The present invention relates to an electric motor having a gearbox enabling a modification of a gear ratio between a main rotor of the motor and an output shaft of the motor.
In many cases, it is desired to modify an outgoing rotational speed of an electric motor, depending on the desired use of the rotational movement of the outgoing shaft. For achieving this, a gearbox is usually installed in series with the electrical motor. The gearbox may be of the planetary type or any other type, but planetary gear type gearboxes are often preferred due to their compactness. The start motor of a car engine is usually provided with a planetary gear type gearbox, which decreases the rotational speed of the motor (and increases the torque accordingly) to a torque and a rotational speed suitable for starting the engine.
Another growing use for electric motors in vehicles is as drive sources, e.g. in hybrid or fully electric vehicles. For these purposes, it has been found that it is beneficial if the gear ratio between the motor and the drive wheels can be altered responsive to the vehicle speed. An electric motor has a large motor speed span, but by using a gearbox having various gear ratios, it is possible to achieve a driveline with a high initial drive torque, while the motor does not run at too high a motor speed at high vehicle speed. Moreover, by reducing the motor speed, large efficiency benefits, along with reduced wear of bearings and the like, may be earned. The benefits are gained by reducing electromagnetic losses, cooling fan losses and friction losses. By providing a gearbox having high a low gear, it is also possible to apply a large torque at the driving wheels at low vehicle speeds.
There are many gearbox/motor assemblies marketed today. All these gearbox/motor assemblies have in common that the gearbox and the motor are mounted in series, i.e. the gearbox is mounted as an elongation of the motor. This leads to a size increase, either on the length or the width of the gearbox/motor assembly.
EP 2 226 211 discloses an electric motor having a differential housed within a rotor of the motor. There is, however, no gearbox included in the motor/differential assembly.
It is the object of the present invention to provide an electric motor/gearbox assembly having a small size.
It is also an object of the present invention to provide an electric motor/gearbox assembly having an integrated differential.
The above and other problems are solved by an electric motor having a gearbox enabling a modification of a gear ratio between a rotor of the motor and an output shaft, wherein the gearbox is situated within a space delimited by the main rotor of the motor.
In order to control the motor speed at a certain speed of the output shaft, the gearbox may me actuated to provide two different gear ratios from the rotor to the output shaft.
The gearshifts between the two different gear ratios may be effected by engaging a first or a second clutch assembly.
This may for example be achieved in that an engagement of the first clutch assembly directly connects the rotor and the output shaft and an engagement of the second clutch assembly connects the rotor to the output shaft via a hollow shaft, at least one dual diameter tooth wheel and a tooth wheel on the output shaft.
In order to effect a smooth gear shift, the clutch assemblies may be clutch assemblies comprising a number of friction discs arranged such that engagement of either of the first and second clutch assemblies automatically disengages the clutch assembly not being engaged.
In order to increase the efficiency of the gear assembly by eliminating drag losses in the friction rings in the clutch, the clutch assemblies may comprise first and second toothed clutch wheels and an internally toothed clutch ring, wherein the clutch ring is movable between engagement between the first and second tooth wheels, there being an idling position between the first end second gear wheels, such that the internally toothed clutch ring is not engaged to neither the first nor the second toothed clutch wheel.
The present invention also relates to an electrical drive axle of a four wheeled road vehicle, the drive axle comprising an electric motor having a gearbox enabling a modification of a gear ratio between a rotor of the motor and an output shaft, wherein the gearbox is situated within a space delimited by the main rotor of the motor.
In order to be able to omit gears and the like, the electric motor may be arranged coaxially on said axle.
In order to increase the fraction of the vehicle, a torque vectoring unit comprising an electrical motor ma be arranged coaxially on said axle for providing a change in torque distribution between said first side and said second side of said axle.
