FUSION POLYPEPTIDE COMPRISING POLYPEPTIDE REGION THAT CAN BE O-GLYCOSYLATED

Abstract
Disclosed are a fusion polypeptide comprising a target polypeptide and a hinge region of an immunoglobulin; a pharmaceutical composition containing the fusion polypeptide; and a method for increasing the in vivo period of a target polypeptide, comprising a step of fusing a hinge region of an immunoglobulin with the target polypeptide.
Description
TECHNICAL FIELD

The present disclosure relates to a fusion polypeptide including a target polypeptide and an O-glycosylatable polypeptide region, a pharmaceutical composition containing the fusion polypeptide; and a method for increasing the in vivo sustained period of a target polypeptide, including a step of fusing an O-glycosylatable polypeptide region.


BACKGROUND OF THE INVENTION

Most protein or peptide drugs shorten the period of maintaining the in vivo activity, and has a low absorption rate when administered by methods other than intravenous administration. When long-term drug treatment is required, there is an inconvenience that these drugs must be repeatedly and continuously injected at short dosage intervals. In order to eliminate such inconvenience, there is a need to develop a technique that continuously releases the drug in a single administration. In an attempt to meet these needs, sustained-release formulations for continuous release are being developed.


For example, research on sustained-release dosage forms is being actively conducted in which fine particles in the form of enclosing a protein or peptide drug with a biodegradable polymer matrix are prepared, and the drug is gradually released at the time of administration while the matrix substance is gradually decomposed and removed in the body.


For example, U.S. Pat. No. 5,416,017 discloses a sustained-release injection of erythropoietin using a gel with a hyaluronic acid concentration of 0.01 to 3%, Japanese Unexamined Patent Publication No. (Hei) 1-287041 discloses a sustained-release injection containing insulin in a gel with a hyaluronic acid concentration of 1%, and Japanese Unexamined Patent Publication No. (Hei) 2-213 discloses a sustained-release formulation containing calcitonin, elkatonin, or a human target polypeptide in 5% concentration of hyaluronic acid. In such a formulation, the protein drug dissolved in the hyaluronic acid gel passes at a low speed through the gel matrix having a high viscosity, and thus can exhibit a sustained release effect. However, there is a disadvantage that it is not easy to administer the drug by injection due to the high viscosity, the gel is easily diluted or decomposed by body fluids after injection, so that it is difficult to sustainably release the drug longer than a day.


Meanwhile, there are examples in which solid microparticles are prepared by an emulsion solvent extraction method using a hyaluronic acid derivative (e.g., hyaluronic acid-benzyl ester) having hydrophobicity (N. S. Nightlinger, et al., Proceed. Intern. Symp. Control. Rel. Bioact. Mater., 22nd, Paper No. 3205 (1995); L. Ilum, et al., J. Controlled Rel., 29, 133(1994)). When the drug release formulation particles are produced using a hydrophobic hyaluronic acid derivative, an organic solvent must be used, and thus, the protein drug may come into contact with the organic solvent to be denatured, and there is a high possibility of denaturing proteins due to the hydrophobicity of the hyaluronic acid derivative.


Therefore, in order to improve the in vivo sustained period of protein or peptide drugs, approach to aspects different from existing studies is required.


DETAILED DESCRIPTION OF THE INVENTION

Provided herein is a technique in which an O-glycosylatable polypeptide (e.g., a hinge region of immunoglobulin, or the like) is linked to a target polypeptide to form a fusion polypeptide, thereby increasing the in vivo half-life of a target polypeptide and thus enhancing the in vivo sustained period, and increasing the dosage interval, as compared with the case that is not fused with an O-glycosylatable polypeptide region.


One example provides a fusion polypeptide comprising a target polypeptide and an O-glycosylatable polypeptide region.


In the fusion polypeptide, the O-glycosylatable polypeptide region may be included at the N-terminus, C-terminus, or both the N- and C-termini of the target polypeptide.


The total number of O-glycosylatable polypeptide regions contained in the fusion polypeptide may be 1 or more, for example, 1 to 10, 1 to 8, 1 to 6, 1 to 4, 2 to 10, 2 to 8, 2 to 6, 2 to 4 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10).


In one embodiment, the fusion polypeptide may be represented by the following general formula:





N′—(Z)n—Y—(Z)m-C′  [General Formula]


in the above formula,


N′ is the N-terminus of the fusion polypeptide, C′ is the C-terminus of the fusion polypeptide,


Y is the target polypeptide,


Z is an O-glycosylatable polypeptide region,


n is the number of O-glycosylatable polypeptide regions (bound to the N-terminus of the target polypeptide) located at the N-terminus of the fusion polypeptide, and is an integer of 0 to 10 (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 0 to 7, 0 to 5, 1 to 10, 1 to 7, 1 to 5, or 1 to 3,


m is the number of O-glycosylatable polypeptide regions (bound to the C-terminus of the target polypeptide) located at the C-terminus of the fusion polypeptide, and is an integer of 0 to 10 (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 0 to 7, 0 to 5, 1 to 10, 1 to 7, 1 to 5, or 1 to 3,


at least one of n and m is not zero, and


n+m is the total number of O-glycosylatable polypeptide regions contained in the fusion polypeptide, and is an integer of 1 to 10, 1 to 8, 1 to 6, 1 to 4, 2 to 10, 2 to 8, 2 to 6, or 2 to 4.


The n+m O-glycosylatable polypeptide regions contained in the fusion polypeptide may each independently be selected from polypeptide moieties including O-glycosylatable amino acid residues. For example, the polypeptide moiety comprising O-glycosylatable amino acid residues may be a hinge region of immunoglobulin. In one embodiment, the O-glycosylatable polypeptide region may each independently be selected from a group consisting of a hinge region of immunoglobulin D (IgD) and a hinge region of immunoglobulin A (IgA, such as IgA1) (That is, the hinge regions of n+m immunoglobulins may be the same or different from each other).


In the fusion polypeptide, the stability (sustained period) in the body (or blood) of the target polypeptide fused with an O-glycosylatable polypeptide region is increased as compared with a target polypeptide not fused with an O-glycosylatable polypeptide region (for example, increase of the half-life in the body or blood).


Another embodiment provides a nucleic acid molecule encoding the fusion polypeptide.


Another embodiment provides a recombinant vector comprising the nucleic acid molecule.


Another embodiment provides a recombinant cell comprising the recombinant vector.


Another embodiment provides a method for producing a target polypeptide having an increased half-life in the body (or blood), comprising the step of expressing the recombinant vector in cells, or a method for producing a fusion polypeptide containing the target polypeptide having an increased half-life in the body (or blood).


Another embodiment provides a method of increasing the in vivo sustained period of a target polypeptide including the step of fusing (or linking or binding) a target polypeptide with an O-glycosylatable polypeptide region, or a method of increasing the in vivo (or blood) stability and/or increasing the in vivo (or blood) half-life of the target polypeptide (protein or peptide) drug. In one embodiment, the fusing step may include a step of fusing (or linking or binding) one or more O-glycosylatable polypeptide regions to the N-terminus, C-terminus, or both the N- and C-termini of the target polypeptide via a linker or without through the linker. The fusing (or linking or binding) step may be performed in vitro.


Another embodiment provides a pharmaceutical composition comprising at least one selected from the group consisting of the fusion polypeptide, a nucleic acid molecule encoding the fusion polypeptide, a recombinant vector containing the nucleic acid molecule, and a recombinant cell containing the recombinant vector.


Another embodiment provides a method for producing a pharmaceutical composition using at least one selected from the group consisting of the fusion polypeptide, a nucleic acid molecule encoding the fusion polypeptide, a recombinant vector containing the nucleic acid molecule, and a recombinant cell containing the recombinant vector.


Another embodiment provides an application thereof for use in the manufacture of a pharmaceutical composition comprising at least one selected from the group consisting of the fusion polypeptide, a nucleic acid molecule encoding the fusion polypeptide, a recombinant vector containing the nucleic acid molecule, and a recombinant cell containing the recombinant vector.


Another embodiment provides a use of the O-glycosylatable polypeptide region for promoting the in vivo (or blood) stability and/or increasing the in vivo (or blood) half-life of the target polypeptide (protein or peptide) drug. Specifically, one embodiment provides a composition for enhancing the in vivo (or blood) stability and/or increasing the vivo (or blood) half-life of the target polypeptide (protein or peptide) drug comprising an O-glycosylatable polypeptide region.


The present disclosure provides the form of a fusion polypeptide in which an O-glycosylatable polypeptide region, such as an immunoglobulin hinge region, is fused to a target polypeptide, and thereby, provides a technique capable of enhancing the stability in the body (or blood) and/or the sustained period in the body (or blood) and increasing the dosage interval, when the target polypeptide is applied in vivo.


One embodiment provides a fusion polypeptide comprising a target polypeptide and an O-glycosylatable polypeptide region.


In the fusion polypeptide, the O-glycosylatable polypeptide region may be included at the N-terminus, C-terminus, or both the N- and C-termini of the target polypeptide.


The total number of O-glycosylatable polypeptide regions contained in the fusion polypeptide may be 1 or more, for example, 1 to 10, 1 to 8, 1 to 6, 1 to 4, 2 to 10, 2 to 8, 2 to 6, 2 to 4 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10).


In one embodiment, the fusion polypeptide may be represented by the following general formula:





N—(Z)n—Y—(Z)m-C′  [General Formula]


in the above formula,


N′ is the N-terminus of the fusion polypeptide, C′ is the C-terminus of the fusion polypeptide,


Y is the target polypeptide,


Z is an O-glycosylatable polypeptide region,


n is the number of O-glycosylatable polypeptide regions (bound to the N-terminus of the target polypeptide) located at the N-terminus of the fusion polypeptide, and is an integer of 0 to 10 (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 0 to 7, 0 to 5, 1 to 10, 1 to 7, 1 to 5, or 1 to 3,


m is the number of O-glycosylatable polypeptide regions (bound to the C-terminus of the target polypeptide) located at the C-terminus of the fusion polypeptide, and is an integer of 0 to 10 (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 0 to 7, 0 to 5, 1 to 10, 1 to 7, 1 to 5, or 1 to 3,


at least one of n and m is not zero (for example, if n is 0, m is not 0, and if m is 0, n is not 0), and


n+m is the total number of O-glycosylatable polypeptide regions contained in the fusion polypeptide, and is an integer of 1 to 10, 1 to 8, 1 to 6, 1 to 4, 2 to 10, 2 to 8, 2 to 6, or 2 to 4.


In one embodiment, when the active site of the target polypeptide is located at the N-terminus, the O-glycosylatable polypeptide region may be fused to the C-terminus (i.e., n is 0, and m is not 0), and when the active site is located at the C-terminus, the O-glycosylatable polypeptide region can be fused to the N-terminus (i.e., n is not 0, and m is 0).


The n+m O-glycosylatable polypeptide regions contained in the fusion polypeptide may each independently be selected from polypeptides containing O-glycosylatable amino acid residues. For example, the polypeptide moiety containing O-glycosylatable amino acid residues may be a hinge region of immunoglobulin. In one embodiment, the O-glycosylatable polypeptide region may each independently be selected from a group consisting of a hinge region of immunoglobulin D (IgD) and a hinge region of immunoglobulin A (IgA, such as IgA1). The hinge regions of n+m immunoglobulins may be the same or different from each other.


In one embodiment, when the n+m O-glycosylatable polypeptide regions contained in the fusion polypeptide are located at both the N-terminus and C-terminus of the fusion polypeptide (that is, when one or more O-glycosylatable polypeptide regions each independently exist at the N-terminus and C-terminus of the fusion polypeptide), the type and number of the O-glycosylatable polypeptide region located at the N-terminus and the O-glycosylatable polypeptide region located at the C-terminus may be the same or different from each other. In one embodiment, one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) O-glycosylatable polypeptide regions located at the N-terminus all are hinge regions of IgD or hinge regions of IgA (e.g., IgA1), or one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) hinge regions of IgD and one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) hinge regions of IgA (e.g., IgA1) may be included in various orders. The one or more hinge regions of immunoglobulins located at the C-terminus all are hinge regions of IgD or hinge regions of IgA (e.g., IgA1), or one or more hinge regions of IgD and one or more hinge regions of IgA (e.g., IgA1) may be included in various orders.


In another embodiment, when all the n+m O-glycosylatable polypeptide regions contained in the fusion polypeptide are located only at the N-terminus of the fusion polypeptide (i.e., when one or more O-glycosylatable polypeptide regions exist only at the N-terminus of the fusion polypeptide), the one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) O-glycosylatable polypeptide regions all are hinge regions of IgD or hinge regions of IgA, or one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) hinge regions of IgD and one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) hinge regions of IgA may be included in various orders.


