Gear driven coupling between ultrasonic transducer and waveguide in surgical instrument

Information

  • Patent Grant
  • 10143513
  • Patent Number
    10,143,513
  • Date Filed
    Monday, October 17, 2011
    13 years ago
  • Date Issued
    Tuesday, December 4, 2018
    6 years ago
Abstract
A surgical instrument is separable into a transducer unit and a lower body portion. The lower body portion includes a waveguide and a casing. The transducer unit includes a transducer and a geared mechanism operable to couple the transducer to the waveguide. In some versions the geared mechanism includes bevel gears coupled to a rack and pinion such that linear motion may be used to rotatably couple a transducer to a waveguide. The rack gear may further include a handle extending out of the transducer unit casing to be actuatable by a user. The rack gear may also be flexible or rigid. In other versions, the bevel gears may be coupled to a threaded shaft that is operable to translate the transducer into the waveguide to form an interference fit. The transducer unit may also include a slide lock mechanism to couple to the casing of the lower body portion.
Description
BACKGROUND

In some settings, endoscopic surgical instruments may be preferred over traditional open surgical devices since a smaller incision may reduce the post-operative recovery time and complications. Consequently, some endoscopic surgical instruments may be suitable for placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors may engage tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, stapler, clip applier, access device, drug/gene therapy delivery device, and energy delivery device using ultrasound, RF, laser, etc.). Endoscopic surgical instruments may include a shaft between the end effector and a handle portion, which is manipulated by the clinician. Such a shaft may enable insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby facilitating positioning of the end effector within the patient.


Examples of endoscopic surgical instruments include those disclosed in U.S. Pat. Pub. No. 2006/0079874, now abandoned, entitled “Tissue Pad for Use with an Ultrasonic Surgical Instrument,” published Apr. 13, 2006, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2007/0191713, now abandoned, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 16, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2007/0282333, now abandoned, entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2008/0200940, now abandoned, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, the disclosure of which is incorporated by reference herein; U.S. Pat. Pub. No. 2011/0015660, entitled “Rotating Transducer Mount for Ultrasonic Surgical Instruments,” published Jan. 20, 2011, and issued Jun. 11, 2013 as U.S. Pat. No. 8,461,744, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 6,500,176, entitled “Electrosurgical Systems and Techniques for Sealing Tissue,” issued Dec. 31, 2002, the disclosure of which is incorporated by reference herein; and U.S. Pat. Pub. No. 2011/0087218, entitled “Surgical Instrument Comprising First and Second Drive Systems Actuatable by a Common Trigger Mechanism,” published Apr. 14, 2011, now U.S. Pat. No. 8,939,974, issued Jan. 27, 2015, the disclosure of which is incorporated by reference herein. Additionally, such surgical tools may include a cordless transducer such as that disclosed in U.S. Pat. Pub. No. 2009/0143797, entitled “Cordless Hand-held Ultrasonic Cautery Cutting Device,” published Jun. 4, 2009, and issued Apr. 16, 2013 as U.S. Pat. No. 8,419,757, the disclosure of which is incorporated by reference herein. In addition, the surgical instruments may be used, or adapted for use, in robotic-assisted surgery settings such as that disclosed in U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool with Ultrasound Cauterizing and Cutting Instrument,” issued Aug. 31, 2004.


While several systems and methods have been made and used for surgical instruments, it is believed that no one prior to the inventors has made or used the invention described in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims which particularly point out and distinctly claim this technology, it is believed this technology will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:



FIG. 1 depicts a perspective view of an exemplary surgical system having a surgical instrument and a generator;



FIG. 2 depicts a top plan view of an exemplary transducer assembly and waveguide assembly coupled together via a V-shaped slot interface;



FIG. 3 depicts a front elevation view of the transducer of FIG. 2 showing a V-shaped female slot;



FIG. 4 depicts a rear partial perspective view of the waveguide of FIG. 2 showing a V-shaped male connector;



FIG. 5 depicts a top cross-sectional view of an exemplary alternative transducer assembly and waveguide assembly coupled together via a rotatable ovular interface;



FIG. 6 depicts a front elevation view of the transducer of FIG. 5 showing an ovular aperture and an offset cylindrical recess;



FIG. 7 depicts a rear partial perspective view of the waveguide of FIG. 5; showing an ovular male connector;



FIG. 8 depicts a front elevation view of a transducer assembly of an exemplary alternative rotatable ovular interface showing an ovular recess;



FIG. 9 depicts a rear partial perspective view of a waveguide assembly of the rotatable ovular interface of FIG. 8 showing an elliptic cylinder;



FIG. 10 depicts a top cross-sectional view of another exemplary transducer assembly and waveguide assembly configured to couple together via an interference fit interface;



FIG. 11 depicts a side elevation view of yet another exemplary transducer assembly and waveguide assembly coupled together via a ball joint interface;



FIG. 12 depicts a front elevation view of the transducer of FIG. 11 showing a ball shaft portion, a ball cup, and an arcuate slot portion;



FIG. 13 depicts a rear partial perspective view of the waveguide of FIG. 11 showing a ball connector;



FIG. 14 depicts a rear partial perspective view of an exemplary alternative waveguide assembly having an asymmetric shaft for use with the transducer of FIG. 12;



FIG. 15 depicts a side elevation view of an exemplary alternative ball joint interface having cammed ends;



FIG. 16 depicts a top plan view of an exemplary transducer unit with a portion of the casing removed and showing a transducer, a rack gear, a pinion gear, and a plurality of bevel gears for rotating the transducer;



FIG. 17A depicts a side elevation view of an exemplary lower handle portion and the transducer unit of FIG. 16 showing the rack gear and pinion gear for coupling the transducer to an exemplary waveguide;



FIG. 17B depicts a side elevation view of the lower handle portion and transducer unit of FIG. 17A showing the transducer unit coupled to the lower handle portion;



FIG. 17C depicts a side elevation view of the lower handle portion and transducer unit of FIG. 17A showing the rack gear actuated distally and the transducer coupled to the waveguide; and



FIG. 18 depicts a side elevation view of an exemplary transducer unit having a slide lock assembly to couple the transducer unit to an exemplary lower handle portion.





The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the technology may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present technology, and together with the description serve to explain the principles of the technology; it being understood, however, that this technology is not limited to the precise arrangements shown.


DETAILED DESCRIPTION

The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, embodiments, and advantages of the technology will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.


I. Overview of Exemplary Ultrasonic Surgical System



FIG. 1 shows an exemplary ultrasonic surgical system (10) comprising an ultrasonic surgical instrument (50), a generator (20), and a cable (30) coupling generator (20) to surgical instrument (50). In some versions, generator (20) comprises a GEN 300 sold by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio. By way of example only, generator (20) may be constructed in accordance with the teachings of U.S. Pub. No. 2011/0087212, entitled “Surgical Generator for Ultrasonic and Electrosurgical Devices,” published Apr. 14, 2011, now U.S. Pat. No. 8,986,302, issued Mar. 24, 2015, the disclosure of which is incorporated by reference herein. While surgical instrument (50) is described herein as an ultrasonic surgical instrument, it should be understood that the teachings herein may be readily applied to a variety of surgical instruments, including but not limited to endocutters, graspers, cutters, staplers, clip appliers, access devices, drug/gene therapy delivery devices, and energy delivery devices using ultrasound, RF, laser, etc., and/or any combination thereof as will be apparent to one of ordinary skill in the art in view of the teachings herein. Moreover, while the present example will be described in reference to a cable-connected surgical instrument (50), it should be understood that surgical instrument (50) may be adapted for cordless operation, such as that disclosed in U.S. Pat. Pub. No. 2009/0143797, entitled “Cordless Hand-held Ultrasonic Cautery Cutting Device,” published Jun. 4, 2009, and issued Apr. 16, 2013 as U.S. Pat. No. 8,419,757, the disclosure of which is incorporated by reference herein. For instance, surgical device (50) may include an integral and portable power source such as a battery, etc. Furthermore, surgical device (50) may also be used, or adapted for use, in robotic-assisted surgery settings such as that disclosed in U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool with Ultrasound Cauterizing and Cutting Instrument,” issued Aug. 31, 2004.


Surgical instrument (50) of the present example includes a multi-piece handle assembly (60), an elongated transmission assembly (70), and a transducer (100). Transmission assembly (70) is coupled to multi-piece handle assembly (60) at a proximal end of transmission assembly (70) and extends distally from multi-piece handle assembly (60). In the present example, transmission assembly (70) is configured as an elongated, thin tubular assembly for endoscopic use, but it should be understood that transmission assembly (70) may alternatively be a short assembly, such as those disclosed in U.S. Pat. Pub. No. 2007/0282333, now abandoned, entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, and U.S. Pat. Pub. No. 2008/0200940, now abandoned, entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, the disclosures of which are incorporated by reference herein. Transmission assembly (70) of the present example comprises an outer sheath (72), an inner tubular actuating member (not shown), a waveguide (not shown), and an end effector (80) located on the distal end of transmission assembly (70). In the present example, end effector (80) comprises a blade (82) that is mechanically and acoustically coupled to the waveguide, a clamp arm (84) operable to pivot at the proximal end of transmission assembly (70), and a clamp pad (86) coupled to clamp arm (84).


In some versions, transducer (100) comprises a plurality of piezoelectric elements (not shown) that are compressed between a first resonator (not shown) and a second resonator (not shown) to form a stack of piezoelectric elements. The piezoelectric elements may be fabricated from any suitable material, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, and/or any suitable piezoelectric crystal material, for example. Transducer (100) further comprises electrodes, including at least one positive electrode and at least one negative electrode, that are configured to create a voltage potential across the one or more piezoelectric elements, such that the piezoelectric elements convert the electrical power into ultrasonic vibrations. When transducer (100) of the present example is activated, transducer (100) is operable to create linear oscillations or vibrations at an ultrasonic frequency (such as 55.5 kHz). When transducer (100) is coupled to transmission assembly (70), these linear oscillations are transmitted through the internal waveguide of transmission assembly (70) to end effector (80). In the present example, with blade (82) being coupled to the waveguide, blade (82) thereby oscillates at the ultrasonic frequency. Thus, when tissue is secured between blade (82) and clamp arm (84), the ultrasonic oscillation of blade (82) may simultaneously sever the tissue and denature the proteins in adjacent tissue cells, thereby providing a coagulative effect with relatively little thermal spread. An electrical current may also be provided through blade (82) and clamp arm (84) to cauterize the tissue. One merely exemplary suitable ultrasonic transducer (100) is Model No. HP054, sold by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio, though it should be understood that any other suitable transducer may be used. It should also be understood that clamp arm (84) and associated features may be constructed and operable in accordance with at least some of the teachings of U.S. Pat. No. 5,980,510, entitled “Ultrasonic Clamp Coagulator Apparatus Having Improved Clamp Arm Pivot Mount,” issued Nov. 9, 1999, the disclosure of which is incorporated by reference herein.


Multi-piece handle assembly (60) of the present example comprises a mating housing portion (62) and a lower portion (64). Mating housing portion (62) defines a cavity within multi-piece handle assembly (60) and is configured to receive transducer (100) at a proximal end of mating housing portion (62) and to receive the proximal end of transmission assembly (70) at a distal end of mating housing portion (62). A rotation knob (66) is shown in the present example to rotate transmission assembly (70) and transducer (100), but it should be understood that rotation knob (66) is merely optional. Lower portion (64) of multi-piece handle assembly (60) shown in FIG. 1 includes a trigger (68) and is configured to be grasped by a user using a single hand. One merely exemplary alternative version for lower portion (64) is depicted in FIG. 1 of U.S. Pat. Pub. No. 2011/0015660, entitled “Rotating Transducer Mount for Ultrasonic Surgical Instruments,” published Jan. 20, 2011, now U.S. Pat. No. 8,461,744, issued Jun. 11, 2013, the disclosure of which is incorporated by reference herein. In some versions toggle buttons are located on a distal surface of lower portion (64) and are operable to selectively activate transducer (100) at different operational levels using generator (20). For instance, a first toggle button may activate transducer (100) at a maximum energy level while a second toggle button may activate transducer (100) at a minimum, non-zero energy level. Of course, the toggle buttons may be configured for energy levels other than a maximum and/or minimum energy level as will be apparent to one of ordinary skill in the art in view of the teachings herein. Furthermore, any other number of toggle buttons may be provided.


While multi-piece handle assembly (60) has been described in reference to two distinct portions (62, 64), it should be understood that multi-piece handle assembly (60) may be a unitary assembly with both portions (62, 64) combined. Multi-piece handle assembly (60) may alternatively be divided into multiple discrete components, such as a separate trigger portion (operable either by a user's hand or foot) and a separate mating housing portion (62). Such a trigger portion may be operable to activate transducer (100) and may be remote from mating housing portion (62). Multi-piece handle assembly (60) may be constructed from a durable plastic casing (61) (such as polycarbonate or a liquid crystal polymer), ceramics, metals and/or any other suitable material as will be apparent to one of ordinary skill in the art in view of the teachings herein. Other configurations for multi-piece handle assembly (60) will also be apparent to those of ordinary skill in the art in view of the teachings herein. For instance, in some versions trigger (68) may be omitted and surgical instrument (50) may be activated by a controlled of a robotic system. In other versions, surgical instrument (50) may be activated when coupled to generator (20).


