The present disclosure relates to the field of electrical protection. More particularly, the present disclosure relates to fuses and junction boxes for fuses.
Known fuse blocks and junction boxes for automobiles are complicated.
Known fuse block 12 holds a number of electrical devices 24. For example, the electrical devices 24 can include JCASE® fuses and MINI® fuses provided by the assignee of this invention, mini and micro relays, and solid state relays. The fuses can be blade fuses.
The fuses 26 are individually inserted frictionally into a pair projections 36 and 38, which are provided by a terminal 30 (
Referring to
It should be appreciated that known fuse block 12 of known junction box 10 includes a multitude of components that must press-fit together. The assembly requires many terminals, which add cost, complexity and weight.
The assembly of known fuse block 12 of known junction box 10 is relatively complicated. Some automobile manufacturers have accordingly tended to provide only one junction box 10 per vehicle. This creates a condition in which the load wires that run from the various electrical devices have to run all the way to the single junction box 10 regardless of the position of the load device in the vehicle. Extended lengths of load wires create weight, cost and increase the potential for short-circuiting.
A need therefore exists to provide a simplified automobile fuse block and junction box employing same.
The present disclosure describes multiple embodiments for a substrate or printed circuit board-based junction box and substrate or board-based fuses operable with the junction box. The junction box and fuses are suitable for an automobile or other vehicle environment. It should be appreciated however that the fuses and junction box are expressly not limited to automotive or vehicle applications.
The junction box in one embodiment includes two or more boards, separated by spacers or other mechanical apparatuses. The junction box includes in one embodiment a distribution board and a power board. The distribution board includes a plurality of contacts or edge connectors, which are soldered, crimped or otherwise connected electrically to different load wires and circuits within an automobile for example. The load circuits are connected to the negative side of the battery through their loads, through the chassis of the vehicle. The power board includes a power plane or power conductor, which is connected ultimately to the positive side of the battery.
The distribution and power boards each define metallized slots that align with one another. The metallized slots include conductive spring clips or tabs, which connect electrically to distribution and power contacts, respectively, of an inserted substrate fuse and also serve to hold each substrate fuse removably in place. The metallized slots of the distribution board connect electrically to traces formed or etched on the distribution board. The traces on the distribution board in turn connect electrically to the contacts or edge connectors of the distribution board. In different embodiments described below, the traces can be integral with the remaining conductors, e.g., formed with either one or both the edge connectors and the metallized slots. The metallized slots in turn can have a component that is formed integrally with the distribution traces and another component that is connected or soldered to the components. The additional, separate portion of the metallized slots can be a single insertion clip, which contacts the fuse at multiple places. Alternatively, separate spring clips can be soldered to the metallized component of the slot to form the overall metallized slot.
The junction box further includes a back plate or housing wall, which is spaced apart from the power board a distance, and serves as a stop against which each fuse rests when inserted the proper distance into the junction box. This simplifies insertion of the fuses. The fuses can further define keys, which mate with corresponding grooves in the backplate or housing wall. The keys and corresponding grooves provide a rejection feature, which precludes a fuse having an improper rating from being inserted into that portion of the junction box.
The fuse contact clips or contact portions of the metallized slots in an embodiment provide a point or edge contact with the fuses, which allow the fuses to be inserted and removed from the junction box in two directions using roughly the same force. Pushing and pulling the fuse in or out of the junction box is accordingly not too difficult.
Distribution and power boards of the junction box in an embodiment are made of organic or inorganic materials, such as FR-4, ceramic, glass, plastic, polyimide, ceramic coated steel core substrate or other suitable relatively rigid electrically nonconductive material. Likewise, the fuse itself is substrate based and is made using any of the materials listed above.
In one primary embodiment, each fuse includes a single fuse element, a distribution contact and a power contact. In an embodiment, the contacts extend to both surfaces of the fuse substrate. The dual-sided contacts can be connected electrically using plated vias or bends that wrap around the fuse substrate. A fuse element is connected electrically to the distribution and power contacts. The fuse element includes a shape and size configured to achieve a desired i2R characteristic and current rating. In an embodiment, a Metcalf spot (e.g., lower melting temperature metal plating) is placed on an area of the fuse element at which it is desired for the element to open. The element is also coated or protected with a protective coating, such as a clear epoxy coating, which allows the element to be seen. The element can be formed integrally or separately from the distribution and power contacts.
The top portion of the fuse (e.g., the portion of the fuse seen by the user) includes a removal tool opening or aperture. Furthermore, that tip is coated with an, e.g. plastic, color-coated coating, which identifies the rating and type for the fuse. This portion of the fuse can also define an aperture configured to receive a fuse removal tool. In one embodiment, as described below, the fuse also includes open fuse indication, such as a light source (e.g., light emitting diode), which connects through indicating circuitry in electrical parallel with the distribution and ground contacts. The light source becomes illuminated when the fuse opens to direct an operator to the opened fuse for replacement.
In another primary embodiment, a multi-element fuse card is provided having multiple fuse elements formed on the surface of a substrate of the multi-element card. The fuse elements can be surface mounted onto pads formed on the multi-element card substrate or formed directly onto the multi-element card substrate using thin or thick film technologies. The substrate of the multi-element card can be of any types and materials described herein.
