The present disclosure relates generally to fuel tanks on passenger vehicles and more particularly to a fuel tank that includes a multiplex director.
To prevent fuel vapors from entering the atmosphere, a fuel vapor emission control system can be used to capture and store vapors produced inside the vehicle fuel system. The vapors are then directed to an intake of the vehicle engine where they are burned. However, fuel vapor emission control systems are becoming increasingly more complex, in large part in order to comply with environmental and safety regulations imposed on manufacturers of gasoline powered vehicles. Certain regulations affecting the gasoline-powered vehicle industry require that fuel vapor emission from a fuel tank's ventilation system be stored during periods of an engine's operation. In order for the overall vapor emission control system to continue to function for its intended purpose, periodic purging of stored hydrocarbon vapors is necessary during operation of the vehicle. In addition to fuel vapor recovery, to further prevent vapors from entering the atmosphere, the fuel vapor emission control system may be required to detect a leak in the fuel system or determine hydrocarbon concentration of the vapors.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
In one aspect, a fuel tank system is provided. The fuel tank system includes a fuel tank and a fuel vapor recovery system configured to recapture and recycle emitted fuel vapor, the fuel vapor recovery system including a vapor vent line fluidly coupled between the fuel tank and a canister, and a vapor purge line fluidly coupled to the canister. A multiplex director is selectively fluidly coupled to a first location in the fuel vapor recovery system and a second location in the fuel vapor recovery system. The multiplex director is movable between a first position where the multiplex director is fluidly coupled to the first location and is fluidly blocked from the second location, and a second position where the multiplex director is fluidly coupled to the second location and is fluidly blocked from the first location. The multiplex director is configured to monitor at least one of a pressure and a hydrocarbon concentration in the first location and the second location when fluidly coupled thereto.
In another aspect, a method of operating a fuel vapor recovery system is provided. The fuel vapor recovery system is operably associated with a fuel tank system having a fuel tank. The fuel vapor recovery system is configured to recapture and recycle emitted fuel vapor and includes a vapor vent line fluidly coupled between the fuel tank and a canister, and a vapor purge line fluidly coupled to the canister. The method includes fluidly segregating the fuel tank from the vapor vent line, moving a multiplex director to a first position where multiplex director is fluidly coupled to a first location in the fuel vapor recovery system, and monitoring at least one of a pressure and a hydrocarbon concentration in the first location. The method further includes moving the multiplex director to a second position where the multiplex director is fluidly coupled to a second location in the fuel vapor recovery system, and monitoring at least one of a pressure and a hydrocarbon concentration in the vapor purge line when in the second position.
With initial reference to
The fuel vapor vent and recovery system 20 can generally include a manifold assembly 24, a vent vapor pick-up tube 26, an isolation valve or mechanism 28, and a carbon or purge canister 30.
The manifold assembly 24 can include a vent module 32 having a liquid trap 34, a drain valve 36, a first vent valve 38, and a second vent valve 40. The control module 32 can control the first and second vent valves 38, 40 to selectively open respective first and second vent lines 42 and 44, which terminate at respective first and second vent ports 46 and 48. The liquid trap 34 can include a venturi jet that drains liquid by way of a vacuum out of the liquid trap 34 when the fuel pump is on. In another example, drain valve 36 can be incorporated on the fuel tank system 10. In some implementations, fuel supply line 16 can be routed through manifold assembly 24.
The vapor vent pick-up tube 26 is configured to receive fuel vapor from the manifold assembly 24, and the isolation mechanism 28 is configured to fluidly segregate the venting system 20 from the fuel tank 12 to thereby enable leak detection downstream of the fuel tank 12 with a multiplex director system 68, as is described herein in more detail. In the example illustration, the isolation mechanism 28 is disposed outside of the fuel tank 12. Alternatively, the isolation mechanism 28 may be disposed within the fuel tank 12, for example as part of control module 32 (shown in phantom). A valve 54 may be disposed in the vapor purge line 52 to fluidly segregate the vapor purge line 52 from the vapor vent line 50.
The vapor vent pick-up tube 26 is connected between the fuel tank 12 and the isolation mechanism 28, a vapor vent line 50 is connected between the isolation mechanism 28 and the carbon canister 30, and a vapor purge line 52 is connected between the carbon canister 30 and the engine 18.
Additionally, a control module 60 can further include or receive inputs from a tank pressure sensor, a canister pressure sensor, a temperature sensor, and/or a vehicle grade sensor (not shown). The control module 60 can additionally include fill level signal reading processing, fuel pressure driver module functionality and be compatible for two-way communications with an engine control module (ECM) 56.
As such, in the example implementation, the manifold assembly 24 can be configured to control a flow of fuel vapor between the fuel tank 12 and the purge canister 30. The purge canister 30 can be adapted to collect fuel vapor emitted by the fuel tank 12 and can subsequently release the fuel vapor to the engine 18. The control module 32 can also be configured to regulate the operation of evaporative emissions control system 22 in order to recapture and recycle the emitted fuel vapor.
In the example implementation, the evaporative emissions control system 22 provides an electronically controlled module that manages the complete evaporative system for a vehicle. The evaporative control system 22 can provide a universal design for all regions and all fuels. In this regard, the requirement of unique components needed to satisfy regional regulations may be avoided. Instead, software may be adjusted to satisfy wide ranging applications. In this regard, no unique components need to be revalidated saving time and cost. A common architecture may be used across vehicle lines. Conventional mechanical in-tank valves may be replaced. The evaporative control system 22 may also be compatible with pressurized systems including those associated with hybrid powertrain vehicles.