Further still, surgical instrument (50) may be constructed in accordance with at least some of the teachings of U.S. Pat. No. 5,322,055 entitled “Clamp Coagulator/Cutting System for Ultrasonic Surgical Instruments,” issued Jun. 21, 1994, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 5,873,873 entitled “Ultrasonic Clamp Coagulator Apparatus Having Improved Clamp Mechanism,” issued Feb. 23, 1999, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 5,980,510, entitled “Ultrasonic Clamp Coagulator Apparatus Having Improved Clamp Arm Pivot Mount,” filed Oct. 10, 1997, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 6,325,811 entitled “Blades with Functional Balance Asymmetries for use with Ultrasonic Surgical Instruments,” issued Dec. 4, 2001, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2006/0079874 entitled “Tissue Pad for Use with an Ultrasonic Surgical Instrument,” published Apr. 13, 2006, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0191713 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 16, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2007/0282333 entitled “Ultrasonic Waveguide and Blade,” published Dec. 6, 2007, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2008/0200940 entitled “Ultrasonic Device for Cutting and Coagulating,” published Aug. 21, 2008, now abandoned, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2009/0143797, entitled “Cordless Hand-held Ultrasonic Cautery Cutting Device,” published Jun. 4, 2009, and issued Apr. 16, 2013 as U.S. Pat. No. 8,419,757, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2010/0069940 entitled “Ultrasonic Device for Fingertip Control,” published Mar. 18, 2010, now U.S. Pat. No. 9,023,071, issued May 5, 2015, the disclosure of which is incorporated by reference herein; U.S. Pub. No. 2011/0015660, entitled “Rotating Transducer Mount for Ultrasonic Surgical Instruments,” published Jan. 20, 2011, and issued Jun. 11, 2013 as U.S. Pat. No. 8,461,744, the disclosure of which is incorporated by reference herein; and/or U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein.


It is further understood that any one or more of the teachings, expressions, embodiments, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, embodiments, examples, etc. that are described herein. The following-described teachings, expressions, embodiments, examples, etc. should therefore not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.


II. Exemplary Waveguide-Transducer Interfaces


In some instances it may be useful to selectively couple a waveguide and/or a horn to transducer (100) via an interface. For instance, in some situations it may desirable to reuse the electrical components of transducer (100), such as the piezoelectric elements, while disposing of the mechanical components that may be rendered unclean during a procedure. Such configurations may permit transducer (100) to be secured within multi-piece handle assembly (60) while only the waveguide and horn are decoupleable via the interface. Alternatively, transducer (100) may be contained in a transducer unit that may be coupleable to a handle assembly. In such instances, the waveguide and horn may be secured to the handle assembly and transducer (100) may be coupled to the waveguide and horn via the interface when the transducer unit is coupled to the handle assembly. Accordingly, various interfaces for coupling a waveguide to transducer (100) will be described below.


A. Exemplary V-Shaped Slot Interface



FIGS. 2-4 depict an exemplary V-shaped slot interface (200) for coupling a transducer assembly (210) to a waveguide assembly (250). Referring initially to FIG. 2, transducer assembly (210) comprises a plurality of piezoelectric elements (212) that are compressed between a first resonator (214) and a second resonator (220) to form a stack of piezoelectric elements. Piezoelectric elements (212) may be fabricated from any suitable material, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, and/or any other suitable piezoelectric crystal material. Transducer assembly (210) further comprises electrodes (not shown), including at least one positive electrode and at least one negative electrode, that are configured to create a voltage potential across piezoelectric elements (212), such that piezoelectric elements (212) convert the electrical power into ultrasonic vibrations. In some versions the electrodes are coupled to a power source (not shown) that is external to a handle assembly (not shown) in which transducer assembly (210) is contained. In other versions, the power source may be contained within the handle assembly such that transducer assembly (210), the handle assembly, and the power source form a single reusable and/or reclaimable assembly. The ultrasonic vibrations produced by transducer assembly (210) are transmittable to a blade (not shown) via waveguide assembly (250), as will be described below. In the present example, first resonator (214) comprises a V-shaped female slot (230) formed in a distal end of first resonator (214). As shown in FIG. 3, V-shaped female slot (230) comprises a web channel (232) and a sector portion (234) (shown in phantom). Web channel (232) is a substantially vertical slot formed in a distal face (216) of first resonator (214) while sector portion (234) is a sector shaped recess that is offset from a distal face (216) of first resonator (214) by a distance d shown in FIG. 2. Of course other configurations for transducer assembly (210) will be apparent to one of ordinary skill in the art in view of the teachings herein.


Referring back to FIG. 2, waveguide assembly (250) includes a waveguide portion (252) and a horn portion (254). In the present example waveguide portion (252) and horn portion (254) are integral parts forming a monolithic waveguide assembly (250). It should be understood that in some versions horn portion (254) and waveguide portion (252) may also be separable, though this is merely optional. Of course, it should be understood that horn (254) may be integral with transducer assembly (210) such that waveguide assembly (250) selectively couples with horn (254). Such coupling of horn (254) to waveguide assembly (250) may incorporate any of the interfaces described herein. In the present example, horn portion (254) comprises a cylindrical section having a proximal face (256) and a flared section extending distally from the cylindrical section. Waveguide portion (252) comprises an elongate rod extending distally from the flared section of horn portion (254). In some versions waveguide assembly (250) may be made from titanium, though it should be understood that other metals may be used, including steel, aluminium, brass, etc. Horn portion (254) further comprises a V-shaped male connector (260), shown in FIG. 4. V-shaped male connector (260) comprises a web (262) and a sector (264). Web (262) extends proximally from proximal face (256) of horn portion (254) and is configured to fit in web channel (232) of V-shaped female slot (230). Sector (264) is formed on a proximal end of Web (262) and is configured to fit in sector portion (234) of V-shaped female slot (230). In some versions, web (262) extends proximally for a distance less than distance d, shown in FIG. 2, such that insertion of V-shaped male connector (260) into V-shaped female slot (230) creates a tight fit. Furthermore, waveguide assembly (250) may be included in a transmission assembly, such as transmission assembly (70) described above. Still further alternative versions for waveguide assembly (250) will be apparent to one of ordinary skill in the art in view of the teachings herein.


As shown in FIG. 2, transducer assembly (210) interfaces with waveguide assembly (250) at distal face (216) of first resonator (214) and proximal face (256) of horn portion (254). The proximal face (256)-distal face (216) longitudinal interface may be predetermined to substantially correspond to an antinode of the ultrasonic vibration wave produced by transducer assembly (210). An antinode is a point where the displacement due to the ultrasonic vibration wave is at a maximum. Alternatively, the antinode may be longitudinally located at the interface of the proximal face of sector (264) and the distal face of sector portion (234). Further still, the antinode may instead be longitudinally located in web (262) or in sector (264). Of course the antinode need not necessarily be located at any of these locations. In some versions the interface may correspond to a node, a point where the displacement due to the ultrasonic vibration wave is at zero, at any of the foregoing locations. In yet other versions, the interface may be located anywhere between a node and an antinode.


Initially, waveguide assembly (250) and transducer assembly (210) are decoupled, as shown separately in FIGS. 3-4. To couple waveguide assembly (250) to transducer assembly (210), the user vertically aligns V-shaped male connector (260) with V-shaped female slot (230). The user then slides V-shaped male connector (260) into V-shaped female slot (230), thereby coupling waveguide assembly (250) to transducer assembly (210). In some instances, V-shaped female slot (230) may retain V-shaped male connector (260) therein via a friction fit, a snap fit, detents, and/or any other connection mechanism as will be apparent to one of ordinary skill in the art in view of the teachings herein. The user may then use the assembled transducer and waveguide for further assembly of a surgical instrument, or, if the surgical instrument is fully assembled, the user may utilize the surgical instrument for a procedure. To decouple waveguide assembly (250) and transducer assembly (210), the user slides V-shaped male connector (260) out of V-shaped female slot (230). Waveguide assembly (250) may then be disposed of, cleaned, resterilized, and/or otherwise. Transducer assembly (210) may be reused, cleaned, reclaimed, and/or otherwise as well. Thus, a user may dispose of the unclean mechanical components of waveguide assembly (250) while recycling the electrical components of transducer assembly (210).


Of course other configurations for V-shaped slot interface (200) will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, V-shaped male connector (260) and V-shaped female slot (230) may be inverted, and transducer assembly (210) may be coupled to transducer unit (800) described below in section IV and shown in FIG. 18.


B. Exemplary Rotatable Ovular Interface



FIGS. 5-7 depict an exemplary rotatable ovular interface (300) for coupling a transducer assembly (310) to a waveguide assembly (350). Referring initially to FIG. 5, transducer assembly (310) comprises a plurality of piezoelectric elements (312) that are compressed between a first resonator (314) and a second resonator (320) to form a stack of piezoelectric elements. Piezoelectric elements (312) may be fabricated from any suitable material, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, and/or any other suitable piezoelectric crystal material. Transducer assembly (310) further comprises electrodes (not shown), including at least one positive electrode and at least one negative electrode, that are configured to create a voltage potential across piezoelectric elements (312), such that piezoelectric elements (312) convert the electrical power into ultrasonic vibrations. In some versions the electrodes are coupled to a power source (not shown) that is external to a handle assembly (not shown) in which transducer assembly (310) is contained. In other versions, the power source may be contained within the handle assembly such that transducer assembly (310), the handle assembly, and the power source form a single reusable and/or reclaimable assembly. The ultrasonic vibrations produced by transducer assembly (310) are transmittable to a blade (not shown) via waveguide assembly (350), as will be described below. In the example shown in FIG. 6, first resonator (314) comprises an ovular aperture (330) formed through a distal face (316) of first resonator (314) and a cylindrical recess (332) (shown in phantom) located proximally of ovular aperture (330). Cylindrical recess (332) is offset from distal face (316) of first resonator (314) by a distance d shown in FIG. 5 and has a diameter substantially equal to the major axis diameter of ovular aperture (330). While the present example includes an ovular aperture (330), it should be understood that other shapes and sizes for aperture (330) may be used. For instance, a rectangular aperture, a T-shaped aperture, a triangular aperture, an S-shaped aperture, an egg shaped aperture, an irregularly shaped aperture, and/or any other asymmetrical aperture may be used. Of course other configurations for transducer assembly (310) will be apparent to one of ordinary skill in the art in view of the teachings herein.


Referring back to FIG. 5, waveguide assembly (350) includes a waveguide portion (352) and a horn portion (354). In the present example waveguide portion (352) and horn portion (354) are integral parts forming a monolithic waveguide assembly (350). It should be understood that in some versions horn portion (354) and waveguide portion (352) may also be separable, though this is merely optional. Of course, it should be understood that horn portion (354) may be integral with transducer assembly (310) such that waveguide assembly (350) selectively couples with horn portion (354). Such coupling of horn portion (354) to waveguide assembly (350) may incorporate any of the interfaces described herein. In the present example, horn portion (354) comprises a cylindrical section having a proximal face (356) and a flared section extending distally from the cylindrical section. Waveguide portion (352) comprises an elongate rod extending distally from the flared section of horn portion (354). In some versions waveguide assembly (350) may be made from titanium, though it should be understood that other metals may be used, including steel, aluminium, brass, etc. Horn portion (354) further comprises an ovular male connector (360), shown in FIG. 7. Ovular male connector (360) comprises a web (362) and an elliptic disc (364). Web (362) extends proximally from proximal face (356) of horn portion (354). Elliptic disc (364) is formed on a proximal end of web (362) and is configured to be insertable through ovular aperture (330) and into cylindrical recess (332). In some versions, web (362) extends proximally for a distance less than distance d, shown in FIG. 5, such that insertion and subsequent rotation of elliptic disc (364) through ovular aperture (330) and into cylindrical recess (332) creates tight fit. Furthermore, waveguide assembly (350) may be included in a transmission assembly, such as transmission assembly (70) described above. Still further alternative versions for waveguide assembly (350) will be apparent to one of ordinary skill in the art in view of the teachings herein.


As shown in FIG. 5, transducer assembly (310) interfaces with waveguide assembly (350) at distal face (316) of first resonator (314) and proximal face (356) of horn portion (354). The proximal face (356)-distal face (316) longitudinal interface may be predetermined to substantially correspond to an antinode of the ultrasonic vibration wave produced by transducer assembly (310). An antinode is a point where the displacement due to the ultrasonic vibration wave is at a maximum. Alternatively, the antinode may be longitudinally located at the interface of the proximal face of elliptic cylinder (364) and the distal face of cylindrical recess (332). Further still, the antinode may instead be longitudinally located in shaft (362) or in elliptic cylinder (364). Of course the antinode need not necessarily be located at any of these locations. In some versions the interface may correspond to a node, a point where the displacement due to the ultrasonic vibration wave is at zero, at any of the foregoing locations. In yet other versions, the interface may be located anywhere between a node and an antinode.


