Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing

Information

  • Patent Grant
  • 11373921
  • Patent Number
    11,373,921
  • Date Filed
    Thursday, April 9, 2020
    4 years ago
  • Date Issued
    Tuesday, June 28, 2022
    2 years ago
Abstract
The present disclosure provides thermal interface materials that are useful in transferring heat from heat generating electronic devices, such as computer chips, to heat dissipating structures, such as heat spreaders and heat sinks. The thermal interface material is soft and has elastic properties post-curing along with high thermally conductive filler loading. The thermal interface material includes at least one long chain alkyl silicone oil; at least one long chain, vinyl terminated alkyl silicone oil; at least one long chain, single end hydroxyl terminated silicone oil; at least one thermally conductive filler, at least one coupling agent, at least one catalyst, at least one crosslinker, and at least one addition inhibitor.
Description
FIELD OF THE INVENTION

The present disclosure relates generally to thermal interface materials, and more particularly to gel-type thermal interface materials.


DESCRIPTION OF THE RELATED ART

Thermal interface materials (TIMs) are widely used to dissipate heat from electronic components, such as central processing units, video graphics arrays, servers, game consoles, smart phones, LED boards, and the like. Thermal interface materials are typically used to transfer excess heat from the electronic component to a heat spreader, such as a heat sink.


A typical electronics package structure 10 including thermal interface materials is illustrated in FIG. 1. The electronics package structure 10 illustratively includes a heat generating component, such as an electronic chip 12, and one or more heat dissipating components, such as a heat spreader 14, and a heat sink 16. Illustrative heat spreaders 14 and heat sinks comprise a metal, metal alloy, or metal-plated substrate, such as copper, copper alloy, aluminum, aluminum alloy, or nickel-plated copper. TIM materials, such as TIM 18 and TIM 20, provide a thermal connection between the heat generating component and the one or more heat dissipating components. Electronics package structure 10 includes a first TIM 18 connecting the electronic chip 12 and heat spreader 14. TIM 18 is typically referred to as a “TIM 1”. Electronics package structure 10 includes a second TIM 20 connecting the heat spreader 14 and heat sink 16. TIM 20 is typically referred to as a “TIM 2”. In another embodiment, electronics package structure 10 does not include a heat spreader 14, and a TIM (not shown) connects the electronic chip 12 directly to the heat sink 16. Such a TIM connecting the electronic chip 12 directly to the heat sink 16 is typically referred to as a TIM 1.5.


Traditional thermal interface materials include components such as gap pads. However, gap pads have certain disadvantages, such as inability to meet very small thickness requirements and being difficult to use in automated production.


Other thermal interface materials include gel products. Gel products may be automatically dispensed for large scale production and can be formed to desired shapes and thicknesses. However, typical curable thermal interface material/gel products with high thermal conductivities are not soft and are not elastic after curing due to high filler loading. Therefore, in certain environments where large vibrations and significant temperature changes are present, the thermal interface material/gel will peel off from the interface leading to degradation of thermal dissipation performance.


Improvements in the foregoing are desired.


SUMMARY OF THE INVENTION

The present disclosure provides thermal interface materials that are useful in transferring heat from heat generating electronic devices, such as computer chips, to heat dissipating structures, such as heat spreaders and heat sinks. The thermal interface material is soft and has elastic properties post-curing along with high thermally conductive filler loading. The thermal interface material includes at least one long chain alkyl silicone oil; at least one long chain, vinyl terminated alkyl silicone oil; at least one long chain, single end hydroxyl terminated silicone oil; at least one thermally conductive filler, at least one coupling agent, at least one catalyst, at least one crosslinker, and at least one addition inhibitor.


In one exemplary embodiment, a thermal interface material is provided. The thermal interface material includes a polymer matrix including: at least one long chain alkyl silicone oil; at least one long chain, vinyl terminated alkyl silicone oil; and at least one single end hydroxyl terminated silicone oil; wherein at least one of the long chain alkyl silicone oil; the long chain, vinyl terminated alkyl silicone oil; and the long chain, single end hydroxyl terminated silicone oil having at least one branch chain of between 4 and 16 alkyl carbons; and at least one thermally conductive filler. In a more particular embodiment, the long chain alkyl silicone oil has a general formula of:




embedded image


where n ranges from 0 to 5000, x ranges from 2 to 32, and m ranges from 5 to 2000, and n+m ranges from 50 to 5000. In a more particular embodiment, the long chain, vinyl terminated alkyl silicone oil has a general formula of:




embedded image


where n ranges from 0 to 5000, x ranges from 2 to 32, and m ranges from 5 to 5000, and n+m ranges from 50 to 10000. In a more particular embodiment, the long chain, single end hydroxyl terminated silicone oil has a general formula of:




embedded image


where R is an alkyl group, n ranges from 5 to 1000, x ranges from 2 to 32, y ranges from 1 to 3, m ranges from 0 to 500, and n+m ranges from 5 to 1000.


In a more particular embodiment, the long chain, single end hydroxyl terminated silicone oil has a hydroxyl value in the range of 1 mgKOH/g to 200 mgKOH/g. In another more particular embodiment, the thermally conductive filler includes at least a first thermally conductive filler and a second thermally conductive filler between 85 wt. % to 97 wt. %.


In still another more particular embodiment, the thermal interface material has a post cure recovery between 75% and 100% after 50% strain is applied for 2 hours at room temperature. In still another more particular embodiment, the thermal interface material comprises: from 0.5 wt. % to 5 wt. % of the long chain alkyl silicone oil; from 0.5 wt. % to 5 wt. % of the long chain, vinyl terminated alkyl silicone oil; from 0.5 wt. % to 2 wt. % of the long chain, single end hydroxyl terminated silicone oil; and from 50 wt. % to 95 wt. % of the thermally conductive filler. In a more particular embodiment, the thermal interface material has a hardness between 25 Shore OO and 50 Shore OO.


In a more particular embodiment of any of the above embodiments, a thermal interface material is provided. The thermal interface material comprises: a polymer matrix including: at least one long chain silicone oil having between 4 and 16 alkyl carbons; wherein the at least one long chain silicone oil includes: a long chain alkyl silicone oil; a long chain; vinyl terminated alkyl silicone oil; and a single end hydroxyl terminated silicone oil; an addition inhibitor; a crosslinker; a catalyst; a coupling agent; and at least one thermally conductive filler; wherein the thermal interface material comprises: from 3 wt. % to 15 wt. % of the polymer matrix; and from 50 wt. % to 95 wt. % of the thermally conductive filler. In a still more particular embodiment, the thermal interface material comprises: from 0.5 wt. % to 5 wt. % of the long chain alkyl silicone oil; from 0.5 wt. % to 5 wt. % of the long chain, vinyl terminated alkyl silicone oil; from 0.5 wt. % to 2 wt. % of the long chain, single end hydroxyl terminated silicone oil; from 0.01 wt. % to 0.5 wt. % of the catalyst; from 0.01 wt. % to 1 wt. % of the addition inhibitor; from 0.1 wt. % to 1 wt. % of the crosslinker; from 0.1 wt. % to 10 wt. % of the coupling agent; and from 50 wt. % to 95 wt. % of the thermally conductive filler. In a more particular embodiment of any of the above embodiments, the thermally conductive filler includes a first thermally conductive filler and a second thermally conductive filler, wherein the first thermally conductive filer is a metal oxide having a particle size greater than 10 microns and the second thermally conductive filler is a metal oxide having a particle size between 1 micron and 10 microns.


In a more particular embodiment of any of the above embodiments, the long chain alkyl silicone oil has a general formula of:




embedded image


where n ranges from 0 to 5000, x ranges from 2 to 32, and m ranges from 5 to 2000, and n+m ranges from 50 to 5000. In a more particular embodiment of any of the above embodiments, the long chain, vinyl terminated alkyl silicone oil has a general formula of:




embedded image


where n ranges from 0 to 5000, x ranges from 2 to 32, and m ranges from 5 to 5000, and n+m ranges from 50 to 10000. In a more particular embodiment of any of the above embodiments, the long chain, single end hydroxyl terminated silicone oil has a general formula of:




embedded image


where R is an alkyl group, n ranges from 5 to 1000, x ranges from 2 to 32, y ranges from 1 to 3, m ranges from 0 to 500, and n+m ranges from 5 to 1000.


In one exemplary embodiment, an electronic component is provided. The electronic component comprises: a heat sink; an electronic chip; a thermal interface material having a first surface layer and a second surface layer, the thermal interface material positioned between the heat sink and electronic chip, the thermal interface material including: a polymer matrix including: at least one long chain silicone oil having between 4 and 16 alkyl carbons; wherein the at least one long chain silicone oil includes: a long chain alkyl silicone oil; a long chain; vinyl terminated alkyl silicone oil; and a single end hydroxyl terminated silicone oil; an addition inhibitor; a crosslinker; a catalyst; a coupling agent; and at least one thermally conductive filler; wherein the thermal interface material comprises: from 3 wt. % to 15 wt. % of the polymer matrix; and from 50 wt. % to 95 wt. % of the thermally conductive filler.