In the following, the invention will be described with reference to the appended drawings, wherein:
With reference to
As implied above, the second clutch transfers torque from the rotor to the gearbox. This is done via a hollow toothed shaft 160, which is journalled on the output shaft, such that relative rotation between the output shaft and the toothed shaft 160 is allowed. The toothed shaft 160 is engaged to a first toothed surface 170 of a dual tooth wheel 180. A second toothed surface 190 of the dual tooth wheel 180 is engaged to a toothed surface 200 of the output shaft.
The first and second clutches are configured such that they will not be engaged simultaneously. By operating the clutch actuator, a user can decide which of the clutches that will be engaged. By default, if one clutch is engaged, the other will be disengaged. This is accomplished by the cooperation between the clutches and the clutch actuator; the clutch actuator will upon actuation compress the second clutch such that it will transfer torque from the rotor to the hollow shaft 160, and in the same time relieve the first clutch from compression, such that it will not transfer any torque. If the clutch actuator is not actuated, a spring 165 will compress the first clutch and relieve the second clutch from compression, such that the first clutch will transfer torque directly to the output shaft, whereas the second clutch will not transfer any torque to the hollow shaft.
Above is a rather short summary of the function of the present invention. Below, a more detailed description will be given.
With reference to
If the clutch actuator is actuated to direct torque to the hollow shaft 160, the torque will lead to the hollow shaft 160 rotating in a direction equal to the direction of the rotor. The engagement to the hollow shaft will cause the dual tooth wheels 180 to rotate in a direction opposite to the rotor; however, when the other toothed surface of the dual tooth wheel cooperates with the toothed surface 200 of the output shaft, the driving direction on the output shaft will be equal to the rotor rotational direction.
In the shown embodiment, three dual tooth wheels 180 are shown. The number of dual tooth wheels is however totally irrelevant for the understanding of the invention, in some cases it might be necessary to provide more dual tooth wheels, in some cases it might be possible to omit one or two of the wheels, such that only one or two dual tooth wheels are provided. The reasons for having more than one dual tooth wheel is that the radial load on the hollow bearing and the hollow shaft is reduced and that the transferable torque is increased. Also, the load on each tooth wheel contact will decrease. One embodiment that may be wise to avoid comprises only one dual tooth wheel; if only one dual tooth wheel is used, there will be lateral force acting on the hollow shaft 160, a lateral force that is avoided if more than one dual tooth wheel is used.
In the shown embodiment, the toothed surface 170 of the hollow shaft has a smaller diameter than the toothed surface 200 (and the toothed surfaces of the dual tooth wheel are correspondingly smaller and larger, respectively). This leads to a reduction in the rotational speed of the output shat with respect to the rotor when the second clutch 130 is engaged and the first clutch 120 is disengaged. This is, however, easy to alter, should a higher rotational speed of the output shaft compared to the main rotor be desired, simply by changing the diameters of the toothed surface of the hollow shaft, the toothed surfaces of the dual torque wheels and the toothed surface 200 of the output shaft.
In case the first clutch 120 is engaged and the second clutch 130 is disengaged, the toothed surface 200 of the output shaft will drive the dual tooth wheels to rotate, and the hollow shaft 160 will be driven by the dual tooth wheels. However, since the second clutch 130 is not engaged, no torque will be transferred over this clutch.
If the gearbox is configured to reduce the speed from the rotor to the output shaft (such as disclosed above), then the hollow shaft will rotate in a higher speed than the rotor speed if the first clutch is engaged and the second clutch is disengaged. Unfortunately, this leads to some energy losses due to friction in the second clutch, since the discs of this clutch will rotate in different velocities.
In order to alleviate the problem with energy losses in the second clutch, it is possible to use an alternative embodiment of the present invention, which is shown in
The clutch ring 300 can be moved in an axial direction by an actuator 330, which is connected to the clutch ring 300 via a spring 340. The spring 340 will urge the clutch ring in the desired direction as the actuator 340 is actuated.