Initially, waveguide assembly (350) and transducer assembly (310) are decoupled, as shown separately in FIGS. 6-7. To couple waveguide assembly (350) to transducer assembly (310), the user inserts elliptic cylinder (364) through ovular aperture (330) and into cylindrical recess (332). The user then rotates waveguide assembly (350) such that elliptic cylinder (364) is no longer aligned with ovular aperture (330), thereby coupling waveguide assembly (350) to transducer assembly (310). By way of example only, the user may rotate waveguide assembly (350) by 90 degrees, or a one-quarter turn. Of course any other suitable rotational angles may be used in the present example. If an asymmetrical component is used instead of elliptic cylinder (364), rotational angles greater than 0 and less than 360 may be used. In some instances, cylindrical recess (332) may retain elliptic cylinder (364) therein via a friction fit, a snap fit, detents, and/or any other connection mechanism as will be apparent to one of ordinary skill in the art in view of the teachings herein. Such connection mechanisms may be operable to maintain waveguide assembly (350) in a predetermined orientation relative to transducer assembly (310). The user may then use the assembled transducer and waveguide for further assembly of a surgical instrument, or, if the surgical instrument is fully assembled, the user may utilize the surgical instrument for a procedure. To decouple waveguide assembly (350) and transducer assembly (310), the user rotates waveguide assembly (350) until elliptic cylinder (364) is aligned with ovular aperture (330). In some versions, waveguide assembly (350) and/or transducer assembly (310) may have indicators (not shown), such as visual markings, to indicate when elliptic cylinder (364) and ovular aperture (330) are aligned. With elliptic cylinder (364) and ovular aperture (330) aligned, the user pulls waveguide assembly (350) distally to decouple waveguide assembly (350) from transducer assembly (310). Waveguide assembly (350) may then be disposed of, cleaned, resterilized, and/or otherwise. Transducer assembly (310) may be reused, cleaned, reclaimed, and/or otherwise as well. Thus, a user may dispose of the unclean mechanical components of waveguide assembly (350) while recycling the electrical components of transducer assembly (310). Of course other configurations for rotatable ovular interface (300) will be apparent to one of ordinary skill in the art in view of the teachings herein.



FIG. 8 shows an exemplary alternative transducer assembly (370) comprising an ovular recess (376) formed in a distal face (374) of first resonator (372). Ovular recess (376) of the present example has a major axis of diameter d1 and a minor axis of diameter d2. As shown, d1 is slightly larger than d2. By way of example only, d1 may be approximately 0.255 and d2 may be approximately 0.250. FIG. 9 shows an exemplary alternative waveguide assembly (380) comprising a waveguide portion (not shown) and a horn portion (382). Horn portion (382) comprises an elliptic cylinder (386) projecting proximally from a proximal face (384) of horn portion (382). Elliptic cylinder (386) also has a major axis of diameter d1 and a minor axis of diameter d2, where d1 is slightly larger than d2. In the present example, d1 of elliptic cylinder (386) is substantially equal to d1 of ovular recess (376) and d2 of elliptic cylinder (386) is substantially equal to d2 of ovular recess (376).


Initially, waveguide assembly (380) and transducer assembly (370) are decoupled, as shown separately in FIGS. 8-9. To couple waveguide assembly (380) to transducer assembly (380), the user aligns and inserts elliptic cylinder (386) into ovular recess (376). The user then rotates waveguide assembly (380) such that elliptic cylinder (386) frictionally fits in ovular recess (376), thereby coupling waveguide assembly (380) to transducer assembly (370). As will be appreciated by one of ordinary skill in the art, when elliptic cylinder (386) is rotated 90 degrees, or a quarter turn, major axis of elliptic cylinder (386) having a diameter d1 forms a frictional fit within minor axis of ovular recess (376) having a slightly smaller diameter d2. Of course other rotational angles may be possible as well to form a frictional fit. The user may then use the assembled transducer and waveguide for further assembly of a surgical instrument, or, if the surgical instrument is fully assembled, the user may utilize the surgical instrument for a procedure. To decouple waveguide assembly (380) and transducer assembly (370), the user rotates waveguide assembly (380) until the major axis of elliptic cylinder (386) is aligned with the major axis of ovular recess (376). In some versions, waveguide assembly (380) and/or transducer assembly (370) may have indicators (not shown), such as visual markings, to indicate when elliptic cylinder (386) and ovular recess (376) are aligned. With elliptic cylinder (386) and ovular recess (376) aligned, the user pulls waveguide assembly (380) distally to decouple waveguide assembly (380) from transducer assembly (370). Waveguide assembly (380) may then be disposed of, cleaned, resterilized, and/or otherwise. Transducer assembly (370) may be reused, cleaned, reclaimed, and/or otherwise as well. Thus, a user may dispose of the unclean mechanical components of waveguide assembly (380) while recycling the electrical components of transducer assembly (370).


While the foregoing example described the frictional fit in relation to elliptic cylinder (386) and ovular recess (376), other rotationally asymmetric configurations may be used as well.


C. Exemplary Interference Fit Interface



FIG. 10 depicts an exemplary interference fit interface (400) for coupling a transducer assembly (410) to a waveguide assembly (450). Transducer assembly (410) comprises a plurality of piezoelectric elements (412) that are compressed between a first resonator (414) and a second resonator (420) to form a stack of piezoelectric elements. Piezoelectric elements (412) may be fabricated from any suitable material, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, and/or any other suitable piezoelectric crystal material. Transducer assembly (410) further comprises electrodes (not shown), including at least one positive electrode and at least one negative electrode, that are configured to create a voltage potential across piezoelectric elements (412), such that piezoelectric elements (412) convert the electrical power into ultrasonic vibrations. In some versions the electrodes are coupled to a power source (not shown) that is external to a handle assembly (not shown) in which transducer assembly (410) is contained. In other versions, the power source may be contained within the handle assembly such that transducer assembly (410), the handle assembly, and the power source form a single reusable and/or reclaimable assembly. The ultrasonic vibration produced by transducer assembly (410) are transmittable to a blade (not shown) via waveguide assembly (450), as will be described below. As shown in the example in FIG. 10, first resonator (414) comprises a cylindrical recess (418) formed in a distal face (416) of first resonator (414). Recess (418) of the present example has a diameter d1. While the present example includes a cylindrical recess (418), it should be understood that other shapes and/or sizes for recess (418) may be used. For instance, a cuboid recess, an elliptic cylindrical recess, and/or any other shaped recess may be used. Of course other configurations for transducer assembly (410) will be apparent to one of ordinary skill in the art in view of the teachings herein.


Waveguide assembly (450) includes a waveguide portion (452) and a horn portion (454). In the present example waveguide portion (452) and horn portion (454) are integral parts forming a monolithic waveguide assembly (450). It should be understood that in some versions horn portion (454) and waveguide portion (452) may also be separable, though this is merely optional. Of course, it should be understood that horn portion (454) may be integral with transducer assembly (410) such that waveguide assembly (450) selectively couples with horn portion (454). Such coupling of horn portion (454) to waveguide assembly (450) may incorporate any of the interfaces described herein. In the present example, horn portion (454) comprises a cylindrical section having a proximal face (456) and a flared section extending distally from the cylindrical section. Waveguide portion (452) comprises an elongate rod extending distally from the flared section of horn portion (454). In some versions waveguide assembly (450) may be made from titanium, though it should be understood that other metals may be used, including steel, aluminium, brass, etc. Horn portion (454) of the present example further comprises a cylindrical pin (458) having a diameter d2. Cylindrical pin (458) extends proximally from proximal face (456) of horn portion (454). As shown in FIG. 10, the diameter d2 of cylindrical pin (458) is slightly larger than diameter d1 of cylindrical recess (418) of first resonator (414). Cylindrical pin (458) is configured to be insertable into cylindrical recess (418) despite this size diametric size differential, as will be discussed below. In some versions, waveguide assembly (450) may have a recess and transducer assembly (410) may have a pin. Furthermore, waveguide assembly (450) may be included in a transmission assembly, such as transmission assembly (70) described above. Still further alternative versions for waveguide assembly (450) will be apparent to one of ordinary skill in the art in view of the teachings herein.


As shown in FIG. 10, transducer assembly (410) interfaces with waveguide assembly (450) at distal face (416) of first resonator (414) and proximal face (456) of horn portion (454). The proximal face (456)-distal face (416) longitudinal interface may be predetermined to substantially correspond to an antinode of the ultrasonic vibration wave produced by transducer assembly (410). An antinode is a point where the displacement due to the ultrasonic vibration wave is at a maximum. Alternatively, the antinode may be longitudinally located at the interface of the proximal face cylindrical pin (458) and the distal face of cylindrical recess (418). Further still, the antinode may instead be longitudinally located within cylindrical pin (458). Of course the antinode need not necessarily be located at any of these locations. In some versions the interface may correspond to a node, a point where the displacement due to the ultrasonic vibration wave is at zero, at any of the foregoing locations. In yet other versions, the interface may be located anywhere between a node and an antinode.


When a user desires to couple waveguide assembly (450) to transducer assembly (410), initially the user aligns cylindrical pin (458) with cylindrical recess (418). In some versions, the user activates transducer assembly (410) and the oscillations produced by transducer assembly (410) at first resonator (414) may cause the matrix of molecules of first resonator (414) to expand and/or contract according to Poisson's ratio. Such expansion and/or contraction may permit a user to insert cylindrical pin (458) into cylindrical recess (418). In other versions, the oscillations produced by transducer assembly (410) may thermally heat first resonator (414), thereby softening and/or potentially expanding cylindrical recess (418) to permit insertion of cylindrical pin (458) therein. Once transducer assembly (410) is deactivated, an interference fit is formed between cylindrical pin (458) and cylindrical recess (418) due to the diametric difference between d1 and d2. Alternatively, waveguide assembly (450) and/or cylindrical pin (458) may be super-cooled, such as through the use of dry ice, liquid nitrogen, refrigeration, or other temperature reducing means, to shrink cylindrical pin (458) for insertion into cylindrical recess (418). Once cylindrical pin (458) heats back up, an interference fit is formed between cylindrical pin (458) and cylindrical recess (418) due to the diametric difference between d1 and d2. Of course users may super-cool waveguide assembly (450) and/or transducer assembly (410) and thermally heat the other. In still other versions the user may simply be able to force cylindrical pin (458) into cylindrical recess (418) without activating transducer assembly (410) to frictionally fit waveguide assembly (450) to transducer assembly (410). Of course other methods for producing an interference fit between cylindrical pin (458) and cylindrical recess (418) will be apparent to one of ordinary skill in the art in view of the teachings herein.


With waveguide assembly (450) coupled to transducer assembly (410), the user may then use the assembled transducer and waveguide for further assembly of a surgical instrument, or, if the surgical instrument is fully assembled, the user may utilize the surgical instrument for a procedure. To decouple waveguide assembly (450) from transducer assembly (410), the user may simply pull upon waveguide assembly (450) proximally, activate transducer assembly (410) and pull upon waveguide assembly (450) proximally, and/or thermally heat and/or cool waveguide assembly (450) and/or transducer assembly (410) and pull upon waveguide assembly (450) proximally. Waveguide assembly (450) may then be disposed of, cleaned, resterilized, and/or otherwise. Transducer assembly (410) may be reused, cleaned, reclaimed, and/or otherwise as well. Thus, a user may dispose of the unclean mechanical components of waveguide assembly (450) while recycling the electrical components of transducer assembly (410).


Of course other configurations for interference fit coupling mechanism (400) will be apparent to one of ordinary skill in the art in view of the teachings herein.


D. Exemplary Ball Joint and Cam Interface



FIGS. 11-14 depict an exemplary ball joint interface (500) for coupling a transducer assembly (510) to a waveguide assembly (550). Referring initially to FIG. 11, transducer assembly (510) comprises a plurality of piezoelectric elements (512) that are compressed between a first resonator (514) and a second resonator (520) to form a stack of piezoelectric elements. Piezoelectric elements (512) may be fabricated from any suitable material, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, and/or any other suitable piezoelectric crystal material. Transducer assembly (510) further comprises electrodes (not shown), including at least one positive electrode and at least one negative electrode, that are configured to create a voltage potential across piezoelectric elements (512), such that piezoelectric elements (512) convert the electrical power into ultrasonic vibrations. In some versions the electrodes are coupled to a power source (not shown) that is external to a handle assembly (not shown) in which transducer assembly (510) is contained. In other versions, the power source may be contained within the handle assembly such that transducer assembly (510), the handle assembly, and the power source form a single reusable and/or reclaimable assembly. The ultrasonic vibrations produced by transmission assembly (510) are transmittable to a blade (not shown) via waveguide assembly (550), as will be described below. In the present example, first resonator (514) comprises a cup feature (530) formed in a distal end of first resonator (514). As shown in FIG. 12, cup feature (530) comprises a ball shaft portion (532) (shown in phantom), a ball cup (534) (shown in phantom), and an arcuate slot portion (536). Ball shaft portion (532) is a substantially vertical recess sized to receive ball (564), and ball shaft portion (532) is formed in first resonator (514) at a distance from a distal face (516) of first resonator (514) that is substantially equal to the combined length of shaft (562) and a radius of ball (564) described below. It should be understood that ball shaft portion (532) may alternatively be an angled shaft, such as angled ball shaft portion (576) shown in FIG. 15. Ball shaft portion (532) terminates at the bottom with ball cup (534) configured to receive a portion of ball (564) therein. In some versions, ball cup (534) may include detents (not shown) or other features for ball (564) to snap into ball cup (534) and be retained therein. Arcuate slot portion (536) is a slot formed by cutting a sector out of first resonator (514) angularly spanning from ball shaft portion (532) to a longitudinal axis of transducer assembly (510). In the example shown, arcuate slot portion (536) is a 90 degree sector slot sized to permit shaft (562) to rotate from the vertical to the horizontal through arcuate slot portion (536); but also sized to prevent ball (564) from entering arcuate slot portion (536). First resonator (514) of the present example includes a rounded portion (518) configured to permit rotation of waveguide assembly (550) about first resonator (514) while ball (564) is inserted into ball cup (534). In some versions, rounded portion (518) may also cam waveguide assembly (550) distally to create an increasingly tight fit as waveguide assembly (550) is rotated from the vertical to the horizontal. In addition or in the alternative, ball (564) may be asymmetric or have a camming portion such that an increasingly tight fit is created when waveguide assembly (550) is rotated from the vertical to the horizontal. In the foregoing configuration, rounded portion (518) need not necessarily cam waveguide assembly (550). Of course other configurations for transducer assembly (510) will be apparent to one of ordinary skill in the art in view of the teachings herein.