A bottom edge of the multi-element fuse card includes edge connectors. Each edge connector is connected electrically to one of the fuse elements formed or provided on the multi-element card substrate. The edge connectors each engage an edge-card connector mounted vertically on a separate load printed circuit board (“PCB”). The edge-card connectors are in turn connected electrically to loads within the vehicle needing protection.
The edge-card connectors and load PCB support the multi-element fuse card at its lower end. Additionally, a B+ power plane or PCB is provided above the PCB load or distribution plane. The fuse card is inserted through and supported by the B+ power plane. The B+ plane can be a stamped metal fret or be a PCB, as with the load PCB. The multi-element fuse card in one embodiment includes wider portions having contacts (common to the B+ sides of the fuses) that contact a connector formed by or on the B+ power plane. If the B+ power plane is a metal fret, the power plane connectors can be stamped into the fret. If the power plane includes a PCB, it provides connectors that are surface mounted or wave soldered to the power PCB.
A junction box in one embodiment includes one or a plurality of the multi-element fuse cards. The multi-element fuse card can include any of the alternatives discussed above for the single-element substrate fuse, such as color-coding, removal holes and or open-fuse indication.
In a further alternative embodiment, a substrate for having a conductive core (e.g., steel) and an insulative shell (e.g., ceramic) is used to form a multi-element fuse apparatus or a power B+ ground plane. To form the multi-element fuse apparatus, a portion of the insulative shell is etched away or not applied initially to expose the underlying metal. The underlying metal is used to receive power from a source, e.g., a car battery, and to distribute the power through one or more fuse element to a load or distribution contact. The size of the substrate is about the same size as a standard credit card, however, the substrate could alternatively be much smaller than that, for example, on the order or one square inch to protect five circuits.
The fuse elements and load contacts are formed onto the insulative substrate, e.g., via a thick film or ink screening process. The fuse elements and load contacts can be provided on a single side or both sides of the conductive core/insulative shell substrate. The fuse elements and any other exposed conductive areas that do not need to be connected to a structure of a junction box are covered with an insulative, e.g., glass or epoxy coating. Glass for example can be fired readily onto the primarily ceramic substrate.
To form a B+ power plate or plane, the inner conductive layer is slotted or formed initially with slots in a plurality of places. The slots to make electrical contact with a plurality of substrate fuses. The ceramic or insulative layer can be etched or formed initially around the slots as necessary to aid in the making of the electrical contact. The B+ power plate or plane receives power and supplies same to the individual fuses.
It is therefore an advantage of the present disclosure to provide an improved fuse junction box and fuse, which may be used in an automotive or other vehicle type application.
It is another advantage of the present disclosure to provide board or substrate based fuses and junction boxes.
It is yet another advantage of the present disclosure to provide a lower cost solution for automotive fuses and junction boxes.
It is further advantage of the present disclosure to provide an automotive fuse junction box and fuse, which is relatively simple to manufacture and assemble.
Moreover, it is an advantage of the present disclosure to provide a printed circuit board-based fuse junction box and fuse, which lend themselves to the addition of alternative circuitry and functionality, such as fuse indicating circuitry.
Further still, it is an advantage of the present disclosure to enable more fuses to be packed in smaller volumes, thereby reducing overall system costs.
Moreover, it is an advantage of the present disclosure to provide a substrate fuse, which is keyed and/or color-coded, so that it can be readily identified and also rejected if placed in an improper area of the fuse junction box.
Still further, it is an advantage of the present disclosure to provide a substrate fuse, which can be color-coded or marked readily to have easily discernable rating information.
An additional advantage of the present disclosure is to use a substrate for a multi-element fuse having a conductive core (e.g., steel) and an insulative shell (e.g., ceramic), which can be etched away or formed initially to expose the core in areas configured to receive power from a car battery for example.
Additional features and advantages are described herein, and will be apparent from, the following Detailed Description and the figures.
Referring now to the drawings and in particular to
The current path for junction box 50 begins from the B+ terminal of the battery, extends to the B+ power board 80, through a substrate fuse 70 described in detail herein, to distribution board 52, to a load within the vehicle, to ground or chassis of the vehicle (connected to ground terminal of the battery).
Distribution board 52 includes multiple load contacts 54a to 54p. Load contacts 54 (referring collectively to contacts 54a to 54p or generally to one of contacts 54a to 54p connect electrically to different devices within the vehicle). A series contact 56 is also placed on distribution board 52 and is connected electrically ground 60. Series contract 56 enables distribution board 52 to power a second distribution board (not illustrated), which is placed in series with distribution board 52.
As illustrated, certain contacts 54 are connected electrically to corresponding board traces 58 (referring collectively to traces 58c, 58e, 58f, 58g, 58h, 58i, 58l, 58m and 58n or referred to generally to any one of the traces). Each of contacts 54 can be connected to a separate trace 58. In the illustrated embodiment, only certain of the contacts 54 connect electrically to a corresponding trace 58.
Traces 58 in turn connect electrically to metallized slots 62. Metallized slots 62 include metallized holding tabs 64, which connect electrically to distribution contacts 74 of respective substrate fuses 70c, 70e, 70f, 70g, 70h, 70i, 70l, 70m and 70n (referred to collectively as fuses 70 or generally as fuse 70). Metallized tabs 74 are shown in more detail below and serve additionally to crimp or physically hold a portion of fuse 70 in place. As seen, power B+ board 80 also has metallized slots 62 with metallized tabs 64, which connect electrically to power B+ contacts 76 of fuses 70 to hold a portion of the fuses firmly in place.
