A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The techniques herein relate to an electronic game and communications device and to a console configuration for a portable, handheld electronic game with dual screens. Certain of the illustrative embodiments also relate to a portable game machine including two or more display units, on each of which a three-dimensional game image, generated by a three-dimensional image processing unit, is displayed. The techniques herein further relate to connections between such a console and additional devices including but not limited to memory devices; and to devices such as memory devices that are compatible with such a console.
Portable, handheld game devices are by now well known in the art. See, for example, U.S. Pat. Nos. 6,716,103; 6,743,104; 6,821,204.
In an example embodiment, a portable, handheld electronic game device is provided in a unique console configuration, outfitted and arranged for easy access to various functional features and related aspects of the game device.
Generally, the portable game device in the example embodiment is made up of a main body and a cover body that is pivotally attached to the main body for movement between open and closed positions. Twin, backlit, color liquid crystal displays (LCD's) are provided, one on each of the inner surfaces of both the main body and cover body such that, when the cover body is pivoted over the main body to the closed position, the display screens substantially overlie one another and are hidden from view (and thus protected). Each LCD is a three inch screen that can reproduce true 3-D views, and at least one of the screens also employs touch-sensitive technology for enhanced interaction with associated games. To further enhance the interactive experience, a stylus is provided with the game for activating the touch screen, and a blind bore is provided in the main body for storing the stylus when it is not being used.
The main body of the device is also provided with all of the game control buttons. Most of the control buttons are on the inner face of the main body, on either side of the display screen, along with microphone, recharge, and power indicators. The rearward portion of a peripheral edge surrounding the main body also supports an additional pair of buttons for game control. The peripheral edge of the main body also provides access to various other features and functions of the device. For example, a forward portion of the peripheral edge incorporates a volume control slide, a first game card slot as well as headphone/microphone connectors. The rearward portion of the peripheral edge is provided with, in addition to the control buttons, an external extension connector for connecting an AC adaptor that can be used to either recharge the internal battery or to operate the game device using household power; a wrist strap attachment mechanism; the stylus port; and a second game slot. This second game card slot may, for example, accommodate game cards from other game systems such as other game systems manufactured by the assignee of this application.
In addition to the LCD on the inner face of the cover body, the latter is also provided with a pair of stereo speakers, one on either side of the display screen.
In accordance with a feature of an example embodiment, the portable game machine includes hardware/software capable of simultaneously displaying different three-dimensional images on two display units by using a single three-dimensional image processing unit without causing flicker on the display screens.
Also, another feature of an example embodiment is to make it possible for a portable game machine to include two display units, at least one two-dimensional image processing unit, and a single three-dimensional image processing unit, wherein a game image generated by the two-dimensional image processing unit is displayed on one of the display units and a game image generated by the three-dimensional image processing unit is displayed on the other display unit, and to simultaneously display different three-dimensional game images on the two display units without adding another three-dimensional image processing unit or substantially changing the configuration of the portable game machine.
Example handheld portable game devices and emulators of these handheld portable game devices will now be described in detail in connection with the drawings identified below.
FIGS. 2(a) and 2(b) show an example of a touch panel display structure usable for the example portable game system;
FIGS. 24(a) and 24(b) show example graphics display modes; and
FIGS. 25(a)-25(c) show example alternative compatible implementations.
Overall Exemplary Illustrative System
Referring to
A first display screen 32 is recessed within the upper face 26 of the main body 12 with dimensions of approximately 2½ inches in length and 1⅞ inches in width, yielding a diagonal screen dimension of 3 inches. The screen in the example embodiment is a backlit (e.g., 40 candelas), color liquid crystal display (LCD) with a display resolution of 256×192 dots (aspect ratio 4:3). This screen is touch sensitive and may be activated by a stylus, described further herein. A power button 34 is located in the upper left corner of face 26 and is used to turn the game console on and off. A cross-shaped directional control button 36 is located adjacent and below the power button 34, and is used for game play control.
