The present invention relates to a gas sampling line having a channel for conducting respiratory gases from a patient respiratory interface to a gas monitor, and to a gas analysis system comprising such a gas sampling line. Furthermore, the invention relates to the use of a tube for sampling of respiratory gases, and to a method for sampling of respiratory gases.
In respiratory care, it is often desirable to analyse and monitor the gas composition of a patient's exhaled and/or inhaled breathing gases. For instance, measurement of respiratory CO2, O2, N2O and anesthetic agents, such as halothane, isoflurane, enflurane, sevoflurane or desflurane, is useful in the care of critically ill patients undergoing anesthesia or mechanical ventilation. Typically, the gas concentrations of the patient's breathing gases are monitored by transferring a portion of the breathing gases through a sampling line to a suitable gas sensor or gas monitor.
The patient's exhaled breathing gases are usually saturated with moisture at body temperature. Thus, water naturally condenses when the gas sample is cooled to room temperature when passed through the sampling line. Collected condensate, together with secretion, bacteria or other contaminants possibly present in the breathing gases, may result in inaccurate readings at the sensor or even adversely affect a delicate gas monitor.
The accuracy of the gas concentrations obtained from a respiratory gas monitor also depends on the ability of the analyser system to direct the gas sample from the patient, through the tube of a sampling line to the gas sensor, without distorting the gas sample flow. One cause of distortion of the gas sample flow may be the adsorption on and/or absorption in the tube material of one of more of the components of the gas sample. Additionally, any physical obstacles in the gas sample line, such as valves or material seams, may distort the gas sample flow. Distortion of the gas sample flow, regardless of cause, can degrade rise time of the measured waveform making accurate analysis, especially at higher breath rates, difficult or impossible.
In order to protect a respiratory gas monitor from water and other contaminants, prior art gas sampling systems employs various means to separate liquids, bacteria etc. from the gas sample flow. It has for instance been known to include in the sampling line a water trap or another moisture separation means between the patient and the gas sensor. The challenge, however, is to design such a water trap or moisture separation means that achieves sufficient efficiency and capacity without distorting the gas sample flow.
U.S. Pat. No. 6,783,573 is directed to a gas sampling system for conducting respiratory gases. A gas sampling tube is configured to conduct the respiratory gases from a patient to a gas monitoring device. An output connector couples the gas sampling tube to the monitor. An output dryer tube is coupled between the gas sampling tube and the output connector. The output dryer tube is characterized by a tube length and a relative moisture removal efficiency. The relative moisture removal efficiency is dependent on the tube length. The tube length is selected to limit the moisture content of the respiratory gases being directed into the respiratory gas monitor to a predetermined level. The output dryer tube may be comprised of Nafion® or may be implemented using microporous filters or molecular sieves. An optional input dryer may be implemented using the same materials used to implement the output dryer.
WO 2005/072297 is directed to a liquid absorbing filter assembly and system using the same. It is disclosed a filter assembly for use in a sidestream gas sampling assembly. The filter assembly includes a hydrophilic liner lining the inner perimeter of a housing for wicking moisture from the gases to be monitored prior to the gases reaching a sensing mechanism. It is contemplated that the housing can be formed from an absorbent material or a gas drying material, such as Nafion®.
However, there is a need for improvement of prior art solutions for respiratory gas analysis in respect of, e.g., low distortion, long lasting moisture and/or water removal, or low cost.
An object of the present invention is to provide means for sampling of respiratory gases from a patient while protecting a gas monitor from moisture and/or water as well as providing a reading of high accuracy of gas components, including air gases, such as CO2, N2O and anesthetic agents. Thus, it is an object of the invention to allow for a signal having a low distortion, particularly in a low flow gas sample and/or a gas sample from a patient having a high breath rate.
Another object of the present invention is to provide means for sampling of respiratory gases from a patient without employment of a conventional water trap. It is thus an object of the invention to provide a simple and cheap solution in comparison to conventional means comprising such water trap as well as to provide prolonged operating times in comparison to those of conventional means.
A further object of the present invention is to provide means of low material and production cost fulfilling the mentioned aspects of moisture and/or water removal as well as accurate gas component reading.
Another object of the present invention is to improve sidestream measurements of respiratory gases, i.e. when in order to influence a patient as little as possible a small fraction only of the inhaled and/or exhaled respiratory gas is diverted for measurement from the main flow of respiratory gas between a patient and, e.g. a breather apparatus.
Other objects or advantages of the invention should be apparent to a person skilled in the art after having read the description below.
In a first aspect of the invention, there is provided a gas sampling line having a channel for conducting respiratory gases from a patient respiratory interface to a gas monitor, the gas sampling line comprising
a patient respiratory interface connector adapted to couple the gas sampling line to a patient respiratory interface;
a gas sampling tube adapted to conduct respiratory gases; and
a gas monitor connector adapted to couple the gas sampling line to a gas monitor,
wherein the gas sampling tube is comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide.
Thus, it has been surprisingly found that when passing a sample of respiratory gases through a gas sampling tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide, moisture and condensed water present in the gas sample permeate through the tube material to provide a dried gas sample, while components (such as CO2 or anesthetic agents) of the gas sample passes the tube portion essentially undistorted (i.e. without being absorbed in or adsorbed to the tube material) to allow for an accurate reading at the gas monitor.
Polyether block amides (PEBAs) are thermoplastic elastomers well adapted for applications such as molded or extruded articles, films etc. They are block copolymers obtained by polycondensation of a carboxylic acid polyamide with an alcohol termination polyether. A polyether block amide elastomer consists of a regular linear chain of rigid polyamide segments and flexible polyether segments having the following general formula
HO—[CO-A-CO—O—B—O]n—H
where A represents the polyamide segment and B represent the polyether segment. Polyamide is a polymer comprising the characteristic amide group
—NH—CO—
in the repeating units of the polymer chain. In the present invention, the polyether segments of the polyether block amide material comprise polyethyleneoxide, i.e. a polymer of the formula
HO—[CH2—CH2—O]n—H.
The polyamide segments of the polyether block amide material may comprise polyamide-12, polyamide-11 or polyamide-12.12, preferably polyamide-12. The nomenclature of the polyamides corresponds to an internationally recognised system, where a number indicates the number of carbon atoms in a compound used to prepare the polyamide. If only one number is given, it means that the polyamide is derived from a aminocarboxylic acid having that number of carbon atoms. If two numbers are given, the first number indicates the number of carbon atoms of a starting diamine and the last number indicates the number of carbon atoms of a starting dicarboxylic acid.
The polyether block amide material may comprise polyether segments and polyamide segments in a ratio of polyether to polyamide of from about 60:40 to about 40:60, preferably from about 60:40 to about 50:50.
A gas sampling line having a channel for conducting respiratory gases traversing, in addition to the patient interface connector and the gas monitor connector, only the above-mentioned gas sampling tube provides, in addition to its functional performance in view of moisture and water removal as well as non-adsorption and non-absorption of gas components, further advantages: Manufacture, e.g. extrusion, of the gas sampling tube from only one starting material is considerably simpler than a process of manufacture involving joining tube portions of different materials together. Furthermore, a smooth inner surface of the channel, without material seams, may more easily be achieved by such a gas sampling line. Thus, the risk for signal distortion is decreased.
It is, however, contemplated that parts of the channel for conducting respiratory gases may traverse tube sections of other materials, such as PVC or other conventional tube materials, included in the gas sampling line, in addition to the above-mentioned gas sampling tube. Such a design is preferred when a gas sampling line having a combination of different properties, as provided by different tube materials, is desired. It may also be a cost-effective solution to combine a lower priced tube material with the gas sampling tube, particularly for long gas sampling lines.