It should be appreciated that contacts 54, traces 58, metallized slots 62 and metallized mounting tabs 64 can each be part of a singular trace or metallization, which is placed on substrate 52 in a known matter, such as starting with a copper clad substrate 72 and etching the substrate to form the desired electrical pattern. For example, in one embodiment substrate 52 is copper clad. The shapes of the metallized slots 62 with tabs 64 are then made in substrate 52 via routing, laser cutting, or other suitable process. The vertical sides of tabs 74 are then metallized. Next the contacts 54, traces 58, slot and tab 64 configuration are etched, e.g., via a photolithographic process, from the solid copper cladding.
In an alternative embodiment, contacts 54 and associated traces 58 are formed integrally via the etching process. Traces 58 here contact an interface clip, which forms the metallized slots 62 and holding tabs 64. That is, the slot metallization 62 and tabs 64 are not part of the integral trace 58 but instead connect electrically to one of the traces. In a further alternative embodiment, contacts 54 can be provided separately from traces 58, wherein traces 58 are made to come into electrical contact with respective contacts 54. Similarly, series contact 56 can be integral with or provided separately from series trace 58q, which is connected electrically via a conductive path 82 to the power plane of power B+ board 80.
As discussed above, metallic screws 82 are inserted through distribution board 52. Screws 82 or conductors extend through spacers 88a and 88b. Screws or conductors 82 also extend through power B+ board 80. Spacers 88a space apart distribution board 52 and power B+ board 80 a distance set by distribution contacts 74 and power B+ contacts 76 of fuses 70. Spacers 88b in turn separate power B+ board 80 from a back plate 90. Back plate 90 can likewise be an FR-4 material, plastic or other suitable nonconductive material. Screws 82 and spacers 88b are alternatively eliminated by features molded in the plastic housing that holds the entire junction box together. Fuse box 50 however may include at least one conductor 82 running from power B+ board to series trace 58q, from which series contact 56 can power another junction box 50.
Back plate 90 stops fuse 70 after it has been inserted into box 50 to its required position. Back plate 90 makes the insertion fuses 70 easier for the user, who pushes fuse 70 into block 50 until it cannot be inserted any further, instead of having to look to confirm that distribution contact 74 is in proper electrical communication with metallized tabs 64 of metallized slot 62. Back plate 90 is alternatively part of a molded plastic enclosure into which junction box 50 is placed. That is, back plate 90 does not have to be an additional board and can instead be a wall of a housing for the junction box 50. As discussed below, Back plate 90 can include an additional holding and reject feature apparatus. Spacers 88a and 88b in one embodiment are plastic spacers.
The slot metallizations 62 of ground board 80 in an embodiment communicate electrically with a power B+ plane 92 which in an embodiment is etched onto the underside of power B+ board 80. Power B+ plane 92 is connected electrically to the B+ terminal of the automobile battery as seen in
The illustrated embodiment shows a junction box 50, which is configured for nine fuses 70. It should be appreciated however that junction box 50 can be expanded or downsized to house any suitable number of substrate fuses 70. Junction box 50 can be made efficiently, enabling multiple boxes to be placed in convenient places within an automobile, for example. This can reduce the amount of wiring needed to connect the box to the load.
Referring now to
Referring now to
In the illustrated embodiment, the metallic spring clips 64 are soldered to upper portions 62a of metallized slots 62 via soldered joints 69. A suitable conductive adhesive or mechanical fastener may be used alternatively or additionally. Although not illustrated, spring clips 64 can extend to inner side surfaces 62b and lower portions 62a of metallized slots 62 and be soldered or adhered to those surfaces additionally. In a further alternative embodiment, metallic spring clips 64 are formed integrally with metallizations 62a and 62b of metallized slots 62, providing an overall metallic insert 62 having each of clips 64 used for the metallized slot.
As seen in
In one embodiment, metallized spring clips 64 are formed such that they have a point or edged contact with contacts 74 and 76. For example, the edge could be a rounded edge. This configuration provides for an at least substantially equal insertion and removal force, which allows fuse 70 to be pulled relatively easily from junction box 50 in an opposite direction from which it was inserted. Insertion tool and removal aperture 84 also help with the removal of fuse 70.
Referring now to
One alternative embodiment illustrated in
Referring now to
Fuse element 78 includes a Metcalf spot or dissimilar metal spot 106. Spot 106 in general includes a metal having a lower melting temperature than that of fuse element 78. For example, contacts 74 and 76 and element 78 can be copper, which is etched away from an initially plated substrate 72. Metcalf spot or dissimilar metal stop 106 can than be any one or more of nickel, indium, silver and tin. Tin in particular diffuses quickly into copper, is relatively cheap and is readily applied using common techniques. Metcalf spot 106 enables fuse element 78 to open at a particular spot, e.g., near the middle of element 78, which is desirable. It should be appreciated that element 78 can have any suitable shape, such as a serpentine, curved, stepped or straight shape. The width and/or thickness of element 78 is controlled so that fuse 70 has the desired current rating and i2R opening characteristics.
