Information
-
Patent Grant
-
6735949
-
Patent Number
6,735,949
-
Date Filed
Tuesday, June 11, 200222 years ago
-
Date Issued
Tuesday, May 18, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Herkamp; Nathan D.
- Rosen; Steven J.
-
CPC
-
US Classifications
Field of Search
US
- 060 737
- 060 746
- 060 748
- 060 749
- 060 750
-
International Classifications
-
Abstract
A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.
Description
BACKGROUND OF THE INVENTION
This Invention was made with Government support under Contract No. DE-FC26-01NT41020 awarded by the Department of Energy. The Government has certain rights in this invention.
The present invention relates to gas turbine engine combustors and, more particularly, to can-annular combustors with pre-mixers.
Industrial gas turbine engines include a compressor for compressing air that is mixed with fuel and ignited in a combustor for generating combustion gases. The combustion gases flow to a turbine that extracts energy for driving a shaft to power the compressor and produces output power for powering an electrical generator, for example. Electrical power generating gas turbine engines are typically operated for extended periods of time and exhaust emissions from the combustion gases are a concern and are subject to mandated limits. Thus, the combustor is designed for low exhaust emissions operation and, in particular, for low NOx operation. A typical low NOx combustor includes a plurality of combustor cans circumferentially adjoining each other around the circumference of the engine. Each combustor can has a plurality of pre-mixers joined to the upstream end. Lean burning pre-mixed low NOx combustors have been designed to produce low exhaust emissions but are susceptible to combustion instabilities in the combustion chamber.
Diatomic nitrogen rapidly disassociates at temperatures exceeding about 3000.degree. F. and combines with oxygen to produce unacceptably high levels of NOx emissions. One method commonly used to reduce peak temperatures and, thereby, reduce NOx emissions, is to inject water or steam into the combustor. However, water/steam injection is a relatively expensive technique and can cause the undesirable side effect of quenching carbon monoxide (CO) burnout reactions. Additionally, water/steam injection methods are limited in their ability to reach the extremely low levels of pollutants required in many localities. Lean pre-mixed combustion is a much more attractive method of lowering peak flame temperatures and, correspondingly, NOx emission levels. In lean pre-mixed combustion, fuel and air are pre-mixed in a pre-mixing section and the fuel-air mixture is injected into a combustion chamber where it is burned. Due to the lean stoichiometry resulting from the pre-mixing, lower flame temperatures and NOx emission levels are achieved. Several types of low NOx emission combustors are currently employing lean pre-mixed combustion for gas turbines, including can-annular and annular type combustors.
Can-annular combustors typically consist of a cylindrical can-type liner inserted into a transition piece with multiple fuel-air pre-mixers positioned at the head end of the liner. Annular combustors are also used in many gas turbine applications and include multiple pre-mixers positioned in rings directly upstream of the turbine nozzles in an annular fashion. An annular burner has an annular cross-section combustion chamber bounded radially by inner and outer liners while a can burner has a circular cross-section combustion chamber bounded radially by a single liner.
Industrial gas turbine engines typically include a combustor designed for low exhaust emissions operation and, in particular, for low NOx operation. Low NOx combustors are typically in the form of a plurality of combustor cans circumferentially adjoining each other around the circumference of the engine, with each combustor can having a plurality of pre-mixers joined to the upstream ends thereof. Each pre-mixer typically includes a cylindrical duct in which is coaxially disposed a tubular centerbody extending from the duct inlet to the duct outlet where it joins a larger dome defining the upstream end of the combustor can and combustion chamber therein.
A swirler having a plurality of circumferentially spaced apart vanes is disposed at the duct inlet for swirling compressed air received from the engine compressor. Disposed downstream of the swirler are suitable fuel injectors typically in the form of a row of circumferentially spaced-apart fuel spokes, each having a plurality of radially spaced apart fuel injection orifices which conventionally receive fuel, such as gaseous methane, through the centerbody for discharge into the pre-mixer duct upstream of the combustor dome.