In another embodiment, when all the n+m O-glycosylatable polypeptide regions contained in the fusion polypeptide are located only at the C-terminus (i.e., when one or more O-glycosylatable polypeptide regions exist only at the C-terminus of the fusion polypeptide), the one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) O-glycosylatable polypeptide regions all are hinge regions of IgD or hinge regions of IgA (e.g., IgA1), or one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) hinge regions of IgD and one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) hinge regions of IgA (e.g., IgA1) may be included in various orders.


The O-glycosylatable polypeptide region (each region when there are two or more O-glycosylatable polypeptide regions) may include 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, or 7 or more (the upper limit is 100, 50, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, or 8) (e.g., 1, 2, 3, 4, 5, 6, 7, or 8) O-glycosylatable polypeptide residues (O-glycosylatable amino acid residues). For example, the O-glycosylatable polypeptide region (each region when there are two or more O-glycosylatable polypeptide regions) may include 1 to 10 or 3 to 10 O-glycosylated residues (O-glycosylatable amino acid residues).


In one embodiment, the O-glycosylatable polypeptide region may be selected from one or more hinge regions of immunoglobulins (e.g., human immunoglobulins), and for example, it may be an IgD hinge region, an IgA hinge region, or a combination thereof.


The IgD may be human IgD (e.g., UniProKB P01880 (constant region; SEQ ID NO: 7), etc.), and the hinge region of IgD may be at least one selected from the group consisting of:


a polypeptide (“IgD hinge”) comprising an amino acid sequence of “N′-ESPKAQASSVPTAQPQAEGSLAKATTAPATTRNT-C′ (SEQ ID NO: 1); the amino acid residues shown in bold are O-glycosylated residues (7 in total)”, or consisting essentially of the amino acid sequence,


a polypeptide comprising 5 or more, 7 or more, 10 or more, 15 or more, 20 or more, 22 or more, or 24 or more (the upper limit is 34 or 33) consecutive amino acids containing 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, or 7 O-glycosylated residues in the amino acid sequences of SEQ ID NO: 1, or consisting essentially of the amino acids (“a part of IgD hinge”; for example, a polypeptide comprising 5 or more consecutive amino acids containing “SSVPT” (SEQ ID NO: 9) in SEQ ID NO: 1 or a polypeptide comprising 7 or more consecutive amino acids containing “TTAPATT” (SEQ ID NO: 10)), and


a polypeptide comprising 34 or more or 35 or more consecutive amino acids containing an amino acid sequence of SEQ ID NO: 1 (IgD hinge) in IgD (e.g., SEQ ID NO: 7), or 7 or more, 10 or more, 15 or more, 20 or more, 22 or more, or 24 or more consecutive amino acids containing a part of the IgD hinge, or consisting essentially of the amino acids (“extension of IgD hinge”; for example, SEQ ID NO: 1 in “ESPKAQASS VPTAQPQAEG SLAKATTAPA TTRNTGRGGE EKKKEKEKEE QEERETKTP” (SEQ ID NO: 11) among IgD (SEQ ID NO: 7) or comprising 34 or more or 35 or more consecutive amino acids containing a part of the IgD hinge.


The IgA may be human IgA (e.g., IgA1 (UniProKB P01876, constant region; SEQ ID NO: 8), etc.), and the hinge region of the IgA may be at least one selected from the group consisting of:


a polypeptide (“IgA hinge”) comprising an amino acid sequence of “N′-VPSTPPTPSPSTPPTPSPS-C′ (SEQ ID NO: 2); the amino acid residues shown in bold are O-glycosylated residues (8 in total)”, or consisting essentially of the amino acid sequence,


a polypeptide comprising 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 12 or more, 15 or more, 17 or more, or 18 consecutive amino acids containing 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, or 8 O-glycosylated residues in the amino acid sequence of SEQ ID NO: 2, or consisting essentially of the amino acids (“a part of IgA hinge”; for example, a polypeptide comprising 8 or more or 9 or more consecutive amino acids containing “STPPTPSP” (SEQ ID NO: 12) in SEQ ID NO: 2, and


a polypeptide (“extension of IgA hinge”) comprising 19 or more or 20 or more consecutive amino acids containing the amino acid sequence of SEQ ID NO: 2 in IgA (e.g., IgA1) hinge) in IgA (e.g., IgA1 (SEQ ID NO: 8)), or 7 or more, 10 or more, 12 or more, 15 or more, 17 or more, or 18 consecutive amino acids containing a part of IgA (e.g., IgA1) hinge, or consisting essentially of the amino acid sequence.


In another embodiment, the O-glycosylatable polypeptide region may be a polypeptide region comprising 5 or more, 7 or more, 10 or more, 12 or more, 15 or more, 17 or more, 20 or more, 22 or more, 25 or more, 27 or more, 30 or more, 32 or more or 35 or more consecutive amino acids (the upper limit is 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, or the total number of amino acids in each protein) containing 1 or more, 2 or more, 5 or more, 7 or more, 10 or more, 12 or more, 15 or more, 17 or more, 20 or more, or 22 or more (e.g., 1 to 10, 3 to 10; or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25) O-glycosylatable amino acid residues (O-glycosylation site) in the proteins exemplified in Table 1 below (for example, a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 23 to 113), or consisting essentially of the amino acid sequences. It is preferable that the O-glycosylatable polypeptide region as used herein does not affect the function of the target polypeptide. The O-glycosylatable polypeptide region of the proteins exemplified in Table 1 below may be selected from regions that are not involved in the intrinsic function of the full-length protein. This allows the O-glycosylatable polypeptide region to serve only to increase the half-life without affecting the function of the target polypeptide:















TABLE 1





UniProtKB
UniProtKB

Gene

O-Glycosylation
SEQ


Entry No.
Entry name
Protein names
names
Length
(site)
ID NO





















Q96DR8
MUCL1_HUMAN
Mucin-like protein
MUCL1
90
23T, 24T, 30T, 34T,
23




1
SBEM

46T, 47T, 51T, 52T,





UNQ590/

54T, 55T, 59T, 60T,





PRO1160

62T, 63T, 66S, 67T,







68T


Q0VAQ4
SMAGP_HUMAN
Small cell adhesion
SMAGP
97
2T, 3S, 6T, 7T, 9S,
24




glycoprotein


16T, 17T, 23T


P04921
GLPC_HUMAN
Glycophorin-C
GYPC
128
3S, 4T, 6S, 9S, 10T,
25





GLPC

15S, 24S, 26S, 27T,





GPC

28T, 31T, 32T, 33T,







42S


P16860
ANFB_HUMAN
Natriuretic peptides
NPPB
134
62T, 63S, 70S, 74T,
26




B


79S, 84T, 97T


P04141
CSF2_HUMAN
Granulocyte-
CSF2
144
22S, 24S, 26S, 27T
27




macrophage colony-
GMCSF




stimulating factor


P02724
GLPA_HUMAN
Glycophorin-A
GYPA
150
21S, 22T, 23T, 29T,
28





GPA

30S, 31T, 32S, 36T,







38S, 41S, 44T, 52T,







56T, 63S, 66S, 69T


P10124
SRGN_HUMAN
Serglycin
SRGN
158
94S, 96S, 100S,
29





PRG

102S, 104S, 106S,





PRG1

108S, 110S


Q86YL7
PDPN_HUMAN
Podoplanin
PDPN
162
25T, 32T, 34T, 35T,
30





GP36

52T, 55T, 65T, 66T,





PSEC0003

76T, 85T, 86S, 88S,





PSEC0025

89T, 96S, 98S, 100T,







102S, 106T, 107S,







109S, 110T, 117T,







119T, 120T


P0DN87
CGB7_HUMAN
Choriogonadotropin
CGB7
165
139S, 141S, 147S,
31




subunit beta 7


150S, 152S, 158S


P0DN86
CGB3_HUMAN
Choriogonadotropin
CGB3
165
139S, 141S, 147S,
32




subunit beta 3
CGB;

150S, 152S, 158S





CGB5;





CGB8


P01344
IGF2_HUMAN
Insulin-like growth
IGF2
180
96T, 99T, 163T
33




factor II
PP1446


P07498
CASK_HUMAN
Kappa-casein
CSN3
182
133T, 143T, 148T,
34





CASK

151T, 157T, 167T,





CSN10

169T, 178T





CSNK


P31431
SDC4_HUMAN
Syndecan-4
SDC4
198
39S, 61S, 63S
35


P34741
SDC2_HUMAN
Syndecan-2
SDC2
201
41S, 55S, 57S, 101T
36





HSPG1


Q99075
HBEGF_HUMAN
Proheparin-binding
HBEGF
208
37T, 38S, 44T, 47T,
37




EGF-like growth
DTR

75T, 85T




factor
DTS





HEGFL


P13727
PRG2_HUMAN
Bone marrow
PRG2
222
23T, 24S, 25T, 34T,
38




proteoglycan
MBP

62S




(BMPG)


P24592
IBP6_HUMAN
Insulin-like growth
IGFBP6
240
126T, 144S, 145T,
39




factor-binding
IBP6

146T, 152S




protein 6 (IBP-6)


Q9UHG2
PCSK1_HUMAN
ProSAAS
PCSK1N
260
53T, 228S, 247T
40




(Proprotein




convertase




subtilisin/kexin type




1 inhibitor)


P01589
IL2RA_HUMAN
Interleukin-2
IL2RA
272
218T, 224T, 229T,
41




receptor subunit


237T




alpha (IL-2 receptor




subunit alpha)


P21583
SCF_HUMAN
Kit ligand (Mast
KITLG
273
167S, 168T, 180T
42




cell growth factor)
MGF




(MGF)
SCF


A1E959
ODAM_HUMAN
Odontogenic
ODAM
279
115T, 119T, 244T,
43




ameloblast-
APIN

249S, 250T, 251T,




associated protein


255T, 256S, 261T,




(Apin)


263T, 273T, 275S


P10451
OSTP_HUMAN
Osteopontin
SPP1
314
134T, 138T, 143T,
44





BNSP

147T, 152T





OPN





PSEC0156


P21815
SIAL_HUMAN
Bone sialoprotein 2
IBSP
317
119T, 122T, 227T,
45




(Bone sialoprotein
BNSP

228T, 229T, 238T,




II) (BSP II)


239T


P02649
APOE_HUMAN
Apolipoprotein E
APOE
317
26T, 36T, 212T,
46




(Apo-E)


307T, 308S, 314S


Q99645
EPYC_HUMAN
Epiphycan
EPYC
322
60T, 64S, 96S
47




(Dermatan sulfate
DSPG3




proteoglycan 3)
PGLB





SLRR3B


Q6UXG3
CLM9_HUMAN
CMRF35-like
CD300L
332
137T, 143T, 144T,
48




molecule 9 (CLM-
G CLM9

155T, 161T, 170T,




9)
TREM4

171T, 177T, 187T,





UNQ422/

195T, 196S, 199T,





PRO846

201T, 202S, 207T,







208S, 213S, 214S,







222S, 223T, 224S,







228T, 229S, 237S


Q9GZM5
YIPF3_HUMAN
Protein YIPF3
YIPF3
350
333T, 334T, 339T,
49




(Killer lineage
C6orf109

346T




protein 1)
KLIP1


P51681
CCR5_HUMAN
C-C chemokine
CCR5
352
6S, 7S, 16T, 17S
50




receptor type 5 (C-
CMKBR5




C CKR-5)


P40225
TPO_HUMAN
Thrombopoietin (C-
THPO
353
22S, 58T, 131T,
51




mpl ligand) (ML)
MGDF

179T, 180T, 184S,







213T, 265S


P01876
IGHA1_HUMAN
Immunoglobulin
IGHA1
353
105S, 106T, 109T,
8




heavy constant


111S, 113S, 117T,




alpha 1 (Ig alpha-1


119S, 121S




chain C region)


P02765
FETUA_HUMAN
Alpha-2-HS-
AHSG
367
270T, 280S, 293S,
52




glycoprotein
FETUA

339T, 341T, 346S




(Alpha-2-Z-
PRO2743




globulin)


P21810
PGS1_HUMAN
Biglycan
BGN
368
42S, 47S, 180S, 198S
53





SLRR1A


P01860
IGHG3_HUMAN
Immunoglobulin
IGHG3
377
122T, 137T, 152T
54




heavy constant




gamma 3 (HDC)


P80370
DLK1_HUMAN
Protein delta
DLK1
383
94S, 143T, 163S,
55




homolog 1 (DLK-1)
DLK

214S, 222T 251S







256T, 260S


P01880
IGHD_HUMAN
Immunoglobulin
IGHD
384
109S, 110S, 113T,
7




heavy constant delta


126T, 127T, 131T,




(Ig delta chain C


132T




region)