It is advantageous when the gas sampling line further comprises a drying assembly comprising
a casing; and
a hydrophilic member disposed within the casing and being in fluid contact with the channel,
wherein the casing is comprised of a second polyether block amide material, the polyether segments of which comprise polyethyleneoxide.
Fluid contact between the hydrophilic member and the channel may be obtained, e.g., by surrounding a portion of the channel by a part of the hydrophilic member or by disposing a part of the hydrophilic member within a portion of the channel. When the gas sampling line comprises such a drying assembly, water or moisture present in respiratory gases conducted in the channel may be absorbed in, adsorbed to and/or stopped by the hydrophilic member. The hydrophilic member provides a wicking action, transporting moisture or water to the casing through which it is removed, thus not accumulating in the drying assembly. As described above in connection with the gas sampling tube, moisture and condensed water permeate through the polyether block amide material of the casing. Consequently, the drying assembly, and thus the entire gas sampling line, may be used for a prolonged period of time without change thereof.
A drying assembly as disclosed above and further detailed below may also be applied in a conventional gas sampling line, i.e. a gas sampling line wherein the gas is conducted through a tube of a conventional tube material not permeable by moisture and/or water.
The hydrophilic member may consist of a hydrophilic filter material having a large filtering area and being able to absorb moisture and water, e.g. in the form of sudden bursts of condensed water not yet removed during passage of the sampled gas through the gas sampling line. The drying assembly is typically positioned, along the gas sampling line, close to the end intended for connection to a gas monitor, e.g. adjacent to the gas monitor connector, in order to provide a final hinder to any water or moisture not removed during passage of the sampled gas through the gas sampling line.
The polyamide segments of the second polyether block amide material may comprise polyamide-12, polyamide-11 or polyamide-12.12, preferably polyamide-12. The second polyether block amide material may comprise polyether segments and polyamide segments in a ratio of polyether to polyamide of from about 60:40 to about 40:60, preferably from about 60:40 to about 50:50. Further properties and advantages of second polyether block amide material resemble those of the first polyether block amide material and may be gathered above.
The drying assembly may extend along the outside of a member defining the channel. This is an advantageous arrangement in that the hydrophilic member may transport moisture or water to a large area casing, thus allowing for efficient moisture and water permeation through the casing material, while maintaining a compact design of the gas sampling line. In particular, it is to be mentioned that the drying assembly may extend along the outside of the gas sampling tube as well as along the outside of tube sections of other materials, included in the gas sampling line. Alternatively, it may be suitable to arrange the hydrophilic member within the gas sampling tube being comprised of the polyether block amide material. A portion of the gas sampling tube being comprised of the polyether block amide material may, in other words, surround the hydrophilic member, said portion of the gas sampling tube thus representing the casing of the drying assembly.
The drying assembly may further comprise a hydrophobic member disposed across the channel. The hydrophobic member acts as a hydrophobic filter allowing the sampled gases to pass while protecting the gas monitor from undesirable substances or objects (e.g. bacteria or other bodily excretions) present in the sampled gas and hindering any remaining water from reaching the gas monitor. The hydrophobic member may or may not be positioned within the housing.
Gas sampling lines according to the invention are typically single patient use disposables. The gas sampling lines may be adapted for a wide range of patient categories, such as infant, adult, or paediatric patients. It is particularly useful to provide a gas sampling line adapted for patients having a high breath rate, such as infants, and/or a weak respiration (i.e. providing a low gas flow in the gas sampling line), such as infants and/or pediatrics. The gas sampling lines may be adapted to a wide range of applications, such as gas sampling from intubated patients, or nasal and/or oral gas sampling. Accordingly, in order to serve different patient categories or to allow use in different applications, the patient respiratory interface connector may be a nasal prong, a nasal cannula, an oral prong, a conical fitting, or a male or female Luer end. Thus, it is to be understood that the term “patient respiratory interface” may refer to an organ, e.g. the nose, of a patient as well as to a connection point in the respiratory loop of a mechanically ventilated patient. Although the gas sampling lines may be provided in any length, a typical length suited for practical use would be 1 to 3 m.
Gas samples drawn through a gas sampling line according to the invention are typically intended for analysis in a gas monitor, such as a spectroscopic analyser. The gas monitor connector of the gas sampling line is preferably designed, together with the gas monitor receptacle, to provide a smooth gas path without a dead volume, to provide a safe no-break, no-leakage connection and a to allow for a practically convenient handling of the patient, the sampling line and the gas monitor. Typical features provided by a preferred combination of the gas monitor connector of the sampling line and a gas monitor receptacle are
an audible or otherwise perceptible “click” feedback assuring an operator that the gas monitor connector has correctly “clicked” into place in the gas monitor receptacle,
a rotatable connection of the gas sampling line to the gas monitor, facilitating an operator's handling of the gas analysis system,
absence of any intermediate connection elements, such as adapters, between the gas monitor connector and the gas monitor receptacle, thus providing a smooth gas path while avoiding risks for undesirable leakage,
detection, e.g. by optical sensors, of a correct connection of the gas sampling line to the gas monitor and allowing, e.g., a sampling pump or the analyser to operate only when a correct connection is established, thereby improving the lifetime of components of the gas analysis system, and/or
visual signals informing an operator of the operational status of the gas analysis system, e.g. green light when in operation, red light if occluded and blue light if an anesthetic agent is detected.
In a second aspect of the invention, there is provided use of a tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide, for sampling of respiratory gases. Discussed above are advantageous compositions of the polyether block amide material.
In a third aspect of the invention, there is provided a method for sampling of respiratory gases, the method comprising conducting respiratory gases through a tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide. Again, advantageous compositions of the polyether block amide material are discussed above.
In a fourth aspect of the invention, there is provided a gas analysis system for analysing respiratory gases, comprising a gas sampling line as defined above and a gas monitor connectable to the gas sampling line. The gas analysis system may further comprise a respiratory device, such as a respirator, connectable to the patient respiratory interface.
Referring to
When a sample of respiratory gases is conducted through the channel 5 of the gas sampling line towards the gas monitor connector 2, moisture or water present in the sample will be adsorbed to or absorbed by the hydrophilic member 4. A wicking action of the hydrophilic member 4 will transport the moisture or water towards the housing 3. Subsequently, moisture or water will permeate the housing 3 and be removed into surrounding air. The respiratory gases will pass the hydrophobic member 6 on their way towards the gas monitor connector 2, whereas undesirable objects or substances (e.g. bacteria, body excretions) will be withheld by the hydrophobic member 6 and not reach the gas monitor. The hydrophobic member 6 also serves as an additional measure to stop water or moisture from reaching the gas monitor.
It is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Characteristics and advantages of the present invention are further illustrated by the following, non-limiting, examples.
Preparation of Gas Sampling Tubes According to the Invention
Gas sampling tubes according to the invention were prepared by extrusion of a polyether block amide material (available from Atofina under the trade name Pebax®) to form a tubing having an inner diameter of 1 mm and an outer diameter of 2.5 mm, and subsequent cutting of the tubing to obtain gas sampling tubes having a length of 2 m. The composition of the polyether block amide material is shown in Table 1.
Preparation of Comparative Gas Sampling Tubes
As comparative gas sampling tubes were used 2 m lengths of four different tubings having an inner diameter of 1 mm and an outer diameter of 2.5 mm. The composition of the tubing materials and the construction of the tubings are shown in Table 2. Comparative tubes 3-5 represent well-known embodiments of gas sampling tubes used in respiratory care for the conduction of gases to gas analysis equipment.
Test Methods
All tests were performed at room temperature of about 22° C. at a gas flow of 50 ml/min through the gas sampling tube. In the tests, tube no. 5 was arranged so that in the direction of the gas flow, the Nafion® portion was upstream of the PVC portion.
