1. Field of the Invention
A furnace assembly for dewaxing investment casting molds, and a method of operating the furnace.
2. Description of the Prior Art
Furnaces are widely used in investment casting to dewax molds used in the process. Such furnaces must be able to reach a temperature suitable for melting the wax used to form the mold. The wax that is melted from the molds is traditionally recovered for use in other molds. Generally, such a dewaxing furnace assembly includes a housing defining a heating chamber for heating the molds and allows the wax from the molds to drip down out of the molds. If the wax ignites, in some furnaces, the wax is then extinguished using a gas or steam injector that injects an inert gas or steam into an extinguishing chamber below the heating chamber, so that any wax dripping into the extinguishing chamber may be cooled and extinguished. The wax is then collected in a tray, allowing the wax to be recovered and possibly reused. This necessitates a means to collect and recycle or dispose of the recovered wax, which is expressive and time consuming, and may require cooling of the furnace at regular intervals, which is also expensive and time intensive.
Other dewaxing furnace assemblies are configured to burn the wax and generally include a housing that defines a heating chamber for heating the molds and allows the wax from the molds to drip down out of the molds. Wax vapors are not exhausted and wax is not removed from the heating chamber but instead are burnt within the heating chamber. Additionally, these furnace assemblies heat and dewax the molds in a single operation, which may allow unburnt wax and wax vapor to accumulate on the investment casting molds in the furnace assembly or reach ignition temperature before it is fully melted and absent from the molds. One problem with these types of furnaces is that they allow the wax to burn and contaminate the inner surfaces of the casting molds as well as the carriers, such as trays. Investment casting furnaces of this type generally require a lot of heat energy to operate and the heat energy is provided exclusively by flammable gases such as natural gas or electric heating elements. In addition, any wax burned in the same chamber or on the investment casting molds may leave behind carbon deposits that are undesired and may negatively affect the later molding process.
The invention provides for a furnace assembly including at least one upper chamber and at least one lower chamber interconnected to the upper chamber by at least one passageway. At least one lower burner extends into the lower chamber for burning wax vapors and wax drippings flowing through the passageway into the lower chambers and heating the lower chamber and upper chamber.
Thus, several advantages of one or more aspects of the invention include that the wax drippings and unburnt wax vapors are drawn down through the passageway into the lower chamber while igniting the vapors and wax in the lower chamber in a controlled manner. The burning wax helps to reduce the amount of fuel required to heat the furnace. The unique design and downward flow of vapors and wax substantially prevents the wax from burning proximate to the investment casting molds and contaminating the inner surfaces of the casting molds.
The present invention is directed to a furnace that generally includes an outer housing defining an inner cavity. The inner cavity is divided, such as with furnace bricks or tiles into an upper chamber and a lower chamber. The outer housing includes a door at a first end. The opposing second end may have a door, but it has been found preferable to be open and without a door covering the opening and the second end. A chimney having an opening substantially aligned with the lower chamber is included, preferably one chimney for each side, located between said first end and said second end. At least one burner extends into the lower chamber and at least one burner extends into the upper chamber. A passageway located proximate to the first end extends between the lower chamber and the upper chamber.
The lower chamber includes a divider extending along the majority of the length of the lower chamber between the first end and the chimney, and wherein the divider divides the lower chamber into two longitudinally extending chambers. The at least one burner extending into the lower chamber includes a first lower burner aligned with one of the two longitudinally extending chambers and a second lower burner aligned with the other of the two longitudinally extending chambers. These are larger burners and configured to assist with creating the venture effect in the lower chamber. The first and second lower burners are located on the first end under the door. More specifically, the first and second lower burners are each configured to force hot air, gases, vapor and wax from the first section through the second section and to the third section of the lower chamber and to the at least one chimney. The burned wax and hot air then passes through the opening and out the chimney, where a chimney burner may burn any un-combusted materials, and an air system may further improve draw and dilute any emissions. More specifically, the first and second lower burners in combination with the second section create a venturi effect in the first section by drawing air from the upper chamber through the passageway to the lower chamber.
