulating material is asbestos.
- 25. The engine of claim 14, wherein said thermally activatable material is a thermal set plastic.
- 26. The engine of claim 14, wherein said thermally activatable material comprises resin.
- 27. The engine of claim 14, wherein said second layer substantially encases said first layer.
- 28. The engine of claim 14 further comprising an aperture extending through each of said sealing rings and an eyelet extending through each of said apertures.
- 29. The engine of claim 28, wherein said eyelet is made of a malleable material.
- 30. The engine of claim 28, wherein said eyelet are asymmetrical such that a first of said eyelets covers a greater portion of a first side of a first of said rings than a second side of said first of said rings and a second of said eyelets covers a greater portion of a second side of a second of said rings than a first side of said first of said rings and said second side of said first of said rings and said first side of said second of said rings are placed in abutment.
- 31. The engine of claim 28, wherein said eyelets are made of a metal.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-148459 |
May 1999 |
JP |
|
US Referenced Citations (9)