Not Applicable
Not Applicable.
This disclosure relates to the field of pumps used to lift fluid from subsurface wells. More particularly, the disclosure relates to well pumps operated by pressurized gas.
Some subsurface oil and gas producing wells require artificial lift to move fluids from an underground reservoir to the surface. A common artificial lift technique is so-called “gas lift.” Gas lifting is typically performed by pumping gas into the annular space between a production tubing and a well casing or liner, where the gas is moved into the tubing from the annular space through one or more valves mounted along the tubing. These valves may be wireline replaceable, from so-called side pocket mandrels.
When a well is newly drilled, gas lift valves are placed at pre-determined depths according to calculations of optimum lifting of produced fluids for the early phase of the production. However, as fluid delivery capabilities and pressure in the underground reservoir change over time, the original depth of the gas lift valve(s) may not be optimum. Specifically, as reservoir pressure decreases, the static fluid level in the well drops, eventually making gas lift valves ineffective. Hence, to rectify this using methods known in the art, the tubing needs to be pulled out of the well and re-installed with one or several gas lift valve(s) at different depths than the initial depth(s). This is, not at least with respect to offshore wells, a costly operation which often will be a show-stopper for performing such tubing string replacement.
If a motorized pump can be mounted at a depth below the gas lift valve(s), such a pump can assist in the lifting of reservoir fluids to the gas lift valve(s) at their original depths, resulting in more efficient production to the surface. If a well is not equipped with gas lift valve(s), but able to handle pressurized gas in the annulus, then the described method can also be used by allowing fluid in the annulus be replaced by gas. Such a replacement can be done by allowing gas to push fluid into the tubing string via a communication path between the tubing and the casing, as for example in the form of a punched hole close to the production packer.
One aspect of the present disclosure is a method for producing fluid from a well. Such a method includes inserting a pump into a well tubing having at least one gas lift valve disposed at a first selected depth. The pump is arranged to lift fluid below the pump into the well tubing. A gas pressure in an annular space between the well tubing and a well casing is increased until the gas reaches a flow port at a second depth in the tubing below the first depth and proximate the pump. The pump is operated by continuing pumping gas so as to lift fluid from a subsurface reservoir to the selected depth of the at least one gas lift valve. If no gas lift valves are installed, such valves if installed are not functioning or are replaced by plugs in the gas lift side-pocket mandrels, then the pump will pump fluids into the tubing above the pump hang-off and from there to the surface.
In some embodiments, the pump is inserted into the tubing after the tubing is completely inserted into the well.
In some embodiments, the flow port is opened at a gas pressure exceeding an opening pressure of the at least one gas lift valve.
In some embodiments, the flow port forms part of a gas lift valve.
In some embodiments, the flow port comprises a sliding sleeve.
In some embodiments, the flow port comprises the inlet in a gas lift mandrel where the gas lift valve is removed.
The present disclosure describes a gas operated pump that uses compressed gas in the annulus and is suitable for use with a well having gas lift valves. The pump can be deployed, e.g., by electrical cable (“wireline”), coiled tubing, slickline or any other suitable deployment method to a selected depth in the tubing such as below the lowest gas lift valve, at a location where a gas pressure port from the annulus to the tubing is located. The pump may also be deployed to a much greater depth below an annular seal between the tubing and well casing or liner, i.e., a production packer.
A similar method can also be used if a tubing is retrieved and re-installed, where a dedicated tube for moving pressurized gas from the wellhead to the pump receptacle can be placed externally on the tubing. An example of a pump that can be used for the foregoing methods is described in U.S. Pat. No. 8,991,504 issued to Hansen.
The pump 20 may be installed as a fixed part of the tubing 14, e.g., by threaded coupling, or as in the present example embodiment, the pump 20 may be installed in the tubing 12 after the well has been completed, that is, after the tubing 12 is fully installed in the well casing or liner 10 and the packer 18 is set in the casing or liner 10. For example, wireline, coiled tubing, slickline or semi-rigid spoolable rod can be used to retrieve and install the pump 20 in the tubing 12. The pump 20 may be arranged so that its working fluid inlet (not shown separately) accepts the produced fluid 17 and its working fluid outlet (not shown separately) is directed into the tubing 12 toward the surface.
The pump 20 may be installed in or proximate a device 22 disposed in the tubing 12 that enables movement of gas in the annulus 16 to a power fluid inlet on the pump 20. The device 22 may in general be described as having a gas port through the wall of the tubing 12. The device 22 may be, for example, a sliding sleeve or ported sub of any type known in the art. In some embodiments, the device 22 may comprise a valve operated by changing gas pressure in the annulus 16. In some embodiments, the device 22 may be a gas lift valve, e.g., disposed in a side pocket mandrel and having an opening pressure greater than the opening pressure of the lowest (deepest) gas lift valve 14. The device 22 may comprise one or several communication ports (not shown separately) that allow gas to move from the annulus 16 to inside the tubing 12 and thereby to the pump 20, or as in the case of a gas lift valve, may comprise the communication port directly. If the pump 20 is of a type that is retrievable after emplacement, the device 22 may comprise one or several seals located above and below the device 22 so that the tubing 12 operates as shown in
During production from the well, should it prove necessary to provide more lift than is possible using the gas lift valves 14, gas pressure in the annulus 16 may then be increased from the surface by increasing a pumping rate of the gas into the annulus 16. In such event, the gas is pushed all the way down to the depth of the pump 20. At such time, the pump 20 may then be operated by the flow of gas into the power fluid inlet (not shown separately) to assist in lifting produced fluids 17 to the gas lift valve(s) 14. In some embodiments, at the time the additional lift is needed, the well may be reconfigured from what is shown in
In some cases, it may be desirable to insert the pump to a greater depth than may be configured with any form of flow port (e.g., a gas lift valve) within the tubing.
In the embodiments described with reference to
A method according to the present disclosure may reduce the need to pull tubing and reconfiguring gas lift valves in the event reservoir pressure decreases so as to make one of more of such gas lift valves ineffective. Such methods may extend the useful lifetime of a well without the need to remove production tubing or similar tubulars from the well.
Although only a few examples have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the examples. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims.
Continuation of International Application No. PCT/IB2019/057783 filed on Sep. 16, 2019. Priority is claimed from U.S. Provisional Application No. 62/732,412 filed on Sep. 17, 2018. Both the foregoing applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4405291 | Canalizo | Sep 1983 | A |
20080257547 | Vann | Oct 2008 | A1 |
20180163526 | Chidi | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2410509 | Aug 2005 | GB |
03044318 | May 2003 | WO |
Entry |
---|
International Search Report, International Application No. PCT/IB2019/057783 dated Dec. 13, 2019. |
Written Opinion of the International Search Authority, International Application No. PCT/IB2019/057783 dated Dec. 13, 2019. |
Canadian Office Action dated May 24, 2022, for Canadian Application No. 3,111,970. |
Examination Report dated Mar. 17, 2022, for United Kingdom Application No. GB2105241.0. |
Number | Date | Country | |
---|---|---|---|
20210198987 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62732412 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB2019/057783 | Sep 2019 | US |
Child | 17202201 | US |