P15529
MCP_HUMAN
Membrane cofactor
CD46
392
290S, 291S, 292T,
56




protein (TLX)
MCP

298S, 300S, 302S,





MIC10

303T, 304S, 305S,







306T, 307T, 309S,







312S, 313S, 315S,







320T, 326S


P04280
PRP1_HUMAN
Basic salivary
PRB1
392
40S, 87S, 150S, 330S
57




proline-rich protein




1


P78423
X3CL1_HUMAN
Fractalkine (C-X3-
CX3CL1
397
183T, 253S, 329T
58




C motif chemokine
FKN




1)
NTT





SCYD1





A-152E5.2


P16150
LEUK_HUMAN
Leukosialin
SPN
400
21T, 22T, 26T, 28T,
59




(GPL115)
CD43

29S, 35S, 36T, 37S,







41S, 42S, 46T, 47T,







48S, 50T, 58T, 69T,







99S, 103S, 109T,







113T, 114S, 136T,







137T, 173T, 178T


P13473
LAMP2_HUMAN
Lysosome-
LAMP2
410
195S, 196T, 200T,
60




associated


203T, 204T, 207S,




membrane


209T, 210T,




glycoprotein 2


211T, 213T




(LAMP-2)


P11279
LAMP1_HUMAN
Lysosome-
LAMP1
417
197S, 199T, 200T,
61




associated


207S, 209S, 211S,




membrane




glycoprotein 1




(LAMP-1)


P21754
ZP3_HUMAN
Zona pellucida
ZP3
424
156T, 162T, 163T
62




sperm-binding
ZP3A




protein 3 (Sperm
ZP3B




receptor)
ZPC


P05783
K1C18_HUMAN
Keratin, type I
KRT18
430
30S, 31S, 49S
63




cytoskeletal 18
CYK18





PIG46


Q08629
TICN1_HUMAN
Testican-1 (Protein
SPOCK1
439
228T, 383S, 388S
64




SPOCK)
SPOCK





TIC1





TICN1


O75056
SDC3_HUMAN
Syndecan-3
SDC3
442
80S, 82S, 84S, 91S,
65




(SYND3)
KIAA0468

314S, 367S


P10645
CMGA_HUMAN
Chromogranin-A
CHGA
457
181T, 183T, 251T
66




(CgA)


P15169
CBPN_HUMAN
Carboxypeptidase N
CPN1
458
400T, 402T, 409T
67




catalytic chain
ACBP




(CPN)


P00740
FA9_HUMAN
Coagulation factor
F9
461
85T, 99S, 107S
68




IX (EC 3.4.21.22)


P20333
TNR1B_HUMAN
Tumor necrosis
TNFRSF1B
461
30T, 206T, 221S,
69




factor receptor
TNFBR

222T, 224S, 230T,




superfamily
TNFR2

234S, 235T, 239T,




member 1B


240S, 248S


P08670
VIME_HUMAN
Vimentin
VIM
466
7S, 33T, 34S
70


Q8WXD2
SCG3_HUMAN
Secretogranin-3
SCG3
468
216T, 231T, 359S
71




(Secretogranin III)
UNQ2502/




(SgIII)
PRO5990


Q16566
KCC4_HUMAN
Calcium/calmodulin-
CAMK4
473
57T, 58S, 137S,
72




dependent protein
CAMK

189S, 344S, 345S,




kinase type IV
CAMK-GR

356S




(CaMK IV) (EC
CAMKIV




2.7.11.17)


P31749
AKT1_HUMAN
RAC-alpha
AKT1
480
126S, 129S, 305T,
73




serine/threonine-
PKB

312T, 473S




protein kinase (EC
RAC




2.7.11.1)


P31751
AKT2_HUMAN
RAC-beta
AKT2
481
128S, 131S, 306T,
74




serine/threonine-


313T




protein kinase (EC




2.7.11.1)


O60883
G37L1_HUMAN
G-protein coupled
GPR37L1
481
79T, 85T, 86S, 95T,
75




receptor 37-like 1
ETBRLP2

107T


Q9BXF9
TEKT3_HUMAN
Tektin-3
TEKT3
490
7T, 9T, 10T
76


P05155
IC1_HUMAN
Plasma protease C1
SERPIN
500
47T, 48T, 64S, 71T,
77




inhibitor (C1 Inh)
G1 C1IN

83T, 88T, 92T, 96T





C1NH


P11831
SRF_HUMAN
Serum response
SRF
508
277S, 307S, 309S,
78




factor (SRF)


316S, 383S


P0DOX3
IGD_HUMAN
Immunoglobulin

512
238S, 255T, 256T,
79




delta heavy chain


260T, 261T,


O75487
GPC4_HUMAN
Glypican-4 (K-
GPC4
556
494S, 498S, 500S
80




glypican)
UNQ474/





PRO937


P35052
GPC1_HUMAN
Glypican-1
GPC1
558
486S, 488S, 490S
81


P78333
GPC5_HUMAN
Glypican-5
GPC5
572
441S, 486S, 495S,
82







507S, 509S


Q8N158
GPC2_HUMAN
Glypican-2
GPC2
579
55S, 92S, 155S,
83







500S, 502S


P00748
FA12_HUMAN
Coagulation factor
F12
615
109T, 299T, 305T,
84




XII (EC 3.4.21.38)


308S, 328T, 329T,







337T


P01042
KNG1_HUMAN
Kininogen-1
KNG1
644
401T, 533T, 542T,
85




(Alpha-2-thiol
BDK

546T, 557T, 57IT,




proteinase inhibitor)
KNG

577S, 628T


P51693
APLP1_HUMAN
Amyloid-like
APLP1
650
215T, 227S, 228T
86




protein 1 (APLP)




(APLP-1)


Q9NQ79
CRAC1_HUMAN
Cartilage acidic
CRTAC1
661
608T, 618T, 619T,
87




protein 1 (68 kDa
ASPIC1

621T, 626T




chondrocyte-
CEP68




expressed protein)




(CEP-68) (ASPIC)


Q14515
SPRL1_HUMAN
SPARC-like protein
SPARCL1
664
31T, 40T, 44S, 116T
88




1 (High endothelial




venule protein)




(Hevin) (MAST 9)


Q16820
MEP1B_HUMAN
Meprin A subunit
MEP1B
701
593S, 594T, 599T,
89




beta (EC 3.4.24.63)


603S


P17600
SYN1_HUMAN
Synapsin-1 (Brain
SYN1
705
55S, 87T, 96S, 103S,
90




protein 4.1)


261S, 432S, 526T,




(Synapsin I)


564T, 578S


P19835
CEL_HUMAN
Bile salt-activated
CEL
753
558T, 569T, 579T,
91




lipase (BAL) (EC
BAL

607T, 618T, 629T,




3.1.1.13) (EC


640T, 651T,




3.1.1.3)


662T, 673T


Q9HCU0
CD248_HUMAN
Endosialin (Tumor
CD248
757
60T, 401T, 428T,
92




endothelial marker
CD164L1

448T, 456T, 459T,




1) (CD antigen
TEM1

472T, 519T, 541T,




CD248)


543T, 544T, 545T,







587T, 593T, 594T,







595T, 598S, 601S,







612T, 619T, 623S,







625S, 627T, 630T,







631S, 636T, 640S,


P05067
A4_HUMAN
Amyloid-beta
APP A4
770
633T, 651T, 652T,
93




precursor protein
AD1

656S, 659T, 663T,




(APP)


667S,


Q9NR71
ASAH2_HUMAN
Neutral ceramidase
ASAH2
780
62T, 67S, 68T, 70T,
94




(N-CDase)
HNAC1

73S, 74T, 76T, 78S,




(NCDase) (EC


79S, 80T, 82T, 84T




3.5.1.—) (EC




3.5.1.23)


P08047
SP1_HUMAN
Transcription factor
SP1
785
491S, 612S, 640T,
95




Sp1
TSFP1

641S, 698S, 702S


Q17R60
IMPG1_HUMAN
Interphotoreceptor
IMPG1
797
403T, 421T, 432T,
96




matrix proteoglycan
IPM150

442T




1
SPACR


P19634
SL9A1_HUMAN
Sodium/hydrogen
SLC9A1
815
42T, 56S, 61T, 62T,
97




exchanger 1
APNH1

68T




(APNH)
NHE1


P12830
CADH1_HUMAN
Cadherin-1 (CAM
CDH1
882
280S, 285T, 358T,
98




120/80)
CDHE

470T, 472T, 509T,





UVO

576T, 578T, 580T


Q14118
DAG1_HUMAN
Dystroglycan
DAG1
895
63T, 317T, 319T,
99




(Dystrophin-


367T, 369T, 372T,




associated


379T, 388T, 455T




glycoprotein 1)


Q14624
ITIH4_HUMAN
Inter-alpha-trypsin
ITIH4
930
719T, 720T, 722T
100




inhibitor heavy
IHRP




chain H4 (ITI heavy
ITIHL1




chain H4) (ITI-
PK120




HC4)
PRO1851


P19823
ITIH2_HUMAN
Inter-alpha-trypsin
ITIH2
946
666T, 673S, 675T,
101




inhibitor heavy
IGHEP2

691T




chain H2 (ITI heavy




chain H2) (ITI-




HC2)


Q9UPV9
TRAK1_HUMAN
Trafficking kinesin-
TRAK1
953
447S, 680S, 719S,
102




binding protein 1
KIAA1042

935T





OIP106


P15941
MUC1_HUMAN
Mucin-1 (MUC-1)
MUC1
1255
131T, 139T, 140S,
103





PUM

144T


Q7Z589
EMSY_HUMAN
BRCA2-interacting
EMSY
1322
228S, 236S, 271T,
104




transcriptional
C11orf30

501T, 506T, 557S,




repressor EMSY
GL002

1120T


Q92954
PRG4_HUMAN
Proteoglycan 4
PRG4
1404
123S, 136S, 240T,
105




(Lubricin)
MSF

253T, 277T, 291T,





SZP

305T, 306S, 310T,







317S, 324T, 332T,







338T, 367T, 373S,







376T, 384T, 385T,







388S, 391T, 399T,







400T, 407T, 408T,







415T, 423T, 427S,







430T, 438T, 439T,







446T, 447T, 454T,







455T, 477T, 478T,







485T, 493T, 494T,







501T, 502T, 509T,







525T, 529S, 532T,







540T, 541T, 553S,







555T, 563T, 564T,







571T, 572T, 579T,







580T, 587T, 588T,







595T, 603T, 604T,







611T, 612T, 616T,







619T, 627T, 676T,







683T, 684T, 691T,







692T, 699T, 700T,







704T, 707T, 723T,







724T, 736T, 768T,







769T, 776T, 777T,







792T, 793T, 805T,







812S, 829T, 837T,







838T, 892S, 900T,







930T, 931T, 962S,







963T, 968T, 975T,







978T, 979T, 980T,







1039T, 1161T


Q76LX8
ATS13_HUMAN
A disintegrin and
ADAMTS13
1427
399S, 698S,
106




metalloproteinase
C9orf8

757S, 907S, 965S,




with
UNQ6102/

1027S, 1087S




thrombospondin
PRO20085




motifs 13 (ADAM-




TS 13)


P49790
NU153_HUMAN
Nuclear pore
NUP153
1475
534S, 544S, 908S,
107




complex protein


909S, 1113S, 1156T




Nup153 (153 kDa




nucleoporin)




(Nucleoporin




Nup153)


P31327
CPSM_HUMAN
Carbamoyl-
CPS1
1500
537S, 1331S, 1332T
108




phosphate synthase




[ammonia],




mitochondrial (EC




6.3.4.16)


Q8N6G6
ATL1_HUMAN
ADAMTS-like
ADAMTSL1
1762
48T, 312T, 391S,
109




protein 1
ADAMTSR1

451T




(ADAMTSL-1)
C9orf94




(Punctin-1)
UNQ528/





PRO1071


P46531
NOTC1_HUMAN
Neurogenic locus
NOTCH1
2555
65S, 73T, 116T,
110




notch homolog
TAN1

146S, 194T, 232T,




protein 1 (Notch 1)


311T, 341S, 349T,




(hN1)


378S, 435S, 458S,







466T, 496S, 534S,







609S, 617T, 647S,







692T, 722S, 759S,







767T, 784S, 797S,







805T, 921S, 951S,







997T, 1027S, 1035T,







1065S, 1159T,







1189S, 1197T,







1273S, 1362T,







1379T, 1402T,


P04275
VWF_HUMAN
von Willebrand
VWF
2813
1248T, 1255T,
111




factor (vWF)
F8VWF

1256T, 1263S,







1468T, 1477T,







1486S, 1487T,


Q9UPA5
BSN_HUMAN
Protein bassoon
BSN
3926
1343T, 1384T,
112




(Zinc finger protein
KIAA0434

2314T, 2691T, 2936T




231)
ZNF231


Q86WI1
PKHL1_HUMAN
Fibrocystin-L
PKHD1L1
4243
122T, 445T, 1803T,
113




(Polycystic kidney


1839T, 2320T, 3736T




and hepatic disease




1-like protein 1)




(PKHD1-like




protein 1)









In the fusion polypeptide, the total number of O-glycans actually contained may be 13 or more, 14 or more, 15 or more, 16 or more, 17 or more, 18 or more, 19 or more, 20 or more, or 21 or more (the maximum value is determined by the number of O-glycosylatable polypeptide regions described above and the number of O-glycosylated residues contained in respective O-glycosylatable polypeptide regions), or the total number of O-glycans contained theoretically may be 20 or more, 21 or more, 23, or 24 or more (the maximum value is determined by the number of O-glycosylatable polypeptide regions described above and the number of O-glycosylated residues contained in respective O-glycosylatable polypeptide regions). Further, the total number of O-glycans actually contained in the fusion polypeptide may be associated with the stability when administered in vivo (e.g., in blood). Specifically, as the total number of O-glycans actually contained in the fusion polypeptide increases, the in vivo stability of the fusion polypeptide or the target polypeptide contained in the fusion polypeptide may increase (that is, increased half-life in the body (in blood) and/or increased concentration in the body (blood) and/or decreased degradation rate in the body (in blood), etc.).