More specifically, display screen 32 includes a resistive-membrane touch panel that allows coordinates to be obtained in dot units. The touch panel can be operated with a finger or a stylus. The touch panel input data includes x-coordinate (e.g., 8 bits); y-coordinate (e.g., 8 bits); touch determination flag (e.g., 1 bit); and data validity flag (e.g., 2 bits). In the example portable game system, the touch panel must be pressed down with a force that exceeds a specified value, e.g., 80 g, for the location to be detected. The details of the input data for the touch panel are shown below:
FIGS. 2(a) and 2(b) show an example touch panel structure which includes an upper film 902, a lower film 904, transparent conducting membranes 906, 908 and dot spacers 910. As shown in
In the example portable game system, the touch panel structure extends over all or substantially all of the display screen. It is of course possible, if desired, to provide the touch input only over a portion of the display screen.
In the upper right corner of the main body 12, there are side-by-side “start” and “select” buttons 38, 40, respectively, with X/Y/A/B buttons 42 located adjacent and below the “start” and select” buttons. Buttons 38, 40 and 42 are also used for game play control. A microphone 44 (which may, for example, be an omni-directional condenser microphone) is located below the left edge of screen 32 for use with specially designed games or other applications (e.g., voice chat) having a microphone feature. A battery recharge indicator LED 46 and a power indicator LED 48 are also located on the upper face 26, adjacent the lower edge thereof, below the right edge of screen 32.
With reference now especially to
As best seen in
The stylus 71 is a plastic pencil-shaped device with a rounded tip 73 and is used to activate the touch screen 32.
A pair of left, right control buttons (or shoulder buttons) 72, 74 are located on the peripheral edge 30, at the corners where the upper portion 60 of the peripheral edge 30 meets the side portions 76, 78 of the peripheral edge. The location of these buttons and the location of previously described buttons 34, 36 and 42 facilitate manipulation game control by the user's thumbs and index fingers when the game is held with two hands in a natural and intuitive manner.
The lower (or outer) face 28 of the main body is provided with a battery cover 80 (
The cover body 14 also has an upper (or inner) face 82 (
Exemplary External Device Interface
Exemplary system 10 includes external interfaces in the form of slot 64 that can accept a connector to an additional device including but not limited to a game memory. As already noted, external game card slot 58 is sized and adapted to receive a conventional game card designed for the by now well known Nintendo Gameboy Advance System® or any other device compatible therewith. The game slot on system 10 is, as described herein, disposed within an insertion port and designed to receive an insertable memory device such as a non-volatile ROM card, but could accept and/or interface with any of a variety of other types of peripheral or other devices including but not limited to communications adapters (wireless, wired, Ethernet, broadband, etc.), processors (DSPs, microprocessors, graphics processors, etc.), input/output devices (e.g., keyboards, pointing devices, etc.), digital camera devices, printing or other imaging devices, music players or portions thereof, radio receivers, satellite receivers, television receivers, or any other peripheral device imaginable.
An exemplary new game or memory card or other device 100 designed especially for use with this game device is shown in
One exemplary illustrative game or memory card 100 that may be used with system 10 is preferably of molded plastic or other construction and has substantially planar or other upper and lower surfaces 102, 104, respectively, a forward edge 106, rearward edge 108 and side edges 110, 112. The forward end of the upper surface 102 may be formed with a rectangular recess 114 in which a plurality of terminal strips 116 can be located, extending from a rear wall 118 of the recess to the forward edge 106 of the card. The rearward wall 115 of the recess may be substantially perpendicular to the upper and lower surfaces 102, 104 but, as a practical matter, can be sloped by no more than about 3 degrees to facilitate removal of the card from the mold during manufacture of the card. The terminal strips 116 are parallel to each other and are separated by raised ribs 120 that also extend from the rear wall 118 to the forward edge 106. The free ends 122 of the ribs 120 can be chamfered as best seen in
In one specific exemplary illustrative implementation shown in
Notches 128 and 136 may cooperate with components of a “push-push” mechanism inside the game slot 64 to provide controlled, spring-loaded movement of the game card during insertion and ejection.
The opposite forward corner 146 of the card where side edge 112 meets forward edge 106 is defined by a smaller radius than radius 124. Note that the forward surfaces 148, 150 of the card on either side of the recess 114 are also chamfered to substantially the same degree as the chamfer on ribs 120.