Referring back to FIG. 11, waveguide assembly (550) includes a waveguide portion (552) and a horn portion (554). In the present example waveguide portion (552) and horn portion (554) are integral parts forming a monolithic waveguide assembly (550). It should be understood that in some versions horn portion (554) and waveguide portion (552) may also be separable, though this is merely optional. Of course, it should be understood that horn portion (554) may be integral with transducer assembly (510) such that waveguide assembly (550) selectively couples with horn portion (554). Such coupling of horn portion (554) to waveguide assembly (550) may incorporate any of the interfaces described herein. In the present example, horn portion (554) comprises a cylindrical section having a proximal face (556) and a flared section extending distally from the cylindrical section. Waveguide portion (552) comprises an elongate rod extending distally from the flared section of horn portion (554). In some versions waveguide assembly (550) may be made from titanium, though it should be understood that other metals may be used, including steel, aluminium, brass, etc. Horn portion (554) further comprises a ball connector (560), shown in FIG. 13. Ball connector (560) comprises a shaft (562) and a ball (564). Shaft (562) extends proximally from proximal face (556) of horn portion (554). Ball (564) is formed on a proximal end of shaft (562) and is configured to be insertable vertically into ball shaft portion (532) of cup feature (530) when waveguide assembly (550) is vertically oriented relative to transducer assembly (510). When ball (564) is so inserted, waveguide assembly (550) may be rotated to the horizontal axis such that shaft (562) is rotated through arcuate slot portion (536) to couple waveguide assembly (550) to transducer assembly (510). In the example shown in FIG. 11, waveguide assembly (550) is rotated counterclockwise, though this is merely exemplary. Furthermore, waveguide assembly (550) may be included in a transmission assembly, such as transmission assembly (70) described above. Still further alternative versions for waveguide assembly (550) will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, in the example shown in FIG. 14, shaft (562) includes a tapered ridge (566) extending from shaft (562) such that shaft (562) is asymmetric and has a cross-sectional profile shaped like a teardrop. Accordingly, waveguide assembly (550) may only be insertable in a single orientation in this example.


Initially, waveguide assembly (550) and transducer assembly (510) are decoupled, as shown separately in FIGS. 12-13. To couple waveguide assembly (550) to transducer assembly (510), the user orients waveguide assembly (550) vertically and aligns ball connector (560) with ball shaft portion (532) of cup feature (530). The user inserts ball (564) into ball cup (534) then rotates waveguide assembly (550) such that shaft (562) rotates through arcuate slot portion (536) until waveguide assembly (550) is longitudinally aligned with transducer assembly (510), thereby coupling waveguide assembly (550) to transducer assembly (510). The user may then use the assembled transducer and waveguide for further assembly of a surgical instrument, or, if the surgical instrument is fully assembled, the user may utilize the surgical instrument for a procedure. To decouple waveguide assembly (550) and transducer assembly (510), the user rotates waveguide assembly (550) to a vertical position such that the user can lift ball (564) out of ball cup (534) and out of ball shaft portion (532). Waveguide assembly (550) may then be disposed of, cleaned, resterilized, and/or otherwise. Transducer assembly (510) may be reused, cleaned, reclaimed, and/or otherwise as well. Thus, a user may dispose of the unclean mechanical components of waveguide assembly (550) while recycling the electrical components of transducer assembly (510).


Of course other configurations for ball joint interface (500) will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, an alternative ball joint interface (570) is shown in FIG. 15. In the example shown, transducer assembly (572) includes a notch (574), an angled ball shaft portion (576) (shown in phantom), ball cup (534), an arcuate slot portion (not shown), and a cammed distal end (578). The arcuate slot portion is configured in a substantially similar manner to arcuate slot portion (536). Waveguide assembly (580) is configured in a substantially similar manner to waveguide assembly (550), except waveguide assembly (580) includes a cammed proximal end (582) that is complementary to cammed distal end (578). In the present example, the user inserts ball (564) into ball cup (534) then rotates waveguide assembly (580) to the horizontal axis by rotating cammed proximal end (582) along cammed distal end (578) while shaft (562) is guided through arcuate slot portion. Cammed proximal end (582) and cammed distal end (578) may be configured such that ball (564) is urged distally against ball cup (534) or into a pocket (not shown) formed distally of ball cup (534). The user may then use the assembled transducer and waveguide for further assembly of a surgical instrument, or, if the surgical instrument is fully assembled, the user may utilize the surgical instrument for a procedure. To decouple waveguide assembly (580) and transducer assembly (572), the user rotates waveguide assembly (580) to a position such that the user can lift ball (564) out of ball cup (534) and out of angled ball shaft portion (576).


While some examples of interfaces for transmission assemblies and waveguide assemblies have been described herein, still other interfaces will be apparent to one of ordinary skill in the art in view of the teachings herein.


III. Exemplary Gear-Driven Coupling Mechanism


In some other instances it may be useful to selectively couple a waveguide to transducer (100) using a mechanism that can have predetermined characteristics such that the torquing of transducer (100) onto waveguide may be predictable. Such mechanisms may enable the implementation of coupling assemblies for transducer (100) and the waveguide that may be easier to operate, because a user may simply need to operate the coupling assembly from an uncoupled position to a coupled position. Alternatively, such mechanisms with predetermined characteristics may provide a predictability for torquing transducer (100) onto the waveguide at a variety of torque values. In addition, such coupling mechanisms may be included in a separable unit such that transducer (100) may be reused with the coupling mechanism while the other components may be disposed of. Accordingly, a merely exemplary gear-driven coupling mechanism will be described below.



FIG. 16 depicts a top plan view of an exemplary transducer unit (600) with a portion of a casing (602) removed to show some of the internal components therein. In the present example, transducer unit (600) includes a casing (602), a transducer (610), and a geared mechanism (620). In the present example, transducer (610) includes a horn (612) having a distal threaded recess (614) (shown in phantom) configured to couple with threading (732) on waveguide (730), described in more detail below and shown in FIGS. 17A-17C. Transducer (610) also includes a proximal recess (616) (shown in phantom) coupled to a transducer shaft (630), as will be described below as well. Transducer (610) is rotatably coupled to casing (602) via one or more bearing members (not shown) such that transducer (610) may both translate longitudinally and rotate about a longitudinal axis of transducer (610) while still being coupled to casing (602). Casing (602) may further include attachment features (not shown) such that casing (602) may be coupled to lower handle portion (700) described below, thought this is merely optional. Such attachment features may include snap fasteners, clips, clamps, screws, bolts, interference fittings, latches, etc. Alternatively, transducer unit (600) may include a slide lock assembly, such as slide lock assembly (820) described below in section IV and shown in FIG. 18.


Geared mechanism (620) of the present example comprises a transducer shaft (630), a rear bevel gear (640), a support bevel gear (650), and a main bevel gear (660). Main bevel gear (660) is fixedly coupled to a pinion gear (670), though it should be understood that pinion gear (670) and main bevel gear (660) may be integrally formed to be a single gear. A rack gear (680) is slidably mounted to a portion (604) of casing (602) via a longitudinal slot (606) formed in portion (604) and a handle (682) coupled to a distal end of rack gear (680) located outside of casing (602). It should be noted that portion (604) is not separate from casing (602); rather, for ease of viewing and explanation, portion (604) has been provided as context for slot (606). Transducer shaft (630) of the present example is insertable into proximal recess (616) of transducer (610) and is affixed to transducer (610). Transducer shaft (630) is also fixedly attached to rear bevel gear (640) such that rotation of rear bevel gear (640) rotates transducer shaft (630) (and therefore rotates transducer (610)). Rear bevel gear (640) of the present example is supported by and rotatable relative to a rear shaft (642) that is coupled casing (602). In some versions, rear shaft (642) may be affixed to rear bevel gear (640) and may extend out of casing (602) such that a manual knob (not shown) may be coupled to rear shaft (642) to manually rotate rear bevel gear (640) (and, consequently, transducer (610)). For instance, the manual knob may be provided to apply a final torque to transducer (610) when coupled to waveguide (730), or the manual knob may be used to initially break transducer (610) loose from waveguide (730) when decoupling transducer (610). Support bevel gear (650) meshes with rear bevel gear (640) to provide additional alignment and support for rear bevel gear (640). Support bevel gear (650) is supported by a support shaft (652) coupled to casing (602). In some versions, support shaft (652) may be coupled to support bevel gear (650) and may extend out of casing (602) such that another manual knob (not shown) may be coupled to support shaft (652) to manually rotate support bevel gear (650) (and, consequently, transducer (610)). In some versions, support bevel gear (650) simply acts as an idler gear. It should be understood that support bevel gear (650) is merely optional and may be omitted.


Main bevel gear (660) meshes with rear bevel gear (640) such that main bevel gear (660) is operable to rotate rear bevel gear (640). In the present example, main bevel gear (660) is fixedly coupled to pinion gear (670) such that rotation of pinion gear (670) rotates main bevel gear (660). Main bevel gear (660) and pinion gear (670) of the present example are supported by and rotatable about (or with) a pinion shaft (672) that is coupled casing (602). Rack gear (680) meshes with pinion gear (670) such that the linear motion of rack gear (680) is converted into rotation of pinion gear (670). In the present example, rack gear (680) is a flexible or semi-rigid member such that rack gear (680) may be bent into portions of lower handle portion (700) when transducer unit (600) is coupled thereto and rack gear (680) is in the uncoupled position. In some versions, rack gear (680) may instead be a rigid member that extends out an aperture in casing (602) when rack gear (680) is in an uncoupled position. A handle (682) is coupled to the distal end of rack gear (680) and is located on the outside of casing (602). Handle (682) of the present example is coupled to a shaft (not shown) at the distal end of rack gear (680) that is insertable through slot (606). Accordingly, with handle (682) located on the exterior of casing (602), a user may operate rack gear (680) within casing (602) simply by grasping handle (682) and actuating handle (682) longitudinally along slot (606). In some versions, slot (606) may have a proximal end defining an uncoupled position and a distal end defining a coupled position, as will be described in more detail below. Slot (606) may further include visual markings (not shown) indicating the uncoupled and coupled positions and/or various positional indicators along slot (606) indicating the rotational positions and/or torques applied to transducer (610) via transducer shaft (630). Of course other configurations for transducer unit (600) will be apparent to one of ordinary skill in the art in view of the teachings herein.


Referring now to FIG. 17A, transducer unit (600) is initially decoupled from a lower handle portion (700). Lower handle portion (700) includes a casing (702), a pair of toggle buttons (710), a rotation knob (720), a waveguide (730), and a trigger (740) pivotally mounted to lower handle portion (700). Casing (702), toggle buttons (710), rotation knob (720), and/or trigger (740) may be configured in accordance with at least some of the teachings of casing (61), the toggle buttons, rotation knob (66), and/or trigger (68) described above or in accordance with U.S. Pat. Pub. No. 2006/0079874, now abandoned; U.S. Pat. Pub. No. 2007/0191713, now abandoned; U.S. Pat. Pub. No. 2007/0282333, now abandoned; U.S. Pat. Pub. No. 2008/0200940, now abandoned; U.S. Pat. Pub. No. 2011/0015660 (issued as U.S. Pat. No. 8,461,744); U.S. Pat. No. 6,500,176; U.S. Pat. Pub. No. 2011/0087218, now U.S. Pat. No. 8,939,974, issued Jan. 27, 2015; and/or U.S. Pat. Pub. No. 2009/0143797 (issued as U.S. Pat. No. 8,419,757). Casing (702) may further include attachment features (not shown) complementary to those of casing (602) such that casings (602, 702) may be coupled together, thought this is merely optional. Such attachment features may include snap fasteners, clips, clamps, screws, bolts, interference fittings, latches, etc. Alternatively, lower handle portion (700) may include slider recesses, such as slider recesses (854) described below in section IV and shown in FIG. 18. In the present example, waveguide (730) is slidable relative to rotation knob (720) with a portion of waveguide (730) extending distally from lower handle portion (700). In the present example, waveguide (730) is slidable relative to rotation knob (720) to permit waveguide (730) to screw into transducer (610), though this is merely optional. In some versions waveguide (730) may be affixed to rotation knob (720) and transducer (610) is slidable relative to casing (602). A proximal end of the present exemplary waveguide (730) extends proximally into casing (702) of lower handle assembly (700) and includes threading (732) configured to threadably couple to distal threaded recess (614) of transducer (610). An end effector (not shown), such as end effector (80), is coupled to a distal end of the waveguide (730) and is operable to simultaneously sever tissue and vaporize adjacent tissue cells, thereby providing a cauterizing effect with relatively little thermal spread. In the present example, rotation knob (720) may be selectively coupleable to waveguide (730) such that rotation knob (720) is operable to rotate waveguide (730). Waveguide (730) may further be included in a transmission assembly (not shown), such as transmission assembly (70) described above. For instance, waveguide (730) may be within an inner tubular actuating member and an outer sheath, with the sheath being coupled with rotating knob (720). In some versions, waveguide (730) may be decoupleable from lower handle portion (700). Examples of such decoupleable waveguides are described in U.S. patent application Ser. No. 13/269,870, entitled “Surgical Instrument with Modular Shaft and End Effector,” filed Oct. 10, 2012, and published May 10, 2012 as U.S. Pat. Pub. No. 2012/0116388, now U.S. Pat. No. 9,510,895, issued Jan. 6, 2016, the disclosure of which is incorporated by reference herein.



