Gas compression systems, and more particularly, internal recirculating centrifugal gas compression systems.
In a traditional centrifugal gas compression system, fluid and gas are moved from an inner area to an outer area of a rotating drum through channels of some type, typically tubes. As the liquid and gas move in this manner the gas is compressed and separated from the liquid as it reaches the outer area.
A gas compressor comprising a substantially hollow cylindrical drum having a first end and second end opposite the first end, and a substantially hollow shaft secured to the first and second ends of the drum. The drum holds a volume of fluid and may be configured to rotate around the fixed shaft. During rotation, the fluid volume forms an annular lake due to centrifugal forces, and the fluid is at a first level from the interior walls of the drum.
An eductor assembly comprises a plurality of eductors secured to the fixed shaft through an eductor support rod positioned substantially orthogonally to the fluid flow. The eductors are positioned within the drum within the annular lake and configured to receive a flow of fluid. The fluid velocity creates a suction that draws air into a channel formed along the fixed shaft between an air inlet and the eductors. The gas mixes with the fluid within the eductor and becomes compressed. Upon exiting the eductors, the gas and liquid separate, with the liquid rejoining the annular lake and the gas accumulating in a central portion of the drum. A gas outlet harvests the compressed gas and removes it from the drum.
A plurality of pitot tubes may be included in the drum to manage the volume of fluid within the drum. Removed fluid may also be cooled and reintroduced to the drum to manage temperature. In various embodiments the fluid may be water and the gas may be air, but other fluids and gases are equally applicable.
In embodiments, the eductors may be linear or non-linear to optimize fluid flow. The eductors may have a curved and/or streamlined external body to reduce external drag. In some embodiments, a frontal inlet of the eductor is not parallel to a plane defined by an outlet of the eductor.
In embodiments, the eductors may be located mostly or entirely in the central portion of the drum and (where necessary) fed pressurized liquid via a pitot tube or similar system configured to harvest liquid from the annular lake.
The drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure.
Devices, systems, and methods are described herein for compressing gas through centrifugal action of a compressor drum containing a liquid and a gas.
One or more inlets 3 may be positioned on the fixed shaft 2 and may allow gas and/or fluid to enter the compressor drum 1. One or more outlets 4 and 5 may be positioned along the fixed shaft on an opposite end of the drum and may allow air and/or fluid to exit. In embodiments, liquid can also be introduced through inlet 3, which can double as gas inlet. Inlets 3 may be located on one or both sides of the compressor drum 1. One or more fluid outlets 4 may also be located along the fixed shaft. In embodiments, the fluid outlets may be connected to one or more pitot tubes 10 (shown in
The interior of the fixed shaft may be substantially hollow, and comprise one or more holes, tubing, and pathways to an interior of the compressor drum 1. For example, the compressed gas outlet 5 may run along an interior section of the fixed shaft 2 to provide a pathway to the compressor drum's interior. One or more compressed gas pathways may comprise holes 9 arranged on an outer portion of the fixed shaft to draw in compressed gas within the drum 1 and transport the gas to an external area for use or storage. Similarly, one or more liquid outlets 4 can comprise tubing running along the interior of the fixed shaft and connect at least one pitot tube 10 within the compressor drum to an external area. The liquid outlets, as further discussed below, can assist in maintaining water levels to desired level and enable implementation of a cooling system.
One or more pitot tubes may be provided within the compressor drum to assist in maintaining or adjusting the fluid level to a desired amount. For example, the pitot tubes may make it possible to remove fluid once the eductors are fully submerged. Similarly, the pitot tubes can indicate when a fluid level is too high or too low and provide information regarding the pressure within the compressor drum.
It will be appreciated that the number, position, and orientation of the eductors and pitot tubes can vary depending on one or more considerations, including but not limited to a size, shape, or number of eductors, the water flow path during rotation of the compressor drum, potential interference between neighboring eductors, and other cooling, cost, efficiency, and manufacturing considerations.
In embodiments, the level of fluid (C) within the drum may be adjusted such that the eductors are fully submerged during rotation of the drum 1. The fluid level (C) can, as an example, be increased during operation by injecting and/or spraying fluid into one or more air inlets 3 and decreased by removing liquid through the pitot tubes 10. The fluid level may be automatically adjusted through a control system and one or more sensors (both not shown) measuring characteristics of the gas compression operation.
