Fungicide Active Substance Combinations

Information

  • Patent Application
  • 20130190371
  • Publication Number
    20130190371
  • Date Filed
    January 15, 2013
    12 years ago
  • Date Published
    July 25, 2013
    11 years ago
Abstract
The novel active compound combinations comprising 2-[2-(1-chorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]-2,4-dihydro-[1,2,4]-triazole-3-thione of the formula
Description

The present invention relates to novel active compound combinations which consist of the known 2-[2-(1-chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]-2,4-dihydro[1,2,4]-triazole-3-thione and further known fungicidally active compounds, and which are highly suitable for controlling phytopathogenic fungi.


It is already known that 2-[2-(1-chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxy propyl]-2,4-dihydro-[1,2,4]-triazole-3-thione has fungicidal properties (cf. WO 96-16 048). The activity of this compound is good, however, at low application rates it is in some cases not satisfactory.


Furthermore, it is already known that a large number of triazole derivatives, aniline derivatives, dicarboximides and other heterocycles can be employed for controlling fungi (cf. EP-A 0 040 345, DE-A 2 201 063, DE-A 2 324 0 10, Pesticide Manual, 9th Edition (1991), pages 249 and 827, U.S. Pat. No. 3,903,090 and EP-A 0 206 999) Likewise, the activity of these compounds is not always satisfactory at low application rates


Finally, it is also known that 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidineimine can be used for controlling animal pests such as insects (cf Pesticide Manual, 9th Edition (1991), page 491). However, fungicidal properties have not hitherto been described for this compound.


It has now been found that the novel active compound combinations comprising


2-[2-(1-chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]-2,4-dihydro-[1,2,4]-triazole-3-thione of the formula




embedded image




    • and

    • (1) a triazole derivative of the formula







embedded image






      • in which

      • X represents chlorine or phenyl

      • and

      • Y represents









embedded image




    • and/or

    • (2) the triazole derivative of the formula







embedded image




    • and/or

    • (3) an aniline derivative of the formula







embedded image






      • in which

      • R1 represents hydrogen or methyl,



    • and/or

    • (4) N-[1-(4-chloro-phenyl)-ethyl]-2,2-dichloro-1-ethyl-3-methyl-cyclopropane-carboxamide of the formula







embedded image




    • and/or

    • (5) the zinc propylene-1,2-bis-(dithiocarbamate) of the formula







embedded image




    • and/or

    • (6) at least one thiocarbamate of the formula







embedded image




    • or a mixture of Zn and Mn

    • and/or

    • (7) the aniline derivative of the formula







embedded image




    • and/or

    • (8) the compound of the formula







embedded image




    • and/or

    • (9) the benzothiadiazole derivative of the formula







embedded image




    • and/or

    • (10) the 8-t-butyl-2-(N-ethyl-N-n-propyl-amino)-methyl-1,4-dioxaspiro-[5,4]-decane of the formula







embedded image




    • and/or

    • (11) the compound of the formula







embedded image




    • and/or

    • (12) the compound of the formula







embedded image




    • and/or

    • (13) the compound of the formula







embedded image




    • and/or

    • (14) the dicarboximide of the formula







embedded image




    • and/or

    • (15) a pyrimidine derivative of the formula







embedded image






      • in which

      • R2 represents methyl or cyclopropyl,



    • and/or

    • (16) the phenyl derivative of the formula







embedded image




    • and/or

    • (17) the morpholine derivative of the formula







embedded image




    • and/or

    • (18) the phthalimide derivative of the formula







embedded image




    • and/or

    • (19) the phosphorus compound or the formula







embedded image




    • and/or

    • (20) a phenylpyrrole derivative of the formula







embedded image






      • in which

      • R3 and R4 each represent chlorine or together represent a radical of the formula —O—CF2—O—,



    • and/or (21) the 1-[((6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidineimine of the formula







embedded image




    • and/or

    • (22) the phenylurea derivative of the formula







embedded image




    • and/or

    • (23) the benzamide derivative of the formula







embedded image




    • and/or

    • (24) a guanidinie derivative of the formula







embedded image






      • in which

      • m represents integers from 0 to 5

      • and

      • R5 represents hydrogen (17 to 23%) or the radical of the formula









embedded image


have very good fungicidal properties.