The first section is adjacent to the entrance and wherein the passageways are located within the first section, a second section adjacent to the first section and extending away from the first end, a third section adjacent to the second section and wherein the chimneys are located in the third section and a fourth section extending away from the third section
The lower chamber in the first and second sections are divided by a longitudinally extending divider. The divider is configured to reduce the cross sectional area of the lower chamber into smaller sections, thereby improving the venture effect desired. The third section is substantially free from the longitudinally extending divider, which improves air flow to the chimney opening. The third section further includes in the lower chamber a laterally extending barrier aligned with the opening on the chimney and wherein the opening extends past both sides of the barrier. The barrier forces the gas toward the opening on the chimney, and also allows the opening on the chimney to draw air from the force section (on the opposite side of the barrier as the third section), and thereby create a negative pressure in the fourth section, such that the second end may have an open opening, not covered by a door and use the entering ambient air to cool the products on their trays that are passing through the fourth section, without interfering with the heating process occurring in the first and second sections. In addition, the lower chamber does not extend into the fourth section and wherein the fourth section terminates in an opening at the second end, which is not covered by a door.
The furnace chimney includes a chimney burner, and may include a fresh air inlet.
In addition, the furnace includes as the at least one upper burner, a plurality of upper chamber burners on a first side and a plurality of upper chamber burners on an opposing second side in the second section, and wherein the plurality of upper burners on the first side are staggered relative to the plurality of upper chamber burners on the second side. These plurality of staggered burners are in the second section, but the first section may also include a plurality of upper chamber burners, although these may not be staggered to maximize heating of the molds after entry and closure of the door, to have the wax melt out of the molds as quickly as possible. The passageways are located within the first section, and allow wax vapors to be pulled into the lower chamber, and liquid wax to drip down through the holes on the trays, through the passageways, where the lower burner ignites such wax and wax vapors. The inner side of the outer housing is lined with furnace bricks or tiles in the upper chamber and the lower chamber in the first section. The bricks or tiles may form an arched overhead shape, while defining the lower floor of the upper chamber, which is also the roof of the lower chamber. In the second section, the upper chamber is fiber lined and furnace brick lined in the lower chamber in the second section. Partitions extend downward from the roof of the upper chamber, including a first partition the divides the first and second sections. The partitions allow better heat control and more consistent temperatures as the investment castings move from the first end to the second end. The second section may include multiple partitions, and a partition may divide the second and third sections as well as the third and fourth sections.
A material handling system to move products from the first end to the second end. The material handling system must be able to withstand the heat, and works in conjunction with the opening and closing of the door on the furnace.
The present invention is further directed to a furnace assembly comprising a housing having a longitudinal extent and a latitudinal extent and a top and a bottom and a first side and a second side and extending along the longitudinal extent to define a cavity; at least one chimney connected to the housing; at least one burner extending into the cavity; a plurality of tiles supported in a spaced relationship with the bottom of the housing and defining at least one lower chamber extending along the longitudinal extent for containing combustion of vapors along the chamber and directing the vapors from the cavity to the chimneys; and a passageway defined by the tiles extending through the tiles for evacuating the vapors from the cavity to the lower chambers.
The present invention is further directed to a dewaxing furnace assembly for investment casting comprising: a housing having a longitudinal extent and a latitudinal extent and a top and a bottom and a first side and a second side and extending along an axis to define a cavity; at least one chimney connected to the housing; at least one burner extending into the cavity; a plurality of tiles supported in a spaced relationship with the bottom of the housing and defining at least one lower chamber extending along the longitudinal extent for containing combustion of wax vapors along the chamber and directing the wax vapors from the cavity to the chimneys; a passageway defined by the tiles extending through the tiles for evacuating the wax vapors from the cavity to the lower chambers; and at least one burner extending into the lower chambers for igniting wax vapors in the lower chambers.
The present invention is further directed to a dewaxing furnace assembly for investment casting comprising: a housing having a longitudinal extent and a latitudinal extent and a top and a bottom and a first side and a second side and extending along the longitudinal extent to define a cavity; at least one chimney connected to the housing; a plurality of tiles supported in a spaced relationship with the bottom of the housing and defining at least one lower chamber extending along the longitudinal extent for containing combustion of wax vapors along the chamber and directing the wax vapors from the cavity to the chimneys; a passageway defined by the tiles extending through the tiles for evacuating the wax vapors from the cavity to the lower chambers; at least one burner extending into the lower chambers for igniting wax vapors in the lower chambers; a plurality of trays for carrying investment casting molds along the housing; and the trays each having at least one aperture for allowing heat to rise to molds on the trays and for allowing molten wax from the molds to drop through the trays into the lower chambers through the passageway.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, a furnace assembly 20 constructed in accordance with the subject invention is shown in the Figures. The furnace assembly 20 is generally intended to be used for heating and dewaxing investment casting molds; however, it should be appreciated that the furnace assembly 20 could be used for heating of various other items.