FIGS. 17A-17C depict a sequence showing the coupling of transducer (610) to waveguide (730) via a gear-driven coupling mechanism. FIG. 17A shows an initial configuration with transducer unit (600) and lower handle portion (700) decoupled and handle (682) of rack gear (680) shown in an uncoupled proximal position. Transducer unit (600) is subsequently lowered onto lower handle assembly (700) to align threading (732) of waveguide (730) with distal threaded recess (614) (shown in phantom) of transducer (610) as shown in FIG. 17B. In the present example, flexible rack gear (680) bends to fit within casing (702) of lower handle portion (700). In some versions, as discussed above, transducer unit (600) may be mechanically coupled to lower handle portion (700) via snap fasteners, clips, clamps, screws, bolts, interference fittings, latches, etc., though this is merely optional.


The user then actuates handle (682) distally along slot (606) of transducer unit (610). Handle (682), being coupled to rack gear (680), actuates rack gear (680) and engages the teeth of rack gear (680) with the teeth of pinion gear (670). Pinion gear (670) converts the linear motion of rack gear (680) into rotation. Since pinion gear (670) is fixedly coupled to main bevel gear (660), the rotation of pinion gear (670) also rotates main bevel gear (660). Main bevel gear (660) meshes with rear bevel gear (640) to rotate rear bevel gear (640). Support bevel gear (650), if included, may also rotate due to the rotation of rear bevel gear (640). Rear bevel gear (640) rotates transducer shaft (630), thereby threadably engaging distal threaded recess (614) of transducer (610) with threading (732) of waveguide (730). Waveguide (730) may then be slid proximally to torque into transducer (610). Of course, as noted above, in some versions transducer (610) may be slid distally such that distal threaded recess (614) engages threading (732) while waveguide (730) remains stationary. In some versions translation of handle (682) to the distal end of slot (606), as shown in FIG. 17C, may apply a predetermined number of rotations to transducer (610) to sufficiently torque transducer (610) to waveguide (730). By way of example only, transducer (610) may engage waveguide (730) for a predetermined number of rotations such that a torque of approximately 5 to 15 in-lbs. is formed. Of course other torque values may be used as well. In other versions, handle (682) may only need to be actuated partially along slot (606) to adequately torque transducer (610) onto waveguide (730). In such a version, various waveguides (730) and/or waveguides (730) with different threading (732) tolerances may be used with transducer unit (610) with little, if any, modification.


With transducer (610) coupled to waveguide (730), the user may then use the surgical instrument for a procedure. To decouple waveguide (730) from transducer (610), the user actuates handle (682) proximally, thereby engaging geared mechanism (620) to threadably disengage transducer (610) from waveguide (730). In addition or in the alternative, a second handle (not shown) may be coupled to the proximal end of rack gear (680) and extend through casing (702) and/or casing (602). Accordingly, the user may grasp this second handle and actuate the second handle upwardly and/or distally to engage geared mechanism (620) and threadably disengage transducer (610) from waveguide (730). As noted previously, a manual knob may be provided to initially break the torque connection between transducer (610) and waveguide (730). In some instances, the user may grasp rotation knob (720) to provide a counter torque when handle (682) is actuated proximally. Waveguide (730) and/or lower handle portion (700) may then be disposed of, cleaned, resterilized, and/or otherwise. Transducer unit (600) may be reused, cleaned, reclaimed, and/or otherwise as well. Thus, a user may dispose of the unclean mechanical components of waveguide (730) and/or lower handle portion (700) while recycling the electrical components of transducer unit (600). In some versions, a power unit may be within transducer unit (600) or within lower handle portion (700) for a portable surgical instrument. In other versions, transducer unit (600) may be coupled to a power source via a cable.


Of course other configurations for a gear-driven coupling mechanism will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, horn (612) and proximal end of waveguide (730) may be constructed in accordance with at least some of the teachings for waveguide assemblies (350, 380) and transducer assemblies (310, 370), shown in FIGS. 5-9. Alternatively, distal threaded recess (614) may omit the threading and waveguide (730) may omit threading (732). Proximal recess (616) may instead comprise threading and transducer shaft (630) may include threading complementary to the threading of proximal recess (616). In such a configuration, rotation of rear bevel gear (640) translates transducer (610) distally on the threading of transducer shaft (630), thereby compressively coupling transducer (610) to waveguide (730). The preceding configuration may be further modified such that horn (612) and proximal end of waveguide (730) may be constructed in accordance with at least some of the teachings for waveguide assembly (450) and transducer assembly (410), shown in FIG. 10. In other versions, a motor (not shown) may be operably coupled to geared mechanism (620). Still other versions will be apparent to one of ordinary skill in the art in view of the teachings herein.


IV. Exemplary Handle Assembly and Transducer Unit Slide Lock


In some instances it may be useful to selectively couple transducer unit (600) to lower handle portion (700). For instance, in some situations it may desirable to include the electrical components within a reusable transducer unit (600) while including only disposable mechanical components within lower handle portion (700). Such mechanical components may be rendered unclean during a procedure and may not be reusable. Accordingly, an exemplary slide lock assembly for coupling a transducer unit (600) to lower handle assembly (700) will be described below.



FIG. 18 shows an exemplary transducer unit (800) comprising a casing (810) and a slide lock assembly (820). It should be understood that a mirrored slide lock assembly (820) identical to the one shown in FIG. 18 may be included on the opposite side of transducer unit (800). Transducer unit (800) may be further configured in accordance with the teachings of transducer unit (700). Alternatively, transducer unit (800) may include a transducer (not shown) configured in accordance with one of the foregoing interfaces, as described in section II of the present disclosure. By way of example only, transducer unit (800) may include a transducer configured in accordance with the teachings for V-shaped slot interface (200) and configured to couple to a waveguide included in transmission assembly (880) of lower handle portion (850) described below.


Slide lock assembly (820) of the present example comprises a handle (822), a body member (824) (shown in phantom), and a pair of ledged sliders (826). In the present example, handle (822) extends out through a slot in the top of casing (810), though it should be understood that handle (822) may extend out a side, the front, or the rear of casing (810). In some versions slide lock assembly (820) may be adapted to be coupled to rack gear (680) and handle (682) such that actuation of handle (822) both locks transducer unit (800) to lower handle portion (850) and torques a transducer to a waveguide. In the present example, body member (824) couples handle (822) to the pair of ledged sliders (826). Ledged sliders (826) are L-shaped members each with a ledge (828) extending outwardly toward the side of casing (810). It should be understood that ledged sliders (826) may have other configurations, including slidable cylindrical pins, resilient clamp members configured to clamp onto cylindrical pins within lower handle portion (850), and/or any other configuration as will be apparent to one of ordinary skill in the art in view of the teachings herein.


Lower handle portion (850) of the present example comprises a casing (852), a pair of toggle buttons (860), a rotation knob (870), a transmission assembly (880), and a trigger (890) pivotally mounted to lower handle portion (850). Casing (852), toggle buttons (860), rotation knob (870), transmission assembly (880), and/or trigger (890) may be configured in accordance with at least some of the teachings of casing (61), the toggle buttons, rotation knob (66), transmission assembly (70), and/or trigger (68) described above or in accordance with U.S. Pat. Pub. No. 2006/0079874, now abandoned; U.S. Pat. Pub. No. 2007/0191713, now abandoned; U.S. Pat. Pub. No. 2007/0282333, now abandoned; U.S. Pat. Pub. No. 2008/0200940, now abandoned; U.S. Pat. Pub. No. 2011/0015660 (issued as U.S. Pat. No. 8,461,744); U.S. Pat. No. 6,500,176; U.S. Pat. Pub. No. 2011/0087218, now U.S. Pat. No. 8,939,974, issued Jan. 27, 2015; and/or U.S. Pat. Pub. No. 2009/0143797 (issued as U.S. Pat. No. 8,419,757). In the present example, casing (852) comprises a pair of slider recesses (854) formed in the inside of the side casing (852). It should be understood that a mirrored pair of slider recesses (854) identical to those shown in FIG. 18 may be included on the opposite side of casing (852). In the present example, each slider recess (854) comprises an entrance portion (856) and a ledge portion (858). Entrance portion (856) extends vertically out of casing (852) and has a longitudinal dimension sufficient to receive a ledged slider (826) therein. Ledge portion (858) of the present example extends proximally from entrance portion (856) and has a vertical dimension sized to receive the ledge (828) of ledged slider (826) therein. Ledge portion (858) may proximally extend from entrance portion for a distance less than, equal to, or more than the longitudinal length of ledge (828). Still other configurations for slider recesses (854) will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, ledge portions (858) of slider recesses (854) may be ramped downwardly to urge ledges (828) downwardly, thereby further tightening transducer unit (800) to lower handle portion (850). In another arrangement, slider recesses (854) may omit entrance portion (856) and only include the ramped ledge portions (858) previously described.


When a user desires to couple transducer unit (800) to lower handle portion (850), initially ledged sliders (826) are aligned with entrance portions (856). Transducer unit (800) is then lowered onto lower handle portion (850) such that ledges (828) are longitudinally aligned with ledge portions (858). The user then actuates handle (822) proximally to slide ledges (828) of ledged sliders (826) into ledge portions (858), thereby coupling transducer unit (800) to lower handle portion (850). The user may then use the assembled surgical instrument for a procedure. When a user desires to decouple transducer unit (800) from lower handle portion (850), the user actuates handle (822) distally until ledges (828) are vertically clear of ledge portions (858). The user may then lift transducer unit (800) off of lower handle portion (850). Lower handle portion (850) may then be disposed of, cleaned, resterilized, and/or otherwise. Transducer unit (800) may be reused, cleaned, reclaimed, and/or otherwise as well. Thus, a user may dispose of the unclean mechanical components of lower handle portion (850) while recycling or reusing the components of transducer unit (800). In some versions, a power unit may be within transducer unit (800) for a portable surgical instrument. In other versions, transducer unit (800) may be coupled to a power source via a cable.


Of course other configurations for a slide lock assembly will be apparent to one of ordinary skill in the art in view of the teachings herein. For instance, slider recesses (854) may include one or more detents to selectively hold slide lock assembly (820) in the proximal position.


It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


Embodiments of the present invention have application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery.


Embodiments of the devices disclosed herein can be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, embodiments of the devices disclosed herein may be disassembled, and any number of the particular pieces or parts of the devices may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, embodiments of the devices may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


By way of example only, embodiments described herein may be processed before surgery. First, a new or used instrument may be obtained and if necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.


Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of the following claims and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.