Surprisingly, the fungicidal activity of the active compound combinations according to the invention is considerably higher than the sum of the activities of the individual active compounds. Thus, an unforeseeable, true synergistic effect is present, and not just an addition of activities.


The 2-[2-(1-chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]-2,4-dihydro-[1,2,4]-triazole-3-thione of the formula (I) is known (cf. WO 96-16 048) The compound can be present in the “thiono” form of the formula




embedded image


or in the tautomeric “mercapto” form of the formula




embedded image


For simplicity's sake, only the “thiono” form is given in each case.


The formula (II) includes the compounds

    • 1-(4-chloro-phenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)-butane-2-one of the formula




embedded image


1-(4-chloro-phenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)-butan-2-ol of the formula




embedded image


and


1-(4-phenyl-phenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)-butan-2-ol of the formula




embedded image


The formula (IV) includes the aniline derivatives of the formulae




embedded image


It is evident from the formula for the active compound of the formula (V) that the compound has three asymmetrically substituted carbon atoms. The product may therefore be present as a mixture of various isomers, or else in the form of a single component Particular preference is given to the compounds


N—(R)-[1-(4-chloro-phenyl)-ethyl]-(1S)-2,2-dichloro-1-ethyl-3t-methyl-1r-cyclo-propanecarboxamide of the formula




embedded image


and


N—(R)-[1-(4-chloro-phenyl)-ethyl]-(1R)-2,2-dichloro-1-ethyl-3t-methyl-1r-cyclo-propanecarboxamide of the formula




embedded image


The formula (VII) includes the compounds





Me-Zn(zineb)  (VIIa)





Me-Mn(maneb)  (VIIb)





and





mixture of (VIIa) and (VIIb)(mancozeb).  (VIIc)


The formula (XVI) includes the compounds





R2═CH3(pyrimethanil)  (XVIa)


and




embedded image


The formula (XXI) includes the compounds


4-(2,3-dichlorophenyl)-pyrrole-3-carbonitrile of the formula




embedded image


and


4-(2,2-difluoro-1,3-benzodioxol-7-yl)-t H-pyrrole-3-carbonitrile of the formula




embedded image


The guanidine derivative of the formula (XXV) is a mixture of substances of the common name guazatine.


The components which are present in the active compound combinations according to the invention in addition to the active compound of the formula (I) are also known Specifically, the active compounds are described in the following publications:


(1) Compounds of the formula (II)

    • DE-A 2 201 063
    • DE-A 2 324 010


(2) Compound of the formula (III)

    • EP-A 0 040 345


(3) Compounds of the formula (IV)

    • Pesticide Manual, 9th Edition (1991). pages 249 and 827


(4) Compound of the formula (V) and individual isomers thereof.

    • EP-A 0 341 475


(5) Compound of the formula (VI)

    • Pesticide Manual, 9th Edition (1991), page 726


(6) Compounds of the formula (VII)

    • Pesticide Manual, 9th Edition (1991), pages 529, 531 and 866


(7) Compound of the formula (VIII)

    • EP-A 0 339 418


(8) Compound of the formula (IX)

    • EP-A 0 472 996


(9) Compound of the formula (X)

    • EP-A 0 313 512


(10) Compound of the formula (XI)

    • EP-A 0 281 842


(11) Compound of the formula (XII)

    • EP-A 00 382 375


(12) Compound of the formula (XIII)

    • EP-A 0 515 901


(13) Compound of the formula (XIV)

    • EP-A 196 02 095


(14) Compound of the formula (XV)

    • U.S. Pat. No. 3,903,090


(15) Compounds of the formula (XVI)

    • EP-A 0 270 111
    • EP-A 0 310 550


(16) Compound of the formula (XVII)

    • Pesticide Manual. 9th Edition (1991). page 159


(17) Compound of the formula (XVIII)

    • EP-A 0 219 756


(18) Compound of the formula (XIX)

