The present invention relates to a gateway device according to the preamble of claim 1 and a method for managing connections on a gateway device according to the preamble of claim 4.
The gateway device of the invention is intended for mounting as an interface between a switched circuit network and a time-switched network. In a switched circuit network (SCN), data traffic is carried within channelled bearers of predefined sizes. In a time-switched network, a predetermined number of calls are transferred in time slots over a single data line. Examples of switched circuit networks are public switched telephone networks, public land mobile networks and access nodes. Examples of time-switched networks are internet protocol or intranet protocol (IP) networks.
A known gateway device 1 for transferring data between a switched circuit network and an IP network, which is shown in
It is an aim of the present invention to provide a gateway device of which the resources can be more efficiently used.
This aim is achieved according to the invention with a gateway device having the technical characteristics of the characterising part of claim 1.
The gateway device according to the invention is provided for mounting as an interface between a concentrator of a switched circuit network and a call server of a time-switched network. The gateway device comprises a series of gateway units. Each of the gateway units has a media gateway, which comprises a number of resources for connecting calls between the concentrator and the call server. A first of the gateway units has a first signalling gateway. The first signalling gateway comprises the following components:
In the gateway device of the invention, the decision on which incoming call is routed via which gateway unit is taken by the first signalling gateway. This first signalling gateway monitors which resources on all of the media gateways are available and is able to select any of the available resources on all of the media gateways and assign the selected resource to an incoming call. In this way, any of the available resources is assignable to the incoming call, irrespective of which subscriber and which access network the incoming call originates from. In the prior art gateway device, it is the concentrator on SCN side which decides which connection is routed via which gateway unit. This decision is taken on an a priori basis, i.e. a number of gateway units are reserved for each access network of the switched circuit network. In the prior art, the operator of the gateway device has to estimate the number gateway units which are to be reserved for a given subscriber in a given period of time. As a result, in the prior art only the available resources on the gateway units which are reserved for a given access network are assignable to an incoming call originating from a subscriber of this access network, whereas in the gateway device of the invention all available resources on any of the media gateways are assignable to the incoming call. As a result, the gateway device of the invention can be used to its full capacity of resources. Furthermore, with the gateway device of the invention, it can be obviated that the operator needs to estimate the amount of resources which are to be reserved for each access network.
Furthermore, in the gateway device of the invention, the operations of monitoring the available resources, selecting resources for assigning calls and making resources available after termination of calls are performed by a single signalling gateway. In this way, there is no longer a need for incorporating a signalling gateway in each of the gateway units, as is the case in the prior art. In this way, the cost of the gateway device of the invention can be reduced.
Still further, the number of interactions which occur between the gateway device on the one hand and concentrator and the call server on the other hand can be reduced with the gateway device of the invention. In the prior art, many interactions occur, as the concentrator and the call server communicate with each of the gateway units for handling the calls. The concentrator and the call server “see” the gateway device as a plurality of small gateway units. With the gateway device of the invention, the concentrator and the call server need only to communicate with a single signalling gateway, i.e. they “see” only a single gateway device.
Preferably, the means for selecting and assigning a resource to an incoming call are provided to perform the assignment based on a degree of occupation of each of the media gateways. This means that an incoming call is preferably assigned to an available resource of the media gateway which has the lowest degree of occupation. In this way, it can be achieved that the degree of occupation of all media gateways is substantially the same at any point in time, which can improve the operation of the device of the invention.
In a preferred embodiment of the gateway device of the invention, a second of the series of gateway units comprises a second signalling gateway similar to the first signalling gateway. This means that the second signalling gateway comprises the components mentioned above with respect to the first signalling gateway. In this way, both the first and the second signalling gateways are able to handle the assignment of calls to available resources on any of the gateways. In this embodiment, the first signalling gateway is provided to perform a master function and the second signalling gateway is provided to perform a slave function. The gateway device further comprises means for transferring the master function from the first signalling gateway to the second signalling gateway. Upon performing the master function, all components of the first signalling gateway are activated, so that the first signalling gateway is the one which manages the connections on the gateway device. While functioning as a slave, the second signalling gateway keeps a copy in its memory means of the assignment data stored in the memory means of the first signalling gateway. In this way, the second signalling gateway is at any time able to take over the master function from the first signalling gateway, in the event of a failure or shutdown of the first gateway unit. Furthermore, as the assignment data are copied, it can be avoided that calls are interrupted when the transfer of the master function takes place. This also has the advantage that, in the event that first gateway unit or any other gateway unit fails or is shut down, the calls which were connected on the media gateway of this gateway unit can be transferred to available resources of the other media gateways. So the master/slave configuration of signalling gateways has the advantage that continued operation of the gateway device can be ensured in the event of a failure or shutdown of any gateway unit, substantially without loss of connected calls.
It is a further aim of the present invention to provide a method for managing connections on a gateway device with which a more efficient use of the resources of the gateway device can be achieved.
This aim is achieved according to the invention with a method having the technical characteristics of the characterising part of claim 4.