A) Moisture test: A gas sample of moist air was passed from a simulated patient circuit, equipped with a heated humidifier, through a gas sampling tube to a water trap having a volume typical for disposable water traps for analysis of respiratory gases. The moist air leaving the simulated patient circuit had a relative moisture of 95-100% at 35-37° C. Water condensed in the tube was collected in the water trap and the time until the water trap had been filled with 200 μl liquid was recorded.
B) Water test: A gas sample comprising dry air and drops of water was passed from a simulated patient circuit, equipped with a syringe pump for delivery of water, through a gas sampling tube to a water trap having a volume typical for disposable water traps for analysis of respiratory gases. The syringe pump was set to deliver one droplet of water per minute, corresponding to 100 μl liquid per hour. The liquid was collected in the water trap and the time until the water trap had been filled with 200 μl liquid was recorded.
C) CO2 accuracy: The sampling tube was connected between an equipment providing alternating two reference gases (5% CO2 balanced N2 and synthetic air) according to EN ISO 21647:2004 (Medical electrical equipment—Particular requirements for the basic safety and essential performance of respiratory gas monitors),
D) Halothane accuracy: The sampling tube was connected between an equipment providing alternating two reference gases (5% CO2, 5% halothane balanced N2 and synthetic air) according to EN ISO 21647:2004,
Results
The results are shown in Table 3. The gas sampling tube according to the invention (tube no. 1) provided an outstanding combination of desirable results in the moisture and water tests as well as in the CO2 accuracy and halothane accuracy tests.
Number | Date | Country | Kind |
---|---|---|---|
0801967-1 | Sep 2008 | SE | national |
Number | Name | Date | Kind |
---|---|---|---|
4705543 | Kertzman | Nov 1987 | A |
4960128 | Gordon et al. | Oct 1990 | A |
4964408 | Hink et al. | Oct 1990 | A |
5042500 | Norlien et al. | Aug 1991 | A |
5319355 | Russek | Jun 1994 | A |
5337744 | Branigan | Aug 1994 | A |
5341805 | Stavridi et al. | Aug 1994 | A |
D353195 | Savage et al. | Dec 1994 | S |
D353196 | Savage et al. | Dec 1994 | S |
5377676 | Vari et al. | Jan 1995 | A |
D359546 | Savage et al. | Jun 1995 | S |
5431170 | Mathews | Jul 1995 | A |
5436499 | Namavar et al. | Jul 1995 | A |
D361840 | Savage et al. | Aug 1995 | S |
D362063 | Savage et al. | Sep 1995 | S |
D363120 | Savage et al. | Oct 1995 | S |
5456252 | Vari et al. | Oct 1995 | A |
5479934 | Imran | Jan 1996 | A |
5482036 | Diab et al. | Jan 1996 | A |
5494043 | O'Sullivan et al. | Feb 1996 | A |
5533511 | Kaspari et al. | Jul 1996 | A |
5561275 | Savage et al. | Oct 1996 | A |
5590649 | Caro et al. | Jan 1997 | A |
5602924 | Durand et al. | Feb 1997 | A |
5638816 | Kiani-Azarbayjany et al. | Jun 1997 | A |
5638818 | Diab et al. | Jun 1997 | A |
5645440 | Tobler et al. | Jul 1997 | A |
5671914 | Kalkhoran et al. | Sep 1997 | A |
5694922 | Palmer | Dec 1997 | A |
5703161 | Steenblock et al. | Dec 1997 | A |
5726440 | Kalkhoran et al. | Mar 1998 | A |
D393830 | Tobler et al. | Apr 1998 | S |
5743262 | Lepper, Jr. et al. | Apr 1998 | A |
5747806 | Khalil et al. | May 1998 | A |
5750994 | Schlager | May 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5760910 | Lepper, Jr. et al. | Jun 1998 | A |
5890929 | Mills et al. | Apr 1999 | A |
5919134 | Diab | Jul 1999 | A |
5987343 | Kinast | Nov 1999 | A |
5997343 | Mills et al. | Dec 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6010937 | Karam et al. | Jan 2000 | A |
6027452 | Flaherty et al. | Feb 2000 | A |
6040578 | Malin et al. | Mar 2000 | A |
6066204 | Haven | May 2000 | A |
6115673 | Malin et al. | Sep 2000 | A |
6124597 | Shehada et al. | Sep 2000 | A |
6128521 | Marro et al. | Oct 2000 | A |
6129675 | Jay | Oct 2000 | A |
6144868 | Parker | Nov 2000 | A |
6152754 | Gerhardt et al. | Nov 2000 | A |
6184521 | Coffin, IV et al. | Feb 2001 | B1 |
6232609 | Snyder et al. | May 2001 | B1 |
6241683 | Macklem et al. | Jun 2001 | B1 |
6255708 | Sudharsanan et al. | Jul 2001 | B1 |
6280381 | Malin et al. | Aug 2001 | B1 |
6285896 | Tobler et al. | Sep 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6317627 | Ennen et al. | Nov 2001 | B1 |
6321100 | Parker | Nov 2001 | B1 |
6334065 | Al-Ali et al. | Dec 2001 | B1 |
6360114 | Diab et al. | Mar 2002 | B1 |
6368283 | Xu et al. | Apr 2002 | B1 |
6411373 | Garside et al. | Jun 2002 | B1 |
6415167 | Blank et al. | Jul 2002 | B1 |
6430437 | Marro | Aug 2002 | B1 |
6430525 | Weber et al. | Aug 2002 | B1 |
6463311 | Diab | Oct 2002 | B1 |
6470199 | Kopotic et al. | Oct 2002 | B1 |
6487429 | Hockersmith et al. | Nov 2002 | B2 |
6505059 | Kollias et al. | Jan 2003 | B1 |
6525386 | Mills et al. | Feb 2003 | B1 |
6526300 | Kiani et al. | Feb 2003 | B1 |
6534012 | Hazen et al. | Mar 2003 | B1 |
6542764 | Al-Ali et al. | Apr 2003 | B1 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6587196 | Stippick et al. | Jul 2003 | B1 |
6587199 | Luu | Jul 2003 | B1 |
6595316 | Cybulski et al. | Jul 2003 | B2 |
6597932 | Tian et al. | Jul 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6635559 | Greenwald et al. | Oct 2003 | B2 |
6639668 | Trepagnier | Oct 2003 | B1 |
6640116 | Diab | Oct 2003 | B2 |
6640117 | Makarewicz et al. | Oct 2003 | B2 |
6658276 | Kiani et al. | Dec 2003 | B2 |
6661161 | Lanzo et al. | Dec 2003 | B1 |