The furnace assembly 20 includes an outer housing 26 divided into an upper chamber 21 and at least one lower chamber 24. At least one burner 66, 68, 72, 74 is disposed in the housing 26 for heating the upper chamber 21 and heating the at least one lower chamber 24. At least one chimney 94, 96 is connected to the housing and to the at least one lower chamber 24 for exhausting air and vapors from the lower chambers 24 that originate in the upper chamber 21 to cause wax and vapors to be quickly moved from the upper chamber 21 into the lower chambers 24.
In dewaxing furnaces, wax drippings and vapors may not be properly evacuated from the furnace assembly 20, or may be burned while still inside the casting mold. Most waxes including Parafin wax that are commonly used in investment casting are flammable and may leave carbon deposits on the molds and even impregnate the ceramic mold and the apparatus used to move the molds through the furnace assembly 20.
Dewaxing furnaces generally require substantial amounts of heat energy to operate, which is usually supplied exclusively through the use of natural gas and/or electric heating elements. The furnace assembly 20, generally shown in
The outer housing 26 of steel, generally indicated of the furnace assembly 20 has a longitudinal extent and a latitudinal extent and a top 28 and a bottom 30 extending generally parallel to the top 28 along the longitudinal extent. The housing 26 includes a first side 32 attached to and extending between the top 28 and the bottom 30 and extending along the longitudinal extent. A second side 34 is attached to and also extends between the top 28 and the bottom 30 and extends generally aligned or parallel to the first side 32. The top 28 and the bottom 30 and the first side 32 and the second side 34 of the housing 26 define an exterior surface and an interior surface and defining a cavity therein split into at least one lower chamber 24 and an upper chamber 21. An entrance 36 is also defined at one end and an exit 38 is defined at the opposite end of the housing 26. A plurality of ribs 40 of steel attaches to and extends radially from the exterior surface for providing strength and rigidity to the housing 26. Although the housing 26 and ribs 40 of the preferred embodiment are constructed of steel, it should be appreciated that other materials may be used instead.
As best shown in
A front wall 50 illustrated as brick in
As illustrated in
A plurality of upper fiber panels 58 are disposed on and attached to the top 28 of the housing 26 and extend along the longitudinal extent along the second length and the third length and the fourth length to the exit of the housing 26. A plurality of side fiber panels 60 are disposed on and attached to the first side 32 and the second side 34 of the housing 26 and extend along the longitudinal extent and along the second length and the fourth length of the housing 26. The fiber panels 58, 60 help insulate and maintain consistent temperatures in the areas of the furnace assembly 20 in which they are used.
The lower burners 66, large side burners 68 and small side burners 72 used in the furnace assembly 20 are interconnected by a plurality of gas supply pipes 76 for connection to a gas supply. The gas supply pipes 76 are only partially illustrated in the Figures. A plurality of air supply pipes 78 also interconnect the burners 66, 68, 72, 74 for connection to an air supply. At least one valve 79 (
In the first section 42, a plurality of upper bricks 82 (
In the second section 44, a first partition 86 (
In the third section 46, the housing 26 further defines a flue case 92 (
The third section 46 also includes a barrier 104 extending between the flue opening of the first chimney 94 and the flue opening of the second chimney 96 to prevent exhaust gases flowing through the lower chambers 24 from entering the third section 46 or the fourth section 48 of the furnace assembly 20. A first outlet 106 having a generally rectangular shape defined by the tiles 64 and barrier 104 extends through the tiles 64 for evacuating the air from the third section 46 to the first chimney 94 and the second chimney 96. A first fresh air inlet 108 extending through the upper fiber panels 58 into the third section 46 provides fresh air to the third section 46.