Fuse 70 also includes a protective coating 108, which covers element 78. Coating 108 in an embodiment is a suitable epoxy material, such as a solder mask manufactured by Electra Polymers, Roughway Mill, Tonbridge, Kent, United Kingdom. Coating 108 helps suppress the energy released when fuse element 78 opens and protects the element from mechanical damage and environmental exposure. Coating 108 is clear in one embodiment so that element 78 can be seen.
In the illustrated embodiment, fuse 70 includes an open fuse indicator 100. Opened fused indicator 100 includes a light source 102, such as a light emitting diode (“LED”), which communicates electrically with indicating circuitry 104 via traces 58t and 58u. Indicating circuitry 104 in turn communicates electrically with contacts 74 and 76 in a parallel electrical relationship with fuse element 78. Indicating circuitry 104 in an embodiment includes a pair of diodes and a resistor, which are sized such that when fuse element 78 opens, enough current flows through circuitry 104 to illuminate LED 102. In this manner, a user can readily discern which fuse 70 in junction box 50 has opened. It should be appreciated that light source 102 can be placed in any suitable visible position with respect to fuse 70, such as along an edge 106, which is the top of fuse 70 when inserted into junction box 50. Indicating circuitry 104 in one embodiment is the same circuitry used in Blo and Glo™ and Smart Glo™ fuses, marketed by the assignee of the present disclosure.
Referring now to
Substrate 172 of fuse apparatus 170, power B+ plane 160 and distribution plane 152 can be of any of the materials described above for substrate 72 of fuses 70, distribution board 52, and/or power B+ board 80. Fuse elements 178a to 178d can be surface mounted to substrate 172, e.g., via a reflow soldering process. Alternatively, fuse elements 178a to 178d, are formed directly on substrate 172 via a plating and etching process, as described above for the other fuse elements and board-based conductors. Fuse elements 178a to 178d can also be printed on the substrate using thick-film inks. Likewise, power B+ leads 180 (referring collectively to leads 180a to 180d or generally to any of those leads) and load leads 182 (referring collectively to leads 182a and 182d or generally to any of those leads), as well as contacts 176a, 176b and 174a to 174d can be soldered to or formed directly on substrate 172. Although four elements 178a to 178d are shown, multi-element substrate fuse apparatus 170 can have any suitable number of elements and associated leads and load contacts 174.
Although not illustrated, fuse apparatus 170 can employ one or more card removal aperture 84, a color-coded coating or marking 86 and/or open fuse indicator 100 including light source 102 and associated circuitry 104 described above. It is contemplated to size the fuse elements to be the same (width and height), so as to provide a card having like rated fuses, or to size elements 178 differently, such that fuse apparatus 170 has fuses of different ratings. Depending on the rating configuration, the color coating or marking 86 can be a single color or marking representing that each fuse element has the same rating or have multiple colors or markings to indicate different ratings of different elements. Coating or marking 86 can also provide an insulative area for the user to grasp and insert or remove fuse apparatus 170.
Any of the fuse elements 178 can have a Metcalf spot or dissimilar metal as described above for fuse element 78 of fuse 70. Any of the fuse elements herein and associated leads and traces can be of any desirable metal, such as copper, tin, silver, zinc or any suitable combination or alloy thereof.
Additionally or alternatively, power B+ plane 160 can be a stamped metal fret. In such a case, metallizations 62 and separate spring clips 64 as discussed above for fuse 70 are not necessary. Instead, the ground connectors are formed integrally with the stamped fret. Otherwise, as illustrated, metallized slots 62 and mounting tabs 64 can be used in any of the configurations described above for junction box 50. Here, metallized tab or spring clip 64 contacts one of the ground contacts 176 of multi-element fuse apparatus 170. Although not illustrated, a separate metallized slot and spring contact 64 is provided and connects electrically to each of the other of the power B+ contacts 176a and 176b shown for multi-element fuse apparatus 170. Spring clips 64 hold fuse apparatus 170 firmly in place at the top of the fuse card and can be surface mounted or wave soldered to metallized slots for added rigidity. Alternatively, clips 64 are formed integrally with slots 62 as discussed above.
As illustrated, power B+ contacts 176 and distribution contacts 174 are plated or formed on both sides of fuse apparatus 170. The two platings or formations are then connected electrically via plated vias as discussed above with fuse 70.
While assembly 150 shows a single multi-element fuse apparatus 170 in operation with ground and distribution planes 160 and 152, it is expressly contemplated to have multiple multi-element cards operable with planes 160 and 152. For example, cards having elements with different ratings can be provided. Each card has a respective spring clip 64 and 164 connector arrangement. Distribution plane 152 in turn can have a respective set of load contacts for each multi-element card. The same B+ power plane 160 can be used for each multi-element card. Further, distribution plane can include a series contact (not illustrated), similar to series contact 56 of distribution board 52 of junction box 50 shown above. Power B+ plane 160 is placed in electrical communication with the series contact. The series contact can in turn be placed in electrical contact with power B+ planes 160 of other junction boxes 150 to power those other junction boxes.
Referring now to
Fuse apparatus 270 includes multiple fuse elements 278a to 278e (referred to herein collectively as fuse elements 278 and individually, generally as fuse element 278). Although five elements 278 are shown, multi-element substrate fuse apparatus 270 can have any suitable number of elements and associated leads and load contacts 274. Fuse elements 278 can range in rating from 0.5 Amp to about 50 Amps, e.g., can have any standard automotive fuse rating.