6697656 | Al-Ali | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
RE38492 | Diab et al. | Apr 2004 | E |
6738652 | Mattu et al. | May 2004 | B2 |
6760607 | Al-Ali | Jul 2004 | B2 |
6779522 | Smith et al. | Aug 2004 | B2 |
6783573 | Richardson | Aug 2004 | B2 |
6788965 | Ruchti et al. | Sep 2004 | B2 |
6816241 | Grubisic | Nov 2004 | B2 |
6822564 | Al-Ali | Nov 2004 | B2 |
6850787 | Weber et al. | Feb 2005 | B2 |
6850788 | Al-Ali | Feb 2005 | B2 |
6876931 | Lorenz et al. | Apr 2005 | B2 |
6920345 | Al-Ali et al. | Jul 2005 | B2 |
6934570 | Kiani et al. | Aug 2005 | B2 |
6943348 | Coffin, IV | Sep 2005 | B1 |
6956649 | Acosta et al. | Oct 2005 | B2 |
6961598 | Diab | Nov 2005 | B2 |
6970792 | Diab | Nov 2005 | B1 |
6985764 | Mason et al. | Jan 2006 | B2 |
6990364 | Ruchti et al. | Jan 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
7003338 | Weber et al. | Feb 2006 | B2 |
7015451 | Dalke et al. | Mar 2006 | B2 |
7027849 | Al-Ali | Apr 2006 | B2 |
D526719 | Richie, Jr. et al. | Aug 2006 | S |
7096052 | Mason et al. | Aug 2006 | B2 |
7096054 | Abdul-Hafiz et al. | Aug 2006 | B2 |
D529616 | Deros et al. | Oct 2006 | S |
7133710 | Acosta et al. | Nov 2006 | B2 |
7142901 | Kiani et al. | Nov 2006 | B2 |
7225006 | Al-Ali et al. | May 2007 | B2 |
RE39672 | Shehada et al. | Jun 2007 | E |
7228878 | Chen et al. | Jun 2007 | B2 |
7254429 | Schurman et al. | Aug 2007 | B2 |
7254431 | Al-Ali et al. | Aug 2007 | B2 |
7254434 | Schulz et al. | Aug 2007 | B2 |
7274955 | Kiani et al. | Sep 2007 | B2 |
D554263 | Al-Ali et al. | Oct 2007 | S |
7280858 | Al-Ali et al. | Oct 2007 | B2 |
7289835 | Mansfield et al. | Oct 2007 | B2 |
7292883 | De Felice et al. | Nov 2007 | B2 |
7341559 | Schulz et al. | Mar 2008 | B2 |
7343186 | Lamego et al. | Mar 2008 | B2 |
D566282 | Al-Ali et al. | Apr 2008 | S |
7356365 | Schurman | Apr 2008 | B2 |
7371981 | Abdul-Hafiz | May 2008 | B2 |
7373193 | Al-Ali et al. | May 2008 | B2 |
7377794 | Al-Ali et al. | May 2008 | B2 |
7395158 | Monfre et al. | Jul 2008 | B2 |
7415297 | Al-Ali et al. | Aug 2008 | B2 |
7438683 | Al-Ali et al. | Oct 2008 | B2 |
7483729 | Al-Ali et al. | Jan 2009 | B2 |
D587657 | Al-Ali et al. | Mar 2009 | S |
7500950 | Al-Ali et al. | Mar 2009 | B2 |
7509494 | Al-Ali | Mar 2009 | B2 |
7510849 | Schurman et al. | Mar 2009 | B2 |
7514725 | Wojtczuk et al. | Apr 2009 | B2 |
7519406 | Blank et al. | Apr 2009 | B2 |
D592507 | Wachman et al. | May 2009 | S |
7530942 | Diab | May 2009 | B1 |
7593230 | Abul-Haj et al. | Sep 2009 | B2 |
7596398 | Al-Ali et al. | Sep 2009 | B2 |
7606608 | Blank et al. | Oct 2009 | B2 |
7620674 | Ruchti et al. | Nov 2009 | B2 |
D606659 | Kiani et al. | Dec 2009 | S |
7629039 | Eckerbom et al. | Dec 2009 | B2 |
7640140 | Ruchti et al. | Dec 2009 | B2 |
7647083 | Al-Ali et al. | Jan 2010 | B2 |
D609193 | Al-Ali et al. | Feb 2010 | S |
D614305 | Al-Ali et al. | Apr 2010 | S |
7697966 | Monfre et al. | Apr 2010 | B2 |
7698105 | Ruchti et al. | Apr 2010 | B2 |
RE41317 | Parker | May 2010 | E |
RE41333 | Blank et al. | May 2010 | E |
7729733 | Al-Ali et al. | Jun 2010 | B2 |
7761127 | Al-Ali et al. | Jul 2010 | B2 |
7764982 | Dalke et al. | Jul 2010 | B2 |
D621516 | Kiani et al. | Aug 2010 | S |
7791155 | Diab | Sep 2010 | B2 |
RE41912 | Parker | Nov 2010 | E |
7880626 | Al-Ali et al. | Feb 2011 | B2 |
7909772 | Popov et al. | Mar 2011 | B2 |
7919713 | Al-Ali et al. | Apr 2011 | B2 |
7937128 | Al-Ali | May 2011 | B2 |
7937129 | Mason et al. | May 2011 | B2 |
7941199 | Kiani | May 2011 | B2 |
7957780 | Lamego et al. | Jun 2011 | B2 |
7962188 | Kiani et al. | Jun 2011 | B2 |
7976472 | Kiani | Jul 2011 | B2 |
7990382 | Kiani | Aug 2011 | B2 |
8008088 | Bellott et al. | Aug 2011 | B2 |
RE42753 | Kiani-Azarbayjany et al. | Sep 2011 | E |
8028701 | Al-Ali et al. | Oct 2011 | B2 |
8048040 | Kiani | Nov 2011 | B2 |
8050728 | Al-Ali et al. | Nov 2011 | B2 |
RE43169 | Parker | Feb 2012 | E |
8118620 | Al-Ali et al. | Feb 2012 | B2 |
8130105 | Al-Ali et al. | Mar 2012 | B2 |
8182443 | Kiani | May 2012 | B1 |
8190223 | Al-Ali et al. | May 2012 | B2 |
8203438 | Kiani et al. | Jun 2012 | B2 |
8203704 | Merritt et al. | Jun 2012 | B2 |
8219172 | Schurman et al. | Jul 2012 | B2 |
8224411 | Al-Ali et al. | Jul 2012 | B2 |
8229532 | Davis | Jul 2012 | B2 |
8233955 | Al-Ali et al. | Jul 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8265723 | McHale et al. | Sep 2012 | B1 |
8274360 | Sampath et al. | Sep 2012 | B2 |
8280473 | Al-Ali | Oct 2012 | B2 |
8315683 | Al-Ali et al. | Nov 2012 | B2 |
RE43860 | Parker | Dec 2012 | E |
8346330 | Lamego | Jan 2013 | B2 |
8353842 | Al-Ali et al. | Jan 2013 | B2 |
8355766 | MacNeish, III et al. | Jan 2013 | B2 |
8374665 | Lamego | Feb 2013 | B2 |
8388353 | Kiani et al. | Mar 2013 | B2 |
8401602 | Kiani | Mar 2013 | B2 |
8414499 | Al-Ali et al. | Apr 2013 | B2 |
8418524 | Al-Ali | Apr 2013 | B2 |
8428967 | Olsen et al. | Apr 2013 | B2 |
8430817 | Al-Ali et al. | Apr 2013 | B1 |
8437825 | Dalvi et al. | May 2013 | B2 |
8455290 | Siskavich | Jun 2013 | B2 |
8457707 | Kiani | Jun 2013 | B2 |
8471713 | Poeze et al. | Jun 2013 | B2 |
8473020 | Kiani et al. | Jun 2013 | B2 |
8509867 | Workman et al. | Aug 2013 | B2 |
8515509 | Bruinsma et al. | Aug 2013 | B2 |
8523781 | Al-Ali | Sep 2013 | B2 |
D692145 | Al-Ali et al. | Oct 2013 | S |
8571617 | Reichgott et al. | Oct 2013 | B2 |
8571618 | Lamego et al. | Oct 2013 | B1 |
8571619 | Al-Ali et al. | Oct 2013 | B2 |
8577431 | Lamego et al. | Nov 2013 | B2 |
8584345 | Al-Ali et al. | Nov 2013 | B2 |
