This application is based upon, claims the benefit of priority of, and incorporates by reference the contents of Japanese Patent Application No. 2005-036711 filed on Feb. 14, 2005.
The present invention relates to a gas detector that uses infrared light and a method of detecting gas concentration. Specifically the present invention relates to an infrared gas detector that uses an infrared light source to emit infrared light and an infrared sensor that detects the concentration of a target gas by using light absorption characteristics that are determined when the infrared light propagates through the target gas.
For example, JP-A-2001-228086 discloses an infrared gas detector, which contains an infrared light source and an infrared sensor detecting infrared light and detects the concentration of a target gas by irradiating the gas with infrared light for detecting the absorption characteristics of infrared light.
The infrared gas detector 90 primarily contains a gas cell 2 to which a target gas to be measured is supplied, a light source 3 located inside the gas cell 2, a multi-wavelength selection filter 4, which permits infrared light of different wavelengths to pass, and an infrared sensor 5 in which the infrared sensing elements 5a and 5b are formed. The multi-wavelength selection filter 4 and the infrared sensor 5 are arranged to be mutually opposite with a broadband band pass filter 6 located therebetween. The broadband band pass filter 6 and the infrared sensor 5 are integrally packaged. The infrared sensor 5 is fixed to the gas cell 2. The multi-wavelength selection filter 4 is provided with a fine control screw 7, and by turning the screw 7, the position of the filter 4 with respect to the infrared sensor 5 is finely adjusted.
As the light source 3 for irradiating infrared light, a heat source, such as an incandescent electric bulb with a broad radiation wavelength, is used in the conventional infrared gas detector 90.
In the infrared gas detector 90 of
However, in the case of the above structure, the multi-wavelength selection filter 4 is used, and thus the detector is relatively large. Moreover, since the infrared light source 3 always emits light having a continuous broad radiation wavelength that includes a wavelength band outside the detection range, the device is inefficient. Therefore, it is not suitable when gas to be measured is restricted to a specific gas.
In view of the foregoing, it is an object of the present invention to provide an infrared gas detector that is relatively small.
Another object of the present invention is to provide an efficient infrared gas detector.
Still another object of the present invention is to provide a gas detector that is suitable when the gas to be measured is restricted to a specific gas.
An infrared gas detector according to a first aspect of the invention includes an infrared light source emitting infrared light of a specific wavelength, i.e., a narrow radiation wavelength band, an infrared sensor detecting the infrared light emitted from the infrared light source, and a gas cell accommodating the infrared light source and the infrared sensor therein.
Since the infrared light emitted from the infrared light source has the specific wavelength, i.e., a narrow radiation wavelength band, the energy efficiency is improved as compared with the conventional infrared gas detector that uses the incandescent electric bulb as the infrared light source.
According to a second aspect, the invention is characterized by using a light-emitting diode (LED) or a semiconductor laser as the infrared light source. An LED and a semiconductor laser are light emitting elements with a narrow radiation wavelength band. Moreover, the LED and the semiconductor laser are small light emitting elements, and therefore, the infrared light source and the infrared sensor may be easily accommodated in the same package, i.e., gas cell, and the infrared gas detector may be miniaturized.
According to a third aspect, the invention is characterized by using, as the infrared light source, a light-emitting diode (LED) or a semiconductor laser that has a narrow radiation wavelength band substantially coincident with a wavelength region that is absorbed by a target gas to be measured. Such an infrared gas detector is suitable when the target gas to be measured is restricted to a specific gas. Furthermore, an infrared wavelength selection filter may not be necessary, which is advantageous for miniaturization.
According to a fourth aspect, the invention is characterized by using, as the infrared light source, a plurality of light-emitting diodes (LEDS) or semiconductor lasers that have infrared radiation wavelength peaks different from each other. By doing so, it is possible to measure a plurality of classes of gasses and to provide a reference light. In this case, it may be desirable to integrate or mount the plural LEDs or semiconductor lasers into single package for the purpose of miniaturization.
When a plurality of light-emitting diodes (LEDS) or semiconductor lasers for having two or more infrared radiation wavelength peaks are used, one of which may be used as the above-mentioned reference light, which is not absorbed by the measured gas. This makes it possible to monitor the luminescence intensity of the infrared light source, and a highly precise gas concentration measurement may be attained.