Upon exiting the eductors, the gas and liquid become separated, due to centrifugal forces and differing densities between the gas and liquid. The denser liquid gets forced towards the interior wall of the rotating drum, where it may rejoin the annular lake, while the gas accumulates in the central portion of the chamber, represented by area (E). As the amount of gas increases in the central portion (E), the pressure within the drum increases and further compresses the gas. Gas can continue being introduced until a desired pressure is reached, at which point the compressed gas may be harvested through the compressed air outlet 5.
During the compression operation, the gases experience a nearly isothermal compression, as the liquid absorbs the corresponding heat of compression from the gas. This results in an increased temperature of the liquid. As liquid flows through and around the eductors, the friction produces additional heat, which is also absorbed by the fluid and further increases its temperature. To limit the operating temperature of the compression system, a portion of the heated liquid in the annular lake may be drawn out of the compressor drum 1 through one or more pitot tubes 10, and colder liquid can be introduced, e.g., injected or sprayed into the air inlets 3. In embodiments, the heated liquid may be directed to a cooling loop and reintroduced into the compressor drum.
In addition, any of a number of eductors, pitot tubes, and sets of either eductors or pitot tubes, may extend from the fixed shaft in variety of arrangements to optimize gas recovery and efficiency. Arrangements may also depend, for example, on one or more design characteristics including but not limited to size, cost, and manufacturing considerations.
With respect to the eductor of
Suction chamber 16 utilizes the pressure drop to introduce gas into the system. An eductor suction inlet 13 may be located within the eductor support rod 8 and attached substantially orthogonal to the suction chamber 16, however the position of the eductor support inlet may vary to optimize an amount of gas drawn in. A decrease in pressure from the nozzle creates a suction within the suction chamber 16 and draws gas through the suction inlet 13 from a source external to the compressor drum. In particular, shear forces within the suction chamber 16 cause a momentum transfer from the flowing fluid to the gas and creates a suction. As discussed above, the suction inlet 13 is part of a channel running through the support rod 8 and fixed shaft 2 to introduce gas into the eductors and the compressor drum 1.
After entering the suction chamber 16, the uncompressed gas enters a mixing tube 17, where the gas and fluid mix. In embodiments, as noted above, the mixing tube 17 may have a greater width than the nozzle, be substantially linear, and run along a significant length of the eductor. A divergent section 18 may follow the mixing tube 17. In this region, the gas may be partially compressed due to a pressure increase and interactions with the fluid, which may be an incompressible fluid, such as water. From there the fluid and gas mixture exits the eductor and enters the interior of the compressor drum.
An inlet eductor can greatly increase the gas flow into the compressor drum and increase the volume of gas available for compression operations. A greater compressor inlet pressure, for example, results in a greater gas flow and can reduce the work requirement for compression operations within the drum. It will be appreciated that any of plurality of sized eductors, nozzle sizes, etc., may be incorporated to achieve an ideal gas flow according to one or more desired characteristics of the system. In addition, an eductor inlet booster may be advantageous in various compressor systems, including but not limited to cassette systems, eductor-based systems, and other centrifugal compressors.
It will be understood that various aspects or details of the invention(s) may be changed without departing from the scope of the disclosure and invention. It is not exhaustive and does not limit the claimed inventions to the precise form disclosed. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation. Modifications and variations are possible in light of the above description or may be acquired from practicing the invention. The claims and their equivalents define the scope of the invention(s).
This application claims benefit under 35 U.S.C. § 119(e) of Provisional U.S. Patent Application No. 62/896,849, filed Sep. 6, 2019, the contents of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
928775 | Mathis | Jul 1909 | A |
2260600 | Clark | Oct 1941 | A |
3240003 | Stroup et al. | Mar 1966 | A |
4027993 | Wolff | Jun 1977 | A |
4626176 | Cole | Dec 1986 | A |
6713028 | Oklejas, Jr. | Mar 2004 | B1 |
11209023 | Duchateau | Dec 2021 | B2 |
20100270223 | Arnaud | Oct 2010 | A1 |
20150023807 | Cherry et al. | Jan 2015 | A1 |
20200277970 | Duchateau et al. | Sep 2020 | A1 |
Entry |
---|
European Patent Application No. 20861271.3; Extended Search Report; dated Aug. 25, 2022; 8 pages. |
International Patent Application No. PCT/US2020/049576; Int'l Search Report and the Written Opinion; dated Feb. 2, 2021; 15 pages. |
International Patent Application No. PCT/US2020/049576; Int'l Preliminary Report on Patentability; dated Mar. 17, 2022; 8 pages. |
Number | Date | Country | |
---|---|---|---|
20210071687 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62896849 | Sep 2019 | US |