Gas storage system

Information

  • Patent Grant
  • 7309380
  • Patent Number
    7,309,380
  • Date Filed
    Monday, June 30, 2003
    21 years ago
  • Date Issued
    Tuesday, December 18, 2007
    17 years ago
Abstract
A container for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas, comprising a metal-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion, as well as to a fuel cell comprising said container, and to a method of using said container or said fuel cell for supplying power to power plants, cars, trucks, busses, cell phones, and laptops.
Description

The present invention relates to the technical field of storing gas including hydrogen and hydrocarbons, preferably hydrocarbons and more preferably methane, in particular to the fuel cell technology. Particularly, the present invention relates to a container for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas, comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 1 to 750 bar inside the container, said container further comprising a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion. According to one embodiment of the present invention, the aforementioned container has a non-cylindrical geometry.


Fuel cell technology is regarded as one of the core technologies of the 21st century, e.g. in relation to stationary applications, such as power plants, mobile applications such as cars, busses and trucks and portable applications, such as cellular phones and laptops and in so called APUs, such as the power supply in power plants. The reason therefor lies in the increased efficiency of fuel cells compared to normal combustion engines. Furthermore, the fuel cell produces significantly less emissions. An overview of the current developments in fuel cell technology may be found in Hynek et al. “Int. J. Hydrogen Energy”, 22, no. 6, pp. 601-610 (1997), J. A. Kerres “Journal of Membrane Science”, 185, 2001, p. 3-27 and a further review article by G. March in “Materials Today”, 4, No.2 (2001), p. 20-24.


The use of metallo-organic complexes for storing gaseous C1 to C4 hydrocarbons is disclosed in EP-A 0 727 608. However, the complexes disclosed therein are difficult to synthesize. Furthermore, their storing capacity is low, if not too low to be industrially applicable.


Another attempt to provide materials useful for storing gases is the use of alkali-doped or undoped carbon nanotubes. An overview of the present status of research regarding this approach may be found in Yang, “Carbon” 38 (2000), pp. 623-641 and Cheng et al. “Science” 286, pp. 1127-1129.


Specific materials suitable for storing gases are disclosed in WO 02/088148. It is described that specific metallo-organic framework materials, so-called isoreticular metallo-organic framework materials, which are also disclosed in the present invention are especially suitable for storing methane. However, WO 02/088148 relates only to the capability of said framework materials for methane storage and values for their capacity for methane storage. As far as container comprising these isoreticular metallo-organic framework material is concerned, no specific geometry is disclosed.


U.S. patent application Ser. No. 10/061,147 filed Feb. 1, 2002, now U.S. Pat. No. 6,929,679, by the inventors of the present application discloses a method for uptaking, storing, and releasing gases wherein metallo-organic framework materials are used. In this context, a device and a fuel cell are disclosed comprising these metallo-organic framework materials. The described device includes, e.g., a container accomodating the metallo-organic framework material, an entrance/exit opening for allowing the at least one gas to enter or exit the device, and a gas-tight maintaining mechanism capable of maintaining the gas under pressure inside the container. However, neither specific containers nor container materials nor specific container geometries nor specific pressure ranges under which the gases are stored are disclosed.


In view of the above recited prior art, an object of the present invention is to provide a container comprising metallo-organic framework materials which is capable of uptaking and/or storing and/or releasing a gas such as a noble gas, carbon monoxide, carbon dioxide, nitrogen, a hydrocarbon, hydrogen, or a compound generating and/or delivering theses gases, preferably a hydrocarbon gas such as propane, ethane, or methane, or hydrogen, and more preferably methane, under a certain pressure.


This object is solved by a container for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas, comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from greater than 45 to 750 bar inside the container, said container further comprising a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion.


The present invention further relates to a storage system comprising a container for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas, comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 1 to 750 bar inside the container, said container further comprising a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion.


The present invention still further relates to a fuel cell, comprising at least one container for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas, comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 1 to 750 bar inside the container, said container further comprising a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion, and further relates to a method of using this fuel cell for supplying power to stationary and/or mobile and/or mobile portable application such as power plants, cars, trucks, busses, cordless tolls, cell phones, and laptops.


The present invention still further relates to a method of uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas wherein the at least one gas is uptaken, or stored, or released, or uptaken and stored, or uptaken and released, or stored and released, or uptaken and stored and released by a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is preferably coordinately bound to said metal ion, wherein the metallo-organic framework material comprising pores is comprised in a container comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from greater than 45 to 750 bar inside the container


The present invention further relates to a method of using a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is preferably coordinately bound to said metal ion, for uptakaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas in stationary, mobile, or mobile portable applications, said applications comprising a container comprising said metallo-organic framework material comprising pores, said container further comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 1 to 750 bar inside the container, wherein these applications are preferably power plants, cars, trucks, busses, cordless tools, cell phones, and laptops.


As far as the container as such is concerned, the pressure under which the at least one gas is stored is preferably in the range of from greater than 45 to 300 bar, more preferably in the range of from greater than 45 to 150 bar, even more preferably in the range of from greater than 50 to 150 bar, especially preferably in the range of from 50 to 100 bar and most preferably in the range of from 50 to 80 bar.


As to a storage system or a fuel cell comprising the container, the pressure under which the at least one gas is stored is preferably in the range of from 1 to 300 bar, more preferably in the range of from 1 to 200 bar, more preferably in the range of from greater than 45 to 200 bar, more preferably in the range of from greater than 45 to 150 bar, even more preferably in the range of from greater than 50 to 150 bar, especially preferably in the range of from 50 to 100 bar and most preferably in the range of from 50 to 80 bar.


The volume of the container may be freely chosen and adapted to the specific needs of the respective application for which the container is used.


If the container is used, for example, in a fuel cell of a passenger car, the volume of the container is preferably smaller than or equal to 300 l, preferably smaller than or equal to 250 l, more preferably smaller than or equal to 200 l, more preferably smaller than or equal to 150 l, more preferably smaller than or equal to 100 l.


If the container is used, for example, in a fuel cell of a truck , the volume of the container is preferably smaller than or equal to 500 l, preferably smaller than or equal to 450 l, more preferably smaller than or equal to 400 l, more preferably smaller than or equal to 350 l, more preferably smaller than or equal to 300 l.


If the container is used, for example, in a storage system which is used, for example, in a gas station, the volume of the container may be within the aforementioned ranges, but may as well exceed the aforementioned ranges.


The geometry of a container, known in the art, comprising at least one gas under pressure, especially in the technical field of fuel cells, is generally restricted to cylindrical geometry due to stability considerations. Unlike those containers, the inventive containers, comprising the above-mentioned metallo-organic framework, allow for storing a higher amount of the at least one gas under a given pressure or, vice versa, the same amount of at least one gas, preferably a hydrocarbon, most preferably methane, under a considerably lower pressure.


An advantage of those containers is that their geometry generally may be freely chosen, and especially non-cylindrical geometries are possible.


Therefore, according to another preferred embodiment, the present invention relates to a container having a non-cylindrical geometry for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas, comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 1 to 750 bar inside the container, said container further comprising a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion.


As to the container having a non-cylindrical geometry and a storage system and a fuel cell comprising at least one container having a non-cylindrical geometry, the pressure under which the at least one gas is stored is preferably in the range of from 1 to 300 bar, more preferably in the range of from 1 to 200 bar, more preferably in the range of from 1 to 150 bar, more preferably in the range of from 1 to 80 bar, more preferably in the range of greater than 45 to 80 bar and most preferably in the range of from 50 to 80 bar.


According to yet another preferred embodiment, the present invention also relates to a storage system comprising a container having non-cylindrical geometry as mentioned above.


According to still another preferred embodiment, the present invention also relates to a fuel cell comprising a container having non-cylindrical geometry as mentioned above.


A serious drawback of applications in which a container was used which comprised at least one gas under high pressure and whose geometry was restricted to a cylindrical shape, was that a considerable waste of valuable space generally had to be accepted or additional space had to be alloted making the respective application larger than necessary. One example is the use of fuel cells in cars wherein, using containers of restricted geometry, a considerable portion, if not the complete, rear trunk had to be taken up for housing the container or a plurality of containers.


This major drawback may be overcome using the containers with non-cylindrical geometry according to the present invention which comprise the at least one gas preferably under pressures of up to 150 bar, most preferably of from 50 to 80 bar. Non-cylindrical containers, and consequently storage systems and/or fuel cells are provided whose geometries may be more or less freely adapted to the respective applications. In cars, for example, cavities which are generally useless like cavities in a transmission tunnel may be equipped with a container or part of a container or a fuel cell or part of a fuel cell thus saving valuable storage space.


As to the inventive container, the present invention also relates to a method of using a fuel cell comprising said container for supplying power to stationary, mobile, and mobile portable applications.


Among these applications, power plants, ships, planes, cars, trucks, busses, motorbikes, cordless tools in general, cell phones, laptops, personal computers and the like may be mentioned.


The present invention therefore relates to a method of using a fuel cell comprising the aforementioned container for supplying power to power plants, cars, trucks, busses, cordless tools, cell phones, and laptops.


According to another embodiment, the present invention also relates to a method of transferring at least one gas from a storage system to a fuel cell, said storage system comprising at least one container having a non-cylindrical geometry for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas, comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 1 to 750 bar inside the container, said container further comprising a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion. According to yet another preferred embodiment of the present invention, the fuel cell the at least one gas is transferred into comprises at least one container having a non-cylindrical geometry for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas, comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 1 to 750 bar inside the container, said container further comprising a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion.