The fuel injectors are disposed axially upstream from the combustion chamber so that the fuel and air has sufficient time to mix and pre-vaporize. In this way, the pre-mixed and pre-vaporized fuel and air mixture support cleaner combustion thereof in the combustion chamber for reducing exhaust emissions. The combustion chamber is typically imperforate to maximize the amount of air reaching the pre-mixer and, therefore, producing lower quantities of NOx emissions and thus is able to meet mandated exhaust emission limits.
Lean pre-mixed low NOx combustors are more susceptible to combustion instability in the combustion chamber which causes the fuel and air mixture to vary, thus, lowering the effectiveness of the combustor to reduce emissions. Lean burning low NOx emission combustors with pre-mixers are subject to combustion instability that imposes serious limitations upon the operability of pre-mixed combustion systems. There exists a need in the art to provide combustion stability for a combustor which uses pre-mixing.
BRIEF SUMMARY OF THE INVENTION
A gas turbine engine combustor can assembly includes a combustor can downstream of a pre-mixer having a pre-mixer upstream end, a pre-mixer downstream end, and a pre-mixer flowpath therebetween. A plurality of circumferentially spaced apart swirling vanes are disposed across the pre-mixer flowpath between the upstream and downstream ends. A primary fuel injector is used for injecting fuel into the pre-mixer flowpath. The combustor can has a combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity is located at an upstream end of the combustor liner and is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall and extends between the aft wall and the forward wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. The air injection first and second holes are spaced radially apart and fuel injection holes are disposed through at least one of the forward and aft walls.
An exemplary embodiment of the combustor can assembly includes angled film cooling apertures disposed through the aft wall angled radially outwardly in the downstream direction, film cooling apertures disposed through the forward wall angled radially inwardly, and film cooling apertures disposed through the outer wall angled axially forwardly. Alternatively, the film cooling apertures through the aft wall are angled radially inwardly in the downstream direction, the film cooling apertures through the forward wall are angled radially outwardly in the downstream direction, and the film cooling apertures through the outer wall are angled axially aftwardly. Each of the fuel injection holes is surrounded by a plurality of the air injection second holes and the air injection first holes are singularly arranged in a circumferential row. The primary fuel injector includes fuel cavities within the swirling vanes and fuel injection holes extending through trailing edges of the swirling vanes from the fuel cavities to the pre-mixer flowpath.
One alternative combustor can assembly has a reverse flow combustor flowpath including, in downstream serial flow relationship, an aft to forward portion between an outer flow sleeve and the annular combustor liner, a 180 degree bend forward of the vortex cavity, and the pre-mixer flowpath at a downstream end of the combustor flowpath. The swirling vanes are disposed across the pre-mixer flowpath defined between an outer flow sleeve and an inner flow sleeve. Another alternative combustor can assembly has a second stage pre-mixing convoluted mixer located between the pre-mixer and the vortex cavity. The convoluted mixer includes circumferentially alternating lobes extending radially inwardly into the pre-mixer flowpath.
BRIEF DESCRIPTION OF THE DRAWINGS
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed that the same will be better understood from the following description taken in conjunction with the accompanying drawings in which:
FIG. 1
is a schematic illustration of a portion of an industrial gas turbine engine having a low NOx pre-mixer and can combustor with a trapped vortex cavity in accordance with an exemplary embodiment of the present invention.
FIG. 2
is an enlarged longitudinal cross-sectional view illustration of the can combustor illustrated in FIG.
1
.
FIG. 3
is an enlarged longitudinal cross-sectional view illustration of the trapped vortex cavity illustrated in FIG.
2
.
FIG. 4
is an elevated view illustration taken in a direction along
4
—
4
in FIG.
3
.
FIG. 5
is a longitudinal cross-sectional view schematic illustration of a first alternative can combustor with a convoluted mixer between the pre-mixer and the can combustor.
FIG. 6
is an elevated view illustration of the convoluted mixer taken in a direction along
6
—
6
in FIG.
5
.
FIG. 7
is a longitudinal cross-sectional view schematic illustration of a second alternative can combustor with a reverse flow flowpath.
FIG. 8
is a longitudinal cross-sectional view illustration of a fuel vane in the reverse flow flowpath through
8
—
8
in FIG.
7
.
FIG. 9
is an enlarged view illustration of the trapped vortex cavity illustrated in FIG.