In a more particular embodiment, the long chain alkyl silicone oil has a general formula of:




embedded image


where n ranges from 0 to 5000, x ranges from 2 to 32, m ranges from 5 to 2000, and n+m ranges from 50 to 5000. In another more particular embodiment, the long chain, vinyl terminated alkyl silicone oil has a general formula of:




embedded image


where n ranges from 0 to 5000, x ranges from 2 to 32, and m ranges from 5 to 5000, and n+m ranges from 50 to 10000. In another more particular embodiment, the long chain, single end hydroxyl terminated silicone oil has a general formula of:




embedded image


where R is an alkyl group, n ranges from 5 to 1000, x ranges from 2 to 32, y ranges from 1 to 3, m ranges from 0 to 500, and n+m ranges from 5 to 1000.


In a more particular embodiment, the first surface layer is in contact with a surface of the electronic chip and the second surface layer is in contact with the heat sink. In a more particular embodiment, the electronic component further comprises a heat spreader positioned between the heat sink and the electronic chip, wherein the first surface layer is in contact with a surface of the electronic chip and the second surface layer is in contact with the heat spreader. In a more particular embodiment, the electronic component further comprises a heat spreader positioned between the heat sink and the electronic chip, wherein the first surface layer is in contact with a surface of the heat spreader and the second surface layer is in contact with the heat sink.





BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1 schematically illustrates a typical electronics package structure;



FIG. 2 is a flowchart illustrating a method of making a thermal interface material in accordance with the present disclosure;



FIG. 3A is related to Example 1 and shows the sample of Example 1 when a compression force is applied; and



FIG. 3B is related to Example 1 and shows the sample of Example 1 in recovery after the compression force is removed.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate exemplary embodiments of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION

A. Thermal Interface Material


The present disclosure provides thermal interface materials that are useful in transferring heat from heat generating electronic devices, such as computer chips, to heat dissipating structures, such as heat spreaders and heat sinks. The thermal interface material is soft and has elastic properties post-curing along with high thermally conductive filler loading. The thermal interface material includes at least one long chain alkyl silicone oil; at least one long chain, vinyl terminated alkyl silicone oil; at least one long chain, single end hydroxyl terminated silicone oil; at least one thermally conductive filler, at least one coupling agent, at least one catalyst, at least one crosslinker, and at least one addition inhibitor. For the purposes of the present disclosure, “long chain” includes an alkyl branch extending from the main chain; the alkyl branch ranging from 4 to 16 carbon atoms.


1. Silicone Oil


a. General Description


The present disclosure provides a matrix for a TIM material that includes at least one long chain silicone oil. The silicone oil includes one or more crosslinkable groups, such as vinyl and hydride functional groups, that are crosslinked by a catalyst. In one embodiment, one or more long chain silicone oils include a first long chain silicone oil, a second long chain silicone oil, and a third long chain silicone oil, where the first long chain silicone oil is a long chain alkyl silicone oil, the second long chain silicone oil is a long chain, vinyl terminated alkyl silicone oil, and the third long chain silicone oil is a long chain, single-end hydroxyl terminated silicone oil. The silicone oil wets the thermally conductive filler and forms a dispensable fluid for the TIM.


In one exemplary embodiment, the silicone oil includes a silicone rubber such as the KE series products available from Shin-Etsu, such as SILBIONE® available from Bluestar, such as ELASTOSIL®, SilGel®, SILPURAN®, and SEMICOSIL® available from Wacker, such as Silopren® available from Momentive, such as Dow Corning®, Silastic®, XIAMETER®, Syl-Off® and SYLGARD® available from Dow Corning, such as SQUARE® available from Square Silicone, such as Andril® available from AB specialty Silicones. Other polysiloxanes are available from Wacker, Shin-etsu, Dowcoring, Momentive, Bluestar, RUNHE, AB Specialty Silicones, Gelest, and United Chemical Technologies.


The TIM may comprise one or more long chain silicone oils in a total amount as little as 3 wt. %, 4 wt. %, 5 wt. %, as great as 10 wt. %, 12.5 wt. %, 15 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 3 wt. % to 15 wt. %, 4 wt. % to 12.5 wt. %, or 5 wt. % to 10 wt. %. In one exemplary embodiment, the TIM includes at least one long chain silicone oil in the amount of about 7.2 wt. %. In another exemplary embodiment, the TIM includes at least one long chain silicone oil in the amount of about 5 wt. %.


As discussed herein, the “long chain” silicone oils include at least one branched chain or an alkyl branched chain that extends from the main chain and vary in number of carbons. The alkyl branches have a general formula of:

CxH2x+1

where x is an integer greater than 1. In some embodiments, x is as low as 2, 4, 6, 8, 10, 12, as great as 16, 18, 20, 24, 28, 32, or within any range defined between any two of the foregoing values, such as between 2 and 32, between 6 and 16, and between 4 and 12. The branched silicone oil can achieve a lower viscosity with less molecular chain entanglement compared with silicone oils having the same molecular weight without the alkyl branch. The lower viscosity helps to achieve high loading of the thermally conductive fillers in the thermal interface materials formulation especially for high molecular weight silicone oils (i.e., a higher molecular weight means longer Si—O—Si chain and greater molecular chain entanglement).


b. Long Chain Alkyl Silicone Oil


The TIM includes a long chain alkyl silicone oil. The long chain alkyl silicone oil provides lubricity between molecular chains and decreases entanglement of the molecular chains of the formulation. Exemplary long chain alkyl silicone oils may be a kind of simethicone whose partial methyl groups are replaced by a long chain alkyl group. Exemplary long chain alkyl silicone oils may have a general formula as shown below:




embedded image


In the general formula shown above, n ranges from as little as 0, 10, 50, 100, 500, as great as 1000, 2000, 5000, 10000, or within any range defined between any two of the foregoing values; x is as low as 2, 4, 6, 8, 10, 12, as great as 16, 18, 20, 24, 28, 32, or within any range defined between any two of the foregoing values, such as between 2 and 32, between 6 and 16, and between 4 and 12, and m ranges from 5, 10, 50, 200, or as great as 500, 1000, 2000, 5000, or within any range defined between any two of the foregoing values. In addition, n+m ranges from as little as 10, 30, 50, 100, 200, 500, or great as 1000, 2000, 5000, 10000, 15000, or within any range defined between any two of the foregoing values, such as between 10 and 15000, between 1000 and 5000 and between 500 and 2000. In one exemplary embodiment, x ranges from between 4 and 16. In another exemplary embodiment, x ranges from between 5 and 15. In another exemplary embodiment, x ranges from between 7 and 11. In one exemplary embodiment, n ranges from between 50 and 100. In another exemplary embodiment, n ranges from between 100 and 500. In another exemplary embodiment, n ranges from between 500 and 1000. In one exemplary embodiment, m ranges from between 10 and 100. In another exemplary embodiment, m ranges from between 100 and 500. In one exemplary embodiment, n+m ranges from between 50 and 200. In another exemplary embodiment, n+m ranges from between 200 and 1000.


Exemplary long chain alkyl silicone oils include: BALD-BD1206 (the viscosity is 500 cst) is available from Baoerde, RH-8206 (the viscosity is 900 cst˜1500 cst) and RH-8207A (the viscosity is 1000 cst˜1500 cst) each is available from Runhe, YD-8206 (the viscosity is 300˜2500 cst) is available from Ailidi, OFX0203 (the viscosity is 1000 cst˜1500 cst) is available from Dow corning, BS-220 (the viscosity is 5000 cst) is available from Blue silane.


Exemplary long chain alkyl silicone oils may have a weight (Mw) average molecular weight as little as 1000 Daltons, 9000 Daltons, 20000 Daltons, as great as 30000 Daltons, 100000 Daltons, 200000 Daltons, or within any range defined between any two of the foregoing values, as determined by Gel Permeation Chromatography (GPC).


Exemplary long chain alkyl silicone oils may have a kinematic viscosity as little as 10 cSt, 100 cSt, 500 cSt, as great as 5000 cSt, 50000 cSt, 100000 cSt, or within any range defined between any two of the foregoing values as measured according to ASTM D445. In one exemplary embodiment, an exemplary long chain alkyl silicone oil has a kinematic viscosity of between 400 cSt and 600 cSt. In another exemplary embodiment, an exemplary long chain alkyl suilicone oil has a kinematic viscosity of between 500 cSt and 1000 cSt.