8588880 | Abdul-Hafiz et al. | Nov 2013 | B2 |
8630691 | Lamego et al. | Jan 2014 | B2 |
8641631 | Sierra et al. | Feb 2014 | B2 |
8652060 | Al-Ali | Feb 2014 | B2 |
8666468 | Al-Ali | Mar 2014 | B1 |
8670811 | O'Reilly | Mar 2014 | B2 |
RE44823 | Parker | Apr 2014 | E |
RE44875 | Kiani et al. | Apr 2014 | E |
8688183 | Bruinsma et al. | Apr 2014 | B2 |
8690799 | Telfort et al. | Apr 2014 | B2 |
8702627 | Telfort et al. | Apr 2014 | B2 |
8712494 | MacNeish, III et al. | Apr 2014 | B1 |
8715206 | Telfort et al. | May 2014 | B2 |
8723677 | Kiani | May 2014 | B1 |
8740792 | Kiani et al. | Jun 2014 | B1 |
8755535 | Telfort et al. | Jun 2014 | B2 |
8755872 | Marinow | Jun 2014 | B1 |
8764671 | Kiani | Jul 2014 | B2 |
8768423 | Shakespeare et al. | Jul 2014 | B2 |
8771204 | Telfort et al. | Jul 2014 | B2 |
8781544 | Al-Ali et al. | Jul 2014 | B2 |
8790268 | Al-Ali | Jul 2014 | B2 |
8801613 | Al-Ali et al. | Aug 2014 | B2 |
8821397 | Al-Ali et al. | Sep 2014 | B2 |
8821415 | Al-Ali et al. | Sep 2014 | B2 |
8830449 | Lamego et al. | Sep 2014 | B1 |
8840549 | Al-Ali et al. | Sep 2014 | B2 |
8852094 | Al-Ali et al. | Oct 2014 | B2 |
8852994 | Wojtczuk et al. | Oct 2014 | B2 |
8897847 | Al-Ali | Nov 2014 | B2 |
8911377 | Al-Ali | Dec 2014 | B2 |
8989831 | Al-Ali et al. | Mar 2015 | B2 |
8998809 | Kiani | Apr 2015 | B2 |
9066666 | Kiani | Jun 2015 | B2 |
9066680 | Al-Ali et al. | Jun 2015 | B1 |
9095316 | Welch et al. | Aug 2015 | B2 |
9106038 | Telfort et al. | Aug 2015 | B2 |
9107625 | Telfort et al. | Aug 2015 | B2 |
9131881 | Diab et al. | Sep 2015 | B2 |
9138180 | Coverston et al. | Sep 2015 | B1 |
9153112 | Kiani et al. | Oct 2015 | B1 |
9192329 | Al-Ali | Nov 2015 | B2 |
9192351 | Telfort et al. | Nov 2015 | B1 |
9195385 | Al-Ali et al. | Nov 2015 | B2 |
9211095 | Al-Ali | Dec 2015 | B1 |
9218454 | Kiani et al. | Dec 2015 | B2 |
9245668 | Vo et al. | Jan 2016 | B1 |
9267572 | Barker et al. | Feb 2016 | B2 |
9277880 | Poeze et al. | Mar 2016 | B2 |
9307928 | Al-Ali et al. | Apr 2016 | B1 |
9323894 | Kiani | Apr 2016 | B2 |
D755392 | Hwang et al. | May 2016 | S |
9326712 | Kiani | May 2016 | B1 |
9392945 | Al-Ali et al. | Jul 2016 | B2 |
9408542 | Kinast et al. | Aug 2016 | B1 |
9436645 | Al-Ali et al. | Sep 2016 | B2 |
9445759 | Lamego et al. | Sep 2016 | B1 |
9474474 | Lamego et al. | Oct 2016 | B2 |
9480435 | Olsen | Nov 2016 | B2 |
9510779 | Poeze et al. | Dec 2016 | B2 |
9517024 | Kiani et al. | Dec 2016 | B2 |
9532722 | Lamego et al. | Jan 2017 | B2 |
9560996 | Kiani | Feb 2017 | B2 |
9579039 | Jansen et al. | Feb 2017 | B2 |
9622692 | Lamego et al. | Apr 2017 | B2 |
D788312 | Al-Ali et al. | May 2017 | S |
9649054 | Lamego et al. | May 2017 | B2 |
9697928 | Al-Ali et al. | Jul 2017 | B2 |
9717458 | Lamego et al. | Aug 2017 | B2 |
9724016 | Al-Ali et al. | Aug 2017 | B1 |
9724024 | Al-Ali | Aug 2017 | B2 |
9724025 | Kiani et al. | Aug 2017 | B1 |
9749232 | Sampath et al. | Aug 2017 | B2 |
9750442 | Olsen | Sep 2017 | B2 |
9750461 | Telfort | Sep 2017 | B1 |
9775545 | Al-Ali et al. | Oct 2017 | B2 |
9778079 | Al-Ali et al. | Oct 2017 | B1 |
9782077 | Lamego et al. | Oct 2017 | B2 |
9787568 | Lamego et al. | Oct 2017 | B2 |
9808188 | Perea et al. | Nov 2017 | B1 |
9839379 | Al-Ali et al. | Dec 2017 | B2 |
9839381 | Weber et al. | Dec 2017 | B1 |
9847749 | Kiani et al. | Dec 2017 | B2 |
9848800 | Lee et al. | Dec 2017 | B1 |
9861298 | Eckerbom et al. | Jan 2018 | B2 |
9861305 | Weber et al. | Jan 2018 | B1 |
9877650 | Muhsin et al. | Jan 2018 | B2 |
9891079 | Dalvi | Feb 2018 | B2 |
9924897 | Abdul-Hafiz | Mar 2018 | B1 |
9936917 | Poeze et al. | Apr 2018 | B2 |
9955937 | Telfort | May 2018 | B2 |
9965946 | Al-Ali et al. | May 2018 | B2 |
D820865 | Muhsin et al. | Jun 2018 | S |
9986952 | Dalvi et al. | Jun 2018 | B2 |
D822215 | Al-Ali et al. | Jul 2018 | S |
D822216 | Barker et al. | Jul 2018 | S |
10010276 | Al-Ali et al. | Jul 2018 | B2 |
10086138 | Novak, Jr. | Oct 2018 | B1 |
10111591 | Dyell et al. | Oct 2018 | B2 |
D833624 | DeJong et al. | Nov 2018 | S |
10123729 | Dyell et al. | Nov 2018 | B2 |
D835282 | Barker et al. | Dec 2018 | S |
D835283 | Barker et al. | Dec 2018 | S |
D835284 | Barker et al. | Dec 2018 | S |
D835285 | Barker et al. | Dec 2018 | S |
10149616 | Al-Ali et al. | Dec 2018 | B2 |
10154815 | Al-Ali et al. | Dec 2018 | B2 |
10159412 | Lamego et al. | Dec 2018 | B2 |
10188348 | Al-Ali et al. | Jan 2019 | B2 |
RE47218 | Al-Ali | Feb 2019 | E |
RE47244 | Kiani et al. | Feb 2019 | E |
RE47249 | Kiani et al. | Feb 2019 | E |
10205291 | Scruggs et al. | Feb 2019 | B2 |
10226187 | Al-Ali et al. | Mar 2019 | B2 |
10231657 | Al-Ali et al. | Mar 2019 | B2 |
10231670 | Blank et al. | Mar 2019 | B2 |
RE47353 | Kiani et al. | Apr 2019 | E |
10279247 | Kiani | May 2019 | B2 |
10292664 | Al-Ali | May 2019 | B2 |
10299720 | Brown et al. | May 2019 | B2 |
10327337 | Schmidt et al. | Jun 2019 | B2 |
10327713 | Barker et al. | Jun 2019 | B2 |
10332630 | Al-Ali | Jun 2019 | B2 |
10383520 | Wojtczuk et al. | Aug 2019 | B2 |
10383527 | Al-Ali | Aug 2019 | B2 |
10388120 | Muhsin et al. | Aug 2019 | B2 |
D864120 | Forrest et al. | Oct 2019 | S |
10441181 | Telfort et al. | Oct 2019 | B1 |
10441196 | Eckerbom et al. | Oct 2019 | B2 |
10448844 | Al-Ali et al. | Oct 2019 | B2 |
10448871 | Al-Ali et al. | Oct 2019 | B2 |
10456038 | Lamego et al. | Oct 2019 | B2 |
10463340 | Telfort et al. | Nov 2019 | B2 |
10471159 | Lapotko et al. | Nov 2019 | B1 |
10505311 | Al-Ali et al. | Dec 2019 | B2 |
10524738 | Olsen | Jan 2020 | B2 |