8
.
DETAILED DESCRIPTION OF THE INVENTION
Illustrated in
FIG. 1
is an exemplary industrial gas turbine engine
10
including a multi-stage axial compressor
12
disposed in serial flow communication with a low NOx combustor
14
and a single or multi-stage turbine
16
. The turbine
16
is drivingly connected to compressor
12
by a drive shaft
18
which is also used to drive an electrical generator (not shown) for generating electrical power. During operation, the compressor
12
discharges compressed air
20
in a downstream direction D into the combustor
14
wherein the compressed air
20
is mixed with fuel
22
and ignited for generating combustion gases
24
from which energy is extracted by the turbine
16
for rotating the shaft
18
to power compressor
12
and driving the generator or other suitable external load. The combustor
14
is can-annular having a plurality of combustor can assemblies
25
circumferentially disposed about an engine centerline
4
.
Referring further to
FIG. 2
, each of the combustor can assemblies
25
includes a combustor can
23
directly downstream of a pre-mixer
28
that forms a main air/fuel mixture in a fuel/air mixture flow
35
in a pre-mixing zone
158
between the pre-mixer and the combustor can. The combustor can
23
includes a combustion chamber
26
surrounded by a tubular or annular combustor liner
27
circumscribed about a can axis
8
and attached to a combustor dome
29
. The combustion chamber
26
has a body of revolution shape with circular cross-sections normal to the can axis
8
. In the exemplary embodiment, the combustor liner
27
is imperforate to maximize the amount of air reaching the pre-mixer
28
for reducing NOx emissions. The generally flat combustor dome
29
is located at an upstream end
30
of the combustion chamber
26
and an outlet
31
is located at a downstream end
33
of the combustion chamber. A transition section (not illustrated) joins the plurality of combustor can outlets
31
to effect a common annular discharge to turbine
16
.
The lean combustion process associated with the present invention makes achieving and sustaining combustion difficult and associated flow instabilities effect the combustors low NOx emissions effectiveness. In order to overcome this problem within combustion chamber
26
, some technique for igniting the fuel/air mixture and stabilizing the flame thereof is required. This is accomplished by the incorporation of a trapped vortex cavity
40
formed in the combustor liner
27
. The trapped vortex cavity
40
is utilized to produce an annular rotating vortex
41
of a fuel and air mixture as schematically depicted in the cavity in
FIGS. 1
,
2
and
3
.
Referring to
FIG. 3
, an igniter
43
is used to ignite the annular rotating vortex
41
of a fuel and air mixture and spread a flame front into the rest of the combustion chamber
26
. The trapped vortex cavity
40
thus serves as a pilot to ignite the main air/fuel mixture in the air/fuel mixture flow
35
that is injected into the combustion chamber
26
from the air fuel pre-mixer
28
. The trapped vortex cavity
40
is illustrated as being substantially rectangular in shape and is defined between an annular aft wall
44
, an annular forward wall
46
, and a circular radially outer wall
48
formed therebetween which is substantially perpendicular to the aft and forward walls
44
and
46
, respectively. The term “aft” refers to the downstream direction D and the term “forward” refers to an upstream direction U.
A cavity opening
42
extends between the aft wall
44
and the forward wall
46
at a radially inner end
39
of the cavity
40
, is open to combustion chamber
26
, and is spaced radially apart and inwardly of the outer wall
48
. In the exemplary embodiment illustrated herein, the vortex cavity
40
is substantially rectangular in cross-section and the aft wall
44
, the forward wall
46
, and the outer wall
48
are approximately equal in length in an axially extending cross-section as illustrated in the FIGS.
Referring to
FIG. 3
in particular, vortex driving aftwardly injected air
110
is injected through air injection first holes
112
in the forward wall
46
positioned radially along the forward wall positioned radially near the opening
42
at the radially inner end
39
of the cavity
40
. Vortex driving forwardly injected air
116
is injected through air injection second holes
114
in the aft wall
44
positioned radially near the outer wall
48
. Vortex fuel
115
is injected through fuel injection holes
70
in the aft wall
44
near the radially outer wall
48
. Each of the fuel injection holes
70
are surrounded by several of the second holes
114
that are arranged in a circular pattern. The first holes
112
in the forward wall
46
are arranged in a singular circumferential row around the can axis
8
as illustrated in FIG.