Claims
  • 1. A surgical instrument comprising: (a) a body portion comprising: (i) a body casing, and(ii) a waveguide extending distally from the body casing; and(b) a transducer unit comprising: (i) a transducer, and(ii) a geared assembly configured to selectively couple the transducer to the waveguide by rotating and translating the transducer relative to the waveguide.
  • 2. The surgical instrument of claim 1 wherein the geared assembly comprises a plurality of bevel gears and a shaft, wherein the shaft is coupled to the transducer and coupled to at least one of the plurality of bevel gears.
  • 3. The surgical instrument of claim 2 wherein at least one bevel gear of the plurality of bevel gears is coupled to a pinion gear.
  • 4. The surgical instrument of claim 3 further comprising a rack gear, wherein the pinion gear engages the rack gear, wherein the rack gear is translatable relative to the pinion gear.
  • 5. The surgical instrument of claim 4 wherein the rack gear is flexible.
  • 6. The surgical instrument of claim 4 wherein the rack gear is rigid.
  • 7. The surgical instrument of claim 4, wherein the transducer unit further comprises a transducer casing, the instrument further comprising a handle coupled to a distal end of the rack gear and a slot formed in the transducer casing, wherein a portion of the handle extends through the slot, and wherein the handle is translatable relative to the slot.
  • 8. The surgical instrument of claim 2 wherein the shaft comprises threading, wherein the transducer comprises a proximal threaded recess complementary to the threading of the shaft, and wherein the shaft is operable to translate the transducer relative to the shaft.
  • 9. The surgical instrument of claim 8 wherein the transducer is selectively coupleable to the waveguide by an interference fitting.
  • 10. The surgical instrument of claim 2 wherein the waveguide comprises threading formed on a proximal end of the waveguide, wherein the transducer comprises a horn having a threaded recess complementary to the threading of the waveguide, wherein the shaft is fixedly coupled to the transducer, and wherein the shaft is operable to thread the threading of the waveguide into the threaded recess of the transducer.
  • 11. The surgical instrument of claim 2, wherein the transducer unit further comprises a transducer casing, wherein the shaft is fixedly coupled to the transducer, and wherein the shaft is operable to rotate the transducer relative to the transducer casing.
  • 12. The surgical instrument of claim 11 wherein the waveguide comprises a male connector at a proximal end of the waveguide, wherein the transducer comprises a female recess formed in a distal end and configured to receive the male connector, and wherein the shaft is operable to rotate the transducer having the female recess about the male connector to selectively couple the transducer to the waveguide.
  • 13. The surgical instrument of claim 11 wherein the waveguide comprises an elliptic cylinder projection at a proximal end, wherein the transducer comprises an ovular recess formed in a distal end and configured to receive the elliptic cylinder projection, and wherein the shaft is operable to rotate the transducer when the elliptic cylinder is within ovular recess.
  • 14. The surgical instrument of claim 1 wherein the transducer unit is coupleable to the body portion.
  • 15. The surgical instrument of claim 1 wherein the transducer unit comprises a slide lock assembly, wherein the lower body portion comprises a slider recess formed in the body casing, and wherein the slide lock assembly is operable to selectively couple the transducer unit to the lower body portion via insertion into the slider recess.
  • 16. A surgical instrument comprising: (a) a body portion comprising: (i) a body casing, and(ii) a waveguide extending distally from the body casing; and(b) a transducer unit comprising: (i) a transducer, and(ii) at least one gear configured to selectively couple the transducer to the waveguide by rotating and translating the transducer relative to the waveguide and relative to the body casing.
  • 17. A surgical instrument comprising: (a) a body portion comprising: (i) a body casing, and(ii) a waveguide extending distally from the body casing; and(b) a transducer unit comprising: (i) a transducer, and(ii) one or more gears configured to selectively drive the transducer into engagement with the waveguide by rotating and translating the transducer relative to the body casing.
PRIORITY

This application claims priority to U.S. Provisional Application Ser. No. 61/410,603, filed Nov. 5, 2010, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein. This application also claims priority to U.S. Provisional Application Ser. No. 61/487,846, filed May 19, 2011, entitled “Energy-Based Surgical Instruments,” the disclosure of which is incorporated by reference herein.