Moreover, the present invention relates to a method of uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas wherein the at least one gas is uptaken, or stored, or released, or uptaken and stored, or uptaken and released, or stored and released, or uptaken and stored and released by a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is preferably coordinately bound to said metal ion wherein the metallo-organic framework material comprising pores is comprised in at least one container having non-cylindrical geometry comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 1 to 750 bar inside the container.


According to another aspect, the present invention relates to a method of using a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is preferably coordinately bound to said metal ion, for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas in stationary, mobile, or mobile portable applications, said applications comprising a container having a non-cylindrical geometry comprising said metallo-organic framework material comprising pores, said container further comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 1 to 750 bar inside the container.


Among these applications, power plants, ships, planes, cars, trucks, busses, motorbikes, cordless tools in general, cell phones, laptops, personal computers and the like may be mentioned.


As material the container according to the present invention is manufactured from, generally each material may be used which is stable when exposed to the pressures given above and which is gas-tight under these pressures. Therefore, different materials may be chosen for different gases to be uptaken and/or stored and/or released. Examples for materials are metals like, for example, stainless steel or aluminum, synthetic material, composite material, fiber reinforced synthetic material, fiber reinforced composite material, carbon fiber composite materials or mixtures of two or more thereof like, for example, carbon fiber composite material laminated with aluminum. Preferred are, among others, materials having low weight and/or low density.


A container according to the present invention may have one wall, a double wall, a triple wall or even more than three walls. If the container has more than one wall and is, for example, double-walled, there may be at least one insulating layer between two adjacent walls. As insulating layer, a vacuum layer or a layer comprising, for example, glass wool, may be used. As insulating layer, also a metal foil covered with at least one layer of glass wool may be used. As insulating layer, also the combination of one or more metal foils at least one of which is covered with glass wool with vacuum is possible.


Containers, storage systems and/or fuel cells according to the invention may be used once or several times, according to the application they are used in. According to one embodiment, the at least one gas may be uptaken, stored and released whereafter the container is disposed. According to another embodiment of the present invention, the container from which the uptaken and stored gas is at least partially released is at least partially refilled again with the same or another gas or the same gas mixture or another gas mixture.


According to a further embodiment, the present invention relates to a method of transferring at least one gas from a first container to a second container wherein at least one container is a container according to the present invention. According to this embodiment, the first container may contain at least one gas, for example hydrogen or a hydro-carbon, most preferably methane, wherein said first container is a container according to the invention. The at least one gas, stored in the first container, is then transferred to a second container which may or may not be a container according to the present invention. Moreover, the first container comprising the at least one gas may be a container known in the art, for example a cylindrical container without metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion. From this container, the at least one gas is transferred to a second container according to the invention, having, for example, non-cylindrical geometry. According to a third aspect of this embodiment, the first container is a container according to the present invention, for example a container which represents or which is part of a storage system, and the second container is a container according to the present invention as well, for example a container having, for example, non-cylindrical geometry which is part of a fuel cell.


Therefore, according to an especially preferred aspect of this embodiment, the present invention relates to transferring at least one gas like hydrogen or a hydrocarbon like methane from a storage system to a fuel cell wherein either the storage system or the fuel cell or the storage system as well as the fuel cell comprise a container of the present invention. The storage system may be, for example, part of a gas station in which at least one gas like hydrogen or methane is stored. From this storage system the at least one gas may be transferred to another storage system comprising a container or preferably to a fuel cell comprising a container wherein this fuel cell is, for example, part of a passenger car, a truck, a motorbike or the like or another mobile application.


According to another especially preferred aspect of this embodiment, the present invention relates to transferring at least one gas like hydrogen or a hydrocarbon like methane from a first storage system to a second storage system wherein the first storage system is part of, for example, a truck delivering the at least one gas, and the second storage system is part of a gas station to which the at least one gas is delivered. Either the first storage system or the second storage system or the first storage system as well as the second storage system comprise at least one container according to the present invention.


The metallo-organic framework materials as such are described, for example, in. U.S. Pat. No. 5,648,508, EP-A-0 709 253, M. O'Keeffe et al., J. Sol. State Chem., 152 (2000) p. 3-20, H. Li et al., Nature 402 (1999) p. 276 seq., M. Eddaoudi et al., Topics in Catalysis 9 (1999) p. 105-111, B. Chen et al., Science 291 (2001) p. 1021-23. An inexpensive way for the preparation of said materials is the subject of DE 10111230.0. Certain materials and ways for their preparation are disclosed in WO 02/088148. The content of these publications, to which reference is made herein, is fully incorporated in the content of the present application.


The metallo-organic framework materials, as used in the present invention, comprise pores, particularly micro- and/or mesopores. Micropores are defined as being pores having a diameter of 2 nm or below and mesopores as being pores having a diameter in the range of above 2 nm to 50 nm, respectively, according to the definition given in Pure Applied Chem. 45, p. 71 seq., particularly on p. 79 (1976). The presence of the micro- and/or mesopores can be monitored by sorption measurements for determining the capacity of the metallo-organic framework materials to take up nitrogen at 77 K according to DIN 66131 and/or DIN 66134.


For example, a type-I-form of the isothermal curve indicates the presence of micropores [see, for example, paragraph 4 of M. Eddaoudi et al., Topics in Catalysis 9 (1999)]. In a preferred embodiment, the specific surface area, as calculated according to the Langmuir model (DIN 66131, 66134) preferably is above 5 m2/g, further preferred above 10 m2/g, more preferably above 50 m2/g, particularly preferred above 500 m2 /g and may increase into the region of above 4,000 m2/g.


As to the metal component within the framework material that is to be used according to the present invention, particularly to be mentioned are the metal ions of the main group elements and of the subgroup elements of the periodic system of the elements, namely of the groups Ia, IIa, IIIa, IVa to VIIIa and Ib to VIb. Among those metal components, particular reference is made to Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, and Bi, more preferably to Zn, Cu, Ni, Pd, Pt, Ru, Rh and Co. As to the metal ions of these elements, particular reference is made to: Mg2+, Ca2+, Sr2+, Ba2+, Sc3+, Y3+, Ti4+, Zr4+, Hf4+, V4+, V3+, V2+, Nb3+, Ta+, Cr3+, Mo3+, W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Rh2+, Rh+, Ir2+, Ir+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, Pt+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, In3+, Tl3+, Si4+, Si2+, Ge4+, Ge2+, Sn4+, Sn2+, Pb4+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+, Bi5+, Bi3+ and Bi+.


Particularly preferred metal ions are Co2+ and Zn2+.


With regard to the preferred metal ions and further details regarding the same, particular reference is made to: EP-A 0 790 253, particularly to p. 10, 1.8-30, section “The Metal Ions”, which section is incorporated herein by reference.


In addition to the metal salts disclosed in EP-A 0 790 253 and U.S. Pat. No. 5,648,508, other metallic compounds can be used, such as sulfates, phosphates and other complex counter-ion metal salts of the main- and subgroup metals of the periodic system of the elements. Metal oxides, mixed oxides and mixtures of metal oxides and/or mixed oxides with or without a defined stoichiometry are preferred. All of the above mentioned metal compounds can be soluble or insoluble and they may be used as starting material either in form of a powder or as a shaped body or as any combination thereof.


As to the at least bidentate organic compound, which is capable to coordinate with the metal ion, in principle all compounds can be used which are suitable for this purpose and which fulfill the above requirements of being at least bidentate. Said organic compound must have at least two centers, which are capable to coordinate with the metal ions of a metal salt, particularly with the metals of the aforementioned groups. With regard to the at least bidentate organic compound, specific mention is to be made of compounds having

    • i) an alkyl group substructure, having from 1 to 10 carbon atoms,
    • ii) an aryl group substructure, having from 1 to 5 phenyl rings,
    • iii) an alkyl or aryl amine substructure, consisting of alkyl groups having from 1 to 10 carbon atoms or aryl groups having from 1 to 5 phenyl rings,


      said substructures having bound thereto at least one at least bidentate functional group “X”, which is covalently bound to the substructure of said compound, and wherein X is selected from the group consisting of CO2H, CS2H, NO2, SO3H, Si(OH)3, Ge(OH)3, Sn(OH)3, Si(SH)4, Ge(SH)4, Sn(SH)3, PO3H, AsO3H, AsO4H, P(SH)3, As(SH)3, CH(RSH)2, C(RSH)3, CH(RNH2)2, C(RNH2)3, CH(ROH)2, C(ROH)3, CH(RCN)2, C(RCN)3, wherein R is an alkyl group having from 1 to 5 carbon atoms, or an aryl group consisting of 1 to 2 phenyl rings, and CH(SH)2, C(SH)3, CH(NH2)2, C(NH2)2, CH(OH)2, C(OH)3, CH(CN)2 and C(CN)3.


Particularly to be mentioned are substituted or unsubstituted, mono- or polynuclear aromatic di-, tri- and tetracarboxylic acids and substituted or unsubstituted, aromatic, at least one hetero atom comprising aromatic di-, tri- and tetracarboxylic acids, which have one or more nuclei.


A preferred ligand is 1,3,5-benzene tricarboxylate (BCT). Further preferred ligands are ADC (acetylene dicarboxylate), NDC (naphtalen dicarboxylate), BDC (benzene dicarboxylate), ATC (adamantane tetracarboxylate), BTC (benzene tricarboxylate), BTB (benzene tribenzoate), MTB (methane tetrabenzoate) and ATB (adamantane tribenzoate).