    • Pesticide Manual, 9th Edition (1991), page 431


(19) Compound of the formula (XX)

    • Pesticide Manual, 9th Edition (1991), page 443


(20) Compounds of the formula (XXI)

    • EP-A 0 236 272
    • EP-A 0 206 999


(21) Compound of the formula (XXII)

    • Pesticide Manual, 9th Edition (1991), page 491


(22) Compound of the formula (XXIII)

    • DE-A 2 732 257


(23) Compound of the formula (XXIV)

    • EP-A 0 600 629


(24) Substance of the formula (XXV)

    • Pesticide Manual, 9th Edition (1991), page 461


In addition to the active compound of the formula (I), the active compound combinations according to the invention comprise at least one active compound of the compounds of groups (1) to (24). Additionally, they may comprise further fungicidally active components.


The synergistic effect is particularly pronounced when the active compounds in the active compound combinations according to the invention are present in certain weight ratios. However, the weight ratios of the active compounds in the active compound combinations can be varied within a relatively wide range. In general,


0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, of active compound of group (1),


0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, of active compound of group (2),


0.2 to 150 parts by weight, preferably 1 to 100 parts by weight, of active compound of group (3),


0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, of active compound of group (4),


1 to 50 parts by weight, preferably 5 to 20 parts by weight, of active compound of group (5).


1 to 50 parts by weight, preferably 2 to 20 parts by weight, of active compound of group (6),


0.1 to 50 parts by weight, preferably 1 to 30 parts by weight, of active compound of group (7),


0.2 to 50 parts by weight, preferably 1 to 20 pans by weight, of active compound of group (8),


0.02 to 50 parts by weight, preferably 0.2 to 10 pans by weight, of active compound of group (9).


0.1 to 50 parts by weight, preferably 0.2 to 20 parts by weight, of active compound of group (10),


0.1 to 50 pans by weight, preferably 0.2 to 20 pans by weight, of active compound of group (11),


0.1 to 50 parts by weight, preferably 0.2 to 20 parts by weight, of active compound of group (12),


0.1 to 50 pans by weight, preferably 0.2 to 20 parts by weight, of active compound of group (13),


0.1 to 50 parts by weight, preferably 1 to 30 parts by weight, of active compound of group (14).


0.1 to 50 pans by weight, preferably 0.2 to 20 parts by weight, of active compound of group (15),


0.1 to 50 parts by weight, preferably 2 to 20 parts by weight, of active compound of group (16),


1 to 20 parts by weight, preferably 2 to 10 parts by weight, of active compound of group (17),


1 to 50 parts by weight, preferably 2 to 20 pans by weight, of active compound of group (18).


1 to 50 pans by weight, preferably 2 to 20 parts by weight, of active compound of group (19),


0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, of active compound of group (20),


0.05 to 20 pans by weight, preferably 0.1 to 10 parts by weight, of active compound of group (21),


0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, of active compound of group (22),


0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, of active compound of group (23),


and/or


0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, of active compound of group (24)


are present per part by weight of active compound of the formula (I)


The active compound combinations according to the invention have very good fungicidal properties and can be employed for controlling phytopathogenic fungi, such as Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Asconmycetes, Basidiomycetes, Deuteromycetes, etc.


The active compound combinations according to the invention are particularly suitable for controlling cereal diseases, such as Erysiphe, Puccinia and Fusarium, and for controlling diseases encountered in viticulture, such as Uncinula. Plasmopara and Botrytis, and furthermore in dicotylendonous crops for controlling powder and downy mildew fungi and causative organisms of leaf spot


The fact that the active compound combinations are well tolerated by plants at the concentrations required for controlling plant diseases permits the treatment of above-ground parts of plants, of propagation stock and seeds, and of the soil. The active compound combinations according to the invention can be employed for foliar application or else as seed dressings.


The active compound combinations according to the invention can be converted to the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols and microencapsulations in polymeric substances and in coating compositions for seeds, and ULV formulations.