US Referenced Citations (340)
Number Name Date Kind
1754806 Stevenson Apr 1930 A
3297192 Swett Jan 1967 A
3419198 Pettersen Dec 1968 A
3619671 Shoh Nov 1971 A
4034762 Cosens et al. Jul 1977 A
4057220 Kudlacek Nov 1977 A
4535773 Yoon Aug 1985 A
4641076 Linden et al. Feb 1987 A
4662068 Polonsky May 1987 A
4666037 Weissman May 1987 A
4685459 Koch et al. Aug 1987 A
4717018 Sacherer et al. Jan 1988 A
4717050 Wright Jan 1988 A
4721097 D'Amelio Jan 1988 A
4768969 Bauer et al. Sep 1988 A
4800878 Cartmell Jan 1989 A
4844259 Glowczewskie, Jr. et al. Jul 1989 A
4878493 Pasternak et al. Nov 1989 A
5071417 Sinofsky Dec 1991 A
5107155 Yamaguchi Apr 1992 A
5144771 Miwa Sep 1992 A
5169733 Savovic et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5246109 Markle et al. Sep 1993 A
5273177 Campbell Dec 1993 A
5277694 Leysieffer et al. Jan 1994 A
5308358 Bond et al. May 1994 A
5322055 Davison Jun 1994 A
5339799 Kami et al. Aug 1994 A
5358508 Cobb et al. Oct 1994 A
5361902 Abidin et al. Nov 1994 A
5429229 Chester et al. Jul 1995 A
5449370 Vaitekumas Sep 1995 A
5454378 Palmer et al. Oct 1995 A
5501607 Yoshioka et al. Mar 1996 A
5507297 Slater et al. Apr 1996 A
5561881 Klinger et al. Oct 1996 A
5578052 Koros et al. Nov 1996 A
5580258 Wakata Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5590778 Dutchik Jan 1997 A
5592065 Oglesbee et al. Jan 1997 A
5597531 Liberti et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5630420 Vaitekunas May 1997 A
5630456 Hugo et al. May 1997 A
5690222 Peters Nov 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5741305 Vincent et al. Apr 1998 A
5776155 Beaupre et al. Jul 1998 A
5800336 Ball et al. Sep 1998 A
5817128 Storz Oct 1998 A
5868244 Ivanov et al. Feb 1999 A
5871493 Sjostrom et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5882310 Marian, Jr. Mar 1999 A
5893835 Witt et al. Apr 1999 A
5893874 Bourque et al. Apr 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beupre Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5951575 Bolduc et al. Sep 1999 A
5980510 Tsonton et al. Nov 1999 A
5997531 Loeb et al. Dec 1999 A
6018227 Kumar et al. Jan 2000 A
6051010 Dimatteo et al. Apr 2000 A
6056735 Okada et al. May 2000 A
6063098 Houser et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6083191 Rose Jul 2000 A
6083223 Baker Jul 2000 A
6099537 Sugai et al. Aug 2000 A
6113593 Tu et al. Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6165191 Shibata et al. Dec 2000 A
6190386 Rydell Feb 2001 B1
6204592 Hur Mar 2001 B1
6214023 Whipple et al. Apr 2001 B1
6246896 Dumoulin et al. Jun 2001 B1
6248238 Burtin et al. Jun 2001 B1
6287304 Eggers et al. Sep 2001 B1
6325811 Messerly Dec 2001 B1
6339368 Leith Jan 2002 B1
6398755 Belef et al. Jun 2002 B1
6409742 Fulton, III et al. Jun 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6512667 Shiue et al. Jan 2003 B2
6514267 Jewett Feb 2003 B2
6520185 Bommannan et al. Feb 2003 B1
6561983 Cronin et al. May 2003 B2
6562032 Ellman et al. May 2003 B1
6609414 Mayer et al. Aug 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623500 Cook et al. Sep 2003 B1
6626901 Treat et al. Sep 2003 B1
6647281 Morency Nov 2003 B2
6650091 Shiue et al. Nov 2003 B1
6650975 Ruffner Nov 2003 B2
6656177 Truckai et al. Dec 2003 B2
6658301 Loeb et al. Dec 2003 B2
6666875 Sakurai et al. Dec 2003 B1
6706038 Francischelli et al. Mar 2004 B2
6717193 Olewine et al. Apr 2004 B2
6730042 Fulton et al. May 2004 B2
6753673 Shiue et al. Jun 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6761698 Shibata et al. Jul 2004 B2
6761701 Cucin Jul 2004 B2
6783524 Anderson et al. Aug 2004 B2
6815206 Lin et al. Nov 2004 B2
6821671 Hinton et al. Nov 2004 B2
6836097 Turner et al. Dec 2004 B2
6838862 Luu Jan 2005 B2
6847192 Turner et al. Jan 2005 B2
6860880 Treat et al. Mar 2005 B2
6869435 Blake Mar 2005 B2
6923807 Ryan et al. Aug 2005 B2
6982696 Shahoian Jan 2006 B1
6998822 Turner et al. Feb 2006 B2
7031155 Sauciuc et al. Apr 2006 B2
7061749 Liu et al. Jun 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083589 Banko et al. Aug 2006 B2
7085123 Shiue et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7125409 Truckai et al. Oct 2006 B2
7150712 Buehlmann et al. Dec 2006 B2
7169146 Truckai et al. Jan 2007 B2
7186253 Truckai et al. Mar 2007 B2
7186473 Shiue et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7220951 Truckai et al. May 2007 B2
7221216 Nguyen May 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7244024 Biscardi Jul 2007 B2
7292227 Fukumoto et al. Nov 2007 B2
7296804 Lechot et al. Nov 2007 B2
7303556 Metzger Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7349741 Maltan et al. Mar 2008 B2
7354440 Truckai et al. Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7364554 Bolze et al. Apr 2008 B2
7381209 Truckai et al. Jun 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7473145 Ehr et al. Jan 2009 B2
7479152 Fulton, III et al. Jan 2009 B2
7494492 Da Silva et al. Feb 2009 B2
D594983 Price et al. Jun 2009 S
7560903 Thrap Jul 2009 B2
7563142 Wenger et al. Jul 2009 B1
7573151 Acena et al. Aug 2009 B2
7583564 Ketahara et al. Sep 2009 B2
7638958 Philipp Dec 2009 B2
7643378 Genosar Jan 2010 B2
7658247 Carter Feb 2010 B2
7692411 Trainor et al. Apr 2010 B2
7717312 Beetel May 2010 B2
7721936 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7761198 Bhardwaj Jul 2010 B2
7766910 Hixson et al. Aug 2010 B2
7766929 Masuda Aug 2010 B2
7770722 Donahoe et al. Aug 2010 B2
7770775 Shelton et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7780660 Bourne et al. Aug 2010 B2
7802121 Zansky et al. Sep 2010 B1
7815658 Murakami Oct 2010 B2
7846155 Houser et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7889489 Richardson et al. Feb 2011 B2
7918848 Lau et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7923151 Lam et al. Apr 2011 B2
7948208 Partovi et al. May 2011 B2
7952322 Partovi et al. May 2011 B2
7952873 Glahn et al. May 2011 B2
7959050 Smith et al. Jun 2011 B2
7977921 Bahai et al. Jul 2011 B2
7982439 Trainor et al. Jul 2011 B2
8038025 Stark et al. Oct 2011 B2
8040107 Ishii Oct 2011 B2
8052605 Muller et al. Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8075530 Taylor et al. Dec 2011 B2
8097011 Hideo et al. Jan 2012 B2
8142461 Houser et al. Mar 2012 B2
8147488 Masuda Apr 2012 B2
8177776 Humayun et al. May 2012 B2
8195271 Rahn Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8216212 Grant et al. Jul 2012 B2
8221418 Prakash et al. Jul 2012 B2
8240498 Ramsey et al. Aug 2012 B2
8246608 Omori et al. Aug 2012 B2
8246642 Houser et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8267094 Danek et al. Sep 2012 B2
8277446 Heard Oct 2012 B2
8292882 Danek et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8298253 Charles Oct 2012 B2
8301262 Mi et al. Oct 2012 B2
8336725 Ramsey et al. Dec 2012 B2
8344690 Smith et al. Jan 2013 B2
8377059 Deville et al. Feb 2013 B2
8400108 Powell et al. Mar 2013 B2
8419758 Smith et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8444653 Nycz et al. May 2013 B2
8449529 Bek et al. May 2013 B2
8487487 Dietz et al. Jul 2013 B2
8551088 Falkenstein et al. Oct 2013 B2
8564242 Hansford et al. Oct 2013 B2
8573461 Shelton et al. Nov 2013 B2
8617077 van Groningen et al. Dec 2013 B2
8641629 Kurokawa Feb 2014 B2
8663112 Slayton et al. Mar 2014 B2
9044261 Houser Jun 2015 B2
20010032666 Jenson et al. Oct 2001 A1
20020165577 Witt et al. Nov 2002 A1
20030093103 Malackowski et al. May 2003 A1
20030109802 Laeseke et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20040097911 Murakami et al. May 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040173487 Johnson et al. Sep 2004 A1
20050021065 Yamada et al. Jan 2005 A1
20050033195 Fulton, III et al. Feb 2005 A1
20050171522 Christopherson Aug 2005 A1
20050203546 Van Wyk et al. Sep 2005 A1
20050256522 Francischelli et al. Nov 2005 A1
20060030797 Zhou et al. Feb 2006 A1
20060079829 Fulton, III et al. Apr 2006 A1
20060079874 Faller et al. Apr 2006 A1
20060079877 Houser et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060253176 Caruso et al. Nov 2006 A1
20070027447 Theroux et al. Feb 2007 A1
20070084742 Miller et al. Apr 2007 A1
20070103437 Rosenberg May 2007 A1
20070175964 Shelton et al. Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070207354 Curello et al. Sep 2007 A1
20070261978 Sanderson Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265620 Kraas et al. Nov 2007 A1
20070282333 Fortson et al. Dec 2007 A1
20080003491 Yahnker et al. Jan 2008 A1
20080004656 Livneh Jan 2008 A1
20080057470 Levy et al. Mar 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080150754 Quendt Jun 2008 A1
20080161783 Cao Jul 2008 A1
20080173651 Ping Jul 2008 A1
20080188810 Larsen et al. Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080221491 Slayton et al. Sep 2008 A1
20080228104 Uber, III et al. Sep 2008 A1
20080234708 Houser et al. Sep 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080281301 Deboer et al. Nov 2008 A1
20080315829 Jones et al. Dec 2008 A1
20090030437 Houser et al. Jan 2009 A1
20090043797 Dorie et al. Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090096430 Van Der Linde et al. Apr 2009 A1
20090105750 Price et al. Apr 2009 A1
20090125026 Rioux et al. May 2009 A1
20090137952 Ramamurthy et al. May 2009 A1
20090138006 Bales et al. May 2009 A1
20090143797 Smith et al. Jun 2009 A1
20090143798 Smith et al. Jun 2009 A1
20090143799 Smith et al. Jun 2009 A1
20090143800 Deville et al. Jun 2009 A1
20090143801 Deville et al. Jun 2009 A1
20090143802 Deville et al. Jun 2009 A1
20090143803 Palmer et al. Jun 2009 A1
20090143804 Palmer et al. Jun 2009 A1
20090143805 Palmer et al. Jun 2009 A1
20090209979 Yates et al. Aug 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090240246 Deville et al. Sep 2009 A1
20090253030 Kooij Oct 2009 A1
20090264940 Beale et al. Oct 2009 A1
20090275940 Malackowski et al. Nov 2009 A1
20090281430 Wilder Nov 2009 A1
20090281464 Cioanta et al. Nov 2009 A1
20100016855 Ramstein et al. Jan 2010 A1
20100021022 Pittel et al. Jan 2010 A1
20100030218 Prevost Feb 2010 A1
20100060231 Trainor et al. Mar 2010 A1
20100069940 Miller et al. Mar 2010 A1
20100076455 Birkenbach et al. Mar 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100106144 Matsumura et al. Apr 2010 A1
20100106146 Boitor et al. Apr 2010 A1
20100125172 Jayaraj May 2010 A1
20100152610 Parihar et al. Jun 2010 A1
20100201311 Alexander et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100249665 Roche Sep 2010 A1
20100268221 Beller et al. Oct 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100301095 Shelton, IV et al. Dec 2010 A1
20110009694 Schultz et al. Jan 2011 A1
20110015660 Wiener et al. Jan 2011 A1
20110058982 Kaneko Mar 2011 A1
20110074336 Miller Mar 2011 A1
20110077514 Ulric et al. Mar 2011 A1
20110080134 Miller Apr 2011 A1
20110087212 Aldridge et al. Apr 2011 A1
20110087218 Boudreaux et al. Apr 2011 A1
20110152901 Woodruff et al. Jun 2011 A1
20110221398 Ferber Sep 2011 A1
20110224668 Johnson et al. Sep 2011 A1
20110247952 Habach et al. Oct 2011 A1
20110288573 Yates et al. Nov 2011 A1
20120179036 Patrick et al. Jul 2012 A1
20120265230 Laurent et al. Oct 2012 A1
20120283732 Lam Nov 2012 A1
20120292367 Morgan et al. Nov 2012 A1
20130085330 Ramamurthy et al. Apr 2013 A1
20130085332 Ramamurthy et al. Apr 2013 A1
20130085397 Ramamurthy et al. Apr 2013 A1
20130090528 Ramamurthy et al. Apr 2013 A1
20130090530 Ramamurthy et al. Apr 2013 A1
20130090552 Ramamurthy et al. Apr 2013 A1
20130116690 Unger et al. May 2013 A1
20130118733 Kumar May 2013 A1
20130342962 Fletcher et al. Dec 2013 A1
20140088739 Ellis et al. Mar 2014 A1
Foreign Referenced Citations (52)
Number Date Country
102008051866 Oct 2010 DE
102009013034 Oct 2010 DE
0897696 Feb 1999 EP
0947167 Oct 1999 EP
1330991 Jul 2003 EP
1525853 Apr 2005 EP
1535585 Jun 2005 EP
1684396 Jul 2006 EP
1721576 Nov 2006 EP
1743592 Jan 2007 EP
1818021 Aug 2007 EP
1839599 Oct 2007 EP
1868275 Dec 2007 EP
1886637 Feb 2008 EP
1943976 Jul 2008 EP
1970014 Sep 2008 EP
1997439 Dec 2008 EP
2027819 Feb 2009 EP
2090256 Aug 2009 EP
2105104 Sep 2009 EP
2165660 Mar 2010 EP
2218409 Aug 2010 EP
2243439 Oct 2010 EP
2345454 Jul 2011 EP
2425874 Nov 2006 GB
2440566 Feb 2008 GB
4602681 Dec 2010 JP
4836148 Dec 2011 JP
WO 1997024072 Jul 1997 WO
WO 2000065682 Feb 2000 WO
WO 2003013374 Feb 2003 WO
WO 2003020139 Mar 2003 WO
WO 2004113991 Dec 2004 WO
WO 2005079915 Sep 2005 WO
WO 2006023266 Mar 2006 WO
WO 2007004515 Jan 2007 WO
WO 2007024983 Mar 2007 WO
WO 2007090025 Aug 2007 WO
WO 2007137115 Nov 2007 WO
WO 2007137304 Nov 2007 WO
WO 2008071898 Jun 2008 WO
WO 2008102154 Aug 2008 WO
WO 2008107902 Sep 2008 WO
WO 2008131357 Oct 2008 WO
WO 2009018409 Feb 2009 WO
WO 2009046394 Apr 2009 WO
WO 2009070780 Jun 2009 WO
WO 2009073608 Jun 2009 WO
WO 2010030850 Mar 2010 WO
WO 2010096174 Aug 2010 WO
WO 2011059785 May 2011 WO
WO 2011089270 Jul 2011 WO
Non-Patent Literature Citations (239)
Entry
U.S. Appl. No. 13/151,471, filed Jun. 2, 2011, Stulen.
U.S. Appl. No. 13/151,481, filed Jun. 2, 2011, Yates et al.
U.S. Appl. No. 13/151,488, filed Jun. 2, 2011, Shelton IV et al.
U.S. Appl. No. 13/151,498, filed Jun. 2, 2011, Felder et al.
U.S. Appl. No. 13/151,503, filed Jun. 2, 2011, Madan et al.
U.S. Appl. No. 13/151,509, filed Jun. 2, 2011, Smith et al.
U.S. Appl. No. 13/151,512, filed Jun. 2, 2011, Houser et al.
U.S. Appl. No. 13/151,515, filed Jun. 2, 2011, Felder et al.
U.S. Appl. No. 13/176,875, filed Jul. 6, 2011, Smith et al.
U.S. Appl. No. 13/269,870, filed Oct. 10, 2011, Houser et al.
U.S. Appl. No. 13/269,883, filed Oct. 10, 2011, Mumaw et al.
U.S. Appl. No. 13/269,899, filed Oct. 10, 2011, Boudreaux et al.
U.S. Appl. No. 13/270,667, filed Oct. 11, 2011, Timm et al.
U.S. Appl. No. 13/270,684, filed Oct. 11, 2011, Madan et al.
U.S. Appl. No. 13/270,701, filed Oct. 11, 2011, Johnson et al.
U.S. Appl. No. 13/271,352, filed Oct. 12, 2011, Houser et al.
U.S. Appl. No. 13/271,364, filed Oct. 12, 2011, Houser et al.
U.S. Appl. No. 13/274,480, filed Oct. 17, 2011, Mumaw et al.
U.S. Appl. No. 13/274,496, filed Oct. 17, 2011, Houser et al.
U.S. Appl. No. 13/274,516, filed Oct. 17, 2011, Haberstich et al.
U.S. Appl. No. 13/274,540, filed Oct. 17, 2011, Madan.
U.S. Appl. No. 13/274,805, filed Oct. 17, 2011, Price et al.
U.S. Appl. No. 13/274,830, filed Oct. 17, 2011, Houser et al.
U.S. Appl. No. 13/275,495, filed Oct. 18, 2011, Houser et al.
U.S. Appl. No. 13/275,514, filed Oct. 18, 2011, Houser et al.
U.S. Appl. No. 13/275,547, filed Oct. 18, 2011, Houser et al.
U.S. Appl. No. 13/275,563, filed Oct. 18, 2011, Houser et al.
U.S. Appl. No. 13/276,660, filed Oct. 19, 2011, Houser et al.
U.S. Appl. No. 13/276,673, filed Oct. 19, 2011, Kimball et al.
U.S. Appl. No. 13/276,687, filed Oct. 19, 2011, Price et al.
U.S. Appl. No. 13/276,707, filed Oct. 19, 2011, Houser et al.
U.S. Appl. No. 13/276,725, filed Oct. 19, 2011, Houser et al.
U.S. Appl. No. 13/276,745, filed Oct. 19, 2011, Stulen et al.
U.S. Appl. No. 13/277,328, filed Oct. 20, 2011, Houser et al.
