Gas discharge lamps are used in a wide variety of applications to emit radiation falling within a defined band width. Radiation is emitted by the lamp by capacitively exciting a working gas retained within the lamp with a pair of excitation electrodes diametrically positioned on opposite sides of the lamp. One such gas discharge lamp is described in U.S. Pat. No. 6,646,444, the disclosure of which is incorporated herein by reference. Alternatively, the working gas can be inductively excited. As disclosed in U.S. Pat. No. 6,646,444, a preferred working gas is Krypton.
In order to maintain proper performance of a gas discharge lamp, the working gas needs to remain relatively pure. Contamination of the working gas within the lamp, such as from residual gases remaining within the lamp during manufacture or gradual release of adsorbed gases into the lamp, decreases operability and performance.
It is customary to incorporate a getter into gas discharge lamps in order to reduce or eliminate contamination gases within the lamp. Getters function by chemically combining with or adsorbing contaminant gases, thereby preventing them from interfering with excitation of and emissions from the working gas.
Getters, typically a metal foil such as titanium, are highly susceptible to oxidative degradation if heated while exposed to a high concentration of oxygen such as found in the atmosphere. Unfortunately, typical methods of constructing gas discharge lamps subject the getter incorporated into the lamp to temperatures in excess of 300 to 500° C. while they remain exposed to the atmosphere, resulting in degradation of the getter and loss of both performance and useful lifespan of the lamp.
Accordingly, a substantial need exists for an easy, inexpensive and reliable method of incorporating a getter into a gas discharge lamp without oxidative deactivation of the getter.
A first aspect of the invention is a gas discharge lamp, such as an ultraviolet lamp. The lamp includes (a) a housing, preferably glass, defining a longitudinal axis and containing a gas, preferably krypton, sealed within the housing, (b) an ultra-violet transparent window through a first longitudinal end of the housing, and (c) a longitudinally extending strip of getter, preferably titanium, within the housing.
The gas discharge lamp preferably includes a pair of metal excitation electrodes diametrically positioned about the longitudinal axis on or within the housing.
A second aspect of the invention is a photoionization sensor that includes an ultraviolet gas discharge lamp according to the first aspect of the invention.
A third aspect of the invention is a method of constructing a gas discharge lamp. The method includes the steps of (i) obtaining a glass tube having open first and second longitudinal ends and a longitudinally extending bore, (ii) constricting the glass tube intermediate the first and second longitudinal ends of the tube so as to divide the bore into a first chamber proximate the first longitudinal end of the tube and a second chamber proximate the second longitudinal end of the tube with the chambers in fluid communication with one another via a passageway through the constriction, (iii) attaching an ultraviolet transparent window to the tube over the open first longitudinal end of the tube, (iv) inserting a strip of getter into the first chamber from the second longitudinal end of the tubing, (v) purging the first chamber with a noble gas, and (vi) heating the tube at the constriction to detach the first chamber from the second chamber and seal the constricted end of the first chamber.
a is a cross-sectional side view of a glass tube used in construction of the invention shown in
b is a cross-sectional side view of the glass tube shown in
c is a cross-sectional side view of the constricted glass tube shown in
d is a partial cross-sectional side view of the windowed and constricted glass tube shown in
e is a side view of the getter-containing windowed and constricted glass tube during thermal separation of the tube.
As utilized herein, including the claims, the phrase “aspect ratio” means the ratio of length to the larger of width or thickness.
As utilized herein, including the claims, the phrase “high aspect ratio” means an aspect ratio of greater than 5:1.
Referring to
The housing 20 is preferably constructed of glass. A preferred ultra-violet transparent window 30 is a cap constructed from magnesium fluoride crystals. The getter 40 is preferably constructed from an oxidizable metal such as titanium or a sintered getter alloy. The electrodes 50 are preferably attached to the outside surface of the housing 20. The working gas 60 is preferably a noble gas, most preferably krypton. Hydrogen can also be used as the working gas.
The getter 40 is a longitudinally elongated strip, preferably having a high aspect ratio of longitudinal length to width. Use of a getter strip 40 with a high aspect ratio allows the getter strip 40 to be inserted into the chamber 29 of the housing 20 through the constricted second longitudinal end 22 of the housing 20 after the ultraviolet transparent window 30 has been attached to the housing 20. The getter strip 40 is configured and arranged within the housing 20 so that the long dimension of the getter strip 40 (i.e., longitudinal length) extends longitudinally A within the housing 20. The getter strip 40 is preferably sized so that when the first longitudinal end 41 of the getter strip 40 touches the ultraviolet transparent window 30 on the first longitudinal end 21 of the housing 20, the second longitudinal end 42 of the getter strip 40 extends into the constricted second longitudinal end 22 of the housing 20. The second longitudinal end 42 of the getter strip 40 is preferably embedded within the housing 20 to fix the position of the getter strip 40 within the chamber 29.
The lamp 10 can be constructed by a method which prevents oxidative degradation of the getter strip 40. Referring to
The first chamber 129a is preferably purged with working gas 60 by evacuating the gaseous content of the chamber 129a (e.g., pulling a vacuum) and then filling the evacuated chamber 129a with working gas 60.
By dividing the tubing 120 after purging the first chamber 129a, oxidative degradation of the getter strip 40 is avoided as the getter strip 40 is not exposed to atmospheric oxygen while the tube 120 is heated.
The getter strip 40 is preferably fixed within the first chamber 129a by embedding the second longitudinal end portion 42 of the getter strip 40 within the constricted end of the first chamber 129a during heating of the constriction 123 on the glass tube 120 to separate the first chamber 129a from the second chamber 129b.
This application claims the benefit of U.S. Provisional Application No. 61/497,762, filed Jun. 16, 2011.
Number | Date | Country | |
---|---|---|---|
61497762 | Jun 2011 | US |