The TIM may comprise one or more long chain alkyl silicone oils in an amount as little as 0.5 wt. %, 0.75 wt. %, 1 wt. %, as great as 2 wt. %, 3.5 wt. %, 5 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 0.5 wt. % to 5 wt. %, 0.75 wt. % to 3.5 wt. %, or 1 wt. % to 3.5 wt. %. In one exemplary embodiment, the TIM includes a long chain alkyl silicone oil in the amount of about 3 wt. %. In another exemplary embodiment, the TIM includes a long chain alkyl silicone oil in the amount of about 2 wt. %.


c. Long Chain, Vinyl Terminated Alkyl Silicone Oil


Another exemplary long chain silicone oil of the TIM may include a long chain, vinyl terminated alkyl silicone oil. The long chain, vinyl terminated alkyl silicone oil can form a cross linked matrix with a cross linker via its terminated vinyl functional groups. Exemplary long chain, vinyl terminated alkyl silicone oils may have a general formula shown below:




embedded image


In the general formula shown above, n ranges from as little as 0, 10, 50, 100, 200, 500, as great as 1000, 2000, 5000, 10000, or within any range defined between any two of the foregoing values; x is as low as 2, 4, 6, 8, 10, 12, as great as 16, 18, 20, 24, 28, 32, or within any range defined between any two of the foregoing values, such as between 2 and 32, between 6 and 16, and between 4 and 12, and m ranges from 5, 10, 50, 200, or as great as 500, 1000, 2000, 5000, or within any range defined between any two of the foregoing values. In addition, n+m ranges from as little as 10, 30, 50, 100, 200, 500, or great as 1000, 2000, 5000, 10000, 15000, 20000, or within any range defined between any two of the foregoing values, such as between 10 and 20000, between 1000 and 5000 and between 500 and 2000. In one exemplary embodiment, x ranges from between 4 and 16. In another exemplary embodiment, x ranges from between 5 and 15. In another exemplary embodiment, x ranges from between 7 and 11. In one exemplary embodiment, n ranges from between 200 and 500. In another exemplary embodiment, n ranges from between 1000 and 3000. In another exemplary embodiment, n ranges from between 2000 and 5000. In one exemplary embodiment, m ranges from between 150 and 300. In another exemplary embodiment, m ranges from between 300 and 500. In another exemplary embodiment, m ranges from between 500 and 1500. In one exemplary embodiment, n+m ranges from between 200 and 1000. In another exemplary embodiment, n+m ranges from between 1000 and 5000. In another exemplary embodiment, n ranges from between 50 and 200.


Vinyl functional silicone oils include an organo-silicone component with Si—CH═CH2 groups. Exemplary vinyl functional silicone oils include vinyl-terminated silicone oils and vinyl-grafted silicone oils in which the Si—CH═CH2 group is grafted onto the polymer chain, and combinations thereof.


Exemplary vinyl-terminated silicone oils include vinyl terminated polydimethylsiloxane, such as DMS-V00 (having a weight average molecular weight (Mw) of 186 Daltons), DMS-V03 (having a Mw of about 500 Daltons), DMS-V05 (having a Mw of about 800 Daltons), DMS-V21 (having a Mw of about 6,000 Daltons), DMS-V22 (having a Mw of about 9400 Daltons), DMS-V25 (having a Mw of about 17,200 Daltons), DMS-V25R (having a Mw of about 17,200 Daltons), DMS-V35 (having a Mw of about 49,500 Daltons), DMS-V35R (having a Mw of about 49,500 Daltons), each available from Gelest, Inc. Exemplary vinyl-terminated silicone oils include vinyl terminated diphenylsiloxane-dimethylsiloxane copolymer, such as PDV-0325 (having a Mw of about 15,500 Daltons), PDV-0331 (having a Mw of about 27,000 Daltons), PDV-0525 (having a Mw of about 14,000 Daltons), PDV-1625 (having a Mw of about 9,500 Daltons), PDV-1631 (having a Mw of about 19,000 Daltons), PDV-2331 (having a Mw of about 12,500 Daltons), each available from Gelest, Inc. Exemplary vinyl-terminated silicone oils include vinyl terminated polyphenylmethylsiloxane, such as PMV-9925 (having a Mw of about 2000-3000 Daltons) available from Gelest, Inc. Exemplary vinyl-terminated silicone oils include vinyl terminated diethylsiloxane-dimethylsiloxane copolymer, such as EDV-2025 (having a Mw of about 16,500-19,000 Daltons) available from Gelest, Inc.


Exemplary vinyl-terminated silicone oils include vinyl terminated polydimethylsiloxane, such as DMS-V41 (having a Mw of about 62,700 Daltons), DMS-V42 (having a Mw of about 72,000 Daltons), DMS-V46 (having a Mw of about 117,000 Daltons), DMS-V51 (having a Mw of about 140,000 Daltons), and DMS-V52 (having a Mw of about 155,000 Daltons), each available from Gelest, Inc.


Exemplary vinyl-grafted silicone oils include vinylmethylsiloxane homopolymers, such as VMS-005 (having a Mw of about 258-431 Daltons), VMS-T11 (having a Mw of about 1000-1500 Daltons), both available from Gelest, Inc. Exemplary vinyl-grafted silicone oils include vinylmethylsiloxane-dimethylsiloxane copolymers, such as trimethylsiloxyl terminated silicone oils, silanol terminated silicone oils, and vinyl terminated silicone oils.


In one exemplary embodiment, the vinyl-grafted silicone oil is a vinylmethylsiloxane terpolymers, including a vinylmethylsiloxane-octylmethylsiloxane-dimethylsiloxane terpolymer, such as VAT-4326(having a Mw of about 10,000-12,000 Daltons), or a vinylmethylsiloxane-methoxypolyethylenoxypropylmethylsiloxane-dimethylsiloxane terpolymer, such as VBT-1323(having a Mw of about 8,000-12,000 Daltons), or a vinylmethylsiloxane-phenylmethylsiloxane-dimethylsiloxane (having a Mw of about 2,500-3,000 Daltons); each available from Gelest, Inc. Exemplary vinyl-grafted silicone oils include vinylmethylsiloxane-dimethylsiloxane copolymers, such as trimethylsiloxyl terminated silicone oils, silanol terminated silicone oils, and vinyl terminated silicone oils.


In one exemplary embodiment, the vinyl-grafted silicone oil is a vinylmethylsiloxane terpolymers. In one exemplary embodiment, the vinyl-functional silicone oil comprises a vinyl T resin or a vinyl Q resin.


In one exemplary embodiment, the silicone oil is a vinyl functional oil, such as RH-Vi303, RH-Vi301 from RUNHE, such as Andril® VS 200, Andril® VS 1000 from AB Specialty Silicones.


Exemplary long chain, vinyl terminated alkyl silicone oils may have a weight (Mw) average molecular weight as little as 1000 Daltons, 9000 Daltons, 20000 Daltons, as great as 30000 Daltons, 100000 Daltons, 200000 Daltons, or within any range defined between any two of the foregoing values, as determined by Gel Permeation Chromatography (GPC).


Exemplary long chain, vinyl terminated alkyl silicone oils may have a kinematic viscosity as little as 10 cSt, 100 cSt, 500 cSt, as great as 5000 cSt, 50000 cSt, 100000 cSt, or within any range defined between any two of the foregoing values as measured according to ASTM D445. In one exemplary embodiment, an exemplary long chain, vinyl terminated alkyl silicone oil has a kinematic viscosity of 2000 cSt. In another exemplary embodiment, an exemplary long chain, vinyl terminated alkyl silicone oil has a kinematic viscosity of 1000 cSt. In another exemplary embodiment, an exemplary long chain, vinyl terminated alkyl silicone oil has a kinematic viscosity of 5000 cSt.


The TIM may comprise one or more long chain, vinyl terminated alkyl silicone oils in an amount as little as 0.5 wt. %, 0.75 wt. %, 1 wt. %, as great as 2 wt. %, 3.5 wt. %, 5 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 0.5 wt. % to 5 wt. %, 0.75 wt. % to 3.5 wt. %, or 1 wt. % to 3.5 wt. %. In one exemplary embodiment, the TIM includes a long chain, vinyl terminated alkyl silicone oil in the amount of about 3 wt. %. In another exemplary embodiment, the TIM includes a long chain, vinyl terminated alkyl silicone oil in the amount of about 2 wt. %.


d. Long Chain, Single End Hydroxyl Terminated Silicone Oil


Another exemplary long chain silicone oil of the TIM may include a long chain, single end hydroxyl terminated silicone oil. The single end hydroxyl functional group provides good wetting on the thermally conductive fillers, and the end of the long chain silicon oil helps to improve the compatibility with other silicone oils in the present formulation. Also, the long chain silicone oil decreases potential evaporation of the silicone oil during curing or other processing of the formulation. Based on such functions, the long chain, single end hydroxyl terminated silicone oil can decrease the friction between thermally conductive fillers. Exemplary long chain, single end hydroxyl terminated silicone oils may have a general formula as shown below:




embedded image


In the general formula shown above, n ranges from as little as 5, 10, 50, 100, 500, as great as 1000, 2000, 5000, 10000, or within any range defined between any two of the foregoing values; x is as low as 2, 4, 6, 8, 10, 12, as great as 16, 18, 20, 24, 28, 32, or within any range defined between any two of the foregoing values, such as between 2 and 32, between 6 and 16, and between 4 and 12, and m ranges from 0, 5, 10, 50, 100, 200, or as great as 500, 1000, 2000, 5000, or within any range defined between any two of the foregoing values, such as between 5 and 5000, between 5 and 50, and between 50 and 500. In addition, n+m ranges from as little as 10, 30, 50, 100, 200, 500, or great as 1000, 2000, 5000, 10000, 15000, or within any range defined between any two of the foregoing values, such as between 10 and 10000, between 1000 and 5000 and between 500 and 2000. In one exemplary embodiment, x ranges from between 4 and 16. In another exemplary embodiment, x ranges from between 5 and 15. In another exemplary embodiment, x ranges from between 7 and 11. In one exemplary embodiment, n ranges from between 10 and 100. In another exemplary embodiment, n ranges from between 100 and 500. In another exemplary embodiment, n ranges from between 500 and 2000. In another exemplary embodiment, n ranges from between 2000 and 5000. In another exemplary embodiment, n ranges from between 5000 and 10000. In one exemplary embodiment, m is 0. In another exemplary embodiment, m ranges from between 1 and 20. In another exemplary embodiment, m ranges from between 10 and 100. In another exemplary embodiment, m ranges from between 50 and 500, y is ranges from between 1 and 3, and R is hydrocarbon group. When the molecular weight of the single end hydroxyl terminated silicone oil is not higher than 10000 Daltons, or the loading of single end hydroxyl terminated silicone oil into the final thermal interface materials is not higher than 2 wt. % and m can be 0. In one exemplary embodiment, m+n ranges from between 10 and 100. In another exemplary embodiment, m+n ranges from between 100 and 500 In another exemplary embodiment, m+n ranges from between 500 and 2000. In another exemplary embodiment, m+n ranges from between 2000 and 5000. In another exemplary embodiment, m+n ranges from between 5000 and 10000.