Dietz, T. et al., Partially Implantable Vibrating Ossicular Prosthesis, Transducers'97, vol. 1, International Conference on Solid State Sensors and Actuators, (Jun. 16-19, 1997) pp. 433-436 (Abstract).
“System 6 Aseptic Battery System,” Stryker (2006) pp. 1-2.
International Search Report and Written Opinion dated Jul. 6, 2012 for PCT/US2011/059381.
Office Action Non-Final dated Aug. 6, 2013 for U.S. Appl. No. 13/151,471.
Restriction Requirement dated Jul. 5, 2013 for U.S. Appl. No. 13/151,488.
Office Action Non-Final dated Jun. 14, 2013 U.S. Appl. No. 13/151,498.
Restriction Requirement dated Jun. 24, 2013 U.S. Appl. No. 13/151,509.
Office Action Final dated Aug. 16, 2013 for U.S. Appl. No. 13/274,516.
Office Action Final dated Sep. 12, 2013 for U.S. Appl. No. 13/274,805.
Office Action Non-Final dated Jun. 14, 2013 for U.S. Appl. No. 13/274,830.
Office Action Final dated Aug. 29, 2013 for U.S. Appl. No. 13/275,563.
Office Action Non-Final dated Aug. 19, 2013 for U.S. Appl. No. 13/276,673.
Office Action Non-Final dated Jun. 12, 2013 for U.S. Appl. No. 13/276,687.
International Search Report and Written Opinion dated Jan. 26, 2012for Application No. PCT/US2011/059212.
International Search Report and Written Opinion dated Feb. 2, 2012for Application No. PCT/US2011/059378.
International Search Report dated Feb. 2, 2012for Application No. PCT/US2011/059354.
International Search Report dated Feb. 7, 2012 for Application No. PCT/US2011/059351.
International Search Report dated Feb. 13, 2012for Application No. PCT/US2011/059217.
International Search Report dated Feb. 23, 2012 for Application No. PCT/US2011/059371.
International Search Report dated Mar. 15, 2012 for Application No. PCT/US2011/059338.
International Search Report dated Mar. 22, 2012for Application No. PCT/US2011/059362.
International Search Report dated Apr. 4, 2012 for Application No. PCT/US2011/059215.
International Search Report dated Apr. 11, 2012 for Application No. PCT/US2011/059381.
International Search Report dated Apr. 18, 2012 for Application No. PCT/US2011/059222.
International Search Report dated May 24, 2012 for Application No. PCT/US2011/059378.
International Search Report dated Jun. 4, 2012 for Application No. PCT/US2011/059365.
International Search Report dated Jun. 12, 2012 for Application No. PCT/US2011/059218.
Communication from International Searching Authority dated Feb. 6, 2012for Application No. PCT/US2011/059362.
Communication from International Searching Authority dated Feb. 2, 2012for Application No. PCT/US2011/059222.
Communication from International Searching Authority dated Jan. 24, 2012 for Application No. PCT/US2011/059215.
Communication from International Searching Authority dated Feb. 2, 2012for Application No. PCT/US2011/059378.
Machine Translation of the Abstract of German Application No. DE 102009013034.
Machine Translation of German Application No. DE 102008051866.
Notice of Allowance dated Dec. 6, 2013 for U.S. Appl. No. 13/151,471.
Office Action Final dated Nov. 21, 2013 for U.S. Appl. No. 13/151,498.
Office Action Non-Final dated Sep. 26, 2013 for U.S. Appl. No. 13/151,509.
Office Action Final dated Oct. 25, 2013 for U.S. Appl. No. 13/270,667.
Office Action Non-Final dated Nov. 21, 2013 for U.S. Appl. No. 13/271,352.
Office Action Non-Final dated Dec. 6, 2013 for U.S. Appl. No. 13/274,516.
Office Action Final dated Oct. 25, 2013 for U.S. Appl. No. 13/274,540.
Office Action Final dated Nov. 26, 2013 for U.S. Appl. No. 13/274,830.
Office Action Final dated Dec. 5, 2013 for U.S. Appl. No. 13/275,495.
Notice of Allowance dated Nov. 12, 2013 for U.S. Appl. No. 13/276,687.
Office Action Final dated Sep. 27, 2013 for U.S. Appl. No. 13/276,707.
Office Action Final dated Nov. 8, 2013 for U.S. Appl. No. 13/276,745.
International Search Report dated Jan. 26, 2012 for Application No. PCT/US11/059220.
International Search Report dated Feb. 1, 2012 for Application No. PCT/US11/059223.
International Search Report dated Jan. 12, 2012 for Application No. PCT/US11/059226.
International Search Report dated May 29, 2012 for Application No. PCT/US11/059358.
Restriction Requirement dated Dec. 11, 2012 for U.S. Appl. No. 13/151,481.
Office Action Non-Final dated Feb. 15, 2013 for U.S. Appl. No. 13/151,481.
Office Action Final dated Jun. 7, 2013 for U.S. Appl. No. 13/151,481.
Restriction Requirement dated Mar. 13, 2013 for U.S. Appl. No. 13/151,509.
Restriction Requirement dated Feb. 28, 2013 for U.S. Appl. No. 13/270,667.
Office Action Non-Final dated Apr. 26, 2013 for U.S. Appl. No. 13/270,667.
Office Action Non-Final dated Dec. 21, 2012 for U.S. Appl. No. 13/274,516.
Restriction Requirement dated Feb. 25, 2013 for U.S. Appl. No. 13/274,540.
Office Action Non-Final dated Apr. 30, 2013 for U.S. Appl. No. 13/274,540.
Office Action Non-Final dated Apr. 1, 2013 for U.S. Appl. No. 13/274,805.
Restriction Requirement dated Apr. 29, 2013 for U.S. Appl. No. 13/274,830.
Restriction Requirement dated Apr. 4, 2013 for U.S. Appl. No. 13/275,495.
Office Action Non-Final dated May 31, 2013 for U.S. Appl. No. 13/275,495.
Office Action Non-Final dated May 17, 2013 for U.S. Appl. No. 13/275,547.
Office Action Non-Final dated Feb. 1, 2013 for U.S. Appl. No. 13/275,563.
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,660.
Office Action Non-Final dated Jun. 3, 2013 for U.S. Appl. No. 13/246,660.
Office Action Non-Final dated Dec. 21, 2012 for U.S. Appl. No. 13/276,673.
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,687.
Restriction Requirement dated Feb. 21, 2013 for U.S. Appl. No. 13/276,707.
Office Action Non-Final dated May 6, 2013 for U.S. Appl. No. 13/276,707.
Restriction Requirement dated Feb. 6, 2013 for U.S. Appl. No. 13/276,725.
Restriction Requirement dated Dec. 21, 2012 for U.S. Appl. No. 13/276,745.
Office Action Non-Final dated Apr. 30, 2013 for U.S. Appl. No. 13/276,745.
EP Communication dated Feb. 19, 2014 for Application No. EP 11781972.2.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059212.
International Preliminary Report on Patentability dated May 8, 2013 for Application No. PCT/US2011/059215.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059217.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCY/US2011/059218.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059220.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059222.
International Preliminary Report on Patentability dated Feb. 1, 2012 for Application No. PCT/US2011/059223.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059226.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059338.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059351.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059354.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059358.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059362.
International Preliminary Report on Patentability dated May 8, 2013 for Application No. PCT/US2011/059365.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059371.
International Preliminary Report on Patentability dated May 7, 2013 for Application No. PCT/US2011/059378.
International Preliminary Report on Patentability dated May 8, 2013 for Application No. PCT/US2011/059381.
U.S. Office Action, Notice of Allowance, dated Aug. 19, 2014 for U.S. Appl. No. 13/151,471.
U.S. Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/151,481.
U.S. Office Action, Non-Final, dated Nov. 7, 2014 for U.S. Appl. No. 13/151,488.
U.S. Office Action, Notice of Allowance, dated Aug. 6, 2014 for U.S. Appl. No. 13/151,498.
U.S. Office Action, Non-Final, dated Nov. 6, 2014 for U.S. Appl. No. 13/151,503.
U.S. Office Action, Non-Final, dated Jul. 9, 2014 for U.S. Appl. No. 13/151,509.
U.S. Office Action, Notice of Allowance, dated Oct. 28, 2014 for U.S. Appl. No. 13/151,509.
U.S. Office Action, Notice of Allowance, dated Oct. 29, 2014 for U.S. Appl. No. 13/151,512.
U.S. Office Action, Restriction Requirement, dated Jul. 11, 2014 for U.S. Appl. No. 13/269,870.
U.S. Office Action, Non-Final, dated Jul. 29, 2014 for U.S. Appl. No. 13/270,667.
U.S. Office Action, Restriction Requirement, dated Jul. 9, 2014 for U.S. Appl. No. 13/270,684.
U.S. Office Action, Non-Final, dated Oct. 9, 2014 for U.S. Appl. No. 13/270,684.
U.S. Office Action, Restriction Requirement, dated Sep. 11, 2014 for U.S. Appl. No. 13/270,701.
U.S. Office Action, Restriction Requirement, dated Sep. 25, 2014 for U.S. Appl. No. 13/271,352.
U.S. Office Action, Restriction Requirement, dated Oct. 2, 2013 for U.S. Appl. No. 13/274,480.
U.S. Office Action, Final, dated Jul. 17, 2014 for U.S. Appl. No. 13/274,480.
U.S. Office Action, Final, dated Aug. 22, 2014 for U.S. Appl. No. 13/274,496.
U.S. Office Action, Non-Final, dated Oct. 8, 2014 for U.S. Appl. No. 13/274,516.
U.S. Office Action, Non-Final, dated Aug. 26, 2014 for U.S. Appl. No. 13/274,540.
U.S. Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/274,805.
U.S. Office Action, Non-Final, dated Oct. 22, 2014 for U.S. Appl. No. 13/274,830.
U.S. Office Action, Non-Final, dated Sep. 9, 2014 for U.S. Appl. No. 13/275,514.
U.S. Office Action, Non-Final, dated Aug. 20, 2014 for U.S. Appl. No. 13/275,547.
U.S. Office Action, Non-Final, dated Oct. 23, 2014 for U.S. Appl. No. 13/275,563.
U.S. Office Action, Restriction Requirement, dated Jul. 9, 2014 for U.S. Appl. No. 13/276,660.
U.S. Office Action, Non-Final, dated Aug. 14, 2014 for U.S. Appl. No. 13/276,673.
U.S. Office Action, Notice of Allowance, dated Sep. 12, 2014 for U.S. Appl. No. 13/276,687.
U.S. Office Action, Non-Final, dated Aug. 20, 2014 for U.S. Appl. No. 13/276,725.
U.S. Office Action, Notice of Allowance, dated Oct. 7, 2014 for U.S. Appl. No. 13/276,745.
U.S. Office Action, Restriction Requirement, dated Sep. 24, 2014 for U.S. Appl. No. 13/277,328.
U.S. Appl. No. 13/151,471.
U.S. Appl. No. 13/151,481.
U.S. Appl. No. 13/151,498.
U.S. Appl. No. 13/151,509.
U.S. Appl. No. 13/151,512.
U.S. Appl. No. 13/270,667.
U.S. Appl. No. 13/270,684.
U.S. Appl. No. 13/274,540.
U.S. Appl. No. 13/274,805.
U.S. Appl. No. 13/276,687.
U.S. Appl. No. 13/276,725.
U.S. Appl. No. 13/276,745.
Office Action Non-Final dated Mar. 28, 2014 for U.S. Appl. No. 13/151,471.
Office Action Non Final dated Mar. 18, 2014 for U.S. Appl. No. 13/151,498.
Office Action Non Final dated Jun. 18, 2014 for U.S. Appl. No. 13/151,503.
Office Action Final dated Jan. 29, 2014 for U.S. Appl. No. 13/151,509.
Restriction Requirement dated Jun. 11, 2014 for U.S. Appl. No. 13/151,512.
Office Action Non-Final dated Feb. 14, 2014 for U.S. Appl. No. 13/274,480.
Restriction Requirement dated Dec. 9, 2013 for U.S. Appl. No. 13/274,496.
Office Action Non-Final dated Feb. 6, 2014 for U.S. Appl. No. 13/274,496.
Office Action Final dated May 15, 2014 for U.S. Appl. No. 13/274,496.
Office Action Final dated Jun. 12, 2014 for U.S. Appl. No. 13/274,516.
Office Action Non-Final dated Jan. 6, 2014 for U.S. Appl. No. 13/275,514.
Office Action Final dated Feb. 28, 2014 for U.S. Appl. No. 13/275,547.
Office Action Final dated Mar. 21, 2014 for U.S. Appl. No. 13/276,673.
Notice of Allowance dated Jun. 2, 2014 for U.S. Appl. No. 13/276,687.
Office Action Non-Final dated Feb. 28, 2014 for U.S. Appl. No. 13/276,745.
U.S. Appl. No. 61/410,603, filed Nov. 5, 2010.
U.S. Appl. No. 61/487,846, filed May 19, 2011.
U.S. Appl. No. 13/151,488.
U.S. Appl. No. 13/151,503.
U.S. Appl. No. 13/269,870.
U.S. Appl. No. 13/269,684.
U.S. Appl. No. 13/270,701.
U.S. Appl. No. 13/271,352.
U.S. Appl. No. 13/271,364.
U.S. Appl. No. 13/274,480.
U.S. Appl. No. 13/274,496.
Australian First Examination Report dated Jun. 11, 2015 for Application No. AU2011323281.
Chinese First Office Action dated Apr. 16, 2015 for Application No. CN201180063919X.
Chinese First Office Action dated Jun. 1, 2015 for Application No. CN2011800640981.
Japanese Notification of Reasons for Refusal dated Aug. 25, 2015 for Application No. 2013-537831.
U.S. Office Action, Notice of Allowance, dated Nov. 21, 2014 for U.S. Appl. No. 13/151,471.
U.S. Office Action, Final, dated Apr. 1, 2015 for U.S. Appl. No. 13/151,481.
U.S. Office Action, Notice of Allowance, dated Nov. 21, 2014 for U.S. Appl. No. 13/151,498.
U.S. Office Action, Notice of Allowance, dated Feb. 25, 2015 for U.S. Appl. No. 13/151,509.
U.S. Office Action, Notice of Allowance, dated Feb. 17, 2015 for U.S. Appl. No. 13/151,512
U.S. Office Action, Non-Final, dated Jan. 5, 2015 for U.S. Appl. No. 13/269,870.
U.S. Office Action, Final, dated Aug. 14, 2015 for U.S. Appl. No. 13/269,870.
U.S. Office Action, Notice of Allowance, dated Dec. 17, 2014 for U.S. Appl. No. 13/270,667.
U.S. Office Action, Final, dated Mar. 17, 2015 for U.S. Appl. No. 13/270,684.
U.S. Office Action, Notice of Allowance, dated Jul. 28, 2015 for U.S. Appl. No. 13/270,684.
U.S. Office Action, Non-Final, dated Dec. 16, 2014 for U.S. Appl. No. 13/270,701.
U.S. Office Action, Non-Final, dated Mar. 26, 2015 for U.S. Appl. No. 13/271,352.
U.S. Office Action, Final, dated Jul. 15, 2015 for U.S. Appl. No. 13/271,352.
U.S. Office Action, Non-Final, dated Jul. 14, 2015 for U.S. Appl. No. 13/271,364.
U.S. Office Action, Non-Final, dated Apr. 2, 2015 for U.S. Appl. No. 13/274,496.
U.S. Office Action, Final, dated May 8, 2015 for U.S. Appl. No. 13/274,516.
U.S. Office Action, Notice of Allowance, dated Sep. 24, 2015 for U.S. Appl. No. 13/274,516.
U.S. Office Action, Notice of Allowance, dated Jan. 21, 2015 for U.S. Appl. No. 13/274,540.
U.S. Office Action, Notice of Allowance, dated Nov. 28, 2014 for Application No. 13/274,805.
U.S. Office Action, Notice of Allowance, dated Jan. 21, 2015 for U.S. Appl. No. 13/274,805.
U.S. Office Action, Notice of Allowance, dated Mar. 23, 2015 for U.S. Appl. No. 13/274,830.
U.S. Office Action, Non-Final, dated Feb. 25, 2015 for U.S. Appl. No. 13/275,495.
U.S. Office Action, Final, dated Mar. 10, 2015 for U.S. Appl. No. 13/275,547
U.S. Office Action, Final, dated Mar. 13, 2015 for U.S. Appl. No. 13/276,673.
U.S. Office Action, Notice of Allowance, dated Dec. 23, 2014 for U.S. Appl. No. 13/276,687.
U.S. Office Action, Non-Final, dated Jan. 29, 2015 for U.S. Appl. No. 13/276,707.
U.S. Office Action, Notice of Allowance, dated Mar. 13, 2015 for U.S. Appl. No. 13/276,725.
U.S. Office Action, Notice of Allowance, dated Dec. 19, 2014 for U.S. Appl. No. 13/276,745.
U.S. Office Action, Non-Final, dated Dec. 8, 2014 for U.S. Appl. No. 13/277,328.
U.S. Office Action, Final, dated Mar. 24, 2015 for U.S. Appl. No. 13/277,328.
U.S. Office Action, Notice of Allowance, dated Jun. 1, 2015 for U.S. Appl. No. 13/277,328.
U.S. Appl. No. 13/274,516.
U.S. Appl. No. 13/274,830.
U.S. Appl. No. 13/275,495.
U.S. Appl. No. 13/275,514.
U.S. Appl. No. 13/275,547.
U.S. Appl. No. 13/275,563.
U.S. Appl. No. 13/276,660.
U.S. Appl. No. 13/276,673.
U.S. Appl. No. 13/276,707.
U.S. Appl. No. 13/277,328.
U.S. Appl. No. 14/788,915.
Related Publications (1)
Number Date Country
20120116263 A1 May 2012 US
Provisional Applications (2)
Number Date Country
61487846 May 2011 US
61410603 Nov 2010 US