10532174 | Al-Ali | Jan 2020 | B2 |
10537285 | Shreim et al. | Jan 2020 | B2 |
10542903 | Al-Ali et al. | Jan 2020 | B2 |
10555678 | Dalvi et al. | Feb 2020 | B2 |
10568553 | O'Neil et al. | Feb 2020 | B2 |
RE47882 | Al-Ali | Mar 2020 | E |
10608817 | Haider et al. | Mar 2020 | B2 |
D880477 | Forrest et al. | Apr 2020 | S |
10617302 | Al-Ali et al. | Apr 2020 | B2 |
10617335 | Al-Ali et al. | Apr 2020 | B2 |
10637181 | Al-Ali et al. | Apr 2020 | B2 |
D887548 | Abdul-Hafiz et al. | Jun 2020 | S |
D887549 | Abdul-Hafiz et al. | Jun 2020 | S |
10667764 | Ahmed et al. | Jun 2020 | B2 |
D890708 | Forrest et al. | Jul 2020 | S |
10721785 | Al-Ali | Jul 2020 | B2 |
10736518 | Al-Ali et al. | Aug 2020 | B2 |
10750984 | Pauley et al. | Aug 2020 | B2 |
D897098 | Al-Ali | Sep 2020 | S |
10779098 | Iswanto et al. | Sep 2020 | B2 |
10827961 | Iyengar et al. | Nov 2020 | B1 |
10828007 | Telfort et al. | Nov 2020 | B1 |
10832818 | Muhsin et al. | Nov 2020 | B2 |
10849554 | Shreim et al. | Dec 2020 | B2 |
10856750 | Indorf et al. | Dec 2020 | B2 |
10952641 | Eckerbom et al. | Mar 2021 | B2 |
D916135 | Indorf et al. | Apr 2021 | S |
D917550 | Indorf et al. | Apr 2021 | S |
D917564 | Indorf et al. | Apr 2021 | S |
D917704 | Al-Ali et al. | Apr 2021 | S |
10987066 | Chandran et al. | Apr 2021 | B2 |
10991135 | Al-Ali et al. | Apr 2021 | B2 |
D919094 | Al-Ali et al. | May 2021 | S |
D919100 | Al-Ali et al. | May 2021 | S |
11006867 | Al-Ali | May 2021 | B2 |
D921202 | Al-Ali et al. | Jun 2021 | S |
11024064 | Muhsin et al. | Jun 2021 | B2 |
11026604 | Chen et al. | Jun 2021 | B2 |
D925597 | Chandran et al. | Jul 2021 | S |
D927699 | Al-Ali et al. | Aug 2021 | S |
11076777 | Lee et al. | Aug 2021 | B2 |
11114188 | Poeze et al. | Sep 2021 | B2 |
D933232 | Al-Ali et al. | Oct 2021 | S |
11145408 | Sampath et al. | Oct 2021 | B2 |
11147518 | Al-Ali et al. | Oct 2021 | B1 |
11185262 | Al-Ali et al. | Nov 2021 | B2 |
11191484 | Kiani et al. | Dec 2021 | B2 |
D946596 | Ahmed | Mar 2022 | S |
D946597 | Ahmed | Mar 2022 | S |
D946598 | Ahmed | Mar 2022 | S |
D946617 | Ahmed | Mar 2022 | S |
11272839 | Al-Ali et al. | Mar 2022 | B2 |
11289199 | Al-Ali | Mar 2022 | B2 |
RE49034 | Al-Ali | Apr 2022 | E |
11298021 | Muhsin et al. | Apr 2022 | B2 |
D950580 | Ahmed | May 2022 | S |
D950599 | Ahmed | May 2022 | S |
D957648 | Al-Ali | Jul 2022 | S |
11389093 | Triman et al. | Jul 2022 | B2 |
11406286 | Al-Ali et al. | Aug 2022 | B2 |
11417426 | Muhsin et al. | Aug 2022 | B2 |
20010034477 | Mansfield et al. | Oct 2001 | A1 |
20010039483 | Brand et al. | Nov 2001 | A1 |
20020010401 | Bushmakin et al. | Jan 2002 | A1 |
20020058864 | Mansfield et al. | May 2002 | A1 |
20020077606 | Trotta | Jun 2002 | A1 |
20020133080 | Apruzzese et al. | Sep 2002 | A1 |
20030013975 | Kiani | Jan 2003 | A1 |
20030018243 | Gerhardt et al. | Jan 2003 | A1 |
20030144582 | Cohen et al. | Jul 2003 | A1 |
20030156288 | Barnum et al. | Aug 2003 | A1 |
20030191405 | Rich et al. | Oct 2003 | A1 |
20030212312 | Coffin, IV et al. | Nov 2003 | A1 |
20040029467 | Lacroix | Feb 2004 | A1 |
20040106163 | Workman, Jr. et al. | Jun 2004 | A1 |
20050055276 | Kiani et al. | Mar 2005 | A1 |
20050161042 | Fudge et al. | Jul 2005 | A1 |
20050234317 | Kiani | Oct 2005 | A1 |
20060014059 | Wood | Jan 2006 | A1 |
20060073719 | Kiani | Apr 2006 | A1 |
20060086254 | Fudge et al. | Apr 2006 | A1 |
20060189871 | Al-Ali et al. | Aug 2006 | A1 |
20060200110 | Lentz et al. | Sep 2006 | A1 |
20070073116 | Kiani et al. | Mar 2007 | A1 |
20070180140 | Welch et al. | Aug 2007 | A1 |
20070244377 | Cozad et al. | Oct 2007 | A1 |
20080034964 | Schmidt et al. | Feb 2008 | A1 |
20080064965 | Jay et al. | Mar 2008 | A1 |
20080094228 | Welch et al. | Apr 2008 | A1 |
20080221418 | Al-Ali et al. | Sep 2008 | A1 |
20090036759 | Ault et al. | Feb 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090095926 | MacNeish, III | Apr 2009 | A1 |
20090247984 | Lamego et al. | Oct 2009 | A1 |
20100004518 | Vo et al. | Jan 2010 | A1 |
20100030040 | Poeze et al. | Feb 2010 | A1 |
20100099964 | O'Reilly et al. | Apr 2010 | A1 |
20100174239 | Yodfat et al. | Jul 2010 | A1 |
20100234718 | Sampath et al. | Sep 2010 | A1 |
20100270257 | Wachman et al. | Oct 2010 | A1 |
20110028806 | Merritt et al. | Feb 2011 | A1 |
20110028809 | Goodman | Feb 2011 | A1 |
20110040197 | Welch et al. | Feb 2011 | A1 |
20110082711 | Poeze et al. | Apr 2011 | A1 |
20110087081 | Kiani et al. | Apr 2011 | A1 |
20110118561 | Tari et al. | May 2011 | A1 |
20110137297 | Kiani et al. | Jun 2011 | A1 |
20110172498 | Olsen et al. | Jul 2011 | A1 |
20110230733 | Al-Ali | Sep 2011 | A1 |
20110237969 | Eckerbom et al. | Sep 2011 | A1 |
20120123231 | O'Reilly | May 2012 | A1 |
20120165629 | Merritt et al. | Jun 2012 | A1 |
20120209084 | Olsen et al. | Aug 2012 | A1 |
20120226117 | Lamego et al. | Sep 2012 | A1 |
20120283524 | Kiani et al. | Nov 2012 | A1 |
20130023775 | Lamego et al. | Jan 2013 | A1 |
20130041591 | Lamego | Feb 2013 | A1 |
20130060147 | Welch et al. | Mar 2013 | A1 |
20130096405 | Garfio | Apr 2013 | A1 |
20130296672 | O'Neil et al. | Nov 2013 | A1 |
20130345921 | Al-Ali et al. | Dec 2013 | A1 |
20140166076 | Kiani et al. | Jun 2014 | A1 |
20140180160 | Brown et al. | Jun 2014 | A1 |
20140187973 | Brown et al. | Jul 2014 | A1 |
20140275871 | Lamego et al. | Sep 2014 | A1 |
20140275872 | Merritt et al. | Sep 2014 | A1 |
20140316217 | Purdon et al. | Oct 2014 | A1 |
20140316218 | Purdon et al. | Oct 2014 | A1 |
20140323897 | Brown et al. | Oct 2014 | A1 |