Hydroxyl value is a measure of the content of free hydroxyl groups in a chemical substance, usually expressed in units of mass of potassium hydroxide (KOH), in milligrams, equivalent to the hydroxyl content of one gram of the chemical substance. In a general analytical method, the hydroxyl value (mg KOH/g) is defined as the mass of potassium hydroxide, in milligrams, required to neutralize the acetic acid undergoing taken up on acetylation of one gram of the long chain, single end hydroxyl terminated silicone oils. The traditional, analytical method used to determine hydroxyl value involves acetylation of the free hydroxyl groups of the substance with acetic anhydride in a pyridine solvent. After completion of the reaction, water is added, and the remaining unreacted acetic anhydride is converted to acetic acid and measured by titration with potassium hydroxide. The hydroxyl value can be calculated using the following equation below.

HV=[56.1*N*(VB−Vacet)]/Wacet

where HV is the hydroxyl value; VB is the amount (mL) of potassium hydroxide solution required for the titration of the blank; Vacet is the amount (mL) of potassium hydroxide solution required for the titration of the acetylated sample; Wacet is the weight of sample (in grams) used for acetylation; Nis the normality of the titrant; 56.1 is the molecular weight of potassium hydroxide.


Exemplary long chain, single end hydroxyl terminated silicone oils may have a hydroxyl value as little as 0.001 mg KOH/g, 0.01 mgKOH/g, 0.1 mgKOH/g, 1 mgKOH/g, 5 mgKOH/g, as great as 10 mgKOH/g, 20 mgKOH/g, 50 mgKOH/g, 100 mgKOH/g, or within any range defined between any two of forgoing values, such as 0.01 mgKOH/g to 100 mgKOH/g, 1 mgKOH/g to 5 mgKOH/g, 1 mgKOH/g to 50 mgKOH/g, as determined by general KOH (potassium hydroxide) titration method. In one exemplary embodiment, an exemplary long chain, single end hydroxyl terminated silicone oil has a hydroxyl value range of 5 mgKOH/g to 35 mgKOH/g.


Exemplary long chain, single end hydroxyl terminated silicone oils may have a weight (Mw) average molecular weight as little as 500 Daltons, 2000 Daltons, 5000 Daltons, as great as 6000 Daltons, 50000 Daltons, 100000 Daltons, or within any range defined between any two of the foregoing values, as determined by Gel Permeation Chromatography (GPC).


Exemplary long chain, single end hydroxyl terminated silicone oils may have a kinematic viscosity as little as 10 cSt, 100 cSt, 300 cSt, as great as 500 cSt, 1000 cSt, 5000 cSt, or within any range defined between any two of the foregoing values as measured according to ASTM D445. In one exemplary embodiment, an exemplary long chain, single end hydroxyl terminated silicone oil has a kinematic viscosity between 100 cSt and 150 cSt.


The TIM may comprise one or more long chain, single end hydroxyl terminated silicone oils in an amount as little as 0.5 wt. %, 0.67 wt. %, 0.75 wt. %, as great as 1 wt. %, 1.25 wt. %, 2 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 0.5 wt. % to 2 wt. %, 0.75 wt. % to 1.25 wt. %, or 1 wt. % to 1.25 wt. %. In one exemplary embodiment, the TIM includes a long chain, single end hydroxyl terminated silicone oil in the amount of about 1 wt. %. In another exemplary embodiment, the TIM includes a long chain, single end hydroxyl terminated silicone oil in the amount of about 1.2 wt. %.


2. Catalyst


The TIM further includes one or more catalyst for catalyzing the addition reaction. Exemplary catalysts comprise platinum containing materials and rhodium containing materials. Exemplary platinum containing catalysts may have the general formula shown below:




embedded image


Exemplary platinum containing catalysts include: platinum cyclovinylmethylsiloxane complex (Ashby Karstedt Catalyst), platinum carbonyl cyclovinylmethylsiloxane complex (Ossko catalyst), platinum divinyltetramethyldisiloxane dimethyl fumarate complex, platinum divinyltetramethyldisiloxane dimethyl maleate complex and the like. Exemplary platinum carbonyl cyclovinylmethylsiloxane complexes include SIP6829.2, exemplary platinum divinyltetramethyldisiloxane complexes include SIP6830.3 and SIP6831.2, exemplary platinum cyclovinylmethylsiloxane complexes include SIP6833.2, all available from Gelest, Inc. Further exemplary platinum containing material catalysts include Catalyst OL available from Wacker Chemie AG, and PC065, PC072, PC073, PC074, PC075, PC076, PC085, PC086, PC087, PC088 available from United Chemical Technologies Inc.


Exemplary rhodium containing materials include Tris(dibutylsulfide)rhodium trichloride with product code INRH078, available from Gelest, Inc.


Without wishing to be held to any particular theory it is believed that the platinum catalyst reacts with a vinyl silicone oil and a hydrosilicone oil.


The TIM may comprise the one or more catalyst in an amount as little as 5 ppm, 10 ppm, 15 ppm, 20 ppm, as great as 25 ppm, 30 ppm, 40 ppm, 50 ppm, 100 ppm, 200 ppm, 500 ppm, 1000 ppm, or within any range defined between any two of the foregoing values, based on the total weight of the silicone oil, such as 10 ppm to 30 ppm, 20 ppm to 100 ppm, or 5 ppm to 500 ppm.


In one exemplary embodiment, the catalyst is provided as a mixture with one or more of the silicone oils. In one exemplary embodiment, the platinum containing material catalyst is combined to a functional silicone oil, such as KE-1012-A, KE-1031-A, KE-109E-A, KE-1051J-A, KE-1800T-A, KE1204A, KE1218A available from Shin-Etsu, such as SILBIONE® RT Gel 4725 SLD A available from Bluestar, such as SilGel® 612 A, ELASTOSIL® LR 3153A, ELASTOSIL® LR 3003A, ELASTOSIL® LR 3005A, SEMICOSIL® 961A, SEMICOSIL® 927A, SEMICOSIL® 205A, SEMICOSIL® 9212A, SILPURAN® 2440 available from Wacker, such as Silopren® LSR 2010A available from Momentive, such as XIAMETER® RBL-9200 A, XIAMETER® RBL-2004 A, XIAMETER® RBL-9050 A, XIAMETER® RBL-1552 A, Silastic® FL 30-9201 A, Silastic® 9202 A, Silastic® 9204 A, Silastic® 9206 A, SYLGARD® 184A, Dow Corning® QP-1 A, Dow Corning® C6 A, Dow Corning® CV9204 A available from Dow Corning.


An exemplary catalyst includes chloroplatinic acid.


The TIM may comprise a catalyst in an amount as little as 0.01 wt %, 0.1 wt. %, 0.2 wt. %, as great as 0.3 wt. %, 0.4 wt. %, 0.5 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM. In one exemplary embodiment, the TIM includes a catalyst in the amount of about 0.01 wt. %.


3. Addition Inhibitor


The TIM comprises one or more addition inhibitors for inhibiting or limiting crosslinking of the silicone oils. The addition inhibitor includes at least one alkynyl compound, and optionally, the addition inhibitor further includes a multi-vinyl functional polysiloxane.


Exemplary addition inhibitors include acetylenic alcohols such as 1-ethynyl-1-cyclohexanol, 2-methyl-3-butyn-2-ol, 2-phenyl-3-butyn-2-ol, 2-ethynyl-isopropanol, 2-ethynyl-butane-2-ol, and 3,5-dimethyl-1-hexyn-3-ol; silylated acetylenic alcohols such as trimethyl (3,5-dimethyl-1-hexyn-3-oxy)silane, dimethyl-bis-(3-methyl-1-butyn-oxy)silane, methylvinylbis(3-methyl-1-butyn-3-oxy)silane, and ((1,1-dimethyl-2-propynyl)oxy)trimethylsilane; unsaturated carboxylic esters such as diallyl maleate, dimethyl maleate, diethyl fumarate, diallyl fumarate, and bis-2-methoxy-1-methylethylmaleate, mono-octylmaleate, mono-isooctylmaleate, mono-allyl maleate, mono-methyl maleate, mono-ethyl fumarate, mono-allyl fumarate, 2-methoxy-1-methylethylmaleate; fumarate/alcohol mixtures, such as mixtures where the alcohol is selected from benzyl alcohol or 1-octanol and ethenyl cyclohexyl-1-ol; conjugated ene-ynes such as 2-isobutyl-1-butene-3-yne, 3,5-dimethyl-3-hexene-1-yne, 3-methyl-3-pentene-1-yne, 3-methyl-3-hexene-1-yne, 1-ethynylcyclohexene, 3-ethyl-3-butene-1-yne, and 3-phenyl-3-butene-1-yne; vinylcyclosiloxanes such as 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, and mixtures of conjugated ene-yne and vinylcyclosiloxane. In one exemplary embodiment, the addition inhibitor is selected from 2-methyl-3-butyn-2-ol or 3-methyl-1-pentyn-3-ol.