Each fuse element 278a to 278e communicates electrically with a separate load or distribution contact 274a to 274e (referred to herein collectively as distribution contacts 274 and individually, generally as distribution contact 274), respectively, via load or distribution leads 282a to 282e (referred to herein collectively as distribution leads 282 and individually, generally as distribution lead 282).
On the other end, each fuse element 278a to 278e communicates electrically with a power B+ conductor 268 via power B+ pads/leads 280a to 280e (referred to herein collectively as power B+ pads/leads 280 and individually, generally as power B+ pad/lead 280), respectively. Power B+ conductor 268 in turn communicates electrically with (i.e., is part of the same piece of metal or steel) power B+ contacts 276a and 276b.
Ceramic substrate 284 in one embodiment is printed (e.g., via a thick film process) to have exposed areas of metal in desired places to form contacts 276a and 276b and power B+ conductor 268. The ceramic coated metal is then fixed. Alternatively, ceramic 284 is etched away from a fired stock in desired locations to expose metal, e.g., steel, core 272 to form power B+ contacts 276a and 276b and power B+ conductor 268. It should be appreciated that a varying amount of pads/leads 280 could also be formed via the metal exposed by initially forming or etching away the insulative, e.g., ceramic, substrate 284.
In the illustrated embodiment, fuse elements 278, pads/leads 280, distribution leads 282 and load or distribution contacts 274 are formed together, continuously (e.g., silver, copper, or tin) via a surface mount process, such as thick-film printing, onto the insulative, e.g., ceramic, substrate 284. The printing process can have multiple passes to build elements 278, pads/leads 280 and leads 282 to a desired thickness. The metallized ceramic coated metal is then fired again. It is also contemplated to apply vary thin layers of metal (e.g., silver, copper or tin) to form elements 278 leads/pads 280, etc., e.g., via a photolithographic process to produce fuses having ratings of fractions of an Amp, e.g., for move advanced electronics and signal level voltages.
To enable (e.g., copper) pads/leads 280 to be applied properly, it may be necessary to plate power B+ conductor 268 initially (at least in its contact areas) with a desirable metal such as copper or silver. The initial plating reduces or eliminates the step-up in height due to the thickness of the ceramic. Again, any of conductors 280, 278, 282 and 274 can be made in multiple screen or ink printing passes. In one embodiment, the partially assembled fuse apparatus is fired after each pass or is dried after each pass and fired at once to metallically combine all the layers.
Also, power B+ contacts 176a and 176b are in one embodiment plated with a suitable metal, e.g., silver, so that the bare steel does not come into contact with projections 36 and 38 of the turning fork terminals or other contacting connector apparatus. In an alternative embodiment, power B+ contacts 176a and 176b are printed with a metal ink to eliminate the differences in height and to cover the steel. The silver builds the thickness of contacts 276a and 276b, prevents corrosion and enhances the electrical characteristics of fuse apparatus 270. Further, the size of contact areas 276a and 276b are made as small as possible to a size needed for proper contact with terminals, clips or other connectors.
In the illustrated embodiment, load or distribution contacts 274a to 274e and power B+ contacts 276a and 276b are mated with projections 36 and 38 of the “tuning fork” type terminals 30 described above. Alternatively, contacts 274a to 274e and contacts 276a and 276b are mated to spring clips or connectors, such as connectors 64 and 164 discussed above.
An insulative, e.g., glass or epoxy coating 286 is placed, e.g., fired or sintered, onto the substrate of fuse apparatus 270. Insulative coating 286 covers as much of fuse apparatus 270 as possible but leaves load or distribution contacts 274a to 274e and power B+ contacts 276a and 276b (referred to herein collectively as contacts 276 or generally, individually as contact 276) exposed for mounting.
In the illustrated embodiment, power B+ contacts 276 and distribution contacts 274 are plated or formed onto one side of fuse apparatus 270 only. Here, only that side needs insulative layer 286. In one alternative embodiment, distribution contacts 274 extend around the bottom of ceramic layer 284 and up onto the back side of fuse apparatus 270, so that the tuning fork terminals or other mating connectors contact distribution contacts 274 in two places. Likewise, ceramic layer 284 can be preformed or etched on both sides of fuse apparatus 270 to make power B+ contacts 276 two-sided, so that the tuning fork terminals or other connectors contact power B+ contacts 276 in two places. Here, insulative coating 286 still only has to cover one side of fuse apparatus 270, so that two-sided contacts 274 and 276 remain exposed.
In another alternative embodiment, fuse elements 278, pads 280, pads/leads 282 and load or distribution contacts 274 are formed on both sides of fuse apparatus 270, increasing space usage efficiency. Metal or steel core 272 serves as the power B+ conductor 268 and power B+ contacts 276a and 276b for the fuses on both sides of fuse apparatus 270. Here, insulative coating 286 covers fuse elements 278, pads 280, and pads/leads 282 of the fuses on both sides of fuse apparatus 270, but allows contacts 274 and 276 to remain exposed on both sides. Here also, clips or connectors, such as apparatuses 64 or 164 described above are placed on both sides of fuse apparatus 270 for separate, single-sided contact, and so that each fuse element 278 communicates with a unique connector 64 or 164.