Besides the at least bidentate organic compound, the framework material as used in accordance with the present invention may also comprise one or more mono-dentate ligand(s), which is/are preferably selected from the following mono-dentate substances and/or derivatives thereof:

    • a. alkyl amines and their corresponding alkyl ammonium salts, containing linear, branched, or cyclic aliphatic groups, having from 1 to 20 carbon atoms (and their corresponding ammonium salts);
    • b. aryl amines and their corresponding aryl ammonium salts having from 1 to 5 phenyl rings;
    • c. alkyl phosphonium salts, containing linear, branched, or cyclic aliphatic groups, having from 1 to 20 carbon atoms;
    • d. aryl phosphonium salts, having from 1 to 5 phenyl rings;
    • e. alkyl organic acids and the corresponding alkyl organic anions (and salts) containing linear, branched, or cyclic aliphatic groups, having from 1 to 20 carbon atoms;
    • f. aryl organic acids and their corresponding aryl organic anions and salts, having from 1 to 5 phenyl rings;
    • g. aliphatic alcohols, containing linear, branched, or cyclic aliphatic groups, having from 1 to 20 carbon atoms;
    • h. aryl alcohols having from 1 to 5 phenyl rings;
    • i. inorganic anions from the group consisting of: sulfate, nitrate, nitrite, sulfite, bisulfite, phosphate, hydrogen phosphate, dihydrogen phosphate, diphosphate, triphosphate, phosphite, chloride, chlorate, bromide, bromate, iodide, iodate, carbonate, bicarbonate, and the corresponding acids and salts of the aforementioned inorganic anions,
    • j. ammonia, carbon dioxide, methane, oxygen, ethylene, hexane, benzene, toluene, xylene, chlorobenzene, nitrobenzene, naphthalene, thiophene, pyridine, acetone, 1-2-dichloroethane, methylenechloride, tetrahydrofuran, ethanolamine, triethylamine and trifluoromethylsulfonic acid.


Further details regarding the at least bidentate organic compounds and the mono-dentate substances, from which the ligands of the framework material as used in the present application are derived, can be taken from EP-A 0 790 253, whose respective content is incorporated into the present application by reference.


Within the present application, framework materials of the kind described herein, which comprise Zn2+ as a metal ion and ligands derived from terephthalic acid as the bidentate compound, are particularly preferred. Said framework materials are known as MOF-5 in the literature.


Further metal ions and at least bidentate organic compounds and mono-dentate substances, which are respectively useful for the preparation of the framework materials used in the present invention as well as processes for their preparation are particularly disclosed in EP-A 0 790 253, U.S. Pat. No. 5,648,508 and DE 101 11230.0.


As solvents, which are particularly useful for the preparation of MOF-5, in addition to the solvents disclosed in the above-referenced literature, dimethyl formamide, diethyl formamide and N-methylpyrollidone, alone, in combination with each other or in combination with other solvents may be used. Within the preparation of the framework materials, particularly within the preparation of MOF-5, the solvents and mother liquors are recycled after crystallization in order to save costs and materials.


The pore sizes of the metallo-organic framework can be adjusted by selecting suitable organic ligands and/or bidendate compounds (=linkers). Generally, the larger the linker, the larger the pore size. Any pore size that is still supported by a the metallo-organic framework in the absence of a host and at temperatures of at least 200° C. is conceivable. Pore sizes ranging from 0.2 nm to 30 nm are preferred, with pore sizes ranging from 0.3 nm to 3 nm being particularly preferred.


In the following, examples of metallo-organic framework materials (MOFs) are given to illustrate the general concept given above. These specific examples, however, are not meant to limit the generality and scope of the present application.


By way of example, a list of metallo-organic framework materials already synthesized and characterized is given below. This also includes novel isoreticular metal organic framework materials (IR-MOFs), which may be used in the context of the present application. Such materials having the same framework topology while displaying different pore sizes and crystal densities are described, for example in M. Eddouadi et al., Science 295 (2002) 469, whose respective content is incorporated into the present application by reference


The solvents used are of particular importance for the synthesis of these materials and are therefore mentioned in the table. The values for the cell parameters (angles alpha, beta and gamma as well as the spacings a, b and c, given in Angstrom) have been obtained by X-ray diffraction and represent the space group given in the table as well.






















Ingredients











molar ratios







Space


MOF-n
M + L
Solvents
α
β
γ
a
b
c
Group
























MOF-0
Zn(NO3)2 · 6H2O
ethanol
90
90
120
16.711
16.711
14.189
P6(3)/



H3(BTC)







Mcm


MOF-2
Zn(NO3)2 · 6H2O
DMF
90
102.8
90
6.718
15.49
12.43
P2(1)/n



(0.246 mmol)
toluene



H2(BDC)



0.241 mmol)


MOF-3
Zn(NO3)2 · 6H2O
DMF
99.72
111.11
108.4
9.726
9.911
10.45
P-1



(1.89 mmol)
MeOH



H2(BDC)



(1.93 mmol)


MOF-4
Zn(NO3)2 · 6H2O
ethanol
90
90
90
14.728
14.728
14.728
P2(1)3



(1.00 mmol)



H3(BTC)



(0.5 mmol)


MOF-5
Zn(NO3)2 · 6H2O
DMF
90
90
90
25.669
25.669
25.669
Fm-3m



(2.22 mmol)
chlorobenzene



H2(BDC)



(2.17 mmol)


MOF-38
Zn(NO3)2 · 6H2O
DMF
90
90
90
20.657
20.657
17.84
I4cm



(0.27 mmol)
chlorobenzene



H3(BTC)



(0.15 mmol)


MOF-31
Zn(NO3)2 · 6H2O
ethanol
90
90
90
10.821
10.821
10.821
Pn(−3)m


Zn(ADC)2
0.4 mmol



H2(ADC)



0.8 mmol


MOF-12
Zn(NO3)2 · 6H2O
ethanol
90
90
90
15.745
16.907
18.167
Pbca


Zn2(ATC)
0.3 mmol



H4(ATC)



0.15 mmol


MOF-20
Zn(NO3)2 · 6H2O
DMF
90
92.13
90
8.13
16.444
12.807
P2(1)/c


ZnNDC
0.37 mmol
chlorobenzene



H2NDC



0.36 mmol


MOF-37
Zn(NO3)2 · 6H2O
DEF
72.38
83.16
84.33
9.952
11.576
15.556
P-1



0.2 mmol
chlorobenzene



H2NDC



0.2 mmol


MOF-8
Tb(NO3)3 · 5H2O
DMSO
90
115.7
90
19.83
9.822
19.183
C2/c


Tb2 (ADC)
0.10 mmol
MeOH



H2ADC



0.20 mmol


MOF-9
Tb(NO3)3 · 5H2O
DMSO
90
102.09
90
27.056
16.795
28.139
C2/c


Tb2 (ADC)
0.08 mmol



H2ADB



0.12 mmol


MOF-6
Tb(NO3)3 · 5H2O
DMF
90
91.28
90
17.599
19.996
10.545
P21/c



0.30 mmol
MeOH



H2 (BDC)



0.30 mmol


MOF-7
Tb(NO3)3 · 5H2O
H2O
102.3
91.12
101.5
6.142
10.069
10.096
P-1



0.15 mmol



H2(BDC)



0.15 mmol


MOF-69A
Zn(NO3)2 · 6H2O
DEF
90
111.6
90
23.12
20.92
12
C2/c



0.083 mmol
H2O2



4,4′BPDC
MeNH2



0.041 mmol


MOF-69B
Zn(NO3)2 · 6H2O
DEF
90
95.3
90
20.17
18.55
12.16
C2/c



0.083 mmol
H2O2



2,6-NCD
MeNH2



0.041 mmol


MOF-11
Cu(NO3)2 · 2.5H2O
H2O
90
93.86
90
12.987
11.22
11.336
C2/c


Cu2(ATC)
0.47 mmol



H2ATC



0.22 mmol


MOF-11


90
90
90
8.4671
8.4671
14.44
P42/


Cu2(ATC)








mmc


dehydr.


MOF-14
Cu(NO3)2 · 2.5H2O
H2O
90
90
90
26.946
26.946
26.946
Im-3


Cu3 (BTB)
0.28 mmol
DMF



H3BTB
EtOH



0.052 mmol


MOF-32
Cd(NO3)2 · 4H2O
H2O
90
90
90
13.468
13.468
13.468
P(−4)3m


Cd(ATC)
0.24 mmol
NaOH



H4ATC



0.10 mmol


MOF-33
ZnCl2
H2O
90
90
90
19.561
15.255
23.404
Imma


Zn2 (ATB)
0.15 mmol
DMF



H4ATB
EtOH



0.02 mmol


MOF-34
Ni(NO3)2 · 6H2O
H2O
90
90
90
10.066
11.163
19.201
P212121


Ni(ATC)
0.24 mmol
NaOH



H4ATC



0.10 mmol


MOF-36
Zn(NO3)2 · 4H2O
H2O
90
90
90
15.745
16.907
18.167
Pbca


Zn2 (MTB)
0.20 mmol
DMF



H4MTB



0.04 mmol


MOF-39
Zn(NO3)2 4H2O
H2O
90
90
90
17.158
21.591
25.308
Pnma


Zn3O(HBTB)
0.27 mmol
DMF



H3BTB
EtOH



0.07 mmol


NO305
FeCl2 · 4H2O
DMF
90
90
120
8.2692
8.2692
63.566
R-3c



5.03 mmol



formic acid



86.90 mmol


NO306A
FeCl2 · 4H2O
DEF
90
90
90
9.9364
18.374
18.374
Pbcn



5.03 mmol



formic acid



86.90 mmol


NO29
Mn(Ac)2 · 4H2O
DMF
120
90
90
14.16
33.521
33.521
P-1


MOF-0 like
0.46 mmol



H3BTC



0.69 mmol


BPR48
Zn(NO3)2 6H2O
DMSO
90
90
90
14.5
17.04
18.02
Pbca


A2
0.012 mmol
toluene



H2BDC



0.012 mmol


BPR69
Cd(NO3)2 4H2O
DMSO
90
98.76
90
14.16
15.72
17.66
Cc


B1
0.0212 mmol



H2BDC



0.0428 mmol


BPR92
Co(NO3)2 · 6H2O
NMP
106.3
107.63
107.2
7.5308
10.942
11.025
P1


A2
0.018 mmol



H2BDC



0.018 mmol


BPR95
Cd(NO3)2 4H2O
NMP
90
112.8
90
14.460
11.085
15.829
P2(1)/n


C5
0.012 mmol



H2BDC



0.36 mmol


Cu C6H4O6
Cu(NO3)2 · 2.5H2O
DMF
90
105.29
90
15.259
14.816
14.13
P2(1)/c



0.370 mmol
chlorobenzene



H2BDC(OH)2



0.37 mmol











M(BTC)
Co(SO4) H2O
DMF
Same as MOF-0



MOF-0like
0.055 mmol



H3BTC



0.037 mmol
















Tb(C6H4O6)
Tb(NO3)3 · 5H2O
DMF
104.6
107.9
97.147
10.491
10.981
12.541
P-1



0.370 mmol
chlorobenzene



H2(C6H4O6)