In some exemplary embodiments, the addition inhibitor further includes a multi-vinyl functional polysiloxane. An exemplary multi-vinyl functional polysiloxane is a vinyl terminated polydimethylsiloxane in ethynyl cyclohexanol, such as Pt Inhibitor 88 available from Wacker Chemie AG. Without wishing to be held to any particular theory it is believed that the platinum catalyst forms a complex with ethynyl cyclohexanol and vinyl terminated polydimethylsiloxane as shown below.




embedded image


The formation of the complex is believed to decrease the catalyst activity at room temperature, thus maintaining the dispensability and wettability of the TIM. At the higher temperatures of the curing step, the Pt is released from the complex and help the hydrosilylation of vinyl functional silicone oil and hydride functional silicone oil, provides greater control over the crosslinking.


In some exemplary embodiments, the TIM may comprise the one or more addition inhibitors in an amount as little as 0.01 wt. %, 0.02 wt. %, 0.05 wt. %, 0.1 wt. %, 0.15 wt. %, as great as 0.2 wt. %, 0.25 wt. %, 0.3 wt. %, 0.5 wt. %, 1 wt. %, 3 wt. %, 5 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 0.01 wt. % to 1 wt. %, 0.01 wt. % to 0.5 wt. %, or 0.05 wt. % to 0.2 wt. %. In one exemplary embodiment, the TIM includes an addition inhibitor in the amount of 0.018 wt. %. In another exemplary embodiment, the TIM includes an addition inhibitor in the amount of 0.02 wt. %.


Without wishing to be held to any particular theory, it is believed that, in the absence of an addition inhibitor, the vinyl functional silicone oil reacts with the hydride functional silicone oil very quickly based on the addition hydrosilylation mechanism to form a solid phase that cannot be automatically dispensed by typical methods.


In one exemplary embodiment, the addition inhibitor is combined to functional silicone oils, such as KE-1056, KE-1151, KE-1820, KE-1825, KE-1830, KE-1831, KE-1833, KE-1842, KE-1884, KE-1885, KE-1886, FE-57, FE-61 available from Shin-Etsu, such as Syl-Off® 7395, Syl-Off® 7610, Syl-Off® 7817, Syl-Off® 7612, Syl-Off® 7780 available from Dow Corning.


4. Cross-Linking Silicone Oil (Crosslinker)


The thermal gel may further include a cross linking silicone oil. The cross linking silicone oil may include Si—H groups. Exemplary silicone oils include a hydrosilicone oil having a general formula as shown below. Exemplary hydrosilicone oils function as a cross linker in the addition reaction with the primary silicone oils.




embedded image


The mole ratio of Si—H groups in cross linking silicone oil is tested by iodometric titration. Iodometric titration includes: weighing about 0.1 grams of hydride silicone oil in a tinfoil surrounded conical flask. 20 mL carbon tetrachloride (CCl4) is added into the flask to dissolve the silicone oil. and the flask is further sealed to avoid light exposure. Then, excess bromine acetic acid solution (with an availability ratio of about 10 mL) is added into the flask along with 10 mL of water. The flask is further sealed to avoid light exposure. After thirty minutes, the seal is opened and 25 ml 10% wt potassium iodide (KI) aqueous solution is added to the solution. The solution is then vibrated for 1 to 2 minutes. Then, a standard 0.1 mol/L sodium thiosulfate (Na2S2O3) aqueous solution is added to titrate the sample solution with vibration. 1 mL of a 1 wt. % starch aqueous solution is added to the solution as an indicator. When the color of the solution (e.g., blue) changes, titration is stopped and the consumption of sodium thiosulfate is calculated. This process is then repeated for other samples. To prepare a control sample, the process is repeated with no silicone oil. The content of Si—H groups (mmol/g) is as following







N

2

=



(


V

d

-

V

c


)

*
M

2


G

2







wherein: N2 is the mole ratio of Si—H groups (mmol/g); Vd is the volume (ml) of sodium thiosulfate solution titration for hydride silicone oil sample; Vc is the volume (ml) of sodium thiosulfate solution titration for blank sample; G2 is the weight (g) of hydride silicone oil; M2 is the mole concentration (mol/l) of the standard sodium thiosulfate solution.


The mole ratio of Si—H groups (mmol/g) in silicone oil may be in an amount as little as 0.0001, 0.001, 0.01, 0.1, as great as 1, 5, 10, 50 or within any range defined between any two of the foregoing values, such as 0.01 to 1, 0.1 to 5, or 0.0001 to 50. In one exemplary embodiment, the mole ratio of Si—H groups is in the amount of 0.2 to 2.


In one exemplary embodiment, the crosslinking silicone oil comprises a hydride functional silicone oil having an organo-silicone component and Si—H groups. Exemplary hydride functional silicone oils include hydride-terminated silicone oils and hydride-grafted silicone oils in which the Si—H group is grafted onto the polymer chain, and combinations thereof.


In one exemplary embodiment, the hydride-terminated silicone oil is a hydride terminated polydimethylsiloxane such as DMS-H05, DMS-H21, DMS-H25, DMS-H31, or DMS-H41, each available from Gelest, Inc. In one exemplary embodiment, the hydride-terminated silicone oil is a methylhydrosiloxane-dimethylsiloxane copolymer, such as a trimethylsiloxyl terminated or hydride terminated. Exemplary trimethylsiloxyl terminated copolymers include HMS-013, HMS-031, HMS-064, HMS-071, HMS-082, HMS-151, HMS-301, HMS-501; exemplary hydride terminated copolymers include HMS-H271; each of which is available from Gelest, Inc. In one exemplary embodiment, the hydride-grafted silicone oil is polymethylhydrosiloxane with trimethylsiloxyl terminated, such as HMS-991, HMS-992, HMS-993, each available from Gelest, Inc.


In one exemplary embodiment, the hydride-grafted silicone oil is polyethylhydrosiloxane with triethylsiloxyl terminated, such as HES-992, available from Gelest, Inc. In one exemplary embodiment, the hydride-grafted silicone oil is methylhydrosiloxane-octylmethylsiloxane copolymer, such as HAM-301 available from Gelest, Inc.


In one exemplary embodiment, the hydride functional oil is a Q resin or T resin, Exemplary T resins include SST-3MH1.1, exemplary Q resins include HQM-105 and HQM-107, each available from Gelest, Inc.


In one exemplary embodiment, the polysiloxane is a hydride functional oil, such as Andri® XL-10, Andri® XL-12 available from AB Specialty Silicones, such as RH-DH04, and RH-H503 available from RUNHE, such as KE-1012-B, KE-1031-B, KE-109E-B, KE-1051J-B, KE-1800T-B, KE1204B, KE1218B available from Shin-Etsu, such as SILBIONE® RT Gel 4725 SLD B available from Bluestar, such as SilGel® 612 B, ELASTOSIL® LR 3153B, ELASTOSIL® LR 3003B, ELASTOSIL® LR 3005B, SEMICOSIL® 961B, SEMICOSIL® 927B, SEMICOSIL® 205B, SEMICOSIL® 9212B, SILPURAN® 2440 available from Wacker, such as Silopren® LSR 2010B available from Momentive, such as XIAMETER® RBL-9200 B, XIAMETER® RBL-2004 B, XIAMETER® RBL-9050 B, XIAMETER® RBL-1552 B, Silastic® FL 30-9201 B, Silastic® 9202 B, Silastic® 9204 B, Silastic® 9206 B, SYLGARD® 184B, Dow Corning® QP-1 B, Dow Corning® C6 B, Dow Corning® CV9204 B available from Dow Corning.


In one exemplary embodiment, the polysiloxane includes a silicone rubber such as the KE series products available from Shin-Etsu, such as SILBIONE® available from Bluestar, such as ELASTOSIL®, SilGel®, SILPURAN®, and SEMICOSIL® available from Wacker, such as Silopren® available from Momentive, such as Dow Corning®, Silastic®, XIAMETER®, Syl-Off® and SYLGARD® available from Dow Corning, such as Andril® available from AB specialty Silicones. Other polysiloxanes are available from Wacker, Shin-etsu, Dowcoring, Momentive, Bluestar, RUNHE, AB Specialty Silicones and Gelest.


Exemplary cross linking silicone oils may have a kinematic viscosity as little as 0.5 cSt, 5 cSt, 100 cSt, 200 cSt, as great as 1,000 cSt, 10,000 cSt, 100,000 cSt, or within any range defined between any two of the foregoing values as measured according to ASTM D445, such as between 0.5 cSt and 100,000 cSt, 5 cSt and 10,000 cSt, 100 cSt and 1,000 cSt, or 200 cSt and 1,000 cSt. In one exemplary embodiment, the cross linking silicone oil has a kinematic viscosity between 300 cSt and 700 cSt.


The cross linking silicone oil may be present in an amount as little as 0.1 wt. %, 0.2 wt. %, 0.4 wt. %, as great as 0.6 wt. %, 0.8 wt. %, 1.0 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the thermal gel, such as 0.1 wt. % to 1.0 wt. %, 0.1 wt. % to 0.5 wt. %, or 0.1 wt. % to 0.4 wt. %. In an exemplary embodiment, the cross-linking silicone oil is 0.45 wt. % based on the total weight of the thermal gel.