The method for managing connections on a gateway device according to the invention comprises the following steps:
In the method for managing connections of the invention, all interactions required for managing the connections on the gateway device occur with a single signalling gateway. This leads to a large reduction in the interactions between the gateway device on the one hand and concentrator and the call server on the other hand. As all assignment data are stored in the memory means provided on the first signalling gateway, this is at any time aware which resources of any media gateway are available and which are occupied. In this way, it is achieved that an incoming call can be assigned to any available resource on any of the media gateways, irrespective of the subscriber and the access network where the incoming call originates. As a result, the gateway device can be used to its full capacity of resources with the method of the invention. Furthermore, there is no longer a need for the operator of the telecommunications network to estimate the amount of resources which are to be reserved for each access network in a given amount of time.
In the method for managing connections according to the invention, the step of selecting and assigning an available resource to an incoming call is preferably based on a degree of occupation of the media gateways. In this way it can be achieved that the number of calls handled by the media gateways is substantially the same at any point in time.
Preferably, the assignment data, which is stored in the memory means of the first signalling gateway, is copied to memory means of a second signalling gateway of a second of the series of gateway units. In this way, the functioning of the first signalling gateway can be taken over by the second signalling gateway in the event of a failure or shutdown of the first signalling gateway. As the assignment data is also provided to the second signalling gateway, the transfer of functioning can occur substantially without hampering the operation of the gateway device and substantially unnoticed in on-going calls.
In the method for managing connections according to the invention, it is preferably also provided that, in the event of a failure or shutdown of any of the media gateways, each call previously assigned to a resource of the failed or shut down media gateway is reassigned to an available resource on any of the remaining media gateways. In this way, a very attractive solution is provided by the method of the invention, as it is usually not just a signalling gateway or a media gateway which fails or is shut down, but the media gateway comprising both the signalling and media gateway as a whole. When this happens, it is provided by the method of the invention that the calls handled by this gateway unit can be transferred to one or more of the other gateway units, avoiding interruption of calls, and that if the gateway unit has the “active” signalling gateway, i.e. the one which manages all connections, its functioning can be transferred to another signalling gateway of another gateway unit.
The invention further relates to a telecommunications network comprising a switched circuit network having a concentrator for handling calls of a plurality of subscribers of different access networks, a time-switched network having a call server, and a gateway device according to any of the claims 1-4 as interface between the switched circuit network and the time-switched network.
The invention will be further elucidated by means of the following description and the appended figures.
The prior art gateway device 1 shown in
The gateway device 1 may for example be a voice over IP server card (VISC), or any other gateway device known to the person skilled in the art.
The gateway device 1 comprises a series of gateway units 2, each having a signalling gateway 3 and a media gateway 4. The gateway units 2 are connected to the call server 7 via a first bus 5 and to the concentrator 9 via a second bus 6. The media gateway 4 of each gateway unit 2 has a number of resources on which calls can be transferred and the resources encapsulate the voice data of a call from SCN side into data packets for transmittal over the IP network or vice versa, which is shown by the pay-load flow arrows 18. For ensuring the correct connection, the associated signalling gateway 3 provides the necessary address data associated with a call connected on the media gateway 4 to the call server 7 and the concentrator 9, which is shown by the signalling flow arrows 17, by encapsulating the signalling associated with the call into signalling packets, which are transmitted along with the data packets in the time slots of the IP network, or vice versa. The signalling gateway 3 also controls the media gateway 4, which is shown by the control flow arrows 19, for example to command when to start encapsulating voice into data packets and when to stop.
In the prior art gateway device of
As a result, in the prior art network of
The gateway device 21 of the invention shown in
In the scheme of
For managing the connections on each of the media gateways 24a-c, the first signalling gateway 23a comprises a memory (not shown) for storing assignment data about the resources of each of the media gateways 24a-c. In this way, the first signalling gateway 23a is at any time aware of which call is routed via which resource of which media gateway 24a-c, which resources on which media gateway 24a-c are available and which are occupied. When the first signalling gateway 23a receives a call initiation signal associated with an incoming call, commonly known as an “off-hook”, from the concentrator 9 via the second bus 26, it selects an available resource and assigns it to the incoming call, which can originate from any of the subscribers of any of the access networks 14-16. In theory, by the construction of the gateway device 21 of the invention, the first signalling gateway 23a can assign any available resource to the incoming call. It is however preferred that the available resource which is assigned to the call is an available resource of that gateway unit 22a-c which has the lowest degree of occupation, i.e. the highest number of available resources. The assignment of the resource to the call is then stored in the memory, so that the assignment data is updated. When the first signalling gateway 23a receives a call termination signal associated with a terminated call, commonly known as an “on-hook”, from the call server 7 via the first bus 5, it simply deletes the assignment of the resource which was previously assigned to the terminated call from the memory, so that the assignment data is updated and the resource becomes available.
In the gateway device 21 of the invention, as shown in
As shown in
In the scheme of
Preferably, the assignment of an available resource to an incoming call is performed based upon a degree of occupation of the media gateways 24a-c. This means that the resource which is assigned to the call is preferably an available resource of the media gateway having the lowest degree of occupation, i.e. the largest number of available resources. This can improve the operation of the gateway device 21.
Preferably, the method of managing connections shown in the scheme of
In the event of a failure or shutdown of one of the media gateways 24a-c, for example the media gateway 24a, the method of the scheme of
Number | Date | Country | Kind |
---|---|---|---|
02291182.0 | May 2002 | EP | regional |