These formulations are produced in a known manner, for example by mixing the active compounds or active compound combinations with extenders, that is liquid solvents, liquefied gases under pressure, and/or solid carriers, optionally with the use of surfactants, that is emulsifiers and/or dispersants, and/or foam formers. If the extender used is water, it is also possible to use, for example, organic solvents as auxiliary solvents. Essentially, suitable liquid solvents include: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, or else water. Liquefied gaseous extenders or carriers are to be understood as meaning liquids which are gaseous at ambient temperature and under atmospheric pressure, for example aerosol propellants such as butane, propane, nitrogen and carbon dioxide. Suitable solid carriers are: for example ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals such as finely divided silica, alumina and silicates. Suitable solid carriers for granules are: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, or else synthetic granules of inorganic and organic meals, and granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks. Suitable emulsifiers and/or foam formers are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl-sulphonates, alkyl sulphates, arylsulphonates, or else protein hydrolysates. Suitable dispersants are, for example lignin-sulphite waste liquors and methylcellulose.


Tackifiers such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and poly-vinyl acetate, or else natural phospholipids such as cephalins and lecithins and synthetic phospholipids can be used in the formulations. Other additives can be mineral and vegetable oils.


It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide and prussian blue, and organic dyestuffs such as alizarin dyestuffs, azo dyestuffs and metal phthalocyanine dyestuffs, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.


The formulations generally comprise between 0.1 and 95% by weight of active compounds, preferably between 0.5 and 90%


In the formulations, the active compound combinations according to the invention can be present as a mixture with other known active compounds such as fungicides, insecticides, acaricides and herbicides, and as mixtures with fertilizers or plant growth regulators.


The active compound combinations can be used as such, in the form of their formulations or as the use forms prepared therefrom, such as ready-to-use solutions, emulsifiable concentrates, emulsions, suspensions, wettable powders, soluble powders and granules They are used in the customary manner, for example by watering, spraying, atomizing, scattering, spreading, and as a powder for dry seed treatment, a solution for seed treatment, a water-soluble powder for seed treatment, a water-soluble powder for slurry treatment, or by encrusting.


When using the active compound combinations according to the invention, the application rates can be varied within a relatively wide range, depending on the kind of application. In the treatment of parts of plants, the application rates oft the active compound combination are generally between 0.1 and 10,000 g/ha, preferably between 10 and 1000 g/ha. In the treatment of seeds, the application rates of the active compound combination are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 10 g per kilogram of seed. In the treatment of the soil, the application rates of the active compound combination are generally between 0.1 and 10,000 g/ha, preferably between 1 and 5000 g/ha.


The good fungicidal activity of the active compound combinations according to the invention is evident from the examples below. While the individual active compounds exhibit weaknesses with regard to the fungicidal activity, the combinations have an activity which exceeds a simple addition of activities.


A synergistic effect of fungicides is always present when the fungicidal activity of the active compound combinations exceeds the total of the activities of the active compounds when applied individually.


The expected activity for a given combination of two active compounds can be calculated as follows (cf. Colby, S. R., “Calculating Synergistic and Antagonistic Responses of Herbicide Combinations”, Weeds 15, (1967). 20-22).


If


X is the efficacy when applying active compound A at an application rate of m g/ha,


Y is the efficacy when applying active compound B at an application rate of n g/ha and


E is the efficacy when applying the active compounds A and B at an application rate of m and n g/ha,

    • then






E
=

X
+
Y
-


X
·
Y

100






The efficacy is calculated in %. 0% is an efficacy which corresponds to that of the control, whereas an efficacy of 100% means that no infection is observed.


If the actual fungicidal activity exceeds the calculated value, then the activity of the combination is superadditive, i.e. a synergistic effect exists. In this case, the efficacy which was actually observed must be greater than the value for the expected efficacy (E) calculated from the abovementioned formula.


The examples that follow illustrate the invention.







EXAMPLE 1
Sphaerotheca Test (Cucumber)/Protective

Solvent: 47 parts by weight of acetone


Emulsifier: 3 parts by weight of alkylaryl polyglycol ether


To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration, or a commercial formulation of active compound or active compound combination is diluted with water to the desired concentration.