The fusion polypeptide may further comprise a peptide linker between the target polypeptide and the O-glycosylatable polypeptide region, and/or between O-glycosylatable polypeptide regions when the fusion polypeptide includes two or more O-glycosylatable polypeptide regions. In one embodiment, the peptide linker may be a GS linker that repeatedly contains one or more Gly (G) and one or more Ser (S), and for example, it may be (GGGGS) n (where n is an integer of 1 to 10 or 1 to 5 as the number of repetitions of GGGGS (SEQ ID NO: 13) (e.g., 1, 2, 3, 4, or 5)), without being limited thereto.


In the fusion polypeptide, the stability (sustained period) in the body (or blood) of the target polypeptide fused with an O-glycosylatable polypeptide region is increased as compared with a target polypeptide not fused with an O-glycosylatable polypeptide region (for example, increase of the half-life in the body or blood).


Another embodiment provides a nucleic acid molecule encoding the fusion polypeptide.


Another embodiment provides a recombinant vector comprising the nucleic acid molecule.


Another embodiment provides a recombinant cell comprising the recombinant vector.


Another embodiment provides a method for producing a target polypeptide having an increased half-life in the body (or blood), comprising the step of expressing the recombinant vector in cells, or a method for producing a fusion polypeptide containing the target polypeptide having an increased half-life in the body (or blood).


Another embodiment provides a method of increasing the in vivo sustained period of a target polypeptide including the step of fusing (or linking or binding) a target polypeptide with an O-glycosylatable polypeptide region. In one embodiment, the fusing step may include a step of fusing (or linking or binding) one or more O-glycosylated polypeptide regions to the N-terminus, C-terminus, or both the N- and C-termini of the target polypeptide via a linker or without through the linker. The fusing (or linking or binding) step may be performed in vitro.


Another embodiment provides a pharmaceutical composition comprising at least one selected from the group consisting of the fusion polypeptide, a nucleic acid molecule encoding the fusion polypeptide, a recombinant vector comprising the nucleic acid molecule, and a recombinant cell containing the recombinant vector.


Another embodiment provides an application thereof for use in the manufacture of a pharmaceutical composition containing at least one selected from the group consisting of the fusion polypeptide, a nucleic acid molecule encoding the fusion polypeptide, a recombinant vector containing the nucleic acid molecule, and a recombinant cell containing the recombinant vector.


Another embodiment provides the use of the O-glycosylatable polypeptide region for enhancing the in vivo (or blood) stability and/or increasing the in vivo (or blood) half-life of the target polypeptide (protein or peptide) drug. Specifically, one embodiment provides a composition for enhancing the in vivo (or blood) stability and/or increasing the in vivo (or blood) half-life of the polypeptide (protein or peptide) drug comprising an O-glycosylatable polypeptide region. As used herein, enhancing the stability and/or increasing the half-life means that the stability is improved and/or the half-life is increased as compared with a polypeptide (protein or peptide) that does not contain an O-glycosylatable polypeptide region.


Hereinafter, the present disclosure will be described in more detail:


The target polypeptide (Y) may be at least one selected from all soluble proteins. In one embodiment, the target polypeptide is a protein and/or peptide having a desired in vivo activity (for example, preventive, alleviating, and/or therapeutic activity of a particular disease or condition, and/or activity as a marker, or activity of replacing substances necessary for living organisms) (for example, including about 100 or less or about 50 or less amino acids). For example, it may be at least one selected from the group consisting of an enzymatically active protein or peptide (e.g., proteases, kinases, phosphatases, etc.), a receptor protein or peptide, a transporter protein or peptide, a sterile and/or endotoxin-binding polypeptide, a structural protein or peptide, an immunogenic polypeptide, an antibody-mimetic protein (e.g., protein scaffolds, fc-fusion protein, etc.), toxins, antibiotics, hormones, growth factors, vaccines, and the like.


In one embodiment, the target polypeptide may be at least one selected from the group consisting of hormone, cytokine, tissue plasminogen activator, immunoglobulin, and the like (for example, antibodies or antigen binding fragments or variants thereof), antibody-mimetic protein (e.g., protein scaffold, fc-fusion protein, etc.).


In another embodiment, the target polypeptide may include at least one selected from the group consisting of: growth hormone (e.g., human growth hormone (hGH)), p40, BMP-1 (bone morphogenetic protein-1), growth hormone-releasing hormone, growth hormone-releasing peptide, interferons (e.g., interferon-alpha, -beta, -gamma, etc.), interferon receptors (e.g., water-soluble type I interferon receptors, etc.), G-CSF (granulocyte colony stimulating factor), GM-CSF (granulocyte-macrophage colony stimulating factor), glucagon-like peptides (e.g., GLP-1, etc.), insulin-like growth factor (IGF), G-protein-coupled receptor, interleukins (e.g., interleukin-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, 28, -29, -30, etc.), interleukin receptors (e.g., IL-1 receptor, IL-4 receptor, etc.), enzymes (e.g. glucocerebrosidase), iduronate-2-sulfatase, alpha-galactosidase-A, agalsidase alpha and beta, alpha-L-iduronidase, butyrylcholinesterase, chitinase, glutamate decarboxylase, imiglucerase, lipase, uricase, platelet-activating factor acetylhydrolase, neutral endopeptidase, myeloperoxidase, etc.), interleukin or cytokine binding protein (e.g., IL-18 bp, TNF-binding protein, etc.), macrophage activating factor, macrophage peptide, B cell factor, T cell factor, protein A, allergy inhibitor, cell necrosis glycoproteins, immunotoxin, lymphotoxin, tumor necrosis factor, tumor suppressors, metastasis growth factor, alpha-1 antitrypsin, albumin, alpha-lactalbumin, apolipoprotein-E, erythropoietin, highly glycosylated erythropoietin, angiopoietins; hemoglobin, thrombin, thrombin receptor activating peptide, thrombomodulin, blood factor VII, blood factor VIIa, blood factor IX, blood factor IX, blood factor XIII, plasminogen activating factor, fibrin-binding peptide, urokinase, streptokinase, hirudin, protein C, C-reactive protein, renin inhibitor, collagenase inhibitor, superoxide dismutase, leptin, platelet-derived growth factor, epithelial growth factor, epidermal growth factor, angiostatin, angiotensin, bone growth factor, bone stimulating protein, calcitonin, insulin, atriopeptin, cartilage inducing factor, elcatonin, connective tissue activating factor, tissue factor pathway inhibitor, follicle stimulating hormone, luteinizing hormone, luteinizing hormone releasing hormone, nerve growth factor (e.g., nerve growth factor, ciliary neurotrophic factor, AF-1 (axogenesis factor-1), brain-natriuretic peptide, glial derived neurotrophic factor, netrin, neutrophil inhibitor factor, neurotrophic factor, nuturin, etc.), parathyroid hormone, relaxin, secretin, somatomedin, adrenocortical hormone, glucagon, cholecystokinin, pancreatic polypeptide, gastrin releasing peptide, corticotropin releasing factor, thyroid stimulating hormone, autotaxin, lactoferrin, myostatin, receptor (e.g., TNF receptor (e.g., TNFR(p75), TNFR(p55), etc.)), IL-1 receptor, VEGF receptor, EGF receptor, B cell activating factor receptor, etc.), receptor antagonists (IL1-Ra, etc.), cell surface antigen (e.g., CD2, 3, 4, 5, 7, 11a, 11b, 18, 19, 20, 23, 25, 33, 38, 40, 45, 69, etc.), virus vaccine antigen, antibody (e.g., monoclonal antibody, polyclonal antibody), antibody fragment (e.g. scFv, Fab, Fab′, F(ab′)2 and Fd), virus-derived vaccine antigen, and variants/fragments thereof (e.g., variants/fragments that maintain the desired function and/or structure), antibody-mimetic protein (e.g., protein scaffold, fc-fusion protein, etc.), and the like, without being limited thereto.


The antibody may be of any isotype (e.g., IgA (IgA1, IgA2, etc.), IgD, IgG (IgG1, IgG2, IgG3, IgG4, etc.), IgM or IgE), and the antibody fragment is an antigen-binding fragment that retains the antigen-binding ability of the original antibody, and may be any fragment of an antibody comprising at least about 20 amino acids, such as at least about 100 amino acids (e.g., CDR, Fab, Fab′, F(ab)2, Fd, Fv, scFv, scFv-Fc, etc.). The Fab fragment includes a variable domain (VL) and a constant domain (CL) of the light chain and a variable domain (VH) and a first constant domain (CH1) of the heavy chain. The Fab′ fragment differs from Fab fragments in that an amino acid residue containing at least one cysteine residue has been added from the hinge region to the carboxyl terminal of the CH1 domain. The Fd fragment includes only the VH and CH1 domains, and the F(ab′)2 fragment is produced by pairing the Fab′ fragments via disulfide bonds or chemical reactions. The scFv (single-chain Fv) fragment exists as a single polypeptide chain since it contains VL and VH domains linked by a peptide linker. The antibody-mimetic protein may mean any protein including a site capable of binding to a specific antigen other than an antibody. For example, it may be at least one selected from the group consisting of antibody-mimetic protein scaffold, such as a repebody, Fc-fusion proteins such as nanobody and peptibody (fusion protein of Fc and antigen-binding polypeptide), without being limited thereto.


In another embodiment, the target polypeptide may be at least one selected from the group consisting of all secretory proteins.


The above-mentioned target polypeptide may be a mammalian-derived (isolated from mammals) polypeptide, including primates such as humans and monkeys, and rodents such as mice and rats, and may be, for example, a human-derived (isolated from human) polypeptide.


In the fusion polypeptide comprising the target polypeptide and an O-glycosylatable polypeptide region provided herein, a target polypeptide and an O-glycosylatable polypeptide region, and/or two or more O-glycosylatable polypeptide regions may be covalently or non-covalently linked directly (e.g., without a linker), or may be linked through a suitable linker (e.g., a peptide linker). The peptide linker may be a polypeptide consisting of 1 to 20, 1 to 15, 1 to 10, 2 to 20, 2 to 15, or 2 to 10 arbitrary amino acids, and the type of amino acid contained therein is not limited. The peptide linker may include, for example, Gly, Asn and/or Ser residues, and may also include neutral amino acids such as Thr and/or Ala, without being limited thereto, and amino acid sequences suitable for peptide linkers are known in the art. In one embodiment, the peptide linker may be a GS linker that repeatedly includes one or more Gly(G) and one or more Ser(S), and for example, it may be (GGGGS)n (where n is the number of repetitions of GGGGS (SEQ ID NO: 13) and may be an integer of 1 to 10 or an integer of 1 to 5 (1, 2, 3, 4, or 5)), without being limited thereto.