As can be seen in
One benefit of this embodiment is that the idling position of the clutch ring actually can be used; as mentioned, the friction losses are very small for this embodiment, which makes it possible to detach the motor from rotation with the drive wheels. In the shown embodiment, the clutch ring can be moved by actuating either of the actuators 320 or 330; of none of the actuators is actuated, the clutch ring will assume the neutral position.
In order to shift gear, or connect a gear from the neutral position, it is crucial that the rotational speed of the clutch wheel to be engaged is identical or close to identical to the rotational speed of the clutch ring. This could either be accomplished by controlling the motor speed to a value corresponding to the rotational speed of the clutch wheel to be engaged, but it could also be accomplished by provision of synchronization rings, which are designed such that a friction force will accelerate or decelerate the motor before the clutch ring and the clutch wheel are engaged. Moreover, the synchronization rings have the function of not allowing engagement of the clutch ring and the clutch wheel until the clutch ring and the clutch wheel have identical or similar rotational speed. The function of synchronization rings is well known by persons skilled in the art, and will hence not be more thoroughly described.
The electric motor described above is preferably installed in a drive train of a vehicle, such as a car, lorry, bus or the like. One portion of a drive train according to the invention is shown in
With reference to
The torque vectoring device 1240 includes an electrical motor 1242 arranged coaxially with the axle 1200, such that the rotational axis of the motor 1242 is aligned with the rotational axis of the electrical propulsion motor 110. The electrical motor 1242 is further arranged distally of the differential mechanism 1220, i.e. between one of the planetary gears 1220a, 1200b and the adjacent wheel shaft.
The electrical motor 1242 of the torque vectoring device 1240 may be connected directly to the ring wheel 1228b of the second planetary gear 1222b, and connected to the ring wheel 1228a of the first planetary gear 1222a via a rotatable balancing shaft 1244 extending parallel with the axle 1200, and provided with gears for engagement with the ring gear 1228a of the planetary gear 1222a. The gears of the balancing shaft 1244 are configured for transmitting torque to the planetary gear 1222a upon rotation of the balancing shaft 1244, wherein the torque transmitted to the planetary gear 1222a has an opposite direction compared to the torque transmitted to the other planetary gear 1222b by the electrical propulsion motor 110.
The ring wheels 1228a, 1228b may further be connected to the electrical motor 1242 of the torque vectoring device via a gear reduction. The gear reduction may be a cycloidal drive, a differential planetary gear, a double cycloidal drive, or a multi-cycloidal drive comprising three or more discs which are arranged on the rotational shaft of the electrical motor. These kinds of gear reductions are described in the co-pending application PCT/EP2011/070253 by the same applicant.
In a yet further embodiment the gear reduction is omitted, such that the electrical motor of the torque vectoring unit is connected directly the ring wheel of the second planetary gear of the differential mechanism, and to the ring wheel of the second planetary gear of the differential mechanism via the balancing shaft. Such embodiment is advantageous in that fewer components are used, although it requires extreme performance of the electrical motor.
It will be appreciated that the embodiments described in the foregoing may be combined without departing from the scope as defined by the appended claims.
Although the present invention has been described above with reference to specific embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the invention is limited only by the accompanying claims and, other embodiments than the specific above are equally possible within the scope of these appended claims. Especially, it is possible to freely combine features described in the different embodiments above without departing from the scope of the invention.
In the claims, the term “comprises/comprising” does not exclude the presence of other elements or steps. Furthermore, although individually listed, a plurality of means, elements or method steps may be implemented by e.g. a single unit or processor. Additionally, although individual features may be included in different claims, these may possibly advantageously be combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. In addition, singular references do not exclude a plurality. The terms “a”, “an”, “first”, “second” etc do not preclude a plurality. Reference signs in the claims are provided merely as a clarifying example and shall not be construed as limiting the scope of the claims in any way.
Number | Date | Country | Kind |
---|---|---|---|
1150519-5 | Jun 2011 | SE | national |
1150936-1 | Oct 2011 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/060868 | 6/8/2012 | WO | 00 | 2/5/2014 |