To test for protective activity, young plants are sprayed with the active compound preparation at the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of Sphaerotheca fuliginea The plants are then placed in a greenhouse at about 23° C. and a relative atmospheric humidity of about 70%.


Evaluation is carried out 10 days after the inoculation. 0% means an efficacy which corresponds to that of the control, whereas an efficacy of 100% means that no infection is observed.


Active compounds, application rates and test results are shown in the table below.









TABLE 1








Sphaerotheca test (cucumber)/protective











Active




compound




application rate



Active compound
in g/ha
Efficacy in %





Known:






embedded image


25    0.5
21  0







embedded image


25  
 0







embedded image


25  
 0







embedded image


25  
 0







embedded image


25  
 0







embedded image


25  
 0







embedded image


50  
 0







embedded image


25  
 0







embedded image


25  
 0







embedded image


25  
 0







embedded image


12.5
 0







embedded image


12.5
 0







embedded image


12.5
 0







embedded image


12.5
 0







embedded image


12.5
 0







embedded image


 2.5
57







embedded image


 2.5
59







embedded image


12.5

text missing or illegible when filed








embedded image


 2.5
 0







embedded image


 2.5
50







embedded image


 2.5

text missing or illegible when filed








embedded image


 2.5
80







embedded image


 2.5
22







embedded image


 2.5
 0













According to the invention:

found
calc *)







embedded image




embedded image


70
21







embedded image




embedded image


63
21







embedded image




embedded image


63
21







embedded image




embedded image


63
21







embedded image




embedded image


59
21







embedded image




embedded image


52
21







embedded image




embedded image


63
21







embedded image




embedded image


59
21







embedded image




embedded image


52
21







embedded image




embedded image


50
21







embedded image




embedded image


63
21







embedded image




embedded image


50
21







embedded image




embedded image


75
21







embedded image




embedded image


54
21







embedded image




embedded image


80
57







embedded image




embedded image


75
59







embedded image




embedded image


66
31







embedded image




embedded image


90
21







embedded image




embedded image


85
61







embedded image




embedded image


90
50







embedded image




embedded image


93
84







embedded image




embedded image


70
38







embedded image




embedded image


52
21





found = efficacy found


calc. = efficacy calculated using the Colby formula



text missing or illegible when filed indicates data missing or illegible when filed







EXAMPLE 2

Venturia Test (Apple)/Protective

Solvent: 47 parts by weight of acetone


Emulsifier: 3 parts by weight of alkylaryl polyglycol ether


To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration, or a commercial formulation of active compound or active compound combination is diluted with water to the desired concentration.


To test for protective activity, young plants are sprayed with the active compound preparation at the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous konidia suspension of the causative organism of apple scab Venturia inaequalis and then remain in an incubation cabin at about 20° C. and 100% relative atmospheric humidity for one day.


The plants are then placed in a greenhouse at about 21° C. and a relative atmospheric humidity of about 90%.


Evaluation is carried out 12 days after the inoculation. 0% means an efficacy which corresponds to that of the control, whereas an efficacy of 1000% means that no infection is observed.


Active compounds, application rates and test results are shown in the table below









TABLE 2








Venturia test (apple)/protective











Active




compound




application rate



Active compound
in g/ha
Efficacy in %





Known:






embedded image


1
 1







embedded image


1
 0













According to the invention:

found
calc. *)







embedded image




embedded image


54
1





found = efficacy found


calc. = efficacy calculated using the Colby Formula






EXAMPLE 3

Erysiphe Test (Barley)/Curative

Solvent: 10 parts by weight of N-methyl-pyrrolidone


Emulsifier: 0.6 parts by weight of alkylaryl polyglycol ether


To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration, or a commercial formulation of active compound or active compound combination is diluted with water to the desired concentration.


To test for curative activity, young plants are dusted with spores of Erysiphe graminis f. sp. hordei. 48 hours after the inoculation, the plants are sprayed with the active compound preparation at the stated application rate.


The plants are placed in a greenhouse at a temperature of about 20° C. and a relative atmospheric humidity of about 80% to promote the development of mildew pustules.


Evaluation is carried out 7 days after the inoculation. 0% means an efficacy which corresponds to that of the control, whereas an efficacy of 100% means that no infection is observed.