In addition, the fusion polypeptide may contain a total of 1 or more or a total of 2 or more (e.g., 2 to 10, 2 to 8, 2 to 6, 2 to 5, 2 to 4, 2 or 3) O-glycosylatable polypeptide regions. When the fusion polypeptide contains two or more O-glycosylatable polypeptide regions, the fusion polypeptide may be those in which two or more O-glycosylatable polypeptide regions are bound to the N-terminus or C-terminus of the target polypeptide, or one or more O-glycosylatable polypeptide regions are each independently bound to the N-terminus and C-terminus of the target polypeptide (in this case, the type and number of hinge regions bound to the N-terminus and C-terminus of the target polypeptide may be the same or different). In this case, the above-mentioned peptide linker may be further contained between the O-glycosylatable polypeptide regions and/or between the O-glycosylatable polypeptide region and the human target polypeptide.


The fusion polypeptide provided herein may be recombinantly or synthetically produced, and may not be naturally occurring.


The in vivo (or blood) half-life in mammals of the target polypeptide contained in the fusion polypeptide provided herein may increase by about 1.5 times or more, about 2 times or more, about 2.5 times or more, about 3 times or more, about 3.5 times or more, about 4 times or more, about 5 times or more, about 6 times or more, about 7 times or more, about 8 times or more, about 9 times or more, or about 10 times or more, as compared with the target polypeptide not fused with an O-glycosylated polypeptide region.


Due to the increased half-life of the target polypeptide in this way, the target polypeptide in the form of a fusion polypeptide in which the O-glycosylatable polypeptide region is bound has the advantage that the dosage interval can be extended as compared with the target polypeptide in the form in which the O-glycosylatable polypeptide region is not linked.


The fusion polypeptide including a target polypeptide and an O-glycosylatable polypeptide region can be produced by a conventional chemical synthesis method or a recombinant method.


As used herein, the term “vector” refers to an expression means for expressing a target gene in a host cell, and may be selected, for example, from the group consisting of plasmid vectors, cosmids vector, and bacteriophage vectors, viral vectors such as adenovirus vectors, retroviral vectors and adeno-associated virus vectors, and the like. In one embodiment, the vector that can be used in the recombinant vector may be prepared based on a plasmid (e.g., pcDNA series, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX series, pET series, pUC19, etc.), phage (e.g., λgt4λB, λ-Charon, λΔz1, M13, etc.) or virus (e.g., SV40, etc.), without being limited thereto.


In the recombinant vector, the nucleic acid molecule encoding the fusion polypeptide may be operably linked to a promoter. The term “operatively linked” refers to a functional linkage between a nucleic acid expression regulatory sequence (e.g., a promoter sequence) and a different nucleic acid sequence. The regulatory sequences can be “operatively linked” to regulate transcription and/or translation of the different nucleic acid sequence.


The recombinant vector can be typically constructed as a vector for cloning or an expression vector for expression. As the expression vector, a conventional one used for expressing a foreign protein in plants, animals or microorganisms in the art can be used. The recombinant vector can be constructed via various methods known in the art.


The recombinant vector can be expressed using eukaryotic cells as a host. When a eukaryotic cell is expressed as a host, the recombinant vector may include a nucleic acid molecule to be expressed and the above-mentioned promoter, ribosome binding site, and secretory signal sequence (see Korean Unexamined Patent Publication No. 2015-0125402) and/or the transcription/translation termination sequence. In addition, the replication origin that operates in eukaryotic cells may include an f1 origin of replication, a SV40 origin of replication, a pMB1 origin of replication, an adeno origin of replication, a AAV origin of replication, and/or a BBV origin of replication, and the like, without being limited thereto. Further, promoters derived from the genome of mammalian cells (e.g., metallotionein promoter) or promoter derived from mammalian virus (e.g., adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus promoter and tk promoter of HSV) can be used, and all secretory signal sequences commonly available as secretory signal sequences can be used. For example, the secretory signal sequence described in Korean Unexamined Patent Publication No. 2015-0125402 may be used, without being limited thereto, and a polyadenylation sequence may be included as a transcription termination sequence.


The recombinant cell may be obtained by introducing (transforming or transfecting) the recombinant vector into an appropriate host cell. The host cell may be selected from all eukaryotic cells capable of stably and continuously cloning or expressing the recombinant vector. The eukaryotic cells that can be used as hosts include yeast (Saccharomyces cerevisiae), insect cells, plant cells, animal cells, and the like, and examples thereof include cells derived from mouse (e.g., COP, L, C127, Sp2/0, NS-0, NS-1, At20, or NIH3T3), rat (e.g., PC12, PC12h, GH3, or MtT), hamster (e.g., BHK, CHO, GS gene-deficient CHO, or DHFR gene-deficient CHO), monkey (e.g., COS (COS1, COS3, COST, etc.), CV1 or Vero), human (e.g., HeLa, HEK-293, retinal-derived PER-C6, diploid fibroblasts, myeloma cells or HepG2), or other animal cells (e.g., MDCK, etc.), insect cells (e.g., Sf9 cells, Sf21 cells, Tn-368 cells, BTI-TN-5B1-4 cells, etc.), hybridoma, and the like, without being limited thereto.


The nucleic acid molecule encoding the fusion polypeptide provided herein can expressed in the appropriate host cell described above to thereby produce a target polypeptide having improved in vivo stability as compared with a non-fused form, or a fusion polypeptide comprising the same. The method for producing the fusion polypeptide may include a step of culturing the recombinant cell containing the nucleic acid molecule. The culturing step may be performed under normal culturing conditions. Further, the production method may further include a step of isolating and/or purifying the fusion polypeptide from the culture after the culturing step.


Transport (introduction) of the nucleic acid molecule or a recombinant vector containing the same into a host cell may use a transport method widely known in the art. The usable transport method may, when the host cell is a eukaryotic cell, include microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, gene bombardment, and the like, without being limited thereto.


The method of selecting the transformed (recombinant vector-introduced) host cells can be easily carried out according to a method widely known in the art by using a phenotype expressed by the selection label. For example, if the selection label is a specific antibiotic resistance gene, the recombinant cells having an introduced recombinant vector can be easily selected by culturing in a medium containing the antibiotic.


The fusion polypeptide may be used for the prevention and/or treatment of any disease that is associated with a deficiency and/or functional abnormality of the target polypeptide, or enables treatment, alleviation or amelioration by the activity of the target polypeptide. Therefore, in one embodiment, there is provided a pharmaceutical composition comprising at least one selected from the group consisting of the fusion polypeptide, a nucleic acid molecule encoding the fusion polypeptide, a recombinant vector containing the nucleic acid molecule, and a recombinant cell containing the recombinant vector. The pharmaceutical composition may be a pharmaceutical composition for the prevention and/or treatment of a disease associated with a deficiency and/or functional abnormality of the target polypeptide, or a disease in which the target polypeptide has therapeutic and/or prophylactic effects. Another embodiment provides a method for preventing and/or treating a disease associated with a deficiency and/or functional abnormality of the target polypeptide contained in the fusion protein or a disease in which the target polypeptide has therapeutic and/or prophylactic effects, the method comprising the step of administering at least one selected from the group consisting of the fusion polypeptide, a nucleic acid molecule encoding the fusion polypeptide, a recombinant vector containing the nucleic acid molecule, and a recombinant cell containing the recombinant vector, to a patient in need of prevention and/or treatment of diseases associated with a deficiency and/or functional abnormality of the target polypeptide contained in the fusion protein or diseases in which the target polypeptide has therapeutic and/or prophylactic effects. The method may further include, prior to the administering step, a step of identifying a patient in need of prevention and/or treatment of diseases associated with a deficiency and/or functional abnormality of the target polypeptide contained in the fusion protein or diseases in which the target polypeptide has therapeutic and/or prophylactic effects.


The pharmaceutical composition may contain a pharmaceutically effective amount of one or more active ingredients selected from the group consisting of the fusion polypeptide, the nucleic acid molecule, the recombinant vector, and the recombinant cell. The pharmaceutically effective amount refers to the content or dose of an active ingredient capable of obtaining the intended effects. The content or dose of the active ingredient in the pharmaceutical composition may vary depending on factors, such as formulation method, administration method, age, body weight, sex or disease condition of the patient, diet, administration time, dosage interval, administration route, excretion speed, and response sensitivity. For example, a single dose of the active ingredient may be within a range of 0.001 to 1000 mg/kg, 0.01 to 100 mg/kg, 0.01 to 50 mg/kg, 0.01 to 20 mg/kg, or 0.01 to 1 mg/kg, without being limited thereto.


In addition, the pharmaceutical composition may further include a pharmaceutically acceptable carrier in addition to the active ingredient. The carrier is commonly used during formulation of a drug containing a protein, a nucleic acid, or a cell, and may be at least one selected from the group consisting of lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methyl hydroxybenzoate, propyl hydroxybenzoate, talc, magnesium stearate, mineral oil, and the like, without being limited thereto. The pharmaceutical composition may further include at least one selected from the group consisting of a diluent, an excipient, a lubricant, a wetting agent, a sweetening agent, a flavoring agent, an emulsifying agent, a suspending agent, a preservative, and the like, which are commonly used in the manufacture of pharmaceutical compositions.


The object for administering the pharmaceutical composition may be mammals, including primates such as humans and monkeys, and rodents such as mice, rats, and the like, or cells, tissues, cell cultures or tissue cultures derived therefrom.


The pharmaceutical composition may be administered by oral administration or parenteral administration, or may be administered by contacting cells, tissues, or body fluids. Specifically, in the case of parenteral administration, it can may be administered by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, endothelial administration, topical administration, intranasal administration, intrapulmonary administration, rectal administration and the like. Since the protein or peptide is digested upon oral administration, the oral composition should be formulated so as to coat with an active agent or to be protected from degradation in the stomach.


In addition, the pharmaceutical composition may be in the form of a solution, suspension, syrup or emulsion in an oil or aqueous medium, or may be formulated in the form of an extract, powder, granule, tablet or capsule, and a dispersing agent or a stabilizer may be further included for formulation.


Advantageous Effects

The target polypeptide fused with an O-glycosylatable polypeptide region provided herein has a long sustained period when administered to the body and thus can prolong the dosing interval and reduce the dosage, which has an advantageous effect in terms of ease of administration and/or economic aspects, and can be usefully applied to a field where treatment of the target polypeptide is required.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram schematically showing the structure of the fusion polypeptide IgD-hGH-His (DHDD-8His), IgD-hGH (DHDD), IgA-hGH (AHAA), IgD-hGH-IgA (DHAA), and IgA-hGH-IgD (AHDD) according to one embodiment.



FIG. 2 is a graph showing the results of the analysis of the fusion polypeptide IgD-hGH according to one embodiment by Q-TOF Mass Spectrometry.



FIG. 3 is a result showing the isomer distribution of the fusion polypeptide IgD-hGH-His analyzed by IEF (Isoelectric focusing).



FIG. 4 is a graph showing the results of the analysis of the fusion polypeptide IgD-hGH-His according to one embodiment by Q-TOF Mass Spectrometry.



FIG. 5 is a diagram schematically showing the structure of the fusion polypeptide Dulaglutide-ID and Dulaglutide-ID2 according to one embodiment.



FIG. 6 is the results showing the isomer distribution of the fusion polypeptide Dulaglutide-ID2 analyzed by IEF (Isoelectric focusing).



FIG. 7 is a graph showing the change in blood concentration with time after administration of the fusion polypeptide IgD-hGH compared to when hGH is administered.



FIG. 8 is a graph showing the change in blood concentration with time after administration of the fusion polypeptide IgD-hGH-His compared to when hGH is administered.



FIG. 9 is a graph showing the change in blood concentration with time after administration of the fusion polypeptides IgA-hGH F3, IgA-hGH F4, and IgA-hGH F5.



FIG. 10 is a graph showing the change in blood concentration with time after administration of the fusion polypeptide Dulaglutide-ID2 (pGIgG4DD) compared to when Dulaglutide (Trulicity) is administered.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Hereinafter, the present disclosure will be described in detail with reference to the following examples. However, these examples are for illustration purposes only, and the scope of the disclosure is not limited by these examples.


Example 1: Production of Fusion Polypeptide

1.1. Production of Fusion Polypeptide Containing Human Growth Hormone (hGH) as Target Polypeptide


A fusion polypeptide IgD-hGH-His (DHDD-8His), IgD-hGH (DHDD), IgA-hGH (AHAA), IgD-hGH-IgA (DHAA), and IgA-hGH-IgD (AHDD) (see FIG. 1; the underlined part of the sequences of IgD and IgA1 is the part capable of performing O-Glycosylation) was produced in which IgD hinge (ESPKAQASSVPTAQPQAEGSLAKATTAPATTRNT; SEQ ID NO: 1), IgA1 hinge (VPSTPPTPSPSTPPTPSPS; SEQ ID NO: 2), or a combination of the hinge of IgD and the hinge of IgA1 was fused with the target polypeptide (human growth hormone: hGH; SEQ ID NO: 3). The amino acid sequences of each part contained in the fusion polypeptide were summarized in Table 2 below.