It is also contemplated to provide multiple insulative or ceramic layers 284. Here, a first layer of fuse element 278 (e.g., having layer ratings) is coated with an insulative layer 284. A second layer of fuse elements 278 (e.g., via thin film process to yield smaller ratings) is applied to the second insulation layer 284 and so on. The final layer receives protective coating 286. A same bus-bar core 272 is used for each layer of fuse elements 278. Or, bus-bar core 272 can be split, for any embodiment described herein, into multiple bus-bars to receive, e.g., power at different voltages.
Although not illustrated, fuse apparatus 270 can employ one or more card removal aperture 84, a color-coded coating or marking layer 86 and/or open fuse indicator 100 including light source 102 and associated circuitry 104 described above. It is contemplated to size fuse elements 278 to be the same (width and height), so as to provide a fuse apparatus or fuse card having like rated fuses, or to size elements 278 differently, such that fuse apparatus or fuse card 270 has fuses of different ratings. Depending on the rating configuration, the color or marking layer 86 can include a single color or marking representing that each fuse element has the same rating or have multiple colors or markings to indicate different ratings of different elements. Color or marking layer 86 in an embodiment is applied beneath insulative layer 286 but can be placed alternatively onto insulative layer 286. Further alternatively, insulative layer 286 is itself partially or fully colored or suitable marked.
Any of the fuse elements 178 can have a Metcalf spot or dissimilar metal as described above for fuse element 78 of fuse 70. Any of the fuse elements herein and associated leads and traces can be of any desirable metal, such as copper, tin, silver, zinc or any suitable combination or alloy thereof.
While
It should be appreciated that fuse apparatus 170 of
Likewise, single substrate fuse 70 of
It is also contemplated to make either of B+ power board 80 (
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
480802 | Blathy | Aug 1892 | A |
1700582 | Brown | Jan 1929 | A |
2245346 | Klein | Jun 1941 | A |
2794346 | Jacobs, Jr. | Jun 1957 | A |
3619725 | Soden et al. | Nov 1971 | A |
3775723 | Mamrock et al. | Nov 1973 | A |
3887893 | Brandt et al. | Jun 1975 | A |
3909767 | Williamson et al. | Sep 1975 | A |
3913219 | Lichtblau | Oct 1975 | A |
3978443 | Dennis et al. | Aug 1976 | A |
4023265 | Aryamane | May 1977 | A |
4031497 | Ozawa | Jun 1977 | A |
4071837 | Ranzanigo | Jan 1978 | A |
4099320 | Schmidt, Jr. et al. | Jul 1978 | A |
4131869 | Schmidt, Jr. et al. | Dec 1978 | A |
4149137 | Konnemann | Apr 1979 | A |
4164725 | Wiebe | Aug 1979 | A |
4198744 | Nicolay | Apr 1980 | A |
4208080 | Teagno | Jun 1980 | A |
4224592 | Urani et al. | Sep 1980 | A |
4237522 | Thompson | Dec 1980 | A |
4278706 | Barry | Jul 1981 | A |
4411486 | Behrendt | Oct 1983 | A |
4494104 | Holmes | Jan 1985 | A |
4495546 | Nakamura et al. | Jan 1985 | A |
4503415 | Rooney | Mar 1985 | A |
4504816 | Viola et al. | Mar 1985 | A |
4514718 | Birx | Apr 1985 | A |
4533896 | Beloposky | Aug 1985 | A |
4540969 | Sugar | Sep 1985 | A |
4544907 | Takano | Oct 1985 | A |
4547830 | Yamauchi | Oct 1985 | A |
4554732 | Sadlo et al. | Nov 1985 | A |
4570147 | Ebi | Feb 1986 | A |
4580124 | Borzoni | Apr 1986 | A |
4604602 | Borzoni | Aug 1986 | A |
4608548 | Borzoni | Aug 1986 | A |
4612529 | Gurevich et al. | Sep 1986 | A |
4626818 | Hilgers | Dec 1986 | A |
4635023 | Oh | Jan 1987 | A |
4646053 | Mosesian | Feb 1987 | A |
4652848 | Hundrieser | Mar 1987 | A |
4661793 | Borzoni | Apr 1987 | A |
4672352 | Takano | Jun 1987 | A |
4689718 | Maue et al. | Aug 1987 | A |
4703299 | Vermij | Oct 1987 | A |
4712081 | Bosley | Dec 1987 | A |