Active compounds, application rates and test results are shown in the table below.









TABLE 3








Erysiphe test (barley)/curative











Active




compound




application rate



Active compound
in g/ha
Efficacy in %





Known:






embedded image


25
 81







embedded image


25
 75





According to the invention:






embedded image




embedded image


100









EXAMPLE 4

Erysiphe Test (Barley)/Protective

Solvent: 10 parts by weight of N-methyl-pyrrolidone


Emulsifier: 0.6 parts by weight of alkylaryl polyglycol ether


To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration, or a commercial formulation of active compound or active compound combination is diluted with water to the desired concentration.


To test for protective activity, young plants are sprayed with the active compound preparation at the stated application rate.


After the spray coating has dried on, the plants are dusted with spores of Erysiphe graminis f. sp. hordei.


The plants are placed in a greenhouse at a temperature of about 20° C. and a relative atmospheric humidity of about 80% to promote the development of mildew pustules.


Evaluation is carried out 7 days after the inoculation. 0% means an efficacy, which corresponds to that of the control, whereas an efficacy of 100% means that no infection is observed.


Active compounds, application rates and test results are shown in the table below









TABLE 4








Erysiphe test (barley)/protective











Active




compound




application rate



Active compound
in g/ha
Efficacy in %





Known:






embedded image


25
 83







embedded image


25
 92





According to the invention:






embedded image




embedded image


100







embedded image




embedded image


100







embedded image




embedded image


100









EXAMPLE 5

Erysiphe Test (Wheat)/Curative

Solvent: 10 parts by weight of N-methyl-pyrrolidone


Emulsifier: 0.6 parts by weight of alkylaryl polyglycol ether


To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration, or a commercial formulation of active compound or active compound combination is diluted with water to the desired concentration.


To test for curative activity, young plants are dusted with spores of Erysiphe graminis f. sp. tritici. 48 hours after the inoculation, the plants are sprayed with the active compound preparation at the stated application rate.


The plants are then placed in a greenhouse at a temperature of about 20° C. and a relative atmospheric humidity of about 80% to promote the development of mildew pustules.


Evaluation is carried out 7 days after the inoculation. 0% means an efficacy which corresponds to that of the control, whereas an efficacy of 100% means that no infection is observed.


Active compounds, application rates and test results are shown in the table below.









TABLE 5








Erysiphe test (wheat)/curative











Active




compound




application rate



Active compound
in g/ha
Efficacy in %





Known:






embedded image


25 12.5 6.25
75 50 25







embedded image


25
88







embedded image


25
81







embedded image


12.5
0









EXAMPLE 6

Erysiphe Test (Wheat)/Protective

Solvent: 10 parts by weight of N-methyl-pyrrolidone


Emulsifier: 0.6 parts by weight of alkylaryl polyglycol ether


To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration, or a commercial formulation of active compound or active compound combination is diluted with water to the desired concentration


To test for protective activity, young plants are sprayed with the active compound preparation at the stated application rate.


After the spray coating has dried on, the plants are dusted with spores of Erysiphe graminis f. sp. tritici.


The plants are then placed in a greenhouse at a temperature of about 20° C. and a relative atmospheric humidity of about 80% to promote the development of mildew pustules.


Evaluation is carried out 7 days after the inoculation. 0% means an efficacy which corresponds to that of the control, whereas an efficacy of 100% means that no infection is observed.


Active compounds, application rates and test results are shown in the table below.









TABLE 6








Erysiphe test (wheat)/protective











Active




compound




application
Effi-



rate
cacy


Active compound
in g/ha
in %





Known:






embedded image


6.25
57







embedded image


6.25
57





According to the invention:






embedded image




embedded image


79







embedded image




embedded image


71







embedded image




embedded image


71









EXAMPLE 7

Leptosphaeria Nodorum Test (Wheat)/Protective

Solvent: 10 parts by weight of N-methyl-pyrrolidone


Emulsifier: 0.6 parts by weight of alkylaryl polyglycol ether


To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration, or a commercial formulation of active compound or active compound combination is diluted with water to the desired concentration.