TABLE 2







SEQ



Amino acid
ID



sequence(N-terminus→C-terminus)
NO







Signal Peptide
MHRPEAMLLL LTLALLGGPT WA
4


(SP7.2)







Target
FPTIPLSRLF DNAMLRAHRL HQLAFDTYQE
3


polypeptide
FLEAYIPKEQ KYSFLQNPQT SLCFSESIPT



(hGH)
PSNREETQQK SNLELLRISL LLIQSWLEPV




QFLRSVFANS LVYGASDSNV YDLLKDLEEG




IQTLMGRLED GSPRTGQIFK QTYSKFDTNS




HNDDALLKNY GLLYCFRKDM DKVETFLRIV




QCRSVEGSCG F






Hinge region
ESPKAQASSV PTAQPQAEGS LAKATTAPAT
1


of
TRNT



Immunoglobulin




IgD (ID)







Hinge region
VPSTPPTPSP STPPTPSPS 
2


of




Immunoglobulin




IgA1 (IA)







His-Tag
HHHHHHHH
5









1.1.1. IgD-hGH (DHDD)


Plasmid pAF-D1G1 (including the promoter of Korean Patent No. 10-1868139B1), which is a variant of pcDNA3.1(+) (Invitrogen, Cat. No. V790-20), was treated with BamHI (restriction site: GGATCC) and NotI (restriction site: GCGGCCGC), into which the gene encoding the fusion polypeptide of ‘(N-terminus)-[BamHI restriction site-signal peptide (SEQ ID NO: 4)-IgD hinge (IgDH1; SEQ ID NO: 1)-human growth hormone (hGH; SEQ ID NO: 3)-IgD hinge (IgDH1; SEQ ID NO: 1)-IgD hinge (IgDH1; SEQ ID NO: 1)-NotI restriction site]-(C-terminus)’ was inserted to prepare a recombinant vector pDHDD-D1G1 for the production of a fusion polypeptide containing the target polypeptide (human growth hormone) and the hinge region of immunoglobulin (IgD) (293 aa in total (excluding signal peptide); the number of O-Glycosylatable sites: a total of 21); hereinafter, referred to as ‘IgD-hGH’).


The prepared recombinant vector pDHDD-D1G1 was introduced into ExpiCHO-S™ cells (Thermo Fisher Scientific), and cultured in ExpiCHO Expression Medium (Thermo Fisher Scientific; 400 mL) for 12 days (Fed-Batch Culture; Day 1 & Day 5 Feeding) to produce the fusion polypeptide IgD-hGH. The fusion polypeptide IgD-hGH theoretically has a molecular weight of 32.2 kDa (excluding O-Glycans) and 21 O-Glycans.


The fusion polypeptide IgD-hGH produced through the expression of the recombinant vector was purified and O-Glyan site Occupancy was analyzed using Q-TOF Mass Spectrometry.


Specifically, the first purification process was performed by mounting a column made by CaptureSelect™ Human Growth Hormone Affinity Matrix (Life Technologies) having Binding Specificity to hGH on an AKTA™ Purifier (GE Healthcare Life Sciences), and loading a sample. The primary washing was performed with an equilibration buffer, and eluted with 20 mM citric acid pH 3.0 or 0.1M Acetic acid pH 3.0. Immediately after completion of the process, the elution solution was adjusted to pH 7.0 using 2M Tris Buffer and left in a frozen state until before the next purification process.


The second purification process was performed by applying Anion Exchange Chromatography and using TMAE as a resin. After the frozen sample obtained through the first process was dissolved, the conductivity was measured and the sample was diluted with water for injection so as to have a conductivity suitable for loading, and subjected to a pretreatment with a 0.22 um PES Filtration System (Corning, USA). Columns were mounted on AKTA Avant (GE Healthcare Life Sciences) and the sample was loaded. Elution was made in gradient form for isolation according to the conductivity, and fractions were divided and pooled with reference to elution peak.


Concentration or buffer exchange was performed to prepare an analytical sample and an animal experimental sample during the purification process. The sample was placed in Amicon Ultra System (Millipore), centrifuged at low temperature and subjected to concentration or diafiltration. 25 mM Sodium Phosphate pH 7.0 was used as a buffer for analysis, and PBS Buffer was used to prepare animal experimental samples.


The concentration of samples was measured after the purification process, concentration process, or diafiltration, in which the Extinction Coefficient of the substance was calculated using the amino acid sequence, and absorbances at 280 nm and 340 nm were measured with a UV Spectrophotometer (G1103A, Agilent Technologies) and calculated using the following Equation.








(


A

280





nm


-

A

340





nm



)


(

Extinction





Coefficient

)


×

(

Dilution





Factor

)





In the case of animal experimental samples, they were diluted to a predetermined concentration using PBS Buffer, and filtered with 0.22 um Syringe Filter (Millex-GV, 0.22 um, Millipore) in a Biosafety Cabinet before administration, and then stored in a frozen state until subsequent administration.


The results of analyzing IgD-hGH by Q-TOF Mass Spectrometry are shown in FIG. 2 (Y-axis: %; X-axis: mass; the numbers 7 to 21 shown above the peak are O-Glycan numbers). As shown in FIG. 2, O-Glycans were distributed from 7 to 21 in IgD-hGH, and the average number of O-Glycans was 13.5.


1.1.2. IgD-hGH-His


Primers in Table 3 were synthesized to add 8His-tag to the C-terminus of IgD-hGH (Example 1.1.1) for convenience of purification.











TABLE 3





Primer Name
DNA Sequence (5′→3′)
SEQ ID NO







hGH-Pst_F
AAGTATTCCTTCCTGCAGAACCCCCAG
14





DD_R
CCTGTGCCTTTGGAGACTCTGTGTTACGG
15



G






DD_F
GAGTCTCCAAAGGCACAGGCCTCCTCCG
16



TG






DHis_R
GTGGTGATGATGGTGTGTGTTACGGGTG
17



GTGGC






His-Not_R


GCGGCCGC
TTTAGTGATGGTGGTGGTGA

18



TGATGGTG









PCR was performed using each primer, and then overlapping PCR was performed again with an appropriate combination of primers to finally obtain a PCR product of 693 bp (‘(N-terminus)-[PstI restriction site-signal peptide (SEQ ID NO:4)—IgD hinge (IgDH1; SEQ ID NO:1)—human growth hormone (hGH; SEQ ID NO: 3)—IgD hinge (IgDH1; SEQ ID NO: 1)—IgD hinge (IgDH1; SEQ ID NO: 1)—8His-NotI restriction site]-gene encoding (C-terminus)’). Then, the pDHDD-D1G1 and PCR products were treated with PstI and NotI, respectively, and then ligated to finally prepare the recombinant vector pDHDD-8His-D1G1 for the preparation of a fusion polypeptide (total 301 aa (excluding signal peptide); O-Glycosylatable sites—total 21); hereinafter, referred to as ‘IgD-hGH-His’) including the target polypeptide (human growth hormone) and the hinge region of immunoglobulin (IgD) and 8His Tag.


The fusion polypeptide IgD-hGH-His produced through the expression of the recombinant vector was purified and O-Glycan site occupancy was analyzed using IEF (Isoelectric focusing) analysis and Q-TOF Mass Spectrometry.


Specifically, the first column used in the purification process was TMAE which is an anion exchange resin, and IgD-hGH-His was partially isolated from a culture solution and eluted as a first eluate. Then, the first eluate was supplied to a HIS-Tag binding column, a metal affinity resin, which is a second column, and IgD-hGH-His was selectively eluted as a second eluate. Then, the second eluate was supplied to TMAE, an anion exchange resin, which is a third column, to remove a fraction with a low sialic acid content, and eluted as a third eluate. The third eluate was then supplied to a gel filtration column, which is a fourth column, to remove multimers and fragmented proteins, thereby obtaining a fourth eluate.


More specifically, it includes the following steps.


Step 1: equilibrating with a buffer containing TMAE, 0.5×25 cm (4 mL), v=150 cm/hr, 10 mM trolamine (pH 7.0). After loading the culture solution, the column was washed once with an equilibration buffer, and an elution buffer containing 10 mM trolamine and 250 mM sodium chloride (pH 7.0) was eluted in a linear gradient to obtain a first eluate.


Step 2: equilibrating with a buffer containing Ni-NTA His*Bind, 1.0×5 cm (4 mL), v=80 cm/hr, 10 mM sodium phosphate, 1M sodium chloride, 10 mM imidazole (pH 7.0). After loading the first eluate, the column was washed once with an equilibrium buffer, and an elution buffer containing 10 mM sodium phosphate, 1 M sodium chloride, and 500 mM imidazole (pH 7.0) was eluted in a linear gradient to obtain a second eluate.


Step 3: Diafiltration


Step 4: Equilibrating with a buffer containing TMAE, 0.5×25 cm (4 mL), v=150 cm/hr, 10 mM trolamine (pH 7.0). After loading the second eluate, the column was washed once with an equilibrium buffer, and an elution buffer containing 10 mM trolamine and 100 mM sodium chloride (pH 7.0) was eluted in a linear gradient to obtain a third eluate.


Step 5: Ultrafiltration


Step 6: equilibrating with a buffer containing Sephacryl S-100, 1.6×30 cm (60 mL), v=30 cm/hr, 20 mM sodium phosphate, 140 mM sodium chloride, pH 7.0. After loading the third eluate, the monomer fraction was eluted with an equilibration buffer to obtain a fourth eluate.


The isomer distribution of the obtained fourth eluate was shown in FIG. 3. In FIG. 3, the theoretical pI value of IgD-hGH-His is 6.65. The value lower than this means that IgD-hGH-His is O-Glycosylation and sialic acid is bound to this O-Glycan to becomes more acidic.


The results of analyzing IgD-hGH-His by Q-TOF Mass Spectrometry are shown in FIG. 4 (Y-axis: %; X-axis: mass; values of 7 to 21 shown above the peak are the numbers of O-Glycans). As shown in FIG. 4, in IgD-hGH-His, O-Glycans were distributed from 8 to 21, and the average number of O-Glycans was 14.7.


1.1.3. IgA-hGH (AHAA)


In the recombinant vector pDHDD-D1G1 constructed in Example 1.1.1, a recombinant vector pAHAA-D1G1 was constructed to have the same configuration, except that the coding genes of three IgD hinges (one on the N-terminus side and two on the C-terminus side of hGH, three in total) were replaced with the coding genes of the IgA1 hinges, respectively., and then expressed in the same manner as in Example 1.1.1 to produce a fusion polypeptide having a configuration of IgA1 hinge (IgA; SEQ ID NO: 2)—human growth hormone (hGH; SEQ ID NO: 3)—IgA1 hinge (IgA; SEQ ID NO: 2)—IgA1 hinge (IgA; SEQ ID NO: 2) (see FIG. 1; hereinafter referred to as ‘IgA-hGH’). The fusion polypeptide IgA-hGH theoretically has 24 O-Glycans. The fusion polypeptide IgA-hGH produced through expression of the recombinant vector was purified by referring to the method described in Example 1.1.1.


As a result of analyzing the purified IgA-hGH by Q-TOF Mass Spectrometry, the average number of O-Glycans in IgA-hGH was 12.8 in Fraction 3, 14.3 in Fraction 4, and 15.6 in Fraction 5.


1.1.4. IgD-hGH-IgA (DHAA)


7574 bp vector where the recombinant vector pDHDD-D1G1 produced in Example 1.1.1 was cut with BamHI and NotI was ligated with 489 bp of Insert I where pDHDD-D1G1 was cut with BamHI and KasI, and 383 bp of Insert II where the recombinant vector pAHAA-D1G1 used in Example 1.1.3 was cut with KasI and NotI, and thus the recombinant vector pDHAA-D1G1 was constructed so as to have the same configuration except that in the recombinant vector pDHDD-D1G1, 3 IgD hinges (1 on the N-terminus side and 2 on the C-terminus side of hGH, 3 in total), two on the 3′ terminal side were replaced by the coding gene of the IgA1 hinge. The recombinant vector pDHAA-D1G1 was expressed in the same manner as in Example 1.1.1 to produce a fusion polypeptide having the configuration of IgD hinge (IgD; SEQ ID NO: 1)-human growth hormone (hGH; SEQ ID NO: 3)-IgA1 hinge (IgA; SEQ ID NO: 2)-IgA1 hinge (IgA; SEQ ID NO: 2). The fusion polypeptide IgD-hGH-IgA theoretically has 23 O-Glycans.