Exemplary silicone oils may have a weight (Mw) average molecular weight as little as 50 Daltons, 100 Daltons, 1000 Daltons, 10,000 Daltons, 50,000 Daltons, 70,000 Daltons, 100,000 Daltons, as great as 1,000,000 Daltons, 10,000,000 Daltons, 100,000,000 Daltons, or within any range defined between any two of the foregoing values, such as between 50 Daltons and 100,000,000 Daltons, 1000 Daltons to 10,000,000 Daltons, or 50,000 Daltons to 1,000,000 Daltons.


The total content of Si—H groups (TSi—H, mmol) in total formulation is calculated by dividing the mole ratio of Si—H groups (mmol/g) of cross linking silicone oil in second component by the weight (g) of crosslinking silicone oil in second component.


The ratio of total content of Si—H groups (TSi—H) to total content of vinyl groups (Tvinyl), calculated by TSi—H/Tvinyl, may be in an amount as little as 0.0001, 0.001, 0.01, as great as 0.1, 1, 10, 100,1000 or within any range defined between any two of the foregoing values, such as between 0.001 to 0.1, 0.01 to 1, or 0.001 to 100. In an exemplary formulation, the ratio of total content of Si—H groups (TSi—H) to total content of vinyl groups (Tvinyl) may be between 0.03 to 10.


5. Coupling Agent


The TIM may also include one or more coupling agents that function to interact with both the filler and the polymer matrix of the silicone oils to promote a strong bond at the interface of the two materials. This helps to separate filler particle aggregates disperse the filler particles into the polymer matrix, and create better adhesion of thermally conductive filler(s) to the polymer matrix. Exemplary coupling agents include silane coupling agents with general formula Y—(CH2)n—Si—X3, wherein Y is organofunctional group, X is hydrolyzable group and n is 10-20. Organofunctional group Y includes alkyl, glycidoxy, acryloxyl, methylacryloxyl, amine. Hydrolyzable group X includes alkyloxy, acetoxy. In some exemplary embodiments, the silane coupling agent includes alkyltrialkoxysilanes. Exemplary alkytrialkoxy silane comprise decyltrimethoxylsilane, undecyltrimethoxylsilane, hexadecyltrimethoxysilane, octadecyltrimethoxysilane. Other exemplary coupling agents include silane coupling agents and organometallic compounds, such as include titanate coupling agents and zirconate coupling agents. Exemplary silane coupling agents include silane coupling agents with an aliphatic group. Exemplary coupling agents include titanium IV 2,2 (bis 2-propenolatomethyl)butanolato, tris(dioctyl)pyrophosphato-O; titanium IV 2-propanolato, tris(dioctyl)-pyrophosphato-O) adduct with 1 mole of diisooctyl phosphite; titanium IV bis(dioctyl)pyrophosphato-O, oxoethylenediolato, (Adduct), bis(dioctyl) (hydrogen)phosphite-O; titanium IV bis(dioctyl)pyrophosphato-O, ethylenediolato (adduct), bis(dioctyl)hydrogen phosphite; zirconium IV 2,2 (bis 2-propenolatomethyl)butanolato, tris(diisooctyl)pyrophosphato-O; zirconium IV 2,2-bis(2-propenolatomethyl) butanolato, cyclo di[2,2-(bis 2-propenolatomethyl) butanolato], pyrophosphato-O,O, and hexadecyltrimethoxysilane. In another exemplary embodiment, the coupling agent is KR-TTS available from Kenrich Chemical Company.


In one exemplary embodiment, the TIM includes hexadecyltrimethoxysilane as the coupling agent as shown in the formula below.




embedded image


Exemplary coupling agents interact with exemplary fillers as shown in the example reaction below. Alumina is the representative filler used in the reaction below; however, other alternative fillers may be used. As shown, the coupling agent is added to water and undergoes hydrolysis to remove an ethoxide group. The products then undergo a modification reaction where water is removed and the coupling agent and alumina are bonded together.




embedded image


In some exemplary embodiments, the TIM may comprise the one or more coupling agents in an amount as little as 0.1 wt. %, 0.25 wt. %, 0.5 wt. %, 0.67 wt. %, 0.75 wt. %, as great as 1 wt. %, 1.5 wt. %, 2 wt. %, 5 wt. %, 10 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 0.1 wt. % to 10 wt. %, 0.1 wt. % to 1 wt. %, or 0.25 wt. % to 0.67 wt. %. In one exemplary embodiment, the TIM includes a coupling agent in the amount of 0.6 wt. %.


The above components of the TIM (long chain, alkyl silicone oil; long chain, vinyl terminated alkyl silicone oil; long chain, single end, hydroxyl terminated silicone oil; crosslinker; catalyst; inhibitor; and coupling agent) form a polymer matrix that is combined with one or more thermally conductive fillers to form the TIM. The polymer matrix of the TIM may be in an amount as little as 3 wt. %, 4 wt. %, 5 wt. %, as great as 10 wt. %, 12.5 wt. %, 15 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 3 wt. % to 15 wt. %, 4 wt. % to 12.5 wt. %, or 5 wt. % to 10 wt. %. In one exemplary embodiment, the TIM includes a polymer matrix in the amount of about 8.42 wt. %. In another exemplary embodiment, the TIM includes a polymer matrix in the amount of about 6.2 wt. %.


6. Thermally Conductive Filler


The TIM includes one or more thermally conductive fillers. Exemplary thermally conductive fillers include metals, alloys, nonmetals, metal oxides and ceramics, and combinations thereof. The metals include, but are not limited to, aluminum, copper, silver, zinc, nickel, tin, indium, and lead. The nonmetals include, but are not limited to, carbon, graphite, carbon nanotubes, carbon fibers, graphenes, boron nitride and silicon nitride. The metal oxide or ceramics include but not limited to alumina (aluminum oxide), aluminum nitride, boron nitride, zinc oxide, and tin oxide.


The TIM may comprise the one or more thermally conductive fillers in an amount as little as 10 wt. %, 20 wt. %, 25 wt. %, 50 wt. %, as great as 75 wt. %, 80 wt. %, 85 wt. %, 90 wt. %, 95 wt. %, 97 wt. %, or within any range defined between any two of the foregoing values, based on the total weight of the TIM, such as 10 wt. % to 95 wt. %, 50 wt. % to 95 wt. %, or 85 wt. % to 97 wt. %.


Exemplary thermally conductive fillers may have an average particle size of as little as 0.1 microns, 1 micron, 10 microns, as great as 50 microns, 75 microns, 100 microns or within any range defined between any two of the foregoing values.


In one exemplary embodiment, the TIM may include a first thermally conductive filler and a second thermally conductive filler, wherein the first thermally conductive filler and the second thermally conductive filler each have an average particle size greater than 1 micron.


In one exemplary embodiment, the TIM may include a first thermally conductive filler, a second thermally conductive filler, and a third thermally conductive filler, wherein the first thermally conductive filer has a particle size greater than 10 micron, the second thermally conductive filler has an average particle size as little as 1 micron, 2 microns, 4 microns, as great as 6 microns, 8 microns, 10 microns, or within any range defined therebetween, and the third thermally conductive filler has an average particle size less than 1 micron.


In one exemplary embodiment, the TIM includes a first thermally conductive filler in the amount of as little as 30 wt. %, 35 wt. %, 40 wt. %, as great as 45 wt. %, 50 wt. %, 60 wt % or within any range defined between any two of the foregoing values with respect to the total TIM composition. The first thermally conductive filler has an average particle size of as little as 30 microns. 35 microns, 40 microns, as great as 45 microns, 50 microns, 60 microns, or within any range defined between any two of the foregoing values. The exemplary TIM further includes a second thermally conductive filler in the amount of as little as 30 wt. %, 35 wt. %, 40 wt. %, as great as 45 wt. %, 50 wt. %, 60 wt. % or within any range defined between any two of the foregoing values with respect to the total TIM composition. The second thermally conductive filler has an average particle size of as little as 1 micron, 3, microns. 5 microns, as great as 10 microns, 15 microns, 20 microns, or within any range defined between any two of the foregoing values.


In one exemplary embodiment, the TIM includes a first thermally conductive filler in the amount of as little as 30 wt. %, 35 wt. %, 40 wt. %, as great as 45 wt. %, 50 wt. %, 60 wt % or within any range defined between any two of the foregoing values with respect to the total TIM composition. The first thermally conductive filler having an average particle size of as little as 30 microns. 35 microns, 40 microns, as great as 45 microns, 50 microns, 60 microns, or within any range defined between any two of the foregoing values. The exemplary TIM further includes a second thermally conductive filler in the amount of as little as 5 wt. %, 10 wt. %, 15 wt. %, as great as 25 wt. %, 30 wt. %, 40 wt % or within any range defined between any two of the foregoing values with respect to the total TIM composition. The second thermally conductive filler having an average particle size of as little as 1 micron, 3, microns. 5 microns, as great as 10 microns, 15 microns, 20 microns, or within any range defined between any two of the foregoing values. The exemplary TIM further includes a third thermally conductive filler in the amount of as little as 5 wt. %, 10 wt. %, 15 wt. %, as great as 25 wt. %, 30 wt. %, 40 wt % or within any range defined between any two of the foregoing values with respect to the total TIM composition. The third thermally conductive filler having an average particle size of as little as 0.1 microns, 0.3, microns. 0.5 microns, as great as 1 micron, 1.5 microns, 2 microns, or within any range defined between any two of the foregoing values.