0.56 mmol


Zn (C2O4)
ZnCl2
DMF
90
120
90
9.4168
9.4168
8.464
P(−3)1m



0.370 mmol
chlorobenzene



oxalic acid



0.37 mmol


Co(CHO)
Co(NO3)2 · 5H2O
DMF
90
91.32
90
11.328
10.049
14.854
P2(1)/n



0.043 mmol



formic acid



1.60 mmol


Cd(CHO)
Cd(NO3)2 · 4H2O
DMF
90
120
90
8.5168
8.5168
22.674
R-3c



0.185 mmol



formic acid



0.185 mmol


Cu(C3H2O4)
Cu(NO3)2 · 2.5H2O
DMF
90
90
90
8.366
8.366
11.919
P43



0.043 mmol



malonic acid



0.192 mmol


Zn6 (NDC)5
Zn(NO3)2 · 6H2O
DMF
90
95.902
90
19.504
16.482
14.64
C2/m


MOF-48
0.097 mmol
chlorobenzene



14 NDC
H2O2



0.069 mmol


MOF-47
Zn(NO3)2 6H2O
DMF
90
92.55
90
11.303
16.029
17.535
P2(1)/c



0.185 mmol
chlorobenzene



H2(BDC[CH3]4)
H2O2



0.185 mmol


MO25
Cu(NO3)2 · 2.5H2O
DMF
90
112.0
90
23.880
16.834
18.389
P2(1)/c



0.084 mmol



BPhDC



0.085 mmol


Cu-Thio
Cu(NO3)2 · 2.5H2O
DEF
90
113.6
90
15.4747
14.514
14.032
P2(1)/c



0.084 mmol



thiophene



dicarboxylic



0.085 mmol


ClBDC1
Cu(NO3)2 · 2.5H2O
DMF
90
105.6
90
14.911
15.622
18.413
C2/c



0.084 mmol



H2(BDCCl2)



0.085 mmol


MOF-101
Cu(NO3)2 · 2.5H2O
DMF
90
90
90
21.607
20.607
20.073
Fm3m



0.084 mmol



BrBDC



0.085 mmol


Zn3(BTC)2
ZnCl2
DMF
90
90
90
26.572
26.572
26.572
Fm-3m



0.033 mmol
EtOH



H3BTC
base



0.033 mmol
added


MOF-j
Co(CH3CO2)2 · 4H2O
H2O
90
112.0
90
17.482
12.963
6.559
C2



(1.65 mmol)



H3(BZC)



(0.95 mmol)


MOF-n
Zn(NO3)2 · 6H2O
ethanol
90
90
120
16.711
16.711
14.189
P6(3)/mcm



H3 (BTC)


PbBDC
Pb(NO3)2
DMF
90
102.7
90
8.3639
17.991
9.9617
P2(1)/n



(0.181 mmol)
ethanol



H2(BDC)



(0.181 mmol)


Znhex
Zn(NO3)2 · 6H2O
DMF
90
90
120
37.1165
37.117
30.019
P3(1)c



(0.171 mmol)
p-xylene



H3BTB
ethanol



(0.114 mmol)


AS16
FeBr2
DMF
90
90.13
90
7.2595
8.7894
19.484
P2(1)c



0.927 mmol
anhydr.



H2(BDC)



0.927 mmol


AS27-2
FeBr2
DMF
90
90
90
26.735
26.735
26.735
Fm3m



0.927 mmol
anhydr.



H3(BDC)



0.464 mmol


AS32
FeCl3
DMF
90
90
120
12.535
12.535
18.479
P6(2)c



1.23 mmol
anhydr.



H2(BDC)
ethanol



1.23 mmol


AS54-3
FeBr2
DMF
90
109.98
90
12.019
15.286
14.399
C2



0.927
anhydr.



BPDC
n-



0.927 mmol
propanol


AS61-4
FeBr2
pyridine
90
90
120
13.017
13.017
14.896
P6(2)c



0.927 mmol
anhydr.



m-BDC



0.927 mmol


AS68-7
FeBr2
DMF
90
90
90
18.3407
10.036
18.039
Pca21



0.927 mmol
anhydr.



m-BDC
Pyridine



1.204 mmol


Zn(ADC)
Zn(NO3)2 · 6H2O
DMF
90
99.85
90
16.764
9.349
9.635
C2/c



0.37 mmol
chlorobenzene



H2(ADC)



0.36 mmol


MOF-12
Zn(NO3)2 · 6H2O
ethanol
90
90
90
15.745
16.907
18.167
Pbca


Zn2 (ATC)
0.30 mmol



H4(ATC)



0.15 mmol


MOF-20
Zn(NO3)2 · 6H2O
DMF
90
92.13
90
8.13
16.444
12.807
P2(1)/c


ZnNDC
0.37 mmol
chlorobenzene



H2NDC



0.36 mmol


MOF-37
Zn(NO3)2 · 6H2O
DEF
72.38
83.16
84.33
9.952
11.576
15.556
P-1



0.20 mmol
chlorobenzene



H2NDC



0.20 mmol


Zn(NDC)
Zn(NO3)2 · 6H2O
DMSO
68.08
75.33
88.31
8.631
10.207
13.114
P-1


(DMSO)
H2NDC


Zn(NDC)
Zn(NO3)2 · 6H2O

90
99.2
90
19.289
17.628
15.052
C2/c



H2NDC


Zn(HPDC)
Zn(NO3)2 · 4H2O
DMF
107.9
105.06
94.4
8.326
12.085
13.767
P-1



0.23 mmol
H2O



H2(HPDC)



0.05 mmol


Co(HPDC)
Co(NO3)2 · 6H2O
DMF
90
97.69
90
29.677
9.63
7.981
C2/c



0.21 mmol
H2O/



H2 (HPDC)
ethanol



0.06 mmol


Zn3(PDC)2.5
Zn(NO3)2 · 4H20
DMF/
79.34
80.8
85.83
8.564
14.046
26.428
P-1



0.17 mmol
CIBz



H2(HPDC)
H20/



0.05 mmol
TEA


Cd2 (TPDC)2
Cd(NO3)2 · 4H2O
methanol/
70.59
72.75
87.14
10.102
14.412
14.964
P-1



0.06 mmol
CHP



H2(HPDC)
H2O



0.06 mmol


Tb(PDC)1.5
Th(NO3)3 · 5H2O
DMF
109.8
103.61
100.14
9.829
12.11
14.628
P-1



0.21 mmol
H2O/



H2(PDC)
ethanol



0.034 mmol


ZnDBP
Zn(NO3)2 · 6H2O
MeOH
90
93.67
90
9.254
10.762
27.93
P2/n



0.05 mmol



dibenzylphosphate



0.10 mmol


Zn3(BPDC)
ZnBr2
DMF
90
102.76
90
11.49
14.79
19.18
P21/n



0.021 mmol



4,4′BPDC



0.005 mmol


CdBDC
Cd(NO3)2 · 4H2O
DMF
90
95.85
90
11.2
11.11
16.71
P21/n



0.100 mmol
Na2SiO3



H2(BDC)
(aq)



0.401 mmol


Cd-mBDC
Cd(NO3)2 · 4H2O
DMF
90
101.1
90
13.69
18.25
14.91
C2/c



0.009 mmol
MeNH2



H2(mBDC)



