1. Field of the Invention
This invention relates to methods and materials for manufacturing a specialized type of plate and fin type heat exchanger and, in particular, to a method and materials for manufacturing a gas turbine regenerator heat exchanger.
2. Description of the Prior Art
The present invention deals with a particular type of plate and fin heat exchanger known in the relevant arts as the “gas turbine regenerator.” This type of heat exchanger has been developed for use with large gas turbines for improving turbine efficiency and performance while reducing operating costs. Heat exchangers of the type under discussion are typically referred to as either “recuperators” or as “regenerators.” One typical application of such units is in conjunction with gas turbines employed in gas pipe line compressor drive systems.
In the typical gas turbine power plant application, the regenerator is used to heat compressor discharge air prior to its entry into the combustion chambers, thereby reducing the amount of fuel necessary to bring the combustion gases to the required operating temperatures. Heat is transferred to the compressor discharge air from hot turbine exhaust gases which pass through the regenerator in heat transfer relation with the compressor discharge air. The regenerator includes alternating stacked air and gas channels of the plate-fin type to effect the heat transfer.
Gas turbine regenerators of the type under consideration have included box-like structures having plate-fin tube banks with the entire regenerator banded together by tie straps which interconnected structural end frames. Compressor discharge air, at the relatively high operating pressures encountered, tends to warp or bow the end frame structures of these devices, thereby presenting a point of potential material failure. Also, the design of the prior art units have, to some extent, been limited in their recommended operating temperature ranges by virtue of the materials employed in their fabrication as well as by the fabricating techniques which were employed.
For example, the previously used compression-fin designs at times developed unbalanced internal pressure-area forces in a regenerator of suitable size. Unbalanced forces of this type tended to split the regenerator core structure apart during operation. More recently, technology has advanced so that the internal pressure forces are more evenly balanced. However, even with the advances which have been made in materials and manufacturing techniques, the changes in dimension of the overall unit due to thermal expansion and contraction become significant and must be taken into account in the overall design. These thermal size changes must be accommodated in some fashion to prolong the useful life of the regenerator. The problem is exaggerated by the fact that the regenerator must withstand a lifetime of thousands of heating and cooling cycles due to the operating mode of the associated turbo-compressor which is often started and stopped repeatedly.
U.S. Pat. No. 3,866,674, issued Feb. 18, 1975, assigned to General Electric Company, shows a regenerator design which is typical of the prior art in that the plate and fin tube banks were joined at either of two opposite ends to a cylindrical inlet and outlet plenum, respectively. The air inlet and outlet plenums were formed with semi-circular slotted openings disposed along the longitudinal axis of each plenum. The pressure tubes making up the tube banks also had semi-circular end regions which were received within the openings in the plenums where they were welded in place. The junctions between the tube sheets and cylindrical plenums presented potential failure points in the design when subjected to the extreme temperature and pressure conditions discussed above.
U.S. Pat. No. 4,229,868, issued Oct. 28, 1980, assigned to The Garrett Corporation, was an improvement on the above plenum and tube sheet design. This regenerator was constructed of a plurality of formed plates and fins brazed together into a complete unit comprising manifolds and a heat exchanging core in a single counter-flow device. The respective end portions of the heat exchanger plates are formed with a peripheral flange which, when joined with the corresponding flange of an adjacent formed tube plate, provides a boundary seal for containing the air fin passages provided by the thus-joined pair of heat exchanger plates. Each end portion of the formed tube plate had an opening encircled by a collar portion, thus defining a manifold section through the plate. The collar portion was cut back along the side facing the core portion so as to provide communication between the manifold section and the air fin passages. The formed tube plate also had a ring offset from the plane of the plate and extending about the manifold opening. This ring had a flat base portion which served to provide spacing between the joined plates for the gas fin passages and to seal the manifold sections of the joined heat exchanger plates from the gas passages.
Rising fuel costs in recent years have dictated that gas turbine power plants operate with increased thermal efficiency, and new operating methods require a regenerator that will operate more efficiently at higher temperatures while possessing the capability of withstanding thousands of starting and stopping cycles without leakage or excessive maintenance costs. As a result, a need continues to exist for improvements to the regenerator designs which are used with gas turbines employed in gas pipe line compressor drive systems, as well as in other industrial applications.
A need continues to exist for an improved regenerator design in which potential weak points which would be subject to rupture from internal pressure forces are eliminated.
A need also exists for such an improved design which features a brazed, stainless steel core which allows for greater efficiency and ultimately higher cost-savings than other types of regenerators currently in the marketplace.
The present invention has as its object to improve the structural integrity of the core element of a particular type of plate and fin heat exchanger known as a gas turbine regenerator core. In the method of the invention, the alternating plates of the device are formed with integral manifold openings at either of opposite ends thereof. Reinforcing hoops are integrally brazed within the heat exchanger core to provide reinforcement of the manifold sections thereof. The hoops have outer channel openings which are fitted with a strip of reinforcing gusset material. Reinforcing side bars in the central section of the heat exchanger core cooperate with the reinforcing hoops and the integral manifold openings of the plates to provide added structural integrity to the assembled unit.