4
. However, other arrangements may be used including more than one row of the fuel injection holes
70
and/or the first holes
112
.
Referring to
FIG. 3
, the vortex fuel
115
enters trapped vortex cavity
40
through a fuel injectors
68
, which are centered within the fuel injection holes
70
. The fuel injector
68
is in flow communication with an outer fuel manifold
74
that receives the vortex fuel
115
by way of a fuel conduit
72
. In the exemplary embodiment of the invention, the fuel manifold
74
has an insulating layer
80
in order to protect the fuel manifold from heat and the insulating layer may contain either air or some other insulating material.
Film cooling means, in the form of cooling apertures
84
, such as cooling holes or slots angled through walls, are well known in the industry for cooling walls in the combustor. In the exemplary embodiment of the invention, film cooling apertures
84
disposed through the aft wall
44
, the forward wall
46
, and the outer wall
48
are used as the film cooling means. The film cooling apertures
84
are angled to help promote the vortex
41
of fuel and air formed within cavity
40
and are also used to cool the walls. The film cooling apertures
84
are angled to flow cooling air
102
in the direction of rotation
104
of the vortex. Due to the entrance of air in cavity
40
from the first and second holes
112
and
114
and the film cooling apertures
84
, a tangential direction of the trapped vortex
41
at the cavity opening
42
of the vortex cavity
40
is downstream D, the same as that of the fuel/air mixture entering combustion chamber
26
. This means that for a downstream D tangential direction of the trapped vortex
41
at the cavity opening
42
of the vortex cavity
40
, the film cooling apertures
84
through the aft wall
44
are angled radially outwardly RO in the downstream direction D, the film cooling apertures
84
through the forward wall
46
are angled radially inwardly RI, and the film cooling apertures
84
through the outer wall
48
are angled axially forwardly AF. For an upstream U tangential direction of the trapped vortex
41
at the cavity opening
42
of the vortex cavity
40
of the vortex
41
, the film cooling apertures
84
through the aft wall
44
are angled radially inwardly RI in the downstream direction D, the film cooling apertures
84
through the forward wall
46
are angled radially outwardly RO in the downstream direction D, and the film cooling apertures
84
through the outer wall
48
are angled axially aftwardly AA (see FIGS.
7
and
9
).
Accordingly, the combustion gases generated by the trapped vortex within cavity
40
serves as a pilot for combustion of air and fuel mixture received into the combustion chamber
26
from the pre-mixer. The trapped vortex cavity
40
provides a continuous ignition and flame stabilization source for the fuel/air mixture entering combustion chamber
26
. Since the trapped vortex performs the flame stabilization function, it is not necessary to generate hot gas recirculation zones in the main stream flow, as is done with all other low NOx combustors. This allows a swirl-stabilized recirculation zone to be eliminated from a main stream flow field in the can combustor. The primary fuel would be injected into a high velocity stream entering the combustion chamber without flow separation or recirculation and with minimal risk of auto-ignition or flashback and flame holding in the region of the fuel/air pre-mixer.
A trapped vortex combustor can achieve substantially complete combustion with substantially less residence time than a conventional lean pre-mixed industrial gas turbine combustor. By keeping the residence time in the combustion chamber relatively short, the time spent at temperatures above the thermal NOx formation threshold can be reduced, thus, reducing the amount of NOx produced. A risk to this approach is increased CO levels due to reduced time for complete CO burnout. However, it is believed that the flame zone of the combustion chamber is very short due to intense mixing between the vortex and the main air. The trapped vortex provides high combustor efficiency under much shorter residence time than conventional aircraft combustors. It is expected that CO levels will be a key contributor to determination of optimal combustor length and residence time.