0.018 mmol


Zn4OBNDC
Zn(NO3)2 · 6H2O
DEF
90
90
90
22.35
26.05
59.56
Fmmm



0.041 mmol
MeNH2



BNDC
H2O2


Eu(TCA)
Eu(NO3)3 · 6H2O
DMF
90
90
90
23.325
23.325
23.325
Pm-3n



0.14 mmol
chlorobenzene



TCA



0.026 mmol


Th(TCA)
Th(NO3)3 · 6H2O
DMF
90
90
90
23.272
23.272
23.372
Pm-3n



0.069 mmol
chlorobenzene



TCA



0.026 mmol


Formate
Ce(NO3)3 · 6H2O
H2O
90
90
120
10.668
10.667
4.107
R-3m



0.138 mmol
ethanol



Formaic acid



0.43 mmol


Formate
FeCl2 · 4H2O
DMF
90
90
120
8.2692
8.2692
63.566
R-3c



5.03 mmol



Formic acid



86.90 mmol


Formate
FeCl2 · 4H2O
DEF
90
90
90
9.9364
18.374
18.374
Pbcn



5.03 mmol



Formic acid



86.90 mmol


Formate
FeCl2 · 4H2O
DEF
90
90
90
8.335
8.335
13.34
P-31c



5.03 mmol



Formic acid



86.90 mmol


NO330
FeCl2 · 4H2O
formamide
90
90
90
8.7749
11.655
8.3297
Pnna



0.50 mmol



Formic acid



8.69 mmol


NO332
FeCl2 · 4H2O
DIP
90
90
90
10.0313
18.808
18.355
Pbcn



0.50 mmol



Formic acid



8.69 mmol


NO333
FeCl2 · 4H2O
DBF
90
90
90
45.2754
23.861
12.441
Cmcm



0.50 mmol



Formic acid



8.69 mmol


NO335
FeCl2 · 4H2O
CHF
90
91.372
90
11.5964
10.187
14.945
P21/n



0.50 mmol



Formic acid



8.69 mmol


NO336
FeCl2 · 4H2O
MFA
90
90
90
11.7945
48.843
8.4136
Pbcm



0.50 mmol



Formic acid



8.69 mmol


NO13
Mn(Ac)2 · 4H2O
ethanol
90
90
90
18.66
11.762
9.418
Pbcn



0.46 mmol



Bezoic acid



0.92 mmol



Bipyridine



0.46 mmol


NO29
Mn(Ac)2 · 4H2O
DMF
120
90
90
14.16
33.521
33.521
P-1


MOF-0 like
0.46 mmol



H3BTC



0.69 mmol


Mn(hfac)2
Mn(Ac)2 · 4H2O
ether
90
95.32
90
9.572
17.162
14.041
C2/c


(O2CC6H5)
0.46 mmol



Hfac



0.92 mmol



Bipyridine



0.46 mmol


BPR43G2
Zn(NO3)2 · 6H2O
DMF
90
91.37
90
17.96
6.38
7.19
C2/c



0.0288 mmol
CH3CN



H2BDC



0.0072 mmol


BPR48A2
Zn(NO3)2 · 6H2O
DMSO
90
90
90
14.5
17.04
18.02
Pbca



0.012 mmol
toluene



H2BDC



0.012 mmol


BPR49B1
Zn(NO3)2 · 6H2O
DMSO
90
91.172
90
33.181
9.824
17.884
C2/c



0.024 mmol
methanol



H2BDC



0.048 mmol


BPR56E1
Zn(NO3)2 · 6H2O
DMSO
90
90.096
90
14.5873
14.153
17.183
P2(1)/n



0.012 mmol
n-



H2BDC
propanol



0.024 mmol


BPR68D10
Zn(NO3)2 · 6H2O
DMSO
90
95.316
90
10.0627
10.17
16.413
P2(1)/c



0.0016 mmol
benzene



H3BTC



0.0064 mmol


BPR69B1
Cd(NO3)2 4H2O
DMSO
90
98.76
90
14.16
15.72
17.66
Cc



0.0212 mmol



H2BDC



0.0428 mmol


BPR73E4
Cd(NO3)2 4H2O
DMSO
90
92.324
90
8.7231
7.0568
18.438
P2(1)/n



0.006 mmol
toluene



H2BDC



0.003 mmol


BPR76D5
Zn(NO3)2 6H2O
DMSO
90
104.17
90
14.4191
6.2599
7.0611
Pc



0.0009 mmol



H2BzPDC



0.0036 mmol


BPR80B5
Cd(NO3)2 · 4H2O
DMF
90
115.11
90
28.049
9.184
17.837
C2/c



0.018 mmol



H2BDC



0.036 mmol


BPR80H5
Cd(NO3)2 4H2O
DMF
90
119.06
90
11.4746
6.2151
17.268
P2/c



0.027 mmol



H2BDC



0.027 mmol


BPR82C6
Cd(NO3)2 4H2O
DMF
90
90
90
9.7721
21.142
27.77
Fdd2



0.0068 mmol



H2BDC



0.202 mmol


BPR86C3
Cd(NO3)2 6H2O
DMF
90
90
90
18.3449
10.031
17.983
Pca2(1)



0.0025 mmol



H2BDC



0.075 mmol


BPR86H6
Cd(NO3)2 · 6H2O
DMF
80.98
89.69
83.412
9.8752
10.263
15.362
P-1



0.010 mmol



H2BDC



0.010 mmol


BPR95A2
Zn(NO3)2 6H2O
NMP
90
102.9
90
7.4502
13.767
12.713
P2(1)/c



0.012 mmol



H2BDC



0.012 mmol


CuC6F4O4
Cu(NO3)2 · 2.5H2O
DMF
90
98.834
90
10.9675
24.43
22.553
P2(1)/n



0.370 mmol
chlorobenzene



H2BDC(OH)2



0.37 mmol


Fe Formic
FeCl2 · 4H2O
DMF
90
91.543
90
11.495
9.963
14.48
P2(1)/n



0.370 mmol



Formic acid



0.37 mmol


Mg Formic
Mg(NO3)2 · 6H2O
DMF
90
91.359
90
11.383
9.932
14.656
P2(1)/n



0.370 mmol



Formic acid



0.37 mmol


MgC6H4O6
Mg(NO3)2 · 6H2O
DMF
90
96.624
90
17.245
9.943
9.273
C2/c



0.370 mmol



H2BDC(OH)2



0.37 mmol


Zn C2H4BDC
ZnCl2
DMF
90
94.714
90
7.3386
16.834
12.52
P2(1)/n


MOF-38
0.44 mmol



CBBDC



0.261 mmol


MOF-49
ZnCl2
DMF
90
93.459
90
13.509
11.984
27.039
P2/c



0.44 mmol
CH3CN



m-BDC



0.261 mmol


MOF-26
Cu(NO3)2 · 5H2O
DMF
90
95.607
90
20.8797
16.017
26.176
P2(1)/n



0.084 mmol



DCPE



0.085 mmol


MOF-112
Cu(NO3)2 · 2.5H2O
DMF
90
107.49
90
29.3241
21.297
18.069
C2/c



0.084 mmol
ethanol



o-Br-m-BDC



0.085 mmol


MOF-109
Cu(NO3)2 · 2.5H2O
DMF
90
111.98
90
23.8801
16.834
18.389
P2(1)/c



0.084 mmol



KDB



0.085 mmol


MOF-111
Cu(NO3)2 · 2.5H2O
DMF
90
102.16
90
10.6767
18.781
21.052
C2/c



0.084 mmol
ethanol



o-BrBDC



0.085 mmol


MOF-110
Cu(NO3)2 · 2.5H2O
DMF
90
90
120
20.0652
20.065
20.747
R-3/m



0.084 mmol



thiophene dicarboxylic



0.085 mmol


MOF-107
Cu(NO3)2 · 2.5H2O
DEF
104.8
97.075
95.206
11.032
18.067
18.452
P-1



0.084 mmol



thiophene dicarboxylic



0.085 mmol


MOF-108
Cu(NO3)2 · 2.5H2O
DBF/
90
113.63
90
15.4747
14.514
14.032
C2/c



0.084 mmol
methanol



thiophene dicarboxylic



0.085 mmol


MOF-102
Cu(NO3)2 · 2.5H2O
DMF
91.63
106.24
112.01
9.3845
10.794
10.831
P-1



0.084 mmol



H2(BDCCl2)



0.085 mmol


Clbdc1
Cu(NO3)2 · 2.5H2O
DEF
90
105.56
90
14.911
15.622
18.413
P-1



0.084 mmol



H2(BDCCl2)