1.1.5. IgA-hGH-IgD (AHDD)


7574 bp vector where the recombinant vector pDHDD-D1G1 produced in Example 1.1.1 was cut with BamHI and NotI was ligated with 444 bp of Insert I where pAHAA-D1G1 used in Example 1.1.3 was cut with BamHI and KasI, and 473 bp of Insert II where pDHDD-D1G1 used in Example 1.1.1 was cut with KasI and Nod, and thus the recombinant vector pADD-D1G1 was constructed so as to have the same configuration except that one at the 5′ terminal of the three IgD hinge coding genes was replaced by the coding gene for the IgA1 hinge, and then expressed in the same manner as in Example 1.1.1 to produce a fusion polypeptide having the configuration of IgA1 hinge (IgA; SEQ ID NO: 2)—human growth hormone (hGH; SEQ ID NO: 3)—IgD hinge (IgD; SEQ ID NO: 1)—IgD hinge (IgD; SEQ ID NO: 1) (see FIG. 1; hereinafter referred to as ‘IgA-hGH-IgD’). The fusion polypeptide IgA-hGH-IgD theoretically has 22 O-Glycans.


1.2. Protein of Interest: GLP-1-Fc Fusion Protein


The fusion polypeptides Dulaglutide-ID (including one IgD hinge area) and Dulaglutide-ID2 (including two IgD hinge regions) (see FIG. 5) were prepared in which IgD hinge (ESPKAQASSVPTAQPQAEGSLAKATTAPATTRNT; SEQ ID NO: 1) was fused with the target polypeptide (GLP-1 (Glucagon-like peptide-1)-Fc fusion protein: GLP-1-Fc). The GLP-1-Fc fusion protein exists as a dimer. The encoded amino acid sequence is summarized in Table 4 below.












TABLE 4







Amino acid
SEQ




sequence (N-
ID




terminus→C-terminus)
NO

















Signal Peptide (SP7.2)
MHRPEAMLLL LTLALLGGPT
4



WA














Target
Modified
HGEGTFTSDV SSYLEEQAAK
6


polypeptide
GLP-1
EFIAWLVKGG G



(GLP-1-Fc)
GS Linker
GGGGSGGGGS GGGGS




Modified
AESKYGPPCP PCPAPEAAGG




IgG4

PSVFLFPPKP KDTLMISRTP





(IgG4

EVTCVVVDVS QEDPEVQFNW





hinge-

YVDGVEVHNA KTKPREEQFN





CH2-

STYRVVSVLT VLHQDWLNGK





IgG4-

EYKCKVSNKG LPSSIEKTIS





CH3_modified)

KAK
GQPREPQ VYTLPPSQEE







MTKNQVSLTC LVKGFYPSDI







AVEWESNGQP ENNYKTTPPV







LDSDGSFFLY SRLTVDKSRW







QEGNVFSCSV MHEALHNHYT







QKSLSLSLG














Hinge region of
ESPKAQASSV PTAQPQAEGS
1


Immunoglobulin IgD
LAKATTAPAT TRNT



(ID)









1.2.1. Dulaglutide-ID1


The expression vector pGIg4 (including the promoter of Korean Patent No. 10-1868139B1) expressing GLP-1-Fc, which is a variant of pcDNA3.1(+) (Invitrogen, Cat. No. V790-20), was used as a template, and PCR was performed using Primers IgG4mCH2_F and IgG4ID_R in Table 4 to obtain a PCR product (mIgG4) of 659 bp Modified IgG4. And, the pDHDD-D1G1 prepared in Example 1.1.1 was used as a template, and PCR was performed using Primers IgG4ID_F and ID_NotR in Table 4 to obtain PCR products of 129 bp (ID1) and 231 bp (ID2). The obtained 659 bp mIgG4 PCR Product and 129 bp ID1 PCR Product were purified, which was then used as a template. Overlapping PCR was performed using Primers IgG4mCH2_F and ID_NotR in Table 5 below to obtain a PCR product of 770 bp (‘(N-terminus)-[Modified IgG4 Fc part (including BsrGI restriction site))-IgD hinge (IgDH1; SEQ ID NO: 1)-NotI restriction site]—gene encoding (C-terminus)’).











TABLE 5







SEQ ID


Primer Name
DNA Sequence (5′→3′)
NO







IgG4mCH2_F
CACCTGAGGCCGCCGGGGGACCG
19



TCAGTCT






IgG4ID_R
CTTTGGAGACTCGCCCAGGGACA
20



GGGACAG






IgG4ID_F
CTGGGCGAGTCTCCAAAGGCACA
21



GGCCTCC






ID_NotR
TTCTTCTTCGCGGCCGCTTTATGT
22



GTTACG









A 7574 bp vector where pDHDD-D1G1 prepared in Example 1.1.1 was cut with BamHI and NotI was ligated with 607 bp of Insert I where pGIg4 was cut with BamHI and BsrGI and 403 bp of Insert II where the 770 bp PCR product obtained through the overlapping PCR was cut with BsrGI and NotI to prepare a recombinant vector pGIg4D-D1G1 for the production of a fusion polypeptide including the target polypeptide (GLP-1-Fc) and a hinge region of immunoglobulin (IgD) (total 309 aa (excluding signal peptide); O-Glycosylated sites—total 7, exists as dimers, so finally 14); hereinafter, referred to as ‘Dulaglutide-ID1’).


1.2.2. Dulaglutide-ID2


659 bp of mIgG4 PCR product and 231 bp of ID2 PCR product obtained in Example 1.2.1 were used as a template, and overlapping PCR was performed using Primers IgG4mCH2_F and ID_NotR in Table 4 to obtain a PCR product of 882 bp (‘(N-terminus)-[Modified IgG4 Fc part (including BsrGI restriction site)—IgD hinge (IgDH1; SEQ ID NO: 1)—IgD hinge (IgDH1; SEQ ID NO: 1)—NotI restriction site)—gene encoding (C-terminus)’).


A 7574 bp vector where pDHDD-D1G1 prepared in Example 1.1.1 was cut with BamHI and NotI was ligated with 607 bp of Insert I where pGIg4 was cut with BamHI and BsrGI and 505 bp of Insert II where the PCR product of 882 bp obtained through the overlapping PCR was cut with BsrGI and NotI to prepare a recombinant vector pGIg4DD-D1G1 for the production of a fusion polypeptide including the target polypeptide (GLP-1-Fc) and two hinge regions of immunoglobulin (IgD) (total 343 aa (excluding signal peptide); O-Glycosylated sites-14 in total, 28 as it exists as dimer); hereinafter, referred to as ‘Dulaglutide-ID2’).


The fusion polypeptide Dulaglutide-ID2 produced through the expression of the recombinant vector was purified, and O-Glyan site occupancy was analyzed using isoelectric focusing (IEF) analysis and Q-TOF Mass Spetrometry.


Specifically, proteins were isolated and purified through Protein A affinity chromatography using the Fc region of substance, and then anion exchange chromatography and hydrophobic interaction chromatography were sequentially performed and purified.


The culture solution was filtered using a 0.22 um filtration membrane, injected into Protein A affinity resin equilibrated with an equilibration buffer (10 mM Sodium phosphate, 150 mM Sodium chloride, pH 7.4), and then washed with an equilibrium buffer. After washing, the protein was eluted with an elution buffer (100 mM Sodium citrate pH 3.5), and peaks were collected.


The collected eluate was subjected to a buffer exchange with 20 mM Tris pH 8.0.


The buffer exchanged sample was injected and purified into anion exchange chromatography (Source 15Q, GE Healthcare).


The equilibration buffer and elution buffer used were 20 mM Tris, pH 8.0, 20 mM Tris, 0.5 M NaCl, and pH 8.0, respectively. The equilibration buffer and the elution buffer were used as channels A and B, respectively, to elute the protein under concentration gradient conditions and collect peaks.


The collected protein solution was further purified using hydrophobic interaction chromatography (Butyl sepharose, GE Healthcare).


The equilibration buffer and elution buffer used were 0.1M sodium phosphate pH 6.0, 1.8 ammonium sulfate, pH 8.0, and 0.1M sodium phosphate pH 6.0, respectively. The equilibration buffer and the elution buffer were used as channels A and B, respectively, to elute the protein under concentration gradient conditions and collect peaks.


The isomer distribution of Dulaglutide-ID2 obtained by analyzing the collected peaks by isoelectric focusing (IEF) is shown in FIG. 6. In FIG. 6, the theoretical pI value of Dulaglutide-ID2 is 5.78, but in the case of Fraction #3, the value lower than this means that Dulaglutide-ID2 is O-Glycosylated, and this O-Glycan is attached to sialic acid and becomes more acidic.


As a result of analyzing Dulaglutide-ID2 Fraction #3 by Q-TOF Mass Spectrometry, ID could be performed up to 26, and the average number of O-Glycans was 17.5.


The finally purified protein solution was buffer-exchanged with the same excipients as Trulicity (Sodium citrate hydrate: 2.74 mg/mL, Anhydrous citric acid: 0.14 mg/mL, D-mannitol: 46.4 mg/mL, polysorbate 80: 0.20 mg/mL, pH 6.0-7.0), and concentrated and used as a test material for the animal PK test.


Example 2: Pharmacokinetic Properties (PK Profile) Test of Fusion Polypeptide (In Vivo)

2-1. Target Protein: Human Growth Hormone (hGH)


Fusion polypeptides IgD-hGH, IgD-hGH-His, IgA-hGH F3 (Fraction 3 of Example 1.1.3), IgA-hGH F4 (Fraction 4 of Example 1.1.3), and IgA-hGH F5 (Execution Fraction 5 of Example 1.1.3) prepared in Example 1.1 were subcutaneously administered to SD rats (Orientbio, 7 weeks old, about 300 g; n=3) at a dose of 2 mg/kg, and Pharmacokinetics were tested. Sampling was performed at 0, 0.5, 1, 2, 4, 6, 8, 24, 48 hours, and for comparison, hGH (Eutropin, LG Chem) was administered subcutaneously at a dose of 2 mg/kg in the same manner as above, and tested.


After administration to SD rat as described above, the blood collected by time-point was centrifuged to obtain a serum. ELISA was performed using Human Growth Hormone Quantikine ELISA Kit (R&D Systems), and the concentrations of hGH and fusion polypeptides (IgD-hGH, IgD-hGH-His, IgA-hGH FP3, IgA-hGH FP4 and IgA-hGH FP5) in the blood by time-point were confirmed. Using this data, parameters including AUC (area under the curve) were calculated using software for PK analysis (WinNonlin (Certara L.P.), etc.).


2-1-1. hGH vs. IgD-hGH


PK results of hGH and IgD-hGH are shown in Table 6 and FIG. 7.












TABLE 6









hGH
IgD-hGH











Parameter
Mean
SD
Mean
SD














Cmax (ng/mL)
1788
50.6
973
233


Tmax (hr)
1

4



AUCinf (ng*hr/mL)
4703
111
16027
2941


AUClast (ng*hr/mL)
4695
111
15845
2881


T½ (hr)
2.17
1.79
7.11
0.327


AUCextp (%)
0.167
0.059
1.11
0.197









(Cmax: Maximum blood concentration, Tmax: Time when peak blood concentration is reached, AUCinf: Area under the blood concentration-time curve calculated by extrapolating from the last measurable blood collection time point to infinite time, AUClast: Area under the blood concentration-time curve until the last measurable blood collection time point, T1/2: elimination half-life, AUCExtp(%):[(AUCinf−AUClast)/AUCinf]*100)


As can be seen in Table 6 and FIG. 7, it can be confirmed that the half-life of the hGH fused with the hinge region (IgD-hGH) increased by about 3.3 times compared to the hGH not fused with the hinge region.


2-1-2. hGH vs. IgD-hGH-His


PK results of hGH and IgD-hGH-His are shown in Table 7 and FIG. 8.












TABLE 7









hGH
IgD-hGH-His











Parameter
Mean
SD
Mean
SD














Cmax (ng/mL)
502.22
39.88
886.67
195.63


Tmax (hr)
1

4



AUCinf (ng*hr/mL)
1028.80
120.03
13436.05
2680.39


AUClast (ng*hr/mL)
1003.74
115.76
13332.39
2710.64


T½ (hr)
2.55
0.20
6.61
0.71


AUCextp (%)
2.43
0.23
0.82
0.39









(Cmax: Maximum blood concentration, Tmax: Time when peak blood concentration is reached, AUCinf: Area under the blood concentration-time curve calculated by extrapolating from the last measurable blood collection time point to infinite time, AUClast: Area under the blood concentration-time curve until the last measurable blood collection time point, T1/2: elimination half-life, AUCExtp(%):[(AUCint−AUClast)/AUCinf]*100)


As can be seen in Table 7 and FIG. 8, it can be confirmed that the half-life of hGH (IgD-hGH-His) fused with the hinge region with His-Tag increased by about 2.6 times compared to the hGH not fused with the hinge region.