The evaporative emissions control system 22 can include an on board diagnostic (OBD) system 58 that can communicate with the ECM 56 and the multiplex director system 68. In the example implementation, the multiplex director system 68 includes a first multiplex director 70a configured to determine if a leak exists fuel tank system 10, and a second multiplex director 70b configured to determine a hydrocarbon concentration in venting system 20. In particular, the first multiplex director 70a is configured to determine if a leak exists in the fuel tank 12 or the venting system 20, and the second multiplex director 70b is configured to determine a hydrocarbon concentration in each of the vapor vent line 50 and the vapor purge line 52.
With additional reference to
In the illustrated example, for multiplex director 70a, the first port 80 can be fluidly coupled to the vent vapor pick-up tube 26, and the second port 82 can be fluidly coupled to the vapor vent line 50. For multiplex director 70b, the first port 80 can be fluidly coupled to the vapor vent line 50 and the second port 82 can be fluidly coupled to the vapor purge line 54.
As shown, the actuator 74 can be configured to move between a first position (
In the example implementation, the sensor housing 76 can include a pressure sensor 90 and/or a hydrocarbon sensor 92. The sensors 90, 92 may be separate sensors or may be a single sensor. In other examples, the sensor housing 76 and included sensors 90, 92 may be incorporated into the isolation mechanism 28. The pressure sensor 90 and hydrocarbon sensor 92 can be utilized to monitor pressure and hydrocarbons in vapor vent line 50 and vapor purge line 52. As such, the multiplex director 70 can make use of a single sensor for use in a fuel system with a mechanism to direct vapor flow from different areas. The configuration of the multiplex director 70 can be cost effective by using a single sensor.
In the first position (
For multiplex director 70b, when the isolation mechanism 28 and the valve 54 is closed, the hydrocarbon sensor 92 can monitor the hydrocarbon concentration in the vapor vent line 50. In this way, it can be determined how much hydrocarbon is being loaded into the canister 30.
In the second position (
In the second position, for multiplex director 70b, when the isolation mechanism 28 and the valve 54 are closed, the hydrocarbon sensor 92 can monitor the hydrocarbon concentration in the vapor purge line 52. In this way, it can be determined the level of hydrocarbons being sent to the engine 18 from the canister 30. As such, multiplex director 70b can be switched between the first and second positions to respectively measure the hydrocarbon concentrations in the vapor vent line 50 and the vapor purge line 52. The measured hydrocarbon concentrations can then be communicated to the ECM 56 and used to adjust vehicle operations such as to calibrate the engine 18.
The OBD system 58 is in communication with the multiplex director system 68. When the OBD system 58 determines a leak exists, the ECM 56 can subsequently send a signal indicative of such to illuminate a malfunction indicator lamp (MIL) 94. When a hydrocarbon concentration is determined, the ECM 56 can subsequently use the information for vehicle operations such as engine calibration. The ECM 56 may further communicate with the engine 18 to operate in a purge mode where vapor flow is permitted to run through the vapor purge line 52 to the engine 18 where the vapors are subsequently burned.
With reference to
At step 110, actuator 74 is moved to the second position (
Described herein are systems and methods for determining a hydrocarbon concentration and whether a leak exists in a fuel vapor recovery system. The system includes at least one multiplex director that is selectively fluidly coupled between two locations of the fuel vapor recovery system. An isolator mechanism fluidly segregates the fuel vapor recovery system from a fuel tank such that pressure and/or hydrocarbon concentration testing can be done in the fuel tank and outside the fuel tank. With the fuel vapor recovery system segregated, the multiplex director can use a single sensor and switch between two positions to separately monitor pressure/hydrocarbons in, thereby making it easier to pinpoint a leak in the fuel vapor recovery system or monitor hydrocarbon concentration in specific location of the vapor recovery system.
The foregoing description of the examples has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular example are generally not limited to that particular example, but, where applicable, are interchangeable and can be used in a selected example, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application is a continuation of International Application No. PCT/US2016/024687 filed Mar. 29, 2016, which claims priority to U.S. Provisional Application No. 62/139,777 filed on Mar. 29, 2015, which is incorporated by reference in its entirety as if set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
6367457 | Mancini | Apr 2002 | B1 |
7866356 | Benjey | Jan 2011 | B2 |
20030205272 | Benjey et al. | Nov 2003 | A1 |
20040089062 | Matsubara et al. | May 2004 | A1 |
20060081224 | Spink | Apr 2006 | A1 |
20080302339 | Krogull et al. | Dec 2008 | A1 |
20090044785 | Maly | Feb 2009 | A1 |
20120152210 | Reddy | Jun 2012 | A1 |
20130160877 | Walter et al. | Jun 2013 | A1 |
20160368371 | Hill | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
2823981 | Jan 2015 | EP |
2011169274 | Sep 2011 | JP |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2016/024687 dated Jun. 20, 2016, 13 pages. |
European Search Report for EP Application No. 16773985.3 dated Oct. 18, 2018, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20180015820 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62139777 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2016/024687 | Mar 2016 | US |
Child | 15718729 | US |