0.085 mmol


Cu(NMOP)
Cu(NO3)2 · 2.5H2O
DMF
90
102.37
90
14.9238
18.727
15.529
P2(1)/m



0.084 mmol



NBDC



0.085 mmol


Tb(BTC)
Tb(NO3)3 · 5H2O
DMF
90
106.02
90
18.6986
11.368
19.721



0.033 mmol



H3BTC



0.033 mmol


Zn3(BTC)2
ZnCl2
DMF
90
90
90
26.572
26.572
26.572
Fm-3m



0.033 mmol
ethanol



H3BTC



0.033 mmol


Zn4O(NDC)
Zn(NO3)2 · 4H2O
DMF
90
90
90
41.5594
18.818
17.574
aba2



0.066 mmol
ethanol



14NDC



0.066 mmol


CdTDC
Cd(NO3)2 · 4H2O
DMF
90
90
90
12.173
10.485
7.33
Pmma



0.014 mmol
H2O



thiophene



0.040 mmol



DABCO



0.020 mmol


IRMOF-2
Zn(NO3)2 · 4H2O
DEF
90
90
90
25.772
25.772
25.772
Fm-3m



0.160 mmol



o-Br-BDC



0.60 mmol


IRMOF-3
Zn(NO3)2 · 4H2O
DEF
90
90
90
25.747
25.747
25.747
Fm-3m



0.20 mmol
ethanol



H2N-BDC



0.60 mmol


IRMOF-4
Zn(NO3)2 · 4H2O
DEF
90
90
90
25.849
25.849
25.849
Fm-3m



0.11 mmol



[C3H7O]2-BDC



0.48 mmol


IRMOF-5
Zn(NO3)2 · 4H2O
DEF
90
90
90
12.882
12.882
12.882
Pm-3m



0.13 mmol



[C5H11O]2-BDC



0.50 mmol


IRMOF-6
Zn(NO3)2 · 4H2O
DEF
90
90
90
25.842
25.842
25.842
Fm-3m



0.20 mmol



[C2H4]-BDC



0.60 mmol


IRMOF-7
Zn(NO3)2 · 4H2O
DEF
90
90
90
12.914
12.914
12.914
Pm-3m



0.07 mmol



1,4NDC



0.20 mmol


IRMOF-8
Zn(NO3)2 · 4H2O
DEF
90
90
90
30.092
30.092
30.092
Fm-3m



0.55 mmol



2,6NDC



0.42 mmol


IRMOF-9
Zn(NO3)2 · 4H2O
DEF
90
90
90
17.147
23.322
25.255
Pnnm



0.05 mmol



BPDC



0.42 mmol


IRMOF-10
Zn(NO3)2 · 4H2O
DEF
90
90
90
34.281
34.281
34.281
Fm-3m



0.02 mmol



BPDC



0.012 mmol


IRMOF-11
Zn(NO3)2 · 4H2O
DEF
90
90
90
24.822
24.822
56.734
R-3m



0.05 mmol



HPDC



0.20 mmol


IRMOF-12
Zn(NO3)2 · 4H2O
DEF
90
90
90
34.281
34.281
34.281
Fm-3m



0.017 mmol



HPDC



0.12 mmol


IRMOF-13
Zn(NO3)2 · 4H2O
DEF
90
90
90
24.822
24.822
56.734
R-3m



0.048 mmol



PDC



0.31 mmol


IRMOF-14
Zn(NO3)2 · 4H2O
DEF
90
90
90
34.381
34.381
34.381
Fm-3m



0.17 mmol



PDC



0.12 mmol


IRMOF-15
Zn(NO3)2 · 4H2O
DEF
90
90
90
21.459
21.459
21.459
Im-3m



0.063 mmol



TPDC



0.025 mmol


IRMOF-16
Zn(NO3)2 · 4H2O
DEF
90
90
90
21.49
21.49
21.49
Pm-3m



0.0126 mmol
NMP



TPDC



0.05 mmol


DHBC-
Zn(NO3)2 · 4H2O
DMF
90
90
120
25.9
25.9
6.8
R-3


MOF
0.20 mmol
i-



DHBC
Propanol



0.10 mmol









In the table above, the following abbreviations are used:


















ADC
Acetylene dicarboxylic acid



NDC
Naphtalene dicarboxylic acid



BDC
Benzene dicarboxylic acid



ATC
Adamantane tetracarboxylic acid



BTC
Benzene tricarboxylic acid



BTB
Benzene tribenzoate



MTB
Methane tetrabenzoate



ATB
Adamantane tetrabenzoate



ADB
Adamantane dibenzoate



BPDC
4,4-Biphenyldicarboxylic acid



DHBC
2,5-Dihydroxyterephthalic acid










Examples for the synthesis of these materials as such can, for example, be found in: J. Am. Chem. Soc. 123 (2001) pp. 8241, or in Acc. Chem. Res. 31 (1998) pp. 474, which are fully encompassed within the content of the present application with respect to their respective content.


The separation of the framework materials, particularly of MOF-5, from the mother liquor of the crystallization may be achieved by procedures known in the art such as solid-liquid separations, centrifugation, extraction, filtration, membrane filtration, cross-flow filtration, flocculation using flocculation adjuvants (non-ionic, cationic and anionic adjuvants) or by the addition of pH shifting additives such as salts, acids or bases, by flotation, by spray drying, by spray granulation, as well as by evaporation of the mother liquor at elevated temperature and/or in vacuo and concentrating of the solid. The material obtained in this step is typically a fine powder.


The separated framework materials, particularly MOF-5, may be mixed with inert adjuvants like, e.g., graphite, compounded, melted, extruded, co-extruded, pressed, spinned, foamed and/or granulated to form a shaped body or shaped bodies. Possible geometries of the shaped body or shaped bodies are, among others, pellets, pills, spheres, granulate, or extrudates such as strands.


Especially preferred are geometries of the shaped bodies which allow for for space saving geometries and forms of containers and gas storage systems and fuel cells, respectively.


In the context of the present invention, the term “shaped body” refers to any solid body that has at least a two-dimensional outer contour and extends to at least 0.02 mm in at least one direction in space. No other restrictions apply, i.e., the body may take any conceivable shape and may extend in any direction by any length so long as it extends to at least 0.02 mm in one direction. In a preferred embodiment, the shaped bodies do not extend to more than 50 mm and not to less than 0.02 mm in all directions. In a further preferred embodiment, this range is limited from 1.5 mm to 5 mm.


As far as the geometry of these shaped bodies is concerned, spherical or cylindrical bodies are preferred, as well as disk-shaped pellets or any other suitable geometry, such as honeycombs, meshes, hollow bodies, wire arrangements etc.


To form shaped bodies comprising the metallo-organic framework material comprising pores, several routes exist. Among them

    • (i) molding the metallo-organic framework material alone or the metallo-organic framework material in combination with a binder and/or other components into a shaped body, for example by pelletizing;
    • (ii) applying the metallo-organic framework material onto a (porous) substrate, and
    • (iii) supporting the metallo-organic framework material on a porous or non-porous substrate which is then molded into a shaped body;


      are to be mentioned.


Although not limited with regard to the route to obtain shaped bodies comprising metallo-organic frameworks according to the present invention, the above-recited routes are preferred within the invention disclosed herein. Presently, zeolites are the most commonly used porous materials which are either molded into shaped bodies or applied onto a (porous) support.


For the step of preparing shaped bodies containing at least one metallo-organic framework material, all processes of molding a powder and/or crystallites together that are known to the expert are conceivable. Also, all processes of applying an active component, such as the metallo-organic framework material, onto a substrate are conceivable. Preparing shaped bodies by a process involving molding is described first, followed by a description of the process of applying said material onto a (porous) substrate.


In the context of the present invention, the term “molding” refers to any process known to the expert in the field by which a substance that does not fulfill the above-mentioned requirement of a shaped body, i.e. any powder, powdery substance, array of crystallites etc., can be formed into a shaped body that is stable under the conditions of its intended use.


While the step of molding at least one metallo-organic framework material into a shaped body is mandatory, the following steps are optional according to the present invention:

    • (I) the molding may be preceded by a step of mixing,
    • (II) the molding may be preceded by a step of preparing a paste-like mass or a fluid containing the metallo-organic framework, for example by adding solvents, binders or other additional substances,
    • (III) the molding may be followed by a step of finishing, in particular a step of drying.


The mandatory step of molding, shaping or forming may be achieved by any method known to expert to achieve agglomeration of a powder, a suspension or a paste-like mass. Such methods are described, for example, in Ullmann's Enzylopädie der Technischen Chemie, 4th Edition, Vol. 2, p. 313 et seq., 1972, whose respective content is incorporated into the present application by reference.


In general, the following main pathways can be discerned: (i) briquetting, i.e. mechanical pressing of the powdery material, with or without binders and/or other additives, (ii) granulating (pelletizing), i.e. compacting of moistened powdery materials by subjecting it to rotating movements, and (iii) sintering, i.e. subjecting the material to be compacted to a thermal treatment. The latter is somewhat limited for the material according to the invention due to the limited temperature stability of the organic materials (see discussion below).


Specifically, the molding step according to the invention is preferably performed by using at least one method selected from the following group: briquetting by piston presses, briquetting by roller pressing, binderless briquetting, briquetting with binders, pelletizing, compounding, melting, extruding, co-extruding, spinning, deposition, foaming, spray drying, coating, granulating, in particular spray granulating or granulating according to any process known within the processing of plastics or any combination of at least two of the aforementioned methods.


The preferred processes of molding are those in which the molding is affected by extrusion in conventional extruders, for example such that result in extrudates having a diameter of, usually, from about 1 to about 10 mm, in particular from about 1.5 to about 5 mm. Such extrusion apparatuses are described, for example, in Ullmann's Enzylopädie der Technischen Chemie, 4th Edition, Vol. 2, p. 295 et seq., 1972. In addition to the use of an extruder, an extrusion press is preferably also used for molding.


The molding can be performed at elevated pressure (ranging from atmospheric pressure to several 100 bar), at elevated temperatures (ranging from room temperature to 300° C.) or in a protective atmosphere (noble gases, nitrogen or mixtures thereof). Any combinations of these conditions is possible as well.


The step of molding can be performed in the presence of binders and/or other additional substances that stabilize the materials to be agglomerated. As to the at least one optional binder, any material known to expert to promote adhesion between the particles to be molded together can be employed. A binder, an organic viscosity-enhancing compound and/or a liquid for converting the material into a paste can be added to the metallo-organic framework material, with the mixture being subsequently compacted in a mixing or kneading apparatus or an extruder. The resulting plastic material can then be molded, in particular using an extrusion press or an extruder, and the resulting moldings can then be subjected to the optional step (III) of finishing, for example drying.


A number of inorganic compounds can be used as binders. For example, according to U.S. Pat. No. 5,430,000, titanium dioxide or hydrated titanium dioxide is used as the binder. Examples of further prior art binders are:

    • hydrated alumina or other aluminum-containing binders (WO 94/29408);
    • mixtures of silicon and aluminum compounds (WO 94/13584);
    • silicon compounds (EP-A 0 592 050);
    • clay minerals (JP-A 03 037 156);
    • alkoxysilanes (EP-B 0 102 544);
    • amphiphilic substances;
    • graphite.