Side edge 112 is stepped along its entire length in the upper plane of the card only, as defined by horizontal shoulder 152 that is parallel to upper and lower surfaces 102, 104 and a recessed edge portion shoulder 154 that is parallel to the side edges 110, 112. This shoulder insures correct orientation of the card when inserted into a game system slot.
The rearward edge 108 of the card is substantially uniform in profile from side edge 110 to side edge 112, with both rearward corners 156, 158 rounded by a radii similar to the radius at corner 146.
The dimensions of the card may be matched to the game system entry slot, and in the exemplary embodiment, the card 100 is substantially square, with a length dimension (front-to-back) of 1⅜″, and a width dimension (side-to-side) of 1¼″. Thus, system 10 may define a game slot that closely matches the outside dimensions of the card 100 and into which the card is at least in part inserted. However, other, non-insertable devices could be coupled to the system 10 by inserting a connector portion into the same slot.
When inserted into the game system entry slot, card 100 is electrically connected via the terminal strips 116 to the processing circuitry of the example portable game system (see
More specifically, when card 100 is inserted into the game system entry slot of the example portable game system, the terminal strips 116 electrically contact or mate with corresponding electrical contacts within example portable game system. This action electrically connects the electrical components to the electronics within the example portable game system. The electrical components of card 100 may include any electrical or electronic device, such as a memory device, a processing device, etc. In one example implementation, a ROM is used that stores instructions and other information pertaining to a particular video game. The ROM for one card 100 may, for example, contain instructions and other information for an adventure game while the ROM of another card 100 may contain instructions and other information for a car race game, an educational game, etc. To play a game, a user of the example portable game system need only connect an appropriate card 100 into slot 58—thereby connecting the card's ROM (and any other circuitry it may contain) to the example portable game system. This enables the electronics of the example portable game system to access information contained within the ROM, which information controls the game system to play the appropriate video game by displaying images and reproducing sound as specified under control of the ROM game program information.
Exemplary Illustrative More Detailed Implementation
Furthermore, the CPU 223 is electrically connected to the external memory I/F 226, in which the cartridge 217 is inserted. The cartridge 217 is a storage medium for storing the game program and, specifically, includes a program ROM 217a for storing the game program and a backup RAM 217b for rewritably storing backup data. The game program stored in the program ROM 217a of the cartridge 217 is loaded to the work RAM 224 and is then executed by the CPU 223. In the present embodiment, an exemplary case is described in which the game program is supplied from an external storage medium to the portable game machine 200. However, the game program may be stored in a non-volatile memory incorporated in advance in the portable game machine 200, or may be supplied to the portable game machine 200 via a wired or wireless communication circuit.
The three-dimensional image processing unit 231 is connected to the 3D line buffer 232. The 3D line buffer 232 is a buffer memory for temporarily retaining image data for one scanning line of the first LCD 211 (or the second LCD 212). The image data generated by the three-dimensional image processing unit 231 is stored in this 3D line buffer 232 sequentially by one line.
The 3D line buffer 232 is connected to a capture circuit 233 and an LCD selector (SEL LCD) 235. The capture circuit 233 sequentially reads image data for one line stored in the 3D line buffer 232 and then sequentially stores the read image data in the VRAM 221, which will be described further below, thereby capturing the game image generated by the three-dimensional image processing unit 231.
The capture circuit 233 is connected to a VRAM selector (SEL VRAM) 234. The VRAM 221 is provided with two VRAMs, that is, a first VRAM 221a and a second VRAM 221b. Instead of these two first and second VRAMs 221a and 221b, a single VRAM may be used with its two different storage areas being used as the first VRAM 221a and the second VRAM 221b. The VRAM selector 234 switches an output destination of the capture circuit 233 between the first VRAM 221a and the second VRAM 221b.
The first VRAM 221a and the second VRAM 221b are connected to a VRAM selector (SEL VRAM) 236. The VRAM selector 236 switches a source of data to the two-dimensional image processing unit 237 between the first VRAM 21a and the second VRAM 221b.
The two-dimensional image processing unit 237 is connected to a 2D line buffer 238. As with the 3D line buffer 232, the 2D line buffer 238 is a buffer memory for temporarily retaining image data for one scanning line of the second LCD 212. The image data generated by the two-dimensional image processing unit 237 is stored in this 2D line buffer 238 sequentially by one line.