4720402 | Wojcik | Jan 1988 | A |
4726991 | Hyatt et al. | Feb 1988 | A |
4771260 | Gurevich | Sep 1988 | A |
4788523 | Robbins | Nov 1988 | A |
4792781 | Takahashi et al. | Dec 1988 | A |
4837520 | Golke et al. | Jun 1989 | A |
4850884 | Sawai et al. | Jul 1989 | A |
4869972 | Hatagishi | Sep 1989 | A |
4871990 | Ikeda et al. | Oct 1989 | A |
4873506 | Gurevich | Oct 1989 | A |
4879587 | Jerman | Nov 1989 | A |
4894633 | Holtfreter | Jan 1990 | A |
4958426 | Endo et al. | Sep 1990 | A |
4972295 | Suguro et al. | Nov 1990 | A |
4975551 | Syvertson | Dec 1990 | A |
4977357 | Shrier | Dec 1990 | A |
4997393 | Armando | Mar 1991 | A |
4998086 | Kourinsky et al. | Mar 1991 | A |
5023752 | Detter et al. | Jun 1991 | A |
5027101 | Morrill, Jr. | Jun 1991 | A |
5084691 | Lester et al. | Jan 1992 | A |
5095297 | Perreault et al. | Mar 1992 | A |
5097246 | Cook | Mar 1992 | A |
5097247 | Doerrwaechter | Mar 1992 | A |
5101187 | Yuza | Mar 1992 | A |
5102506 | Tanielian | Apr 1992 | A |
5102712 | Peirce et al. | Apr 1992 | A |
5115220 | Suuronen et al. | May 1992 | A |
5130688 | Van Rietschoten et al. | Jul 1992 | A |
5139443 | Armando | Aug 1992 | A |
5140295 | Vermot-gaud et al. | Aug 1992 | A |
5148141 | Suuronen | Sep 1992 | A |
5155462 | Morrill, Jr. | Oct 1992 | A |
5166656 | Badihi et al. | Nov 1992 | A |
5179503 | Fouts et al. | Jan 1993 | A |
5207587 | Hamill et al. | May 1993 | A |
5228188 | Badihi et al. | Jul 1993 | A |
5232758 | Juskey et al. | Aug 1993 | A |
5247248 | Fukunaga | Sep 1993 | A |
5262754 | Collins | Nov 1993 | A |
5295842 | Ozaki et al. | Mar 1994 | A |
5296833 | Breen et al. | Mar 1994 | A |
5331195 | Yukihiro | Jul 1994 | A |
5340775 | Carruthers | Aug 1994 | A |
5363082 | Gurevich | Nov 1994 | A |
5374590 | Batdorf | Dec 1994 | A |
5438166 | Carey et al. | Aug 1995 | A |
5440802 | Whitney et al. | Aug 1995 | A |
5453726 | Montgomery | Sep 1995 | A |
5478244 | Maue et al. | Dec 1995 | A |
5513077 | Stribel | Apr 1996 | A |
5537108 | Nathan et al. | Jul 1996 | A |
5581225 | Oh et al. | Dec 1996 | A |
5592016 | Go et al. | Jan 1997 | A |
5592108 | Tsukahara | Jan 1997 | A |
5606301 | Ishimura | Feb 1997 | A |
5618186 | Saka et al. | Apr 1997 | A |
5631620 | Totsuka et al. | May 1997 | A |
5643693 | Hill et al. | Jul 1997 | A |
5663861 | Reddy et al. | Sep 1997 | A |
5668521 | Oh | Sep 1997 | A |
5703757 | Hayes et al. | Dec 1997 | A |
5715135 | Brussalis et al. | Feb 1998 | A |
5726621 | Whitney et al. | Mar 1998 | A |
5764487 | Natsume | Jun 1998 | A |
5777843 | Younce | Jul 1998 | A |
5781096 | Yasukuni et al. | Jul 1998 | A |
5788529 | Borzi et al. | Aug 1998 | A |
5790007 | Yasukuni | Aug 1998 | A |
5805048 | Saitoh et al. | Sep 1998 | A |
5831814 | Hamill | Nov 1998 | A |
5841338 | Yasukuni | Nov 1998 | A |
5844477 | Blecha et al. | Dec 1998 | A |
5902138 | Murakami et al. | May 1999 | A |
5914649 | Isono et al. | Jun 1999 | A |
5928004 | Sumida et al. | Jul 1999 | A |
5977859 | Kawamura et al. | Nov 1999 | A |
5995380 | Maue et al. | Nov 1999 | A |
6008982 | Smith | Dec 1999 | A |
6062916 | Gladd et al. | May 2000 | A |
6077102 | Borzi et al. | Jun 2000 | A |
6087889 | Mok | Jul 2000 | A |
6116916 | Kasai | Sep 2000 | A |
6126457 | Smith et al. | Oct 2000 | A |
6147586 | Saitoh et al. | Nov 2000 | A |
6154118 | Ishikawa et al. | Nov 2000 | A |
6162990 | Sakamoto | Dec 2000 | A |
6175261 | Sundararaman et al. | Jan 2001 | B1 |
6180992 | Gobel et al. | Jan 2001 | B1 |
6220876 | Avila et al. | Apr 2001 | B1 |
6224397 | Nakamura | May 2001 | B1 |
6261937 | Tobben et al. | Jul 2001 | B1 |
6280253 | Kraus et al. | Aug 2001 | B1 |
6354868 | Korczynski et al. | Mar 2002 | B1 |
6437986 | Koshiba | Aug 2002 | B1 |
6458630 | Daubenspeck et al. | Oct 2002 | B1 |
6494723 | Yamane et al. | Dec 2002 | B2 |