Other conceivable binders are in principle all compounds used to date for the purpose of achieving adhesion in powdery materials. Compounds, in particular oxides, of silicon, of aluminum, of boron, of phosphorus, of zirconium and/or of titanium are preferably used. Of particular interest as a binder is silica, where the SiO2 may be introduced into the shaping step as a silica sol or in the form of tetraalkoxysilanes. Oxides of magnesium and of beryllium and clays, for example montmorillonites, kaolins, bentonites, halloysites, dickites, nacrites and anauxites, may furthermore be used as binders. Tetraalkoxysilanes are particularly used as binders in the present invention. Specific examples are tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane and tetrabutoxysilane, the analogous tetraalkoxytitanium and tetraalkoxyzirconium compounds and trimethoxy-, triethoxy-, tripropoxy- and tributoxyaluminum, tetramethoxysilane and tetraethoxysilane being particularly preferred.


In addition, organic viscosity-enhancing substances and/or hydrophilic polymers, e.g. cellulose or polyacrylates may be used. The organic viscosity-enhancing substance used may likewise be any substance suitable for this purpose. Those preferred are organic, in particular hydrophilic polymers, e.g., cellulose, starch, polyacrylates, polymethacrylates, polyvinyl alcohol, polyvinylpyrrolidone, polyisobutene and polytetrahydrofuran. These substances primarily promote the formation of a plastic material during the kneading, molding and drying step by bridging the primary particles and moreover ensuring the mechanical stability of the molding during the molding and the optional drying process.


There are no restrictions at all with regard to the optional liquid which may be used to create a paste-like substance, either for the optional step (I) of mixing or for the mandatory step of molding. In addition to water, alcohols may be used, provided that they are water-miscible. Accordingly, both monoalcohols of 1 to 4 carbon atoms and water-miscible polyhydric alcohols may be used. In particular, methanol, ethanol, propanol, n-butanol, isobutanol, tert-butanol and mixtures of two or more thereof are used.


Amines or amine-like compounds, for example tetraalkylammonium compounds or aminoalcohols, and carbonate-containing substances, such as calcium carbonate, may be used as further additives. Such further additives are described in EP-A 0 389 041, EP-A 0 200 260 and WO 95/19222, which are incorporated fully by reference in the context of the present application.


Most, if not all, of the additive substances mentioned above may be removed from the shaped bodies by drying or heating, optionally in a protective atmosphere or under vacuum. In order to keep the metallo-organic framework intact, the shaped bodies are preferably not exposed to temperatures exceeding 300° C. However, studies show that heating/drying under the aforementioned mild conditions, in particular drying in vacuo, preferably well below 300° C. is sufficient to at least remove organic compounds out of the pores of the metallo-organic framework (see the references given with respect to metallo-organic frameworks above). Generally, the conditions are adapted and chosen depending upon the additive substances used.


The order of addition of the components (optional solvent, binder, additives, material with a metallo-organic framework) is not critical. It is possible either to add first the binder, then, for example, the metallo-organic framework material and, if required, the additive and finally the mixture containing at least one alcohol and/or water or to interchange the order with respect to any of the aforementioned components.


As far as the optional step (I) of mixing is concerned, for example, of the material containing a metallo-organic framework and a binder and optionally further process materials (=additional materials), all methods known to the expert in the fields of materials processing and unit operations can be used. If the mixing occurs in the liquid phase, stirring is preferred, if the mass to be mixed is paste-like, kneading and/or extruding are preferred and if the components to be mixed are all in a solid, powdery state, mixing is preferred. The use of atomizers, sprayers, diffusers or nebulizers is conceivable as well if the state of the components to be used allows the use thereof. For paste-like and powder-like materials the use of static mixers, planetary mixers, mixers with rotating containers, pan mixers, pug mills, shearing-disk mixers, centrifugal mixers, sand mills, trough kneaders, internal mixers, internal mixers and continuous kneaders are preferred. It is explicitly included that a process of mixing may be sufficient to achieve the molding, i.e., that the steps of mixing and molding coincide.


The shaped body according to the invention is preferably characterized by at least one of the following properties:

    • (aa) it extends in at least one direction in space by at least 0.02 mm and that it does not extend in any direction in space by more than 50 mm;
    • (bb) it is pellet shaped and has a diameter in the range from 1.5 mm to 5 mm and a height in the range from 1 mm to 5 mm;
    • (cc) it has a resistance to pressure (crush strength) in the range from 2 N to 100 N.


As a second principal pathway for producing shaped bodies containing at least one metallo-organic framework material, applying said material to a substrate is part of the present invention. Preferably, the substrate is porous. In principle, all techniques for contacting said material with said substrate are conceivable. Specifically, all techniques used for contacting an active material with a porous substrate known from the preparation of catalysts are applicable.


The at least one method of contacting is selected from the group comprising impregnating with a fluid, soaking in a fluid, spraying, depositing from the liquid phase, depositing from gas phase (vapor deposition), precipitating, co-precipitating, dipping-techniques, coating.


As a porous substrate, each shaped body known to the expert can be used, given that the shaped body fulfills the general requirements concerning its geometry as specified in the present application, for example, in items (i) to (iii) above. Specifically, the porous substrate that will be contacted with the metallo-organic framework material can be selected from alumina, activated alumina, hydrated alumina, silica gels, silicates, diatomite, kaolin, magnesia, activated charcoal, titanium dioxide, and/or zeolites.


While porous substrates are preferred, contacting of the metallo-organic framework material with a non-porous body and/or a two-dimensional substrate are conceivable as well. In the case of applying the metallo-organic framework material onto a non-porous shaped body, shell structures comparable to shell catalysts are obtained. Such configurations, as well as monolithic embodiments, are explicitly included in the present invention, given that they contain at least one metallo-organic framework material.


Other embodiments customary in catalyst technologies such as application of an active substance in a washcoat and/or structuring the support in honeycombs or in channels or other skeleton-shapes are preferred.


In a further embodiment the metallo-organic framework material and/or the shaped body formed from the metallo-organic framework material is contacted with at least one capacity-enhancing agent selected from the group consisting of solvents, complexes, metals, metal hydrides, alanates, alloys, and mixtures of two or more thereof, such as embodiments of the above derived from Pd, Pt, Ni, Ti, and Ru as the metal.


Examples for said capacity-enhancing agent are occluded metal hydrides.


The containers according to the invention may be used at temperatures in the range of from 21 K to temperatures being equivalent to an internal pressure inside the container of 750 bar. Preferred temperature ranges are from 77 K to 400° C., preferably from −100° C. to +100° C., the range of from −70° C. to 70° C. being especially preferred.


According to yet another preferred embodiment of the present invention, the container comprises at least one means for transferring the at least one gas savely and easily into the container and/or transferring the at least one gas savely and easily out from the container. This means may be, for example, a coupling which is part of the at least one opening of the inventive container and which is, at the same time, the gas-tight mechanism of the inventive container. Hence, this means may be capable of keeping the at least one gas savely inside the container and furthermore capable of releasing the at least one gas savely from the container. According to an even more preferred embodiment, this coupling provides for a clean and hermitical transfer of the at least one gas into and out from the inventive container without the risk of spilling the at least one gas. According to the aforementioned preferred embodiment according to which the at least one gas is transferred from a storage system to another storage system or from a storage system to a fuel cell as it is the case, for example, with a gas station, this coupling provides for a save, clean, easy-to-use, hermitical gas transfer from a road tanker to the gas station tanks or from a gas station tank to the fuel cell of a car, a truck, a motorbike or the like.


A storage system according to the invention may comprise one or more inventive containers. A fuel cell according to the invention may comprise one ore more containers or one or more storage systems. Each container comprised in the fuel cells and/or the storage systems may be equipped with separate means for transfering the gas into the container, keeping the gas inside the container and/or releasing the gas from the container. According to another embodiment, two or more containers may be suitably connected by at least one connecting means so that only one means for transfering the gas into the plurality of connected containers, keeping the gas inside the plurality of connected containers and/or releasing the gas from the plurality of connected container is necessary.


The invention is now further described by way of the following examples which are not meant to limit the scope of the present invention.







EXAMPLE 1
Preparation of MOF-5














Starting Material
Molar Amount
Calculated
Experimental







terephthalic acid
 12.3 mmol
 2.04 g
 2.04 g


zinc nitrate-tetra hydrate
 36.98 mmol
 9.67 g
 9.68 g


diethylformamide
2568.8 mmol
282.2 g
282.2 g


(Merck)









The above-mentioned amounts of the starting materials were dissolved in a beaker in the order diethylformamide, terephthalic acid, and zinc nitrate. The resulting solution was introduced into two autoclaves (250 ml), having respectively inner walls which were covered by teflon.


The crystallization occurred at 105° C. within twenty hours. Subsequently, the orange solvent was decanted from the yellow crystals, said crystals were again covered by 20 ml dimethylformamide, the latter being again decanted. This procedure was repeated three times. Subsequently, 20 ml chloroform were poured onto the solid, which was washed and decanted by said solvent twice.


The crystals (14.4 g), which were still moist, were introduced into a vacuum device and first at room temperature in vacuo (10−4 mbar), subsequently dried at 120° C.


Subsequently, the resulting product was characterized by X-ray powder diffraction and an adsorptive determination of micropores. The resulting product shows an X-ray diffractogramm which coincides with MOF-5.


The determination of the sorption isotherm with argon (87 K; Micromeritics ASAP 2010) shows an isotherm of type I, being typical for microporous materials, and having a specific surface area of 3020 m2/g, calculated according to Langmuir, and a micropore volume of 0.97 ml/g (at a relative pressure p/p0=0.4).


EXAMPLE 2
Comparative Example

In the discharge valve of an empty aluminum pressure gas bottle (volume of empty bottle: 2.0 l), a frit manufactured from a sintered metal was built in.


The discharge valve was screwed onto the bottle, opened, and the bottle was gas-free deflated by a slide vane rotary vacuum pump until the pressure was 0.01 mbar. The bottle was sealed and weighed. The total weight of the empty bottle was 3.95 kg.