The 2D line buffer 238 is connected to an LCD selector 235. The LCD selector 235 switches an output destination of the 3D line buffer 232 between the first LCD 211 and the second LCD 212, and an output destination of the 2D line buffer 238 between the first LCD 211 and the second LCD 212. In the present embodiment, the LCD selector 235 performs control such that, when the output of the 3D line buffer 232 is supplied to the first LCD 11, the output of the 2D line buffer 38 is supplied to the second LCD 212, and when the output of the 3D line buffer 232 is supplied to the second LCD 212, the output of the 2D line buffer 238 is supplied to the first LCD 211.
The portable game machine 200 has the above-described structure. Generally, the game image generated by the three-dimensional image processing unit 231 is supplied via the 3D line buffer 232 and the LCD selector 235 to the first LCD 211, while the game image generated by the two-dimensional image processing unit 237 is supplied via the 2D line buffer 238 and the LCD selector 235 to the second LCD 212. As a result, the three-dimensional game image generated by the three-dimensional image processing unit 231 is displayed on the first display screen 211a, while the two-dimensional game image generated by the two-dimensional image processing unit 237 is displayed on the second display screen 212a. However, the present embodiment has a feature in which the above-structured portable game machine 200 is used to display different three-dimensional game images on two display screens, that is, the first display screen 211a and the second display screen 212a. Hereinafter, the operation of the portable game machine 200 according to the present embodiment is described.
The portable game machine 200 alternately performs operations with periods of one frame. Hereinafter, the operation of the portable game machine 200 is described as being divided into a process in an odd-numbered frame and a process in an even-numbered frame. Note that the “odd-numbered frame” and the “even-numbered frame” are merely so called for convenience. In other words, if one frame is assumed to be an odd-numbered frame, frames before and after that frames are even-numbered frames. Conversely, if one frame is assumed to be an even-numbered frame, frames before and after that frames are odd-numbered frames.
In the present embodiment, the three-dimensional image processing unit 231 generates a game image representing a state in a virtual three-dimensional game space captured by virtual cameras different for odd-numbered and even-numbered frames.
Examples of the game screen displayed on the first display screen 211a and the second display screen 212a based on the above-described operation of the portable game machine 200 are illustrated in
As such, in the present embodiment, a real-time image and a captured image are alternately displayed on the first display screen 11a and the second display screen 212a. Then, on the first display screen 211a, a game image representing the state of the virtual three-dimensional game space captured by the first virtual camera is displayed, while on the second display screen 212a, a game image representing the state of the virtual three-dimensional game space captured by the second virtual camera is displayed. Note that, as evident from
With reference to
In
The CPU 223 then determines whether the current frame is an odd-numbered frame (S14).
When the current frame is an odd-numbered frame, the CPU 223 allocates the first LCD 211 as the output destination of the 3D line buffer 232 and the second LCD 212 as the output destination of the 2D line buffer 238 (S15). Furthermore, the CPU 223 allocates the first VRAM 221a as the output destination of the capture circuit 233 (S16), and the second VRAM 221b to the two-dimensional image processing unit 237 (S17). Thereafter, an odd-numbered frame rendering/displaying process (S18) is performed, and then the procedure goes to step S23. Details of the odd-numbered frame rendering/displaying process are described further below.
On the other hand, when the current frame is an even-numbered frame, the CPU 223 allocates the second LCD 212 as the output destination of the 3D line buffer 232 and the first LCD 211 as the output destination of the 2D line buffer 238 (S19). Furthermore, the CPU 223 allocates the second VRAM 221b as the output destination of the capture circuit (S20) and the first VRAM 221a to the two-dimensional image processing unit 237 (S21). Thereafter, an even-numbered frame rendering/displaying process (S22) is performed, and then the procedure goes to step S23. Details of the even-numbered frame rendering/displaying process are described further below.
In step S23, the CPU 223 determines whether the game is over. If the game continues, the procedure returns to step S12. If the game is over, the procedure ends.