More specifically, the manifold core units are constructed of a plurality of formed plates and fins brazed together into a complete unit comprising opposing manifolds and a heat exchanging core in a single counter-flow device. The respective end portions of the manifold heat exchanger plates are formed with a peripheral flange which, when joined with the corresponding flange of an adjacent formed tube plate, provides a boundary seal for containing the air fin passages provided by the joined pair of heat exchanger plates. The reinforcing hoops also have inwardly facing channel regions which face the core portion so as to provide communication between the manifold section and the air fin passages.
The formed tube plate and reinforcing hoops are joined by brazing with the flat base portion of an adjacent tube plate in back-to-back relationship, whereby spacing provided between the thus-joined plates allows room for the gas fin passages and seals the manifold sections of the joined heat exchanger plates from the gas passages.
A method is disclosed for providing reinforcement of the integral manifold sections located at opposite ends of a regenerator core fabricated of stacked formed plates and fins. In the first step of the method, a series of tube plates are provided which terminate at oppositely arranged manifold regions which are formed with a continuous manifold opening therein. The manifold openings are made up of an inner curved flange portion of the respective plate which continues circumferentially to form an outer ring region. Each of the manifold regions comprises a base for joining to the base of the manifold region of the next adjacent plate to develop a juncture plane for two adjacent plates. The regenerator core is fabricated of a plurality of such stacked tube plates defining fluid passages therebetween. The tube plates are interleaved respectively with gas fins and air fins in the respective fluid passages
A plurality of reinforcing hoops are installed between adjacent plates, the hoops being positioned respectively between pairs of adjacent plates about the manifold regions thereof. The plates are joined together in sealing relationship, each hoop being configured to extend from one adjacent plate to the next and overlap a common juncture of said plates, the hoops being joined in structural reinforcing relationship to the adjacent surfaces of said plates. Each hoop has a generally U-shaped cross section which defines an outwardly facing channel opening for each hoop, and wherein each hoop extends across the juncture plane of the plates and is brazed to the adjacent plates on both sides of the juncture plane and at both the flange portion and at the ring regions of the plates. Preferably, a strip of gusset material is installed within at least a portion of the channel opening of selected ones of the hoops to thereby reinforce the hoops and adjacent plates prior to brazing the assembled regenerator.
Additional objects, features and advantages will be apparent in the written description which follows.
The embodiments of the invention presented in the following written description and the various features and advantageous details thereof are explained more fully with reference to the non-limiting examples included in the accompanying drawings and detailed in the description which follows. Descriptions of well-known components and processes and manufacturing techniques are omitted so as to not unnecessarily obscure the principle features of the invention as described herein. The examples used in the description which follows are intended merely to facilitate an understanding of ways in which the invention may be practiced and to further enable those skilled in the art to practice the invention. Accordingly, the examples should not be construed as limiting the scope of the claimed invention.
As has been mentioned previously, the present invention is an improvement in the design and manufacturing technique used in manufacturing a particular type of heat exchanger known in the relevant arts as a regenerator or recuperator. The heat exchanger in question may be utilized, for example, as a part of a gas turbine regenerator used in a gas turbine power plant. The regenerator is used to heat compressor discharge air prior to its entry into the combustion chambers of the power plant, thereby reducing the amount of fuel necessary to bring the combustion gases to the required operating temperatures. Heat is transferred to the compressor discharge air from hot turbine exhaust gases which pass through the regenerator in heat transfer relation with the compressor discharge air. The regenerator includes alternating stacked air and gas channels of the plate-fin type to effect the heat transfer. These types of heat exchangers are generally well known in the relevant heat exchanger arts.
With reference first to
The gas turbine regenerator 11 shown in
Referring briefly to
As indicated by the respective arrows in
The improved method and resulting apparatus produced by the method of the present invention are the result of changes in the method for assembling or providing the inlet and outlet manifold regions (19 and 21 in
With reference now to
As also shown in
As perhaps best seen in
The gusset material is preferably a metal strip with an undulating pattern when view from the side. As viewed from the top in
It will be appreciated from
With reference to
In assembling the heat exchanger components, an outer plate 29 is first laid down with its offset portions facing upward. An outer loop is then placed about each manifold opening in the outer plate and a layer of gas fins and outer side bars is placed thereon in the manner shown in
An invention has been provided with several advantages. The arrangement of the manifold pressure containment hoops when used in conjunction with the integral manifold openings provided in the tube sheets, which are integrally brazed along with the central section side bars within the heat exchanger core permits the separate design of these elements for optimum strength and other desirable properties. The materials which are chosen for these reinforcing elements of the design can be provided with increased thickness as compared to the thin tube plates, thereby providing additional strength where needed in the heat exchanger. The gusset material which is used to fill the outer channel openings of the reinforcing hoops helps to bridge that portion between the manifold hoops and the central core section side bars and adds further structural integrity to the unit.
Although there have been shown and described herein particular apparatus for reinforcement of thin plate, high pressure fluid exchangers in accordance with the invention for the purpose of illustrating the manner in which the invention may be used to advantage, it will be appreciated that the invention is not limited thereto. Accordingly, any and all modifications, variations or equivalent arrangements which may occur to those skilled in the art should be considered to be within the scope of the invention as defined in the appended claims.
The present application claims priority from the earlier filed provisional application Ser. No. 61/120,504 filed Dec. 8, 2008, entitled “Gas Turbine Regenerator Apparatus and Method of Manufacture,” by the same inventor.
Number | Date | Country | |
---|---|---|---|
61120504 | Dec 2008 | US |