To test for protective activity, young plants are sprayed with the active compound preparation at the stated application rate.


After the spray coating has dried on, the plants are sprayed with a spore suspension of Leptosphaeria nodorum. The plants remain in an incubation cabin at 20° C. and 100% relative atmospheric humidity for 48 hours.


The plants are then placed in a greenhouse at a temperature of about 15° C. and a relative atmospheric humidity of about 80%.


Evaluation is carried out 10 days after the inoculation. 0% means an efficacy which corresponds to that of the control, whereas an efficacy of 100% means that no infection is observed.


Active compounds, application rates and test results are shown in the table below.









TABLE 7








Leptosphaeria nodorom test (wheat)/protective











Active




compound




application rate



Active compound
in g/ha
Efficacy in %





Known:






embedded image


25
 62







embedded image


25
 87





According to the invention:






embedded image




embedded image


100









EXAMPLE 8

Puccinia Test (Wheat)/Protective

Solvent: 10 parts by weight of N-methyl-pyrrolidone


Emulsifier: 0.6 parts by weight of alkylaryl polyglycol ether


To produce a suitable preparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration, or a commercial formulation of active compound or active compound combination is diluted with water to the desired concentration


To test for protective activity, young plants are inoculated with a spore suspension of Puccinia recondita in a 0.1% strength aqueous agar solution. After the spray coating had dried on, the plants are sprayed with the active compound preparation at the stated application rate.


The plants remain in an incubation cabin at 20° C. and 100% relative atmospheric humidity for 24 hours.


The plants are then placed in a greenhouse at a temperature of about 20° C. and a relative atmospheric humidity of about 80% to promote the development of rust pustules.


Evaluation is carried out 10 days after the inoculation 0% means an efficacy which corresponds to that of the control, whereas an efficacy of 100% means that no infection is observed.


Active compounds, application rates and test results are shown in the table below.









TABLE 8








Puccinia test (wheat)/protective











Active




compound




application rate



Active compound
in g/ha
Efficacy in %





Known:






embedded image


25
 38







embedded image


25
 94





According to the invention:






embedded image




embedded image


100







embedded image




embedded image


100









EXAMPLE 9

Fusarium Culmorum Test (Wheat)/Seed Treatment

The active compounds are applied as a dry seed dressing. This is prepared by extending the respective active compound or the active compound combination with ground minerals to give a finely pulverulent mixture which ensures uniform distribution on the seed surface.


To dress the seed, the infected seed together with the seed dressing is shaken for 3 minutes in a sealed glass flask.


2×100 corns of wheat are sown at a depth of 1 cm in standard soil and cultivated in a greenhouse at a temperature of about 18° C. and a relative atmospheric humidity of about 95% in seed trays which receive a light regimen of 15 hours per day.


About 3 weeks after sowing, the plants are evaluated for symptoms. 0% means an efficacy which corresponds to that of the control, whereas an efficacy of 100% means that no infection is observed.


Active compounds, application rates and test results are shown in the table below.









TABLE 9








Fusarium culmorum test (wheat)/seed treatment











Active




compound




application rate



Active compound
in g/ha
Efficacy in %





Known:






embedded image


75
32







embedded image


75
27





According to the invention:






embedded image




embedded image


41









EXAMPLE 10

Fusarium Nivale Test (Triticale)/Seed Treatment

The active compounds are applied as a dry seed dressing. This is prepared by extending the respective active compound or the active compound combination with ground minerals to give a finely pulverulent mixture which ensures uniform distribution on the seed surface.


To dress the seed, the infected seed together with the seed dressing is shaken for 3 minutes in a sealed glass flask.


2×100 corns of wheat are sown at a depth of 1 cm in standard soil and cultivated in a greenhouse at a temperature of about 10° C. and a relative atmospheric humidity of about 95% in seed trays which receive a light regimen of 15 hours per day.


About 3 weeks after sowing, the plants are evaluated for symptoms. 0% means an efficacy which corresponds to that of the control, whereas an efficacy of 100% means that no infection is observed.