Next, the details of the odd-numbered frame rendering/displaying process are described with reference to
First, the geometry engine of the three-dimensional image processing unit 231 converts vertex coordinates (in the world coordinate system) of each polygon in the virtual three-dimensional game space to the two-dimensional projection coordinate system (S32). When conversion of the vertex coordinates of each polygon is completed, an instruction for starting a display process is issued from the GPU 222 to the rendering engine of the three-dimensional image processing unit 231 and the 2D rendering engine of the two-dimensional image processing unit (S33). Upon reception of this instruction, the rendering engine of the three-dimensional image processing unit 231 and the 2D rendering engine of the two-dimensional processing unit concurrently perform their respective processes.
Upon reception of the display process starting instruction, the rendering engine of the three-dimensional image processing unit 231 generates image data for the first one line through a rendering process based on the results of conversions of the vertex coordinates of each polygon, and then stores the generated image data in the 3D line buffer 232 (S34). Then, the image data for one line stored in this 3D line buffer 232 is supplied to the first LCD 211, and is then displayed on the first display screen 211a (S35). Also, the image data for one line stored in the 3D line buffer 232 is stored in a predetermined area of the first VRAM 221a by the capture circuit 233 (S36). Then, after waiting for an H blank timing (horizontal blanking period) in order to establish horizontal synchronization (S37), the rendering engine performs a process similar to the above for the next line. That is, the rendering engine of the three-dimensional image processing unit 231 generates image data for the next one line, and then stores the generated image data in the 3D line buffer 232 (S34). Thereafter, until all lines have been completely processed (that is, until the entire screen has been completely processed), processes of steps S34 through S37 are repeated.
Upon reception of the display process starting instruction, the 2D rendering engine of the two-dimensional image processing unit 237 reads image data for the first one line of the game image stored in the second VRAM 221b, and then stores the read image data in the 2D line buffer 238 (S39). Then, the image data for one line stored in this 2D line buffer 238 is supplied to the second LCD 212, and is then displayed on the second display screen 212a (S40). Then, after waiting for an H blank timing (horizontal blanking period) in order to establish horizontal synchronization (S41), the 2D rendering engine performs a process similar to the above. That is, the 2D rendering engine of the two-dimensional image processing unit 237 reads image data for the next one line from the second VRAM 221b, and then stores the read image data in the 2D line buffer 238 (S39). Thereafter, until all lines have been completely processed (that is, until the entire screen has been completely processed), processes of steps S39 through S41 are repeated.
When all lines have been completely processed by the rendering engine of the three-dimensional image processing unit 231 and the 2D rendering engine of the two-dimensional image processing unit 237, the odd-numbered frame rendering/displaying process ends.
Next, the details of the even-numbered frame rendering/displaying process are described with reference to
First, the geometry engine of the three-dimensional image processing unit 231 converts vertex coordinates (in the world coordinate system) of each polygon in the virtual three-dimensional game space to the camera coordinate system (S51). Furthermore, the geometry engine of the three-dimensional image processing unit 231 converts these vertex coordinates (in the camera coordinate system) to the two-dimensional projection coordinate system (S52). When conversion of the vertex coordinates of each polygon is completed, an instruction for starting a display process is issued from the GPU 222 to the rendering engine of the three-dimensional image processing unit 231 and the 2D rendering engine of the two-dimensional image processing unit (S53). Upon reception of this instruction, the rendering engine of the three-dimensional image processing unit 231 and the 2D rendering engine of the two-dimensional processing unit concurrently perform their respective processes.
Upon reception of the display process starting instruction, the rendering engine of the three-dimensional image processing unit 231 generates image data for the first one line through a rendering process based on the results of conversions of the vertex coordinates of each polygon, and then stores the generated image data in the 3D line buffer 232 (S54). Then, the image data for one line stored in this 3D line buffer 232 is supplied to the second LCD 212, and is then displayed on the second display screen 212a (S55). Also, the image data for one line stored in the 3D line buffer 232 is stored in a predetermined area of the second VRAM 221b by the capture circuit 233 (S56). Then, after waiting for an H blank timing (horizontal blanking period) in order to establish horizontal synchronization (S57), the rendering engine performs a process similar to the above for the next line. That is, the rendering engine of the three-dimensional image processing unit 231 generates image data for the next one line, and then stores the generated image data in the 3D line buffer 232 (S54). Thereafter, until all lines have been completely processed (that is, until the entire screen has been completely processed), processes of steps S54 through S7 are repeated.