Moreover, when the infrared light source is structured to have two or more infrared radiation wavelength peaks, it may be preferable for a voltage applied to the infrared light source to be time-shared in order to emanate the light having different infrared radiation wavelength peaks alternately. This makes it possible for one infrared sensor to accomplish both the measurement of a plurality of classes of gasses and the measurement using the reference light.
Further, using an LED or a semiconductor laser as the infrared light source makes it possible to measure a combustible gas, since these sources infrared light at low temperature, unlike a conventional infrared gas detector that uses a heat source such as an incandescent electric bulb or a heater.
The above and other objects, features and advantages of the present invention will become more apparent from the following description of the preferred embodiments given with reference to the attached drawings, wherein:
Preferred embodiments according to the present invention will be described hereunder with reference to the accompanying drawings.
A light-emitting diode (LED) or a semiconductor laser is employed as the infrared light source 10 in the infrared gas detector 100. The LED and the semiconductor laser are well known as light emitting elements with a narrow radiation wavelength band, and may constitute an infrared light source that emits light of a single wavelength. Moreover, as the infrared sensor 20, a well-known semiconductor infrared sensor in which a semiconductor type infrared sensing element is formed on a semiconductor substrate may be used, for example.
As apparent from
The light from an LED is also high in directivity as compared with the light from a conventional heat source such as an incandescent electric bulb. In a case where a semiconductor laser is used as the infrared light source 10, the radiated light may be a beam that has one wavelength without variation, and therefore the directivity is sharper than that of LEDs, which have certain peak width in the radiation spectrum as shown in
Since the infrared light emitted from the infrared light source 10, i.e., the LED or the semiconductor laser, has a narrow radiation wavelength band or a specific single wavelength, the energy efficiency is improved as compared with the conventional infrared gas detector (
Also, since the LED and the semiconductor laser are small, the infrared light source 10 and the infrared sensor 20 may be easily accommodated in the same package 30, i.e., gas cell, as shown in
Using as the infrared light source 10 the light-emitting diode (LED) or the semiconductor laser makes it possible to easily make the wavelength thereof coincident with a wavelength region that is absorbed by the measured target gas. Therefore, the infrared gas detector 100 may be suited for measuring only one class of gas, particularly for measuring a specific gas. Furthermore, the infrared wavelength selection filter 4 in
Further, using the LED or the semiconductor laser as the infrared light source 10 makes it possible to measure a combustible gas, since, unlike the light source of the conventional infrared gas detector 90 of
Modifications of the present invention will be described below. An infrared light source may be constituted by using a plurality of light-emitting diodes (LEDs) or semiconductor lasers that have infrared radiation wavelength peaks different from each other. By doing so, it may be possible for the infrared light source to have two or more infrared radiation wavelength peaks, which is suited to measure a plurality of classes of gasses and to measure using a reference light. In this case, it may be desirable to integrate or mount the plural LEDs or semiconductor lasers into single package for miniaturization.
In an infrared gas detector 101 of
In the infrared gas detectors 101 and 102 of
As described above, in case the infrared light source 11, 12 has two or more infrared radiation wavelength peaks, the resultant infrared gas detector 101, 102 becomes suitable to measure a plurality of classes of gasses and to measure using a reference light.
That is to say, when a plurality of light-emitting diodes (LEDs) or semiconductor lasers is used for producing two or more infrared radiation wavelength peaks, one of the light sources may be used as a reference light, which is not absorbed by the measured gas. This makes it possible to monitor the luminescence intensity of the infrared light source 11, 12, and a highly precise gas concentration measurement may be achieved. On the other hand, if a plurality of classes of gasses is measured, the infrared light source 11, 12 may be structured so that the infrared light emitted from the LEDs or semiconductor lasers has wavelengths substantially coincident with wavelength regions that are absorbed by the two or more target gasses.
Moreover, when the infrared light source 11, 12 is structured to have two or more infrared radiation wavelength peaks as in
While the invention has been described with reference to preferred embodiments thereof, it is to be understood that the invention is not limited to the preferred embodiments and constructions. The invention is intended to cover various modifications and equivalent arrangements. In addition, the various combinations and configurations, which are preferred, other combinations and configurations, including more, less or only a single element, are also within the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2005-036711 | Feb 2005 | JP | national |