Ignition, acceleration, and low-power operation would be accomplished with fuel supplied only to the trapped vortex. At some point in the load range, fuel would be introduced into the main stream pre-mixer. Radially inwardly flow of hot combustion products from the trapped vortex into the main stream would cause main stream ignition. As load continued to increase, main stream fuel injection would be increase and the trapped vortex fuel would be decreased at a slower rate, such that combustor exit temperature would rise. At full-load conditions, trapped vortex fuel flow would be reduced to the point that the temperature in the vortex would be below the thermal NOx formation threshold level, yet, still sufficient to stabilize the main stream combustion. With the trapped vortex running too lean to produce much thermal NOx and the main stream residence time at high temperature too short to produce much thermal NOx, the total emissions of the combustor would be minimized.
In the exemplary embodiment illustrated herein the combustor liner
27
includes a radially outerwardly opening annular cooling slot
120
that is parallel to the aft wall
44
and operable to direct and flow cooling air
102
along the aft wall
44
. The combustor liner
27
includes a downstream opening annular cooling slot
128
is operable to direct and flow cooling air
102
downstream along the combustor liner
27
downstream of the cavity
40
. The radially outerwardly opening cooling slot
120
and the downstream opening cooling slot
128
are parts of what is referred to as a cooling nugget
117
.
Referring again to
FIG. 2
, the pre-mixer
28
includes an annular swirler
126
having a plurality of swirling vanes
32
circumferentially disposed about a hollow centerbody
45
across a pre-mixer flowpath
134
which extends through a pre-mixer tube
140
. A fuel line
59
supplies fuel
22
to a fuel injector exemplified by fuel cavities
130
within the swirling vanes
32
(see
FIG. 8
) of the annular swirler
126
. The fuel
22
is injected into the pre-mixer flowpath
134
through fuel injection holes
132
which extend through trailing edges
133
of the swirling vanes
32
from the fuel cavities
130
to the pre-mixer flowpath. An example of such a swirling vane
32
is illustrated in cross-section in FIG.
8
. This is one primary fuel injection means for injecting fuel into the pre-mixer flowpath
134
. Other means are well known in the art and include, but are not limited to, radially extending fuel rods that inject fuel in a downstream direction in the pre-mixer flowpath
134
and central fuel tubes that inject fuel radially into the pre-mixer flowpath
134
. The pre-mixer tube
140
is connected to the combustor dome
29
and terminates at a pre-mixer nozzle
144
between the pre-mixer and the combustion chamber
26
. The hollow centerbody
45
is capped by an effusion cooled centerbody tip
150
.
Illustrated in
FIG. 5
is a two stage pre-mixer
152
wherein a first pre-mixing stage
157
includes the annular swirler
126
. The swirling vanes
32
are circumferentially disposed about the hollow centerbody
45
across the pre-mixer flowpath
134
within the pre-mixer tube
140
. The fuel line
59
supplies fuel to fuel cavities
130
within the swirling vanes
32
of the annular swirler
126
as further illustrated in FIG.
8
. Downstream of the annular swirler
126
is a second pre-mixing stage
161
in the form of a convoluted mixer
154
located between the first pre-mixing stage
157
and the vortex cavity
40
. The convoluted mixer
154
includes circumferentially alternating lobes
159
extending radially inwardly into the pre-mixer flowpath
134
and the fuel/air mixture flow
35
.
A pre-mixing zone
158
extends between the annular swirler
126
and the convoluted mixer
154
. The lobes
159
of the convoluted mixer
154
direct a first portion
156
of the fuel/air mixture flow
35
from the pre-mixing zone
158
radially inwardly along the lobes
159
as illustrated in
FIGS. 5 and 6
. A second portion
166
of the fuel/air mixture flow
35
from the pre-mixing zone
158
passes between the lobes
159
. The convoluted mixer
154
generates low pressure zones
170
in wakes immediately downstream of the lobes
159
. This encourages gases in the vortex cavity
40
to penetrate deep into the fuel/air mixture flow
35
to provide good piloting ignition of the air/fuel mixture in a combustion zone
172
downstream of the vortex cavity
40
in the combustion chamber
26
. The convoluted mixer
154
provides rapid mixing the combustion gases from the vortex cavity
40
. Some of the vortex fuel
115
from the fuel injection holes
70
in the aft wall
44
near the radially outer wall
48
will impinge on the forward wall
46
. This fuel flows radially inwardly up to and along an aft facing surface of the convoluted mixer
154
and gets entrained in the air/fuel mixture flow
35
. This provides more mixing of the air/fuel mixture. The convoluted mixer
154
anchors and stabilizes a flame front of the air/fuel mixture in the combustion zone
172
and provides a high degree of flame stability.