Active compounds, application rates and test results are shown in the table below









TABLE 10








Fusarium nivale test (triticale)/seed treatment











Active




compound




application rate



Active compound
in g/ha
Efficacy in %





Known:






embedded image


75 25
14  0







embedded image


75
94







embedded image


25
 0





According to the invention:






embedded image




embedded image


99







embedded image




embedded image


31









EXAMPLE 11

Rhizoctonia Solani Test (Cotton)/Seed Treatment

The active compounds are applied as a dry seed dressing. This is prepared by extending the respective active compound or the active compound combination with ground minerals to give a finely pulverulent mixture which ensures uniform distribution on the seed surface.


To dress the seed, the infected seed together with the seed dressing is shaken for 3 minutes in a sealed glass flask.


2×50 corns of seed are sown at a depth of 2 cm in standard soil infected with Rhizoctonia solani, and the seeds are cultivated in a greenhouse at a temperature of about 22° C. in seed trays which receive a light regimen of 15 hours per day.


Evaluation is carried out after 8 days. 0% means an efficacy which corresponds to that of the control, whereas an efficacy of 100% means that no infection is observed.


Active compounds, application rates and test results are shown in the table below









TABLE 11








Rhizoctonia solani test (cotton)/seed treatment











Active




compound




application rate



Active compound
in g/ha
Efficacy in %





Known:






embedded image


25
19







embedded image


25
27







embedded image


25
 0





According to the invention:






embedded image




embedded image


40







embedded image




embedded image


31








Claims
  • 1.-5. (canceled)
  • 6. A fungicidal composition comprising synergistically effective amounts of: (a) a 2-[2-(1-chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]2,4-dihydro-[1,2,4]-triazole-3-thione of the formula
  • 7. The composition of claim 6 wherein the weight ratio of the active compound of formula (I) to the compound of formula (III) is from 1:0.33 to 1:3.
  • 8. A method for controlling fungi comprising applying the composition according to claims 6 or 7 to the fungi and/or their habitat.
  • 9. A fungicidal composition comprising synergistically effective amounts of: (a) a 2-[2-(1-chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]2,4-dihydro-[1,2,4]-triazole-3-thione of the formula
  • 10. A method for controlling fungi comprising applying the composition according to claim 9 to the fungi and/or their habitat.
  • 11. The method according to claim 10 wherein the fungi is a cereal disease.
  • 12. The method according to claim 11 wherein the cereal disease is selected from the group consisting of Erysiphe, Puccinia, and Fusarium.
  • 13. The method according to claim 10 wherein the composition is applied to plant parts at a rate between 10 and 1000 g/ha.
  • 14. The method according to claim 10 wherein the composition is applied to soil at a rate between 1 and 5000 g/ha.
  • 15. A method for controlling fungi comprising applying a fungicidal composition comprising: (a) a 2-[2-(1-chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]2,4-dihydro-[1,2,4]-triazole-3-thione of the formula
  • 16. The method according to claim 15 wherein the weight ratio of active compound of the formula (I) to the active compound of the formula (III) is from 1:0.33 to 1:3.
  • 17. The method according to claim 15 wherein the weight ratio of active compound of the formula (I) to the active compound of the formula (III) is from 1:1 to 1:3.
  • 18. The method according to claim 15 wherein the fungi is a cereal disease.
  • 19. The method according to claim 18 wherein the cereal disease is selected from the group consisting of Erysiphe, Puccinia, and Fusarium.
  • 20. The method according to claim 15 wherein the composition is applied to plant parts at a rate between 10 and 1000 g/ha.
  • 21. The method according to claim 15 wherein the composition is applied to soil at a rate between 1 and 5000 g/ha.
  • 22. The method according to claim 20 wherein the composition is applied to plant parts at a rate between 25 to 1000 g/ha.
Priority Claims (1)
Number Date Country Kind
197 16 257.6 Apr 1997 DE national
Divisions (1)
Number Date Country
Parent 09402866 Oct 1999 US
Child 09843396 US
Continuations (1)
Number Date Country
Parent 09843396 Apr 2001 US
Child 13742052 US