20140323898 | Purdon et al. | Oct 2014 | A1 |
20150005600 | Blank et al. | Jan 2015 | A1 |
20150011907 | Purdon et al. | Jan 2015 | A1 |
20150073241 | Lamego | Mar 2015 | A1 |
20150080754 | Purdon et al. | Mar 2015 | A1 |
20150099950 | Al-Ali et al. | Apr 2015 | A1 |
20160196388 | Lamego | Jul 2016 | A1 |
20160367173 | Dalvi et al. | Dec 2016 | A1 |
20170024748 | Haider | Jan 2017 | A1 |
20170042488 | Muhsin | Feb 2017 | A1 |
20170173632 | Al-Ali | Jun 2017 | A1 |
20170251974 | Shreim et al. | Sep 2017 | A1 |
20170311891 | Kiani et al. | Nov 2017 | A1 |
20180103874 | Lee et al. | Apr 2018 | A1 |
20180242926 | Muhsin et al. | Aug 2018 | A1 |
20180247353 | Al-Ali et al. | Aug 2018 | A1 |
20180247712 | Muhsin et al. | Aug 2018 | A1 |
20180256087 | Al-Ali et al. | Sep 2018 | A1 |
20180296161 | Shreim et al. | Oct 2018 | A1 |
20180300919 | Muhsin et al. | Oct 2018 | A1 |
20180310822 | Indorf et al. | Nov 2018 | A1 |
20180310823 | Al-Ali et al. | Nov 2018 | A1 |
20180317826 | Muhsin et al. | Nov 2018 | A1 |
20190015023 | Monfre | Jan 2019 | A1 |
20190117070 | Muhsin et al. | Apr 2019 | A1 |
20190200941 | Chandran et al. | Jul 2019 | A1 |
20190239787 | Pauley et al. | Aug 2019 | A1 |
20190320906 | Olsen | Oct 2019 | A1 |
20190374139 | Kiani et al. | Dec 2019 | A1 |
20190374173 | Kiani et al. | Dec 2019 | A1 |
20190374713 | Kiani et al. | Dec 2019 | A1 |
20200060869 | Telfort et al. | Feb 2020 | A1 |
20200111552 | Ahmed | Apr 2020 | A1 |
20200113435 | Muhsin | Apr 2020 | A1 |
20200113488 | Al-Ali et al. | Apr 2020 | A1 |
20200113496 | Scruggs et al. | Apr 2020 | A1 |
20200113497 | Triman et al. | Apr 2020 | A1 |
20200113520 | Abdul-Hafiz et al. | Apr 2020 | A1 |
20200138288 | Al-Ali et al. | May 2020 | A1 |
20200138368 | Kiani et al. | May 2020 | A1 |
20200163597 | Dalvi et al. | May 2020 | A1 |
20200196877 | Vo et al. | Jun 2020 | A1 |
20200253474 | Muhsin et al. | Aug 2020 | A1 |
20200253544 | Belur Nagaraj et al. | Aug 2020 | A1 |
20200275841 | Telfort et al. | Sep 2020 | A1 |
20200288983 | Telfort et al. | Sep 2020 | A1 |
20200321793 | Al-Ali et al. | Oct 2020 | A1 |
20200329983 | Al-Ali et al. | Oct 2020 | A1 |
20200329984 | Al-Ali et al. | Oct 2020 | A1 |
20200329993 | Al-Ali et al. | Oct 2020 | A1 |
20200330037 | Al-Ali et al. | Oct 2020 | A1 |
20210022628 | Telfort et al. | Jan 2021 | A1 |
20210104173 | Pauley et al. | Apr 2021 | A1 |
20210113121 | Diab et al. | Apr 2021 | A1 |
20210118581 | Kiani et al. | Apr 2021 | A1 |
20210121582 | Krishnamani et al. | Apr 2021 | A1 |
20210161465 | Barker et al. | Jun 2021 | A1 |
20210236729 | Kiani et al. | Aug 2021 | A1 |
20210256267 | Ranasinghe et al. | Aug 2021 | A1 |
20210256835 | Ranasinghe et al. | Aug 2021 | A1 |
20210275101 | Vo et al. | Sep 2021 | A1 |
20210290060 | Ahmed | Sep 2021 | A1 |
20210290072 | Forrest | Sep 2021 | A1 |
20210290080 | Ahmed | Sep 2021 | A1 |
20210290120 | Al-Ali | Sep 2021 | A1 |
20210290177 | Novak, Jr. | Sep 2021 | A1 |
20210290184 | Ahmed | Sep 2021 | A1 |
20210296008 | Novak, Jr. | Sep 2021 | A1 |
20210330228 | Olsen et al. | Oct 2021 | A1 |
20210386382 | Olsen et al. | Dec 2021 | A1 |
20210402110 | Pauley et al. | Dec 2021 | A1 |
20220026355 | Normand et al. | Jan 2022 | A1 |
20220039707 | Sharma et al. | Feb 2022 | A1 |
20220053892 | Al-Ali et al. | Feb 2022 | A1 |
20220071562 | Kiani | Mar 2022 | A1 |
20220096603 | Kiani et al. | Mar 2022 | A1 |
20220151521 | Krishnamani et al. | May 2022 | A1 |
20220218244 | Kiani et al. | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
2175208 | Nov 1986 | GB |
WO 9846277 | Oct 1998 | WO |
WO 2005072297 | May 2005 | WO |
WO 2006120683 | Nov 2006 | WO |
WO 2010030226 | Mar 2010 | WO |
Entry |
---|
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn) |
Petition for Inter Parties Review of U.S. Pat. No. 9,861,298 dated Sep. 6, 2019. |
U.S. Pat. No. 9,861,298, Eckerbom et al., Issued Jan. 9, 2018 (Exhibit 1001). |
Declaration of Petitioner's Expert, Zane Frund, Ph.D., dated Sep. 6, 2019 (Exhibit 1002). |
U.S. Pat. No. 95,042,500, Norlien et al., Issued Aug. 27, 1991 (Exhibit 1003). |
Sijbesma et al., Flue Gas Dehydration Using Polymer Membranes, J. Membrane Sci 313 (2008) p. 263-276 (Exhibit 1004). |
US Publication 2005/0171496, Guldfeldt et al., Published Aug. 4, 2005 (Exhibit 1005). |
U.S. Pat. No. 8,053,030, Gilman, Issued Nov. 8, 2011 (Exhibit 1006). |
Nguyen, et al., Pervaporation, a Novel Technique for the Measurement of Vapor Transmission Rate of Highly Permeable Films, Polymer Testing 29 (2001) p. 901-911 (Exhibit 1007). |
US Publication 2009/0088656, Levitsky et al., Published Apr. 2, 2009 (Exhibit 1008). |
Prosecution History of U.S. Pat. No. 9,861,298, patent issued on Jan. 9, 2018 (Exhibit 1009). |
USPTO, Decision on Appeal 2016-006238, Exhibit 1010, filed on Sep. 6, 2019 in IPR2019-01583 dated Sep. 18, 2017 (Exhibit 1010). |
Arkema Brochure, In Medical Applications—Advantage of Using Pebax (publication date not provided) (Exhibit 1011). |
U.S. Pat. No. 6,783,573, Richardson, Issued Aug. 31, 2004 (Exhibit 1012). |
Credit Suisse, Report on PEEK Pricing, dated May 13, 2015 (Exhibit 1013). |
740SELECT Capnography: Covidien Microstream MicroPod Brochure (publication date not provided) (Exhibit 1014). |
Ma et al., Carbon Dioxide Permeability of Proton Exchange Membranes for Fuel Cells, Solid State Ionics 176 (2005) p. 2923-2927 (Exhibit 1015). |
Sridhar et al., Development of Crosslinked Poly(ether-block-amide) Membrane for Co2/CH4 Separation, Colloids and Surfaces A: Physiocochem, Eng. Aspects 297 (2007) p. 267-274 (Exhibit 1016). |