Upon reception of the display process starting instruction, the 2D rendering engine of the two-dimensional image processing unit 237 reads image data for the first one line of the game image stored in the first VRAM 221a, and then stores the read image data in the 2D line buffer 238 (S59). Then, the image data for one line stored in this 2D line buffer 238 is supplied to the first LCD 211, and is then displayed on the first display screen 211a (S60). Then, after waiting for an H blank timing (horizontal blanking period) in order to establish horizontal synchronization (S61), the 2D rendering engine performs a process similar to the above. That is, the 2D rendering engine of the two-dimensional image processing unit 237 reads image data for the next one line from the first VRAM 221a, and then stores the read image data in the 2D line buffer 238 (S59). Thereafter, until all lines have been completely processed (that is, until the entire screen has been completely processed), processes of steps S59 through S61 are repeated.
When all lines have been completely processed by the rendering engine of the three-dimensional image processing unit 231 and the 2D rendering engine of the two-dimensional image processing unit 237, the even-numbered frame rendering/displaying process ends.
As described above, according to the portable game machine 200 of the present embodiment, by using the single three-dimensional image processing unit 231, different three-dimensional game images can be simultaneously displayed on the first LCD 211 and the second LCD 212 without flicker on the display screens.
As described above, when generating a normal two-dimensional game image, the two-dimensional image processing unit 237 disposes a two-dimensional image representing a character on the virtual screen called a “sprite” and a two-dimensional image representing a background on the virtual screen called a “screen”, and then synthesizes these virtual screens to generate a game image to be eventually displayed. There might be the case where a plurality of “screens” are present.
The capture circuit 233 stores the game image captured in each odd-numbered frame in the sprite area 221c of the VRAM 221 and the game image captured in each even-numbered frame in the screen area 221d of the VRAM 221. When generating a normal two-dimensional game image, the two-dimensional image processing unit 237 generates a two-dimensional game image formed by synthesizing the “sprite” and the “screen” and then outputs the generated image to the 2D line buffer 238. In the exemplary modification, however, in each odd-numbered frame, the two-dimensional image processing unit 237 generates a game image formed of only the “screen”, and then outputs the generated game image via the 2D line buffer 238 to the second LCD 212. In each even-numbered frame, the two-dimensional image processing unit 237 generates a game image formed of only the “sprite”, and then outputs the generated game image via the 2D line buffer 238 to the first LCD 211. As a result, game images similar to those shown in
As such, selecting a desired virtual screen from a plurality of virtual screens for display is a function originally provided to the two-dimensional image processing unit 237. Therefore, no special function has to be added to the two-dimensional image processing unit. Also, an additional storage area for temporarily storing the game image captured by the capture circuit 233 is not required, thereby suppressing cost required for the portable game machine 200.
An example geometry engine has the following features:
An example rendering engine has the following features:
With reference to
For games that utilize only one LCD, the non-used LCD may be disabled.
Thus, on the Display Output A side, there are modes that display the bitmap data in the VRAM and main memory in addition to the mode that displays the images generated by the graphics circuit:
On the Display Output B side, the only mode selection is graphics display ON or OFF.
The portable game machine includes various registers used in the implementation of the above-described functionalities, as well as other functionalities. These registers are in the address space of the CPU core which, for example, be an ARM9 core.
The capture data format is shown in
The calculation of the data to write is as follows.
1. For data captured from source A:
CAP=Ca
Capture source A's alpha value is used for the alpha value.
2. For data captured from source B:
CAP=Cb
Capture source B's alpha value is used for the alpha value.
3. For capturing data blended from sources A and B:
CAP=[(Ca×Aa×EVA)+(Cb×Ab×EVB)]/16
The alpha value is one when EVA is non-zero and capture source A's alpha value is one, or when EVB is non-zero and capture source B's alpha value is one. In all other circumstances, the alpha value is zero.