Exemplary thermal conductive fillers include ceramic fillers or metal fillers of different sizes such as aluminum, alumina, and zinc oxide.


6. Exemplary Formulations of the Thermal Interface Material


In a first non-limiting illustrative embodiment, the TIM includes about 2 wt. % to about 10 wt. % at least one long chain silicone oil, about 0.1 wt. % to about 5 wt. % coupling agent, about 50 wt. % to about 95 wt. % thermally conductive filler, about 0.1 wt. % to about 5 wt. % addition inhibitor, about 0.1 wt. % to about 5 wt. % addition catalyst, and about 0.1 wt. % to 1.0 wt. % crosslinker.


In a second non-limiting illustrative embodiment, the TIM includes about 2 wt. % to about 10 wt. % of at least one long chain silicone oil, about 0.1 wt. % to about 5 wt. % of a coupling agent, about 25 wt. % to about 50 wt. % of a first thermally conductive filler, about 25 wt. % to about 50 wt. % of a second thermally conductive filler, about 0.1 wt. % to about 5 wt. % addition inhibitor, about 0.1 wt. % to about 5 wt. % addition catalyst, and about 0.1 wt. % to 1.0 wt. % crosslinker.


In a third non-limiting illustrative embodiment, the TIM includes about 2 wt. % to about 10 wt. % of at least one long chain silicone oil, about 0.1 wt. % to about 5 wt. % of a coupling agent, about 25 wt. % to about 50 wt. % of a first thermally conductive filler, about 5 wt. % to about 40 wt. % of a second thermally conductive filler, about 5 wt. % to about 40 wt. % of a third thermally conductive filler, about 0.1 wt. % to about 5 wt. % addition inhibitor, about 0.1 wt. % to about 5 wt. % addition catalyst, and about 0.1 wt. % to 1.0 wt. % crosslinker.


7. Exemplary Properties of the Thermal Interface Material


In some exemplary embodiments, a thermal interface material as described above has post cure elastic properties (e.g., recovery after compression), high thermal conductivity, viscosity, and hardness. Post cure recovery of the thermal interface material is tested by applying a compression force to the thermal interface material/gel to 50% strain/compression based on the original thickness of the thermal interface material/gel for 2 hours at room temperature. Then, the compression force is released, and the thermal interface material/gel is relaxed for 1 hour after which the thickness of the thermal interface material/gel is measured. The difference in thickness represents the recovery of the thermal interface material/gel.


In some exemplary embodiments, a thermal interface material as described above has excellent post cure elastic/recovery properties. The thermal interface material/gel has elastic/recovery properties that range from as little as 75% recovery, 80% recovery, 85% recovery, as great as 90% recovery, 95% recovery, 100% recovery, or within any range defined between any two of the foregoing values based on the thickness of the thermal interface material/gel prior to compression. In one exemplary embodiment, the thermal interface material/gel has a recovery of about 85%. In another exemplary embodiment, the thermal interface material/gel has a recovery of about 100%.


In some exemplary embodiments, a thermal interface material as described above has a thermal conductivity of as little as 1 W/m·K, 2 W/m·K, 3 W/m·K, as great as 4 W/mK, 7 W/m·K, 10 W/m·K, or within any range defined between any two of the foregoing values. An exemplary thermal conductivity test method standard is ASTM D5470. In one exemplary embodiment, a thermal interface material as described above has the thermal conductivity of about 3.5 W/m·K. In another exemplary embodiment, a thermal interface material as described above has the thermal conductivity of about 4.7 W/m·K.


In some exemplary embodiments, a thermal interface material as described above has a pre-cure viscosity of as little as 100 Pa·s, 150 Pa·s, 200 Pa·s, as great as 250 Pa·s, 275 Pa·s, 300 Pa·s, or within any range defined between any two of the foregoing values at 23° C. An exemplary viscosity test method standard is DIN 53018. In one particular embodiment, the viscosity is tested by a Haake viscometer. In one exemplary embodiment, the thermal interface material has a viscosity of about 120 Pa·s. In another exemplary embodiment, the thermal interface material has a viscosity of about 275 Pa·s.


In some exemplary embodiments, a thermal interface material as described above has a post cure hardness value of as little as 25 Shore OO, 30 Shore OO, 35 Shore OO, as great as 40 Shore OO, 45 Shore OO, 50 Shore OO, or within any range defined between any two of the foregoing values, such as between 25 Shore OO and 50 Shore OO, between 25 Shore OO and 45 Shore OO, or between 25 Shore OO and 40 Shore OO, for example, as determined by a Shore OO type durometer and ASTM D2240. In one exemplary embodiment, the thermal interface material has a hardness of 25 Shore OO. In another exemplary embodiment, the thermal interface material has a hardness of 40 Shore OO.


B. Methods of Forming a Thermal Interface Material


Referring now to FIG. 1, an exemplary method 100 of making a thermal interface material is shown. As shown, long chain alkyl silicone oil; long chain, vinyl silicone oil; long chain, single-end hydroxyl terminated silicone oil; coupling agent; catalyst; and inhibitor are weighed and added to a mixer as indicated at block 102. The mixture is then mixed for 15 minutes at room temperature as also indicated at block 102. Then, at block 104, a crosslinker is added to the mixer and the mixture is mixed for 10 minutes. After which, at block 106, the thermally conductive filler of the largest size is added to the mixer and mixed with the mixture for 10 minutes. Then, the thermally conductive filler of the next largest size (e.g., medium sized) is added to the mixer and the subsequent mixture is mixed for an additional 10 minutes as indicated at block 108. Then, as shown in block 110, the thermally conductive filler of the smallest size is added to the mixer and the mixture is mixed for an additional 30 minutes. Vacuum is then applied to the mixer and mixture while mixing is continued for 30 additional minutes as shown in block 112. After which, at block 114, the vacuum is stopped, and the resulting mixture/formulation is packaged and/or subsequently cured at block 116.


C. Applications Utilizing the Thermal Interface Material


Referring again to FIG. 1, in some exemplary embodiments, the thermal interface material is positioned as a TIM 1 between an electronic component 12 and a heat spreader 14, as indicated by TIM 18. In some exemplary embodiments, the thermal interface material is positioned as a TIM 2 between a heat spreader 14 and a heat sink 16, as indicated by TIM 20. In some exemplary embodiments, the thermal interface material is positioned as a TIM 1.5 (not shown) between an electronic component 12 and a heat sink 16.


EXAMPLES
Example 1

A thermal interface material for Example 1, Example 2, Example 3, Example 4, Comparative Example 1 (Comp. Ex. 1), Comparative Example 2 (Comp. Ex. 2), Comparative Example 3 (Comp. Ex. 3), and Comparative Example 4 (Comp. Ex. 4) was prepared according to the formulations provided in Table 1 below. The formulations respective properties are also shown in Table 1 and discussed further below.









TABLE 1







Formulations (wt. %) for Example 1, Example 2, Example 3, Example 4, Comparative Example


1, Comparative Example 2, Comparative Example 3, and Comparative Example 4

















Comp.

Comp.

Comp.

Comp.


Raw materials
Ex 1
Ex 1
Ex 2
Ex 2
Ex 3
Ex 3
Ex 4
Ex 4


















Long chain, alkyl
3

2

1.4

1.4



silicone oil


(150 < n + m < 600,


X = 12)


Long chain, vinyl
3

2

0.8

0.8


terminated alkyl


silicone oil


(600 < n + m < 3000,


X = 12)


Long chain, single
1.2

1

1

1


end hydroxyl


terminated


silicone oil


(60 < n + m < 180,


X = 12, y = 2,


hydroxy value 9


mg KOH/g)


Vinyl terminated

7.2

5

3.2

3.2


silicone oil (500


mPa · s)


Cross linker (Si—H)
0.45
0.45
0.45
0.45
0.15
0.15
0.15
0.15


Catalyst
0.01
0.01
0.01
0.01
0.03
0.03
0.03
0.03


Inhibitor
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02


Coupling agent
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6


Thermally




40
40


Conductive Filler


(Al2O3 120 μm)


Thermally
47
47
45
45
21
21
10
10


Conductive Filler


(Al2O3 40 μm)


Thermally






38
38


Conductive Filler


(Al2O3 38 μm)


Thermally
43
43
25
25
15
15
15
15


Conductive Filler


(Al2O3 5 μm)


Thermally


22
22
20
20
20
20


Conductive Filler


(Al2O3 0.5 μm)


Viscosity (Pa · s)
120
260
275
980
1800
>200000
1900
>200000


Before Curing


Hardness After
25
50
40
>80
>70
Out of
>70
Out of


Curing (Shore





test

test


OO)





range

range


Thermal
3.52
3.48
4.7
4.8
8.6
7.6
11.8
10.6


Conductivity


(W/mK)


Recovery (%)
100%
50%
85%
20%
3%
0%
5%
0%


after 2 hour 50%


compression









To prepare the formulation of Example 1, the silicone oil, coupling agent, catalyst, and inhibitor were combined and mixed in a mixer for 15 minutes. The crosslinker was then added and the subsequent mixture was mixed for 10 minutes. The thermally conductive fillers with an average diameter of 40 μm were then added, and the mixture was mixed for 10 minutes. Then, the thermally conductive fillers with an average diameter of 5 μm were added, and the resulting mixture was mixed for 30 minutes. After which, vacuum mixing was applied to the mixture for 30 minutes to remove air bubbles and obtain the sample of Example 1.