Jansen, Nanotubes Vapour Removal, Attentie, Periodiek der S.V.A.T. Astante, Oct. 2007 (Exhibit 1017). |
Portion of File History of European Application No. 098133093.-1660, Jun. 8, 2015 (Exhibit 1018). |
Second Portion of File History of European Application No. 098133093.-1660, Jun. 8, 2015 (Exhibit 1019). |
Third Portion of File History of European Application No. 098133093.-1660, Jun. 8, 2015 (Exhibit 1020). |
Freeman et al., Gas and Liquid Separations Using Membranes: An Overview, 2004 American Chemical Society (Exhibit 1021). |
Petitioner's Opening Appeal Brief, dated Nov. 30, 2015(Exhibit 1022). |
Examiners Answer Brief, dated Mar. 28, 2016 (Exhibit 1023). |
Petitioner's Reply Brief to Examiner's Answer, dated Jun. 6, 2016 (Exhibit 1024). |
E. Peled et al., A Direct Methanol Fuel Cell Based on a Novel Low-Cost Nanoporous Proton-Conducting Membrane, dated Jun. 26, 2000 (Exhibit 1025). |
PEBAX Invioce, dated Jul. 18, 2019 (Exhibit 1026). |
Corrected Petition for Inter Parties Review of U.S. Pat. No. 9,861,298 dated Sep. 6, 2019. |
Patent Owner Submission of Mandatory Notice Information Pursuant to 37 C.F.R. 42.8(a) dated Sep. 27, 2019. |
Patent Owner Preliminary Response dated Dec. 19, 2019. |
Decision Granting Institution of Inter Partes Review date Mar. 16, 2019. |
Barrer, Source: http://en.wikipedia.org/wiki/Barrer?oldid=646860514. Contributors: Calair, Wtmitchell, MZMcBride, Retired username, SmackBot, Bluebot, Due Freq, Flscholten, ydebot, Zginder, MarchBot, Leyo, Reedy Bot, Keepday, Steven J. Anderson, Maclgwnbot, Addbot, Colapeninsula, Barrercorrector and Anonymous: 10. As printed on Jun. 2, 2015. |
European Patent Office Third Party Observations, dated Sep. 28, 2012; Appln. No. 09813309.3-2319 / 2326246 PCT/SE2009051012. |
FLYER; “Our Materials Science Meets Your Medical Applications”, Arkema 2009; 6 pages. |
International Search Report: PCT/SE2009/051012; dated Dec. 21, 2009. |
Moilanen, et al., Water Dynamics and Proton Transfer in Nafion Fuel Cell Membranes, Langmuir 2008, 24(8), 3690-3698. Published Apr. 15, 2008. |
Pebax®, Applications Areas, Arkema, Jun. 2000, 11 pages. |
Pebax®, Breathable Film, Arkema, Jun. 2007, 2 pages. |
Pebax®, In Medical Applications, Arkema, Jun. 2007, 2 pages. |
Pebax®, Product Range Overview, Arkema, Jun. 2007, 2 pages. |
Sridhar et al., “Development of Crosslinked Polyether-block-amide membrane for CO2/CH4 Separation,” 2007, pp. 267-274. |
Supplementary European Search Report completed Nov. 30, 2012; Appln. No. EP 09 81 3309. |
Y. Yampolskii, B. Freeman, “Membrane Gas Separation”, John Wiley & Sons, Ltd., 2010, pp. 257-263. |
V.I. Bondar, et al; “Gas Sorption and Characterization of Poly(ether-b-amide) Segmented Block Copolymers”, Journal of Polymer Science: Part B: Polymer Physics, vol. 37, pp. 2463-2475, Apr. 26, 1999. |
Wikipedia.org: PEBA and PEG. |
Marcq, J. et al., “Abatement of CO2 Emissions by Means of Membranes—Characterization of Industrial PEBAX™ Films”, Environment Protection Engineering, 2005, vol. 31 (3-4), pp. 13-22. |
Yuri Yampolskii, et al; “Membrane Gas Separation”, John Wiley & Sons, Ltd, 2010; pp. 257, 263. |
European Patent Office Third Party Observations dated Jun. 8, 2015, Application No. 09813309.3, Patent No. 2326246, WO 2010/030226. |
Sijbesma et al., “Flue Gas Dehydration Using Polymer Membranes”, Journal of Membrane Science, vol. 313, 2008, pp. 263-276. |
File History, U.S. Appl. No. 13/063,648 [Exhibit 2001]. |
Declaration of Len Czuba [Exhibit 2002]. |
Curriculum Vitae, Len Czuba [Exhibit 2003]. |
Declaration of Craig Sunada in Perma Pure, LLC V. Masimo Corporation dated Aug. 24, 2020 in 20 pages. [Exhibit 1028]. |
Deposition of Leonard F. Czuba in Perma Pure, LLC V. Masimo Corporation dated Aug. 13, 2020 in 113 pages. [Exhibit 1027]. |
U.S. Pat. No. 6,783,573, Richardson, Issued Aug. 31, 2004 [Exhibit 2004] [Exhibit 2014]. |
International Publication No. WO 2005/072297, RIC Investments, LLC, published Aug. 11, 2005 [Exhibit 2005] [Exhibit 2015]. |
U.S. Pat. No. 6,779,522, Smith et al., Issued Aug. 24, 2004 [Exhibit 2006]. |
Perma Pure LLC, Frequently Asked Questions, https://web.archive.org/web/20060324193926/http:/www.permapure.com/FAQs.htm [Exhibit 2007]. |
Perma Pure, LLC, Frequently Asked Questions, https://www.permapure.com/support/faqs/ [Exhibit 2008]. |
Ŝpanêl, P., et al., “On-line measurement of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry,” Rapid Communications in Mass Spectrometry, 15 (2001). [Exhibit 2009]. |
Excerpts from Mulder, Marcel, Basic Principles of Mebrane Technology, 1996 (2nd ed.) [Exhibit 2010]. |
Potreck, J., et al., “Mixed Water Vapor/Gas Transport Through the rubbery polymer PEBAX® 1074,” Journal of Membrane Science, 338 (2009). [Exhibit 2011]. |
Perma Pure, LLC, Press Release, “Fluid Technology Division—Keeping Water Vapor From Breath Gas Analyzers,” Feb. 18, 2005. [Exhibit 2012]. |
Record of Oral Hearing Held on Dec. 15, 2020 for IPR2019-01583, dated Feb. 12, 2021. |
Shamu, A., et al., “Mass transfer studies on the dehydration of supercritical carbon dioxide using dense polymeric membranes,” Separation and Purification Technology, 209 (2019). [Exhibit 2013]. |
US Publication No. 2003/0191405, Rich et al., Issued Oct. 9, 2003 [Exhibit 2016]. |
Number | Date | Country | |
---|---|---|---|
20200046257 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15832658 | Dec 2017 | US |
Child | 16660680 | US | |
Parent | 13063648 | US | |
Child | 15832658 | US |