Illustrated in
FIG. 7
is a dry low NOx single stage combustor
176
with a reverse flow combustor flowpath
178
. The combustor flowpath
178
includes, in downstream serial flow relationship, an aft to forward portion
180
between an outer flow sleeve
182
and the annular combustor liner
27
, a
180
degree bend
181
forward of the vortex cavity
40
, and the pre-mixer flowpath
134
at a downstream end
135
of the combustor flowpath
178
. The swirling vanes
32
of the pre-mixer
28
are disposed across the pre-mixer flowpath
134
defined between outer flow sleeve
182
and an inner flow sleeve
184
. The fuel line
59
supplies fuel
22
to the fuel cavities
130
within the swirling vanes
32
of the annular swirler
126
. The fuel is injected into the pre-mixer flowpath
134
through the fuel injection holes
132
extending through trailing edges
133
of the swirling vanes
32
from the fuel cavities
130
as illustrated in cross-section in FIG.
8
.
Vortex driving aftwardly injected air
110
is injected through air injection first holes
112
in the aft wall
44
. The first holes
112
are positioned lengthwise near the opening
42
at the radially inner end
39
of the cavity
40
. Vortex driving forwardly injected air
116
is injected through air injection second holes
114
in the forward wall
46
. The second holes
114
are positioned radially along the forward wall as close as possible to the outer wall
48
. Vortex fuel
115
is injected through fuel injection holes
70
in the forward aft wall
46
near the radially outer wall
48
. Each of the fuel injection holes
70
are surrounded by several of the second holes
114
that are arranged in a circular pattern. The first holes
112
in the aft wall
44
are arranged in a singular circumferential row around the can axis
8
as illustrated in FIG.
4
.
Due to the entrance of air in cavity
40
from the first and second holes
112
and
114
and the film cooling apertures
84
, a tangential direction of the trapped vortex
41
at the cavity opening
42
of the vortex cavity
40
is upstream which is opposite the downstream direction of the fuel/air mixture entering combustion chamber
26
. This further promotes mixing of the hot combustion gases of the vortex
41
.
Accordingly, the combustion gases generated by the trapped vortex within cavity
40
serves as a pilot for combustion of air and fuel mixture received into the combustion chamber
26
from the pre-mixer. The trapped vortex cavity
40
provides a continuous ignition and flame stabilization source for the fuel/air mixture entering combustion chamber
26
. Since the trapped vortex performs the flame stabilization function, it is not necessary to generate hot gas recirculation zones in the main stream flow, as is done with all other low NOx combustors. The film cooling apertures within the cavities are angled to flow cooling air
102
in the rotational direction that the vortex is rotating. Due to the entrance of air in cavity
40
from the first and second holes
112
and
114
and the film cooling apertures
84
, a tangential direction of the trapped vortex
41
at the cavity opening
42
of the vortex cavity
40
is downstream, the same as that of the fuel/air mixture entering combustion chamber
26
.
Since the primary fuel would be injected into a high velocity stream through the swirler vanes with no flow separation or recirculation, the risk of auto-ignition or flashback and flame holding in the fuel/air pre-mixing region is minimized. It appears that a trapped vortex combustor can is able to achieve complete combustion with substantially less residence time than a conventional lean pre-mixed industrial gas turbine combustor. By keeping the residence time between the plane of the trapped vortex and the exit of the combustor can relatively short, the time spent at temperatures above the thermal NOx formation threshold can be reduced.
While there have been described herein what are considered to be preferred and exemplary embodiments of the present invention, other modifications of the invention shall be apparent to those skilled in the art from the teachings herein and, it is therefore, desired to be secured in the appended claims all such modifications as fall within the true spirit and scope of the invention.