6496096 | Kondo et al. | Dec 2002 | B2 |
6503090 | Onizuka | Jan 2003 | B2 |
6515226 | Chiriku et al. | Feb 2003 | B2 |
6541700 | Chiriku et al. | Apr 2003 | B2 |
6558198 | Kobayashi et al. | May 2003 | B2 |
6679708 | Depp et al. | Jan 2004 | B1 |
6699067 | Zhao et al. | Mar 2004 | B1 |
6759938 | Matsumura et al. | Jul 2004 | B2 |
6761567 | Onizuka et al. | Jul 2004 | B2 |
6796808 | Hosoe et al. | Sep 2004 | B2 |
6796809 | Kakuta et al. | Sep 2004 | B2 |
6878004 | Oh | Apr 2005 | B2 |
6905347 | Kobayashi | Jun 2005 | B2 |
6905348 | Naitou et al. | Jun 2005 | B2 |
7097491 | Neumann-Henneberg | Aug 2006 | B2 |
7099155 | Kobayashi et al. | Aug 2006 | B2 |
7101197 | Naito et al. | Sep 2006 | B2 |
7112071 | Nakagawa et al. | Sep 2006 | B2 |
7189081 | Tanaka et al. | Mar 2007 | B2 |
7247031 | Naito et al. | Jul 2007 | B2 |
7249956 | Ishiguro et al. | Jul 2007 | B2 |
7320608 | Kubota et al. | Jan 2008 | B2 |
7381889 | Hara | Jun 2008 | B2 |
7390198 | Oka et al. | Jun 2008 | B2 |
20020006742 | Hara et al. | Jan 2002 | A1 |
20030090358 | Morimoto et al. | May 2003 | A1 |
20030227764 | Korczynski | Dec 2003 | A1 |
20060141820 | Naito et al. | Jun 2006 | A1 |
20070279842 | Ishida et al. | Dec 2007 | A1 |
20080310121 | Yamashita et al. | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
271479 | Mar 1914 | DE |
1803554 | May 1969 | DE |
3530354 | Mar 1987 | DE |
19530900 | Feb 1997 | DE |
19829472 | May 1999 | DE |
19817749 | Jun 1999 | DE |
19827595 | Oct 1999 | DE |
0043701 | Jan 1982 | EP |
0270954 | Jun 1988 | EP |
0285489 | Oct 1988 | EP |
0301533 | Feb 1989 | EP |
0453217 | Oct 1991 | EP |
0581428 | Feb 1994 | EP |
0802553 | Oct 1997 | EP |
0939417 | Sep 1999 | EP |
1109190 | Jun 2001 | EP |
1477572 | Jun 1977 | GB |
1604820 | Dec 1981 | GB |
2089148 | Jun 1982 | GB |
2133489 | Aug 1983 | GB |
2233512 | Jan 1991 | GB |
55-166837 | Dec 1980 | JP |
59-58734 | Apr 1984 | JP |
59-81828 | May 1984 | JP |
60-180382 | Sep 1985 | JP |
62-172626 | Jul 1987 | JP |
62-172627 | Jul 1987 | JP |
62-172628 | Jul 1987 | JP |
63-141233 | Jun 1988 | JP |
10-53504 | Mar 1989 | JP |
1-253263 | Oct 1989 | JP |
2-43701 | Feb 1990 | JP |
2-126530 | May 1990 | JP |
2-301929 | Dec 1990 | JP |
3-233825 | Oct 1991 | JP |
4-33230 | Feb 1992 | JP |
4-192237 | Jul 1992 | JP |
4-242036 | Aug 1992 | JP |
4-245127 | Sep 1992 | JP |
4-245128 | Sep 1992 | JP |
4-245129 | Sep 1992 | JP |
4-245130 | Sep 1992 | JP |
4-245131 | Sep 1992 | JP |
4-245132 | Sep 1992 | JP |
4-245133 | Sep 1992 | JP |
4-248221 | Sep 1992 | JP |
4-248222 | Sep 1992 | JP |
4-254302 | Sep 1992 | JP |
4-255627 | Sep 1992 | JP |
4-346409 | Dec 1992 | JP |
5-36341 | Feb 1993 | JP |
5-144368 | Jun 1993 | JP |
5-166454 | Jul 1993 | JP |
5-198245 | Aug 1993 | JP |
5-314888 | Nov 1993 | JP |
6-36675 | Feb 1994 | JP |
6-96654 | Apr 1994 | JP |
6-150802 | May 1994 | JP |
6-103880 | Dec 1994 | JP |
7-14491 | Jan 1995 | JP |
7-57611 | Mar 1995 | JP |
7-296713 | Nov 1995 | JP |
8-31300 | Feb 1996 | JP |
8-102244 | Apr 1996 | JP |
8-129950 | May 1996 | JP |
8-236004 | Sep 1996 | JP |
9-35614 | Feb 1997 | JP |
9-63454 | Mar 1997 | JP |
9-129115 | May 1997 | JP |
9-153328 | Jun 1997 | JP |
10-50184 | Feb 1998 | JP |
10-50190 | Feb 1998 | JP |
10-50191 | Feb 1998 | JP |
10-50198 | Feb 1998 | JP |
10-79301 | Mar 1998 | JP |
10-134695 | May 1998 | JP |
10-162714 | Jun 1998 | JP |
10-162715 | Jun 1998 | JP |
10-241546 | Sep 1998 | JP |
10-269927 | Oct 1998 | JP |
10-302605 | Nov 1998 | JP |
11-40040 | Feb 1999 | JP |
11-126556 | May 1999 | JP |
2000-12305 | Jan 2000 | JP |
2000-235829 | Aug 2000 | JP |
2003-234057 | Aug 2003 | JP |
WO8301153 | Mar 1983 | WO |
WO8803707 | May 1988 | WO |
WO9000305 | Jan 1990 | WO |
WO9114279 | Sep 1991 | WO |
WO0019472 | Jun 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20080268671 A1 | Oct 2008 | US |