To prepare the formulation of Example 2, the preparation steps of Example 1 as discussed above were performed, and the thermally conductive fillers with an average diameter of 0.5 μm were added to the mixture and the resulting mixture was mixed prior to the application of vacuum mixing.


Comparative Examples 1 and 2 were prepared similarly to Examples 1 and 2; however, a vinyl terminated silicone oil having a viscosity of 500 mPa·s was used instead of the long chain silicone oils of Examples 1 and 2.


As mentioned previously, the viscosity of the samples were tested by Haake viscometer. The hardness was tested by a shore OO type durometer. The thermal conductivity was tested by a TIM tester based on the standard of ASTMD5470.


The recovery test was performed by the following method. The thermal gel sample was compressed to a thickness of 2 millimeters (mm) and cured completely in a 150° C. oven. The sample was then die cut into a round pad having a 1 inch diameter. Then, the round pad was compressed to a 50% strain or 50% of the original thickness of the round pad (i.e., 1 mm) and was held in the compressed state for 2 hours at room temperature. The compression force was then released and the round pad was relaxed for 1 hour after which its thickness was measured and recovery was determined—if the measured thickness was 2 mm, recovery was 100%; if the thickness was 1 mm, recovery was 0%.


As shown in Table 1 above, Examples 1 and 2 showed reduced viscosity before curing, a lower hardness value, and comparable thermal conductivity values as compared to Comparative Example 1 and Comparative Example 2.


In addition, Examples 1 and 2 exhibited greater recovery properties than Comparative Examples 1 and 2. In particular, Examples 1 and 2 exhibited recoveries of 100% and 85%, respectively. By comparison, Comparative Examples 1 and 2 exhibited lower recoveries of 50% and 20% respectively.


Example 3 showed that the thermal interface material with high thermal conductive filler loading (thermal conductivity greater than 7.5 W/m K) also exhibited better elastic properties than Comparative Example 3. However, the elastic performance is less than that of Example 1 and Example 2.


Example 4 showed that the thermal interface material with AlN filler (thermal conductivity greater than 11 W/m K also exhibited better elastic properties and lower viscosity before curing than Comparative Example 4. However, the elastic performance is less than that of Example 1 and Example 2.


While this invention has been described as having exemplary designs, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.


ASPECTS

Aspect 1 is a thermal interface material comprising a polymer matrix including: at least one long chain alkyl silicone oil; at least one long chain, vinyl terminated alkyl silicone oil; and at least one single end hydroxyl terminated silicone oil; wherein at least one of the long chain alkyl silicone oil; the long chain, vinyl terminated alkyl silicone oil; and the long chain, single end hydroxyl terminated silicone oil having at least one branch chain of between 2 and 32 alkyl carbons; and at least one thermally conductive filler.


Aspect 2 is the thermal interface material of Aspect 1, wherein the long chain alkyl silicone oil has a general formula of:




embedded image



where n ranges from 0 to 5000, x ranges from 2 to 32, and m ranges from 5 to 2000, and n+m ranges from 50 to 5000.


Aspect 3 is the thermal interface material of either Aspect 1 or Aspect 2, wherein the long chain, vinyl terminated alkyl silicone oil has a general formula of:




embedded image



where n ranges from 0 to 5000, x ranges from 2 to 32, and m ranges from 5 to 5000, and n+m ranges from 50 to 10000.


Aspect 4 is the thermal interface material of any of Aspects 1-3, wherein the long chain, single end hydroxyl terminated silicone oil has a general formula of:




embedded image



where R is an alkyl group, n ranges from 5 to 1000, x ranges from 2 to 32, y ranges from 1 to 3, m ranges from 0 to 500, and n+m ranges from 5 to 1000.


Aspect 5 is the thermal interface material of any of Aspects 1-4, wherein the long chain, single end hydroxyl terminated silicone oil has a hydroxyl value in the range of 1 mgKOH/g to 200 mgKOH/g.


Aspect 6 is the thermal interface material of any of Aspects 1-5, wherein the thermally conductive filler includes at least a first thermally conductive filler and a second thermally conductive filler between 85 wt. % to 97 wt. %.


Aspect 7 is the thermal interface material of any of Aspect 1-6, wherein the thermal interface material has a post cure recovery between 75% and 100% after 50% strain is applied for 2 hours at room temperature.


Aspect 8 is the thermal interface material of any of Aspects 1-7, wherein the thermal interface material comprises from 0.5 wt. % to 5 wt. % of the long chain alkyl silicone oil; from 0.5 wt. % to 5 wt. % of the long chain, vinyl terminated alkyl silicone oil;

    • from 0.5 wt. % to 2 wt. % of the long chain, single end hydroxyl terminated silicone oil; and from 50 wt. % to 95 wt. % of the thermally conductive filler.


Aspect 9 is the thermal interface material of any of Aspects 1-8, wherein the thermal interface material has a hardness between 25 Shore OO and 50 Shore OO.


Aspect 10 is a thermal interface material comprising a polymer matrix including: at least one long chain silicone oil having between 4 and 16 alkyl carbons; wherein the at least one long chain silicone oil includes: a long chain alkyl silicone oil; a long chain, vinyl terminated alkyl silicone oil; and a single end hydroxyl terminated silicone oil; an addition inhibitor; a crosslinker; a catalyst; a coupling agent; and

    • at least one thermally conductive filler; wherein the thermal interface material comprises: from 3 wt. % to 15 wt. % of the polymer matrix; and from 50 wt. % to 95 wt. % of the thermally conductive filler.


Aspect 11 is the thermal interface material of Aspect 10, wherein the thermal interface material comprises from 0.5 wt. % to 5 wt. % of the long chain alkyl silicone oil; from 0.5 wt. % to 5 wt. % of the long chain, vinyl terminated alkyl silicone oil;

    • from 0.5 wt. % to 2 wt. % of the long chain, single end hydroxyl terminated silicone oil; from 0.01 wt. % to 0.5 wt. % of the catalyst; from 0.01 wt. % to 1 wt. % of the addition inhibitor; from 0.1 wt. % to 1 wt. % of the crosslinker; from 0.1 wt. % to 10 wt. % of the coupling agent; and from 50 wt. % to 95 wt. % of the thermally conductive filler.


Aspect 12 is the thermal interface material of either Aspect 10 or Aspect 11, wherein the thermally conductive filler includes a first thermally conductive filler and a second thermally conductive filler, wherein the first thermally conductive filer is a metal oxide, a ceramic, or a combination thereof, having a particle size greater than 10 microns and the second thermally conductive filler is a metal oxide having a particle size between 1 micron and 10 microns.


Aspect 13 is the thermal interface material of any of Aspects 10-12, wherein the long chain alkyl silicone oil has a general formula of:




embedded image



where n ranges from 0 to 5000, x ranges from 2 to 32, and m ranges from 5 to 2000, and n+m ranges from 50 to 5000.


Aspect 14 is the thermal interface material of Aspects 10-13, wherein the long chain, vinyl terminated alkyl silicone oil has a general formula of:




embedded image



where n ranges from 0 to 5000, x ranges from 2 to 32, and m ranges from 5 to 5000, and n+m ranges from 50 to 10000.


Aspect 15 is the thermal interface material of any of Aspects 10-14, wherein the long chain, single end hydroxyl terminated silicone oil has a general formula of:




embedded image



where R is an alkyl group, n ranges from 5 to 1000, x ranges from 2 to 32, y ranges from 1 to 3, m ranges from 0 to 500, and n+m ranges from 5 to 1000.


Aspect 16 is an electronic component comprising a heat sink; an electronic chip; a thermal interface material having a first surface layer and a second surface layer, the thermal interface material positioned between the heat sink and electronic chip, the thermal interface material including: a polymer matrix including:

    • at least one long chain silicone oil having between 4 and 16 alkyl carbons; wherein the at least one long chain silicone oil includes: a long chain alkyl silicone oil; a long chain; a vinyl terminated alkyl silicone oil; and a single end hydroxyl terminated silicone oil; an addition inhibitor; a crosslinker; a catalyst; a coupling agent; and at least one thermally conductive filler; wherein the thermal interface material comprises: from 3 wt. % to 15 wt. % of the polymer matrix; and from 50 wt. % to 95 wt. % of the thermally conductive filler.


Aspect 17 is the electronic component of Aspect 16, wherein the long chain alkyl silicone oil has a general formula of:




embedded image



where n ranges from 0 to 5000, x ranges from 2 to 32, m ranges from 5 to 2000, and n+m ranges from 50 to 5000.


Aspect 18 is the electronic component of either Aspect 16 or Aspect 17, wherein the long chain, vinyl terminated alkyl silicone oil has a general formula of:




embedded image



where n ranges from 0 to 5000, x ranges from 2 to 32, and m ranges from 5 to 5000, and n+m ranges from 50 to 10000.


Aspect 19 is the electronic component of any of Aspects 16-18, wherein the long chain, single end hydroxyl terminated silicone oil has a general formula of:




embedded image



where R is an alkyl group, n ranges from 5 to 1000, x ranges from 2 to 32, y ranges