Determined as shown below:
When a conflict occurs between access to the display circuit VRAM and access to VRAM from the CPU, the display circuit VRAM access takes precedence. Because the dot clock of the LCD controller is ⅙ of a cycle of the image processing clock and the system clock, the timing of the LCD controller to access the VRAM is once every six cycles. If the VRAM of the capture is being displayed while display capturing, the frequency at which the display circuit accesses the VRAM is doubled, and the VRAM is accessed with a timing of once every three cycles. With this timing, when simultaneously accessing from the CPU, the CPU access must wait one cycle.
Example Emulator System
Some or all of the above-described system components could be implemented as other than the hand-held system configurations described above.
An emulator system, for example, might include software and/or hardware components that emulate or simulate some or all of hardware and/or software components of the system for which the application software was written. For example, the emulator system could comprise a general-purpose digital computer such as a personal computer, which executes a software emulator program that simulates the hardware and/or firmware of the system. The emulator could also comprise a personal digital assistant (PDA) that simulates the hardware and/or firmware of the system. An emulator may execute the game software so that a particular game functions and/or appears somewhat differently from how it functions and/or appears on its intended platform. Thus, the emulator may show a color game in monochrome or a play a game without its accompanying sound. Emulation as used herein is intended to include emulation that results in these and other such differences in function and appearance.
Some general purpose digital computers (e.g., IBM or Macintosh personal computers and compatibles) are equipped with 3D graphics cards that provide 3D graphics pipelines compliant with DirectX or other standard 3D graphics command APIs. They may also be equipped with stereophonic sound cards that provide high quality stereophonic sound based on a standard set of sound commands. Such multimedia-hardware-equipped personal computers running emulator software may have sufficient performance to approximate the graphics and sound performance of the system. Emulator software controls the hardware resources on the personal computer platform to simulate the processing, graphics, sound, peripheral and other capabilities of the portable game system platform for which the game programmer wrote the game software. Similarly, PDAs and other hand-held communication devices such as mobile telephones running emulator software may have sufficient performance to approximate the graphics and sound performance of the system.
U.S. Pat. No. 6,672,963 (the contents of which are incorporated herein in their entirety) discloses a software emulator that maintains high-quality graphics and sound in real time across a wide variety of video games and other applications. The emulator disclosed in the '963 patent achieves this through a unique combination of features and optimizations including, for example:
It will be recognized that some or all of the various features and optimizations described in the '963 Patent are applicable to emulate the example portable game systems described herein.
As described below, an emulator for the example portable game system described above may run on a hand-held computing system such as a PDA or a hand-held communication device such as a mobile telephone. Such devices typically have a single display screen and thus the emulator will need to determine how to present Display Output A and Display Output B (see, e.g.,
For example, the emulator could effectively divide the single display screen into two display areas and respectively provide Display Output A and Display Output B in each of these display areas. These display areas need not be the same size and the emulator may provide the “main” display output to a larger one of the display areas.
In still other instances, the emulator may provide only one of the Display Outputs A and B to the screen of the hand-held computing system or hand-held communication device. The one output that is provided to the screen need not be the same throughout the game. Thus, for example, Display Output A may be provided at some times and Display Output B may output at other times.
In addition, the display area on the single display screen for Display Output A and the display area on the single display screen for Display Output B may be oriented differently (e.g., one horizontally oriented and the other vertically oriented). This may facilitate display of the two Display Outputs at the same time.
In other instances, one of the Display Outputs A and B may be provided to the screen while the other one is made to be accessible upon supplying a predetermined input or inputs to the hand-held computing system or hand-held communication device. Thus, for example, a player may provide a predetermined input (such as a key press or a touch screen input) to switch between one Display Output and the other.
In addition, as described above, one of the display screens of the example portable game system is touch-sensitive. If the display screen of the hand-held computing system or hand-held communication device is divided into two display areas, the emulator may configure one of the display areas to receive touch inputs during game play. Preferably, this one of the display areas would be the display area displaying the output that would be displayed on the touch screen of the example portable game system. Touch inputs to the other one of the display areas would preferably be ignored.
If the emulator outputs only one of Display Output A and Display Output B at a time to the single screen display of the PDA or hand-held communication device, touch inputs may be supplied by the player when the Display Output output to the touch screen of the example portable game system is displayed. If this screen is subsequently switched to the other of the two screens, touch inputs may be ignored.