Accordingly, what is desired to be secured by Letters Patent of the United States is the invention as defined and differentiated in the following claims:
Claims
- 1. A gas turbine engine combustor can assembly comprising:a combustor can downstream of a pre-mixer; said pre-mixer having a pre-mixer upstream end, a pre-mixer downstream end and a pre-mixer flowpath therebetween, a plurality of circumferentially spaced apart swirling vanes disposed across said pre-mixer flowpath between said upstream and downstream ends, and a primary fuel injection means for injecting fuel into said pre-mixer flowpath; said combustor can having a combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with said pre-mixer; an annular trapped dual vortex cavity located at said upstream end of said combustor liner and defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween; a cavity opening at a radially inner end of said cavity spaced apart from said radially outer wall and extending between said aft wall and said forward wall; air injection first holes in said forward wall and air injection second holes in said aft wall, said air injection first and second holes spaced radially apart; and fuel injection holes in at least one of said forward and aft walls.
- 2. A combustor can assembly as claimed in claim 1, further comprising angled film cooling apertures disposed through said aft wall, said forward wall, and said outer wall.
- 3. A combustor can assembly as claimed in claim 2, further comprising said film cooling apertures through said aft walls are angled radially outwardly, said film cooling apertures through said forward walls are angled radially inwardly in a downstream direction, and said film cooling apertures through said outer wall are angled axially forwardly.
- 4. A combustor can assembly as claimed in claim 2, further comprising said film cooling apertures through said aft walls are angled radially inwardly, said film cooling apertures through said forward walls are angled radially outwardly in a downstream direction, and said film cooling apertures through said outer wall are angled axially aftwardly.
- 5. A combustor can assembly as claimed in claim 1, wherein each of said fuel injection holes is surrounded by a plurality of said air injection second holes and said air injection first holes are singularly arranged in a circumferential row.
- 6. A combustor can assembly as claimed in claim 5, further comprising angled film cooling apertures disposed through said aft wall, said forward wall, and said outer wall.
- 7. A combustor can assembly as claimed in claim 6, further comprising said film cooling apertures through said aft walls are angled radially outwardly, said film cooling apertures through said forward walls are angled radially inwardly in a downstream direction, and said film cooling apertures through said outer wall are angled axially forwardly.
- 8. A combustor can assembly as claimed in claim 6, further comprising said film cooling apertures through said aft walls are angled radially inwardly, said film cooling apertures through said forward walls are angled radially outwardly in a downstream direction, and said film cooling apertures through said outer wall are angled axially aftwardly.
- 9. A combustor can assembly as claimed in claim 1, wherein said primary fuel injection means includes fuel cavities within said swirling vanes, fuel injection holes extending through trailing edges of said swirling vanes from the fuel cavities to said pre-mixer flowpath.
- 10. A combustor can assembly as claimed in claim 9, further comprising angled film cooling apertures disposed through said aft wall, said forward wall, and said outer wall.
- 11. A combustor can assembly as claimed in claim 10, further comprising said film cooling apertures through said aft walls are angled radially outwardly, said film cooling apertures through said forward walls are angled radially inwardly in a downstream direction, and said film cooling apertures through said outer wall are angled axially forwardly.
- 12. A combustor can assembly as claimed in claim 10, further comprising said film cooling apertures through said aft walls are angled radially inwardly, said film cooling apertures through said forward walls are angled radially outwardly in a downstream direction, and said film cooling apertures through said outer wall are angled axially aftwardly.
- 13. A combustor can assembly as claimed in claim 9, wherein each of said fuel injection holes is surrounded by a plurality of said air injection second holes and said air injection first holes are singularly arranged in a circumferential row.
- 14. A combustor can assembly as claimed in claim 13, further comprising angled film cooling apertures disposed through said aft wall, said forward wall, and said outer wall.
- 15. A combustor can assembly as claimed in claim 14, further comprising said film cooling apertures through said aft walls are angled radially outwardly, said film cooling apertures through said forward walls are angled radially inwardly in a downstream direction, and said film cooling apertures through said outer wall are angled axially forwardly.
- 16. A combustor can assembly as claimed in claim 14, further comprising said film cooling apertures through said aft walls are angled radially inwardly, said film cooling apertures through said forward walls are angled radially outwardly in a downstream direction, and said film cooling apertures through said outer wall are angled axially aftwardly.
US Referenced Citations (29)