By means of an externally applied gas supply, methane was connected to the bottle and pressed on with a pressure reducer via the opened discharge valve of the bottle. The weight of the bottle was determined as a function of the increasing methane pressure. The results are summarized in table 1.


EXAMPLE 3

In the discharge valve of an empty aluminum pressure gas bottle (volume of empty bottle: 2.16 l), a frit manufactured from a sintered metal was built in. 686 g of the powdery MOF-5 material produced according to example 1 were filled into the open bottle. The discharge valve was screwed onto the bottle, opened, and the bottle was gas-free deflated by a slide vane rotary vacuum pump until the pressure was 0.01 mbar. The bottle was sealed and weighed. The total weight of the bottle filled with MOF-5 material was 4.806 kg.


By means of an externally applied gas supply, methane was connected to the bottle and pressed on with a pressure reducer via the opened discharge valve of the bottle. The weight of the bottle was determined as a function of the increasing methane pressure. The results are summarized in table 1.


It is found that in the examined pressure range considerably more methane is stored in essentially the same volume of the container according to the invention, compared to the container according to the prior art.









TABLE 1







Comparison of the container according to the


invention with the prior art container













Example 2
Example 3





Capacity/
Capacity/
Capacity Ratio



Pressure/bar
(g/lcontainer)
(g/lcontainer)
Ex. 3/Ex. 2
















3
1.75
4.31
2.46



6
4.10
8.06
1.97



10
6.85
12.96
1.89



15
10.40
21.02
2.02



40
32.10
54.40
1.69



70
56.25
74.26
1.32



100
80.75
94.91
1.18










EXAMPLE 4
Comparative example

In the discharge valve of an empty aluminum pressure gas bottle (volume of empty bottle: 2.0 l), a frit manufactured from a sintered metal was built in.


The discharge valve was screwed onto the bottle, opened, and the bottle was gas-free deflated by a slide vane rotary vacuum pump until the pressure was 0.01 mbar. The bottle was sealed and weighed. The total weight of the empty bottle was 3.95 kg.


By means of an externally applied gas supply, hydrogen was connected to the bottle and pressed on with a pressure reducer via the opened discharge valve of the bottle. The weight of the bottle was determined as a function of the increasing hydrogen pressure. The results are summarized in table 1.


EXAMPLE 5

In the discharge valve of an empty aluminum pressure gas bottle (volume of empty bottle: 2.16 l), a frit manufactured from a sintered metal was built in. 686 g of the powdery MOF-5 material produced according to example 1 were filled into the open bottle. The discharge valve was screwed onto the bottle, opened, and the bottle was gas-free deflated by a slide vane rotary vacuum pump until the pressure was 0.01 mbar. The bottle was sealed and weighed. The total weight of the bottle filled with MOF-5 material was 4.806 kg.


By means of an externally applied gas supply, hydrogen was connected to the bottle and pressed on with a pressure reducer via the opened discharge valve of the bottle. The weight of the bottle was determined as a function of the increasing hydrogen pressure. The results are summarized in table 2.


It is found that in the examined pressure range more hydrogen is stored in essentially the same volume of the container according to the invention, compared to the container according to the prior art.









TABLE 2







Comparison of the container according to the


invention with the prior art container













Example 4
Example 5





Capacity/
Capacity/
Capacity Ratio



Pressure/bar
(g/lcontainer)
(g/lcontainer)
Ex. 5/Ex. 4
















3
0.23
0.30
1.30



10
0.83
0.95
1.14



19
1.57
1.75
1.11



30
2.45
2.75
1.12



51
4.07
4.40
1.08



69
5.51
6.05
1.10









Claims
  • 1. Container for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas, comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 40 to 70 bar inside the container, said container further comprising a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion, wherein the at least one metal ion is Zn2+ and the at least one at least bidentate organic compound is benzenedicarboxylate or benzenetricarboxylate.
  • 2. Container according to claim 1 wherein the gas is a hydrocarbon.
  • 3. Container according to claim 1 wherein the metallo-organic framework material is contacted with at least one capacity-enhancing agent selected from the group consisting of solvents, complexes, metals, metal hydrides, alloys, and mixtures of two or more thereof.
  • 4. Container according to claim 1 wherein the metallo-organic framework material exhibits a specific surface area of more than 20 m2/g, determined via BET adsorption according to DIN 66131.
  • 5. Storage system comprising at least one container according to claim 1.
  • 6. Fuel cell, comprising at least one container according to claim 1.
  • 7. Method comprising supplying power to stationary, mobile, or mobile portable applications using a fuel cell according to claim 6.
  • 8. Method comprising supplying power to power plants, cars, trucks, busses, cordless tools, cell phones, or laptops using a fuel cell according to claim 6.
  • 9. Method comprising transferring at least one gas from a storage system to a fuel cell, said storage system comprising at least one container according to claim 1.
  • 10. Method according to claim 9 wherein the fuel cell comprises at least one container for uptaking, or storing, or releasing, or uptaking and storing, or up-taking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas, comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 40 to 70 bar inside the container, said container further comprising a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion, wherein the at least one metal ion is Zn2+ and the at least one at least bidentate organic compound is benzenedicarboxylate or benzenetricarboxylate.
  • 11. Method comprising uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas using the container according to claim 1.
  • 12. Method comprising using a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is coordinately bound to said metal ion, for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas in stationary, mobile, or mobile portable applications, said applications comprising a container according to claim 1.
  • 13. Method according to claim 12 wherein the applications are power plants, cars, trucks, busses, cordless tools, cell phones, or laptops.
  • 14. Container according to claim 1, which container has a non-cylindrical geometry.
  • 15. Container according to claim 14 wherein the gas is a hydrocarbon.
  • 16. Container according to claim 14 wherein the metallo-organic framework material is contacted with at least one capacity-enhancing agent selected from the group consisting of solvents, complexes, metals, metal hydrides, alloys, and mixtures of two or more thereof.
  • 17. Container according to claim 14 wherein the metallo-organic framework material exhibits a specific surface area of more than 20 m2/g, determined via BET adsorption according to DIN 66131.
  • 18. Storage system comprising at least one container according to claim 14.
  • 19. Fuel cell, comprising at least one container according to claim 14.
  • 20. Method comprising supplying power to stationary, mobile, or mobile portable applications using a fuel cell according to claim 19.
  • 21. Method comprising supplying power to power plants, cars, trucks, busses, cordless tools, cell phones, or laptops using a fuel cell according to claim 19.
  • 22. Method comprising transferring at least one gas from a storage system to a fuel cell, said storage system comprising at least one container according to claim 14.
  • 23. Method according to claim 22 wherein the fuel cell comprises at least one container having a non-cylindrical geometry for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas, comprising at least one opening for allowing the at least one gas to enter and exit or at least one opening for allowing the at least one gas to enter and at least one opening for allowing the at least one gas to exit said container, and a gas-tight mechanism capable of storing the at least one gas under a pressure of from 40 to 70 bar inside the container, said container further comprising a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is bound to said metal ion, wherein the at least one metal ion is Zn2+ and the at least one at least bidentate organic compound is benzenedicarboxylate or benzenetricarboxylate.
  • 24. Method comprising uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas using the container according to claim 14.
  • 25. Method comprising using a metallo-organic framework material comprising pores and at least one metal ion and at least one at least bidentate organic compound which is preferably coordinately bound to said metal ion, for uptaking, or storing, or releasing, or uptaking and storing, or uptaking and releasing, or storing and releasing, or uptaking, storing and releasing at least one gas in stationary, mobile, or mobile portable applications, said applications comprising a container according to claim 14.
  • 26. Method according to claim 25 wherein the applications are power plants, cars, trucks, busses, cordless tools, cell phones, or laptops.
  • 27. Container according to claim 2 wherein the hydrocarbon is methane.
  • 28. Container according to claim 15 wherein the hydrocarbon is methane.
US Referenced Citations (20)
Number Name Date Kind
4609038 Ishikawa et al. Sep 1986 A
5648508 Yaghi Jul 1997 A
5862796 Seki et al. Jan 1999 A
5998647 Seki et al. Dec 1999 A
6015041 Heung Jan 2000 A
6432176 Klos et al. Aug 2002 B1
6491740 Wang et al. Dec 2002 B1
6585111 Shervington et al. Jul 2003 B1
6617467 Mueller et al. Sep 2003 B1
6624318 Müller et al. Sep 2003 B1
6929679 Muller et al. Aug 2005 B2
20020096048 Cooper et al. Jul 2002 A1
20030004364 Yaghi et al. Jan 2003 A1
20030078311 Muller et al. Apr 2003 A1
20030148165 Muller et al. Aug 2003 A1
20030222023 Mueller et al. Dec 2003 A1
20040081611 Muller et al. Apr 2004 A1
20040097724 Muller et al. May 2004 A1
20040265670 Muller et al. Dec 2004 A1
20060252641 Yaghi et al. Nov 2006 A1
Foreign Referenced Citations (12)
Number Date Country
197 04 968 Jul 1998 DE
202 10 139 Jun 2003 DE
202 10 139 Jun 2003 DE
0 727 608 Aug 1996 EP
0 727 608 Aug 1996 EP
0 790 253 Aug 1997 EP
1 072 839 Jan 2001 EP
09227572 Sep 1997 JP
WO 0127521 Apr 2001 WO
WO 02070526 Sep 2002 WO
WO 02088148 Nov 2002 WO
WO 02088148 Nov 2002 WO
Related Publications (1)
Number Date Country
20040265670 A1 Dec 2004 US