Because there will likely be differences between the size of the touchscreen of the example portable game system and the size of the screen of the hand-held computing system or hand-held communication device, the emulator will need to appropriately scale the touch screen inputs.
An emulator of the example portable game systems may implement some or all of the following:
As one example, in the case where the software is written for execution on a platform using a specific processor and the host 1201 is a personal computer using a different (e.g., Intel) processor, emulator 1203 fetches one or a sequence of binary-image program instructions from storage medium 62 and converts these program instructions to one or more equivalent Intel binary-image program instructions. The emulator 1203 also fetches and/or generates graphics commands and audio commands and converts these commands into a format or formats that can be processed by hardware and/or software graphics and audio processing resources available on host 1201. As one example, emulator 1303 may convert these commands into commands that can be processed by specific graphics and/or or sound hardware of the host 1201 (e.g., using standard DirectX, OpenGL and/or sound APIs).
An emulator 1303 used to provide some or all of the features of the video game system described above may also be provided with a graphic user interface (GUI) that simplifies or automates the selection of various options and screen modes for games run using the emulator. In one example, such an emulator 1303 may further include enhanced functionality as compared with the host platform for which the software was originally intended.
A number of program modules including emulator 1303 may be stored on the hard disk 1211, removable magnetic disk 1215, optical disk 1219 and/or the ROM 1252 and/or the RAM 1254 of system memory 1205. Such program modules may include an operating system providing graphics and sound APIs, one or more application programs, other program modules, program data and game data. A user may enter commands and information into personal computer system 1201 through input devices such as a keyboard 1227, pointing device 1229, microphones, joysticks, game controllers, satellite dishes, scanners, or the like. These and other input devices can be connected to processing unit 1203 through a serial port interface 1231 that is coupled to system bus 1207, but may be connected by other interfaces, such as a parallel port, game port, Fire wire bus or a universal serial bus (USB). A monitor 1233 or other type of display device is also connected to system bus 1207 via an interface, such as a video adapter 1235.
System 1201 may also include a modem 1154 or other network interface means for establishing communications over a network 1152 such as the Internet. Modem 1154, which may be internal or external, is connected to system bus 123 via serial port interface 1231. A network interface 1156 may also be provided for allowing system 1201 to communicate with a remote computing device 1150 (e.g., another system 1201) via a local area network 1158 (or such communication may be via wide area network 1152 or other communications path such as dial-up or other communications means). System 1201 will typically include other peripheral output devices, such as printers and other standard peripheral devices.
In one example, video adapter 1235 may include a 3D graphics pipeline chip set providing fast 3D graphics rendering in response to 3D graphics commands issued based on a standard 3D graphics application programmer interface such as Microsoft's DirectX 7.0 or other version. A set of stereo loudspeakers 1237 is also connected to system bus 1207 via a sound generating interface such as a conventional “sound card” providing hardware and embedded software support for generating high quality stereophonic sound based on sound commands provided by bus 1207. These hardware capabilities allow system 1201 to provide sufficient graphics and sound speed performance to play software stored in storage medium 1305.
One or more speakers 1517 are connected to system bus 1507 via an audio interface 1519 to output sounds. A communication circuit 1521 is connected to system bus 1507 via a communications interface 1523 to permit communication with other devices. By way of illustration, communication circuit 1521 may, for example, be a modem and communications interface 1523 may be a serial port. Generally speaking, communication circuit 1521 may be configured for wired or wireless communication in accordance with any conventional communication protocol. A power supply 1525 provides power for the components of system 1201′.
The contents of any technical documents or patent documents referenced above are incorporated herein in their entirety.
As one embodiment of the present invention, the portable game machine having a hardware structure as shown in
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-106874 | Mar 2004 | JP | national |
This application is a continuation-in-part of application Ser. No. 11/111,985, filed Apr. 22, 2005, which is a continuation-in-part of application Ser. No.10/921,957, filed on Aug. 20, 2004. The contents of each of these applications are incorporated herein in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11111985 | Apr 2005 | US |
Child | 11127297 | May 2005 | US |
Parent | 10921957 | Aug 2004 | US |
Child | 11111985 | Apr 2005 | US |