2-1-3. IgA-hGH (Effect on PK by O-Glycan number)


In order to see the effect of the number of O-glycans on PK, PK results for each IgA-hGH fraction are shown in Table 8 and FIG. 9.













TABLE 8









IgA-hGH
IgA-hGH
IgA-hGH



FP3 (Average
FP4 (Average
FP5 (Average



number of O-
number of O-
number of O-



glycan: 12.8)
glycan: 14.3)
glycan: 15.6)













Parameter
Mean
SD
Mean
SD
Mean
SD
















Cmax
290
80.5
305
102
195
32.8


(ng/mL)


Tmax (hr)
2

4

2



AUCinf
2510
474
2832
814
2186
89.2


(ng*hr/


mL)


AUClast
2509
475
2826
816
2160
96.8


(ng*hr/


mL)


T½ (hr)
1.98
0.205
2.53
0.287
3.56
0.335


AUCextp
0.050
0.035
0.240
0.182
1.21
0.573


(%)









(Cmax: Maximum blood concentration, Tmax: Time when peak blood concentration is reached, AUCinf: Area under the blood concentration-time curve calculated by extrapolating from the last measurable blood collection time point to infinite time, AUClast: Area under the blood concentration-time curve until the last measurable blood collection time point, T1/2: elimination half-life, AUCExtp(%):[(AUCinf−AUClast)/AUCinf]*100)


As can be seen in Table 8 and FIG. 9, it can be confirmed that the half-life increases as the number of O-glycan increases.


2-2. Target Protein: GLP-1-Fc fusion protein (GLP-1-Fc, Dulaglutide)


Fusion polypeptide Dulaglutide-ID2 prepared in Example 1.2 was subcutaneously administered to SD rats (Orientbio, 7 weeks old, about 300 g; n=3) at a dose of 0.1 mg/kg, and Pharmacokinetics were tested. Sampling was performed at 0, 0.5, 1, 2, 4, 6, 8, 24, 48, 96 and 144 hours, and for comparison, Dulaglutide (Trulicity, Lilly Korea) was administered subcutaneously at a dose of 0.1 mg/kg in the same manner as above, and tested.


After administration to the SD rat as above, the blood collected by time-point was centrifuged to obtain a serum. ELISA was performed using Anti-GLP-1 antibody (NovousBio) and Anti-Human IgG4 Fc Antibody (Sigma-Aldrich), and the concentrations of Dulaglutide and fusion polypeptide Dulaglutide-ID2 in the blood by time-point were confirmed. Using this data, parameters including AUC (area under the curve) were calculated using software for PK analysis (WinNonlin (Certara L.P.), etc.).


The obtained results are shown in Table 9 and FIG. 10.












TABLE 9









Dulaglutide
Dulaglutide-ID2











Parameter
Mean
SD
Mean
SD














Cmax (ng/mL)
268
24.2
46.8
2.43


Tmax (hr)
24

24



AUCinf (ng*hr/mL)
11500
1230
3430
535


AUClast (ng*hr/mL)
11700
1200
3870
786


T½ (hr)
26.9
3.06
40.9
7.04


AUCextp (%)
1.97
0.542
10.9
4.09









(Cmax: Maximum blood concentration, Tmax: Time when peak blood concentration is reached, AUCinf: Area under the blood concentration-time curve calculated by extrapolating from the last measurable blood collection time point to infinite time, AUClast: Area under the blood concentration-time curve until the last measurable blood collection time point, T1/2: elimination half-life, AUCExtp(%):[(AUCinf−AUClast)/AUCinf]*100)


As can be seen in Table 9 and FIG. 10, it can be confirmed that the half-life of GLP-1-Fc (Dulaglutide-ID2) fused with the hinge region increased by about 1.5 times as compared with Dulaglutide, which is not fused with the hinge area. Further, Cmax was about ⅕, and AUClast was about ⅓.


From the above description, those skilled in the art will understand that the present disclosure can be implemented in other specific forms without changing the technical idea or essential features thereof. In this regard, it should be understood that the embodiments described above are illustrative in all respects and non-limiting. The scope of the present disclosure should be construed that all changes or modifications derived from the meaning and scope of the claims to be described later rather than the above detailed description and the equivalent concepts thereof are included in the scope of the present disclosure.

Claims
  • 1. A fusion polypeptide, comprising: a target polypeptide anda total of 1 to 10 O-glycosylatable polypeptide regions bound to the N-terminus, C-terminus, or both the N- and C-termini of the target polypeptide,wherein each of the 1 to 10 O-glycosylatable polypeptide regions is a polypeptide containing 3 to 10 O-glycosylatable amino acid residues.
  • 2. The fusion polypeptide according to claim 1, which is represented by the following formula: N′—(Z)n—Y—(Z)m-C′in the above formula,N′ is the N-terminus of the fusion polypeptide, C′ is the C-terminus of the fusion polypeptide,Y is the target polypeptide,Z is an O-glycosylatable polypeptide region,n is the number of O-glycosylatable polypeptide regions bound to the N-terminus of the target polypeptide, and is an integer of 0 to 10,m is the number of O-glycosylatable polypeptide regions bound to the C-terminus of the target polypeptide, and is an integer of 0 to 10,n and m are not zero at the same time, andn+m is the total number of O-glycosylatable polypeptide regions contained in the fusion polypeptide, and is an integer of 1 to 10.
  • 3. The fusion polypeptide according to claim 1, wherein the 1 to 10 O-glycosylatable polypeptide regions are 1 to 10 hinge regions of immunoglobulin, or a polypeptide region comprising 10 or more consecutive amino acids containing 3 to 10 O-glycosylatable amino acid residues in each of the proteins of SEQ ID NOs: 23 to 113.
  • 4. The fusion polypeptide according to claim 3, wherein each of the 1 to 10 hinge regions of immunoglobulin is independently selected from the group consisting of the hinge region of Immunoglobulin D (IgD) and the hinge region of Immunoglobulin A (IgA).
  • 5. The fusion polypeptide according to claim 3, wherein each of the 1 to 10 hinge regions of immunoglobulin is independently selected from the group consisting of: (1) a polypeptide comprising the amino acid sequence of SEQ ID NO: 1,(2) a polypeptide comprising 5 or more consecutive amino acids containing 3 to 7 O-glycosylated residues in the amino acid sequence of SEQ ID NO: 1,(3) a polypeptide comprising 34 or more consecutive amino acids containing the polypeptide of (1) or (2) in Immunoglobulin D (IgD),(4) a polypeptide comprising the amino acid sequence of SEQ ID NO: 2,(5) a polypeptide comprising 8 or more consecutive amino acids containing 3 to 8 O-glycosylated residues in the amino acid sequence of SEQ ID NO: 2, and(6) a polypeptide comprising 19 or more consecutive amino acids containing the polypeptide of (4) or (5) in Immunoglobulin A (IgA).
  • 6. The fusion polypeptide according to claim 3, wherein the hinge regions of 1 to 10 immunoglobulins are each independently selected from the group consisting of: (1) a polypeptide comprising the amino acid sequence of SEQ ID NO: 1,(2) a polypeptide comprising 5 or more consecutive amino acids containing SEQ ID NO: 9 in the amino acid sequence of SEQ ID NO: 1 or 7 or more consecutive amino acids containing SEQ ID NO: 10 in the amino acid sequence of SEQ ID NO: 1,(3) a polypeptide comprising 34 or more consecutive amino acids containing the polypeptide of (1) or (2) in Immunoglobulin D (IgD),(4) a polypeptide comprising the amino acid sequence of SEQ ID NO: 2,(5) a polypeptide comprising 8 or more consecutive amino acids containing SEQ ID NO: 12 in the amino acid sequence of SEQ ID NO: 2, and(6) A polypeptide comprising 19 or more consecutive amino acids containing the polypeptide of (4) or (5) in Immunoglobulin A (IgA).
  • 7. The fusion polypeptide according to claim 1, wherein an in vivo half-life of the target polypeptide bound to the O-glycosylatable polypeptide region in the fusion polypeptide increases by 1.5 times as compared with the target polypeptide that is not bound to the O-glycosylated polypeptide region,
  • 8. A nucleic acid molecule encoding the fusion polypeptide of claim 1.
  • 9. A recombinant vector comprising the nucleic acid molecule of claim 8.
  • 10. A recombinant cell comprising the recombinant vector of claim 9.
  • 11. A method for producing a fusion polypeptide of claim 1, the method comprising the step of culturing a recombinant cell comprising a recombinant vector containing the nucleic acid molecule encoding the fusion polypeptide.
  • 12. A method of enhancing an in-vivo stability of a target polypeptide comprising the step of linking a total of 1 to 10 O-glycosylatable polypeptide regions to the N-terminus, C-terminus, or both the N- and C-termini of the target polypeptide, wherein each of the 1 to 10 O-glycosylatable polypeptide regions is a polypeptide containing 3 to 10 O-glycosylatable amino acid residues.
  • 13. The method of enhancing an in-vivo stability of a target polypeptide according to claim 12, wherein the 1 to 10 O-glycosylatable polypeptide regions are 1 to 10 hinge regions of immunoglobulin or a polypeptide region comprising 10 or more consecutive amino acids containing 3 to 10 O-glycosylated residues in each of the proteins of SEQ ID NOs: 23 to 113.
  • 14. The method of enhancing an in-vivo stability of a target polypeptide according to claim 13, wherein each of the 1 to 10 hinge regions of immunoglobulin is independently selected from the group consisting of a hinge region of Immunoglobulin D (IgD) and a hinge region of Immunoglobulin A (IgA).
  • 15. The method of enhancing an in-vivo stability of a target polypeptide according to claim 13 or 11, wherein each of the 1 to 10 hinge regions of immunoglobulin is independently selected from the group consisting of: (1) a polypeptide comprising the amino acid sequence of SEQ ID NO: 1,(2) a polypeptide comprising 5 or more consecutive amino acids containing 3 to 7 O-glycosylated residues in the amino acid sequence of SEQ ID NO: 1,(3) a polypeptide comprising 34 or more consecutive amino acids containing the polypeptide of (1) or (2) in Immunoglobulin D (IgD),(4) a polypeptide comprising the amino acid sequence of SEQ ID NO: 2,(5) a polypeptide comprising 8 or more consecutive amino acids containing 3 to 8 O-glycosylated residues in the amino acid sequence of SEQ ID NO: 2, and(6) a polypeptide comprising 19 or more consecutive amino acids containing the polypeptide of (4) or (5) in Immunoglobulin A (IgA).
  • 16. The method of enhancing an in-vivo stability of a target polypeptide according to claim 13, wherein each of 1 to 10 the hinge regions of immunoglobulin is independently selected from the group consisting of: (1) a polypeptide comprising the amino acid sequence of SEQ ID NO: 1,(2) a polypeptide comprising 5 or more consecutive amino acids containing SEQ ID NO: 9 or 7 or more consecutive amino acids containing SEQ ID NO: 10 in the amino acid sequence of SEQ ID NO: 1,(3) a polypeptide comprising 34 or more consecutive amino acids containing the polypeptide of (1) or (2) in Immunoglobulin D (IgD),(4) a polypeptide comprising the amino acid sequence of SEQ ID NO: 2,(5) a polypeptide comprising 8 or more consecutive amino acids containing SEQ ID NO: 12 in the amino acid sequence of SEQ ID NO: 2, and(6) a polypeptide comprising 19 or more consecutive amino acids containing the polypeptide of (4) or (5) in Immunoglobulin A (IgA).
  • 17. A pharmaceutical composition for the prevention or treatment of diseases associated with a deficiency or functional abnormality of the target polypeptide, comprising the fusion polypeptide of claim 1.
Priority Claims (1)
Number Date Country Kind
10-2018-0105741 Sep 2018 KR national
CROSS-REFERENCE TO RELATED APPLICATION

This application is a 35 U.S.C. 371 National Phase Entry Application from PCT/KR2019/011409, filed on Sep. 4, 2019 and, designating the United States, which claims the benefit of Korean Patent Application No. 10-2018-0105741 filed on September 5, with the Korean Intellectual Property Office, the disclosures of which are herein incorporated by reference in their entirety. The present application includes a Sequence Listing filed in electronic format. The Sequence Listing is entitled “PCTKR2019011409_SEQ_revised_20210716.txt” created on Jul. 16, 2021 and is 492,292 bytes in size. The information in the electronic format of the Sequence Listing is part of the present application and is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/KR2019/011409 9/4/2019 WO 00