The flue bricks 98 in the third section 46 also define a plurality of flue voids 110 each extending into the first chimney 94 and into the second chimney 96 for exhausting air to the chimneys 94, 96. A pair of flue burners 74 (
In the fourth section 48, a second outlet 112 having a generally rectangular shape is defined by the tiles 64 and barrier 104 and extends through the tiles 64 for evacuating the air from the fourth section 48 to the first chimney 94 and the second chimney 96. Because cooling of the investment casting molds occurs in the fourth section 48, it is important that air is exhausted as needed through the chimneys 94, 96. The flow through the second outlet 112 is also assisted by the flow of exhaust through the lower chambers 24 into the chimneys 94, 96, which helps provide a venturi effect. A fourth partition 114 is attached to and extends downwardly from the upper fiber panels 58 toward the bottom 30 of the housing 26. The fourth partition 114 extends between the side fiber panels 60 and is disposed in an spaced relationship with the third partition 90. A first cooling zone is defined by and extends between the third partition 90 and the fourth partition 114 and the tiles 64 and the upper fiber panels 58 and the side fiber panels 60. At least one small side burner 72 extends through the first side 32 and second side 34 of the housing 26 in the second section 44 and through the side fiber panels 60 for heating the first cooling zone. Although it may seem counterintuitive to provide heat to a cooling zone, gradual cooling is important so as not to damage the molds and may also be required depending on the ambient temperature in which the furnace assembly 20 is operated (e.g. in winter time, with lower ambient temperatures, it may be necessary to operate the small side burner 72 to ensure an optimal cooling zone temperature).
The fourth section 48 further defines a second cooling zone and a third cooling zone. At least one small side burner 72 extends through the first side 32 and second side 34 of the housing 26 in the fourth section 48 and through the side fiber panels 60 for heating the second cooling zone as needed. A third fresh air inlet 116 extends through the upper fiber panels 58 into the fourth section 48 for providing fresh air to the fourth section 48.
The fourth section 48 also includes a plurality of raised bricks 118 disposed on the bottom 30 of the housing 26 and extending from the third section 46 along the fourth length to the exit of the housing 26. As best shown in
As best shown in
A plurality of trays 124 (
In operation, the load of molds is moved into the furnace assembly 20 on the trays 124 and enters the first section 42 and is heated in the first heating zone to evacuate the wax from the molds and burn the wax. The temperature in the first heating zone increases. The negative pressure created by the passageway 22 and lower chambers 24 helps keep flames and wax vapors moving down into the lower chambers 24. The air is pulled into the lower chambers 24 due to the flue burners 74 causing a flow of exhaust out through the chimneys 94, 96 which sucks air into the passageway 22. The trays 124 progress through the second and third heating zones. The lower burners 66 are used to heat the lower chambers 24 and to ignite the wax vapors as they travel through the lower chambers 24, which increases the temperature through the first section 42 and the second section 44 of the furnace assembly 20. Because the wax is burning, air rather than fuel is primarily supplied by the lower burners 66 during this stage. As much as 20,000 cubic feet of air may be introduced through the lower burners 66 at this stage. The lower burners 66 proportionally ramp up or down depending on if the wax has already been burnt and depending on how much air must be introduced while the wax is burning. Although the lower burners 66 could shut off while the wax is burning, typically they operate at a very low setting until the temperature spike from the wax is over and then use progressively more fuel while decreasing air until the next load of trays 124 enters the furnace assembly 20.
The flue burners 74 maintain the proper temperature in the chimneys 94, 96 and the chimneys 94, 96 exhaust vapors moving through the lower chambers 24. The amount of the wax burned may vary for example between 160 lbs./hr. to 80 lbs./hr. As the wax is consumed by burning, the burners 66, 68, 72, 74 may be adjusted to maintain the proper temperature in the lower chambers 24. The upper burners 66, 68, 72, 74 may be allowed to shut down as heat radiates from the lower chambers 24. The trays 124 then move through the first cooling zone and second cooling zone and third cooling zone which progressively allow the molds on the trays 124 to cool properly. Fresh air is introduced through the first fresh air inlet 108 into the third section 46 and the third fresh air inlet 116 introduces fresh air into the fourth section 48 as needed in the cooling process. Finally, the trays 124 carrying the molds exit the furnace assembly 20.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the appended claims. These antecedent recitations should be interpreted to cover any combination in which the inventive novelty exercises its utility. The use of the word “said” in the apparatus claims refers to an antecedent that is a positive recitation meant to be included in the coverage of the claims whereas the word “the” precedes a word not meant to be included in the coverage of the claims. In addition, the reference numerals in the claims are merely for convenience and are not to be read in any way as limiting.
This U.S. utility patent application claims the benefit U.S. Provisional Patent Application Ser. No. 62/041,302 filed Aug. 25, 2014, entitled “Furnace Assembly,” the entire disclosure of the application being considered part of the disclosure of this application and hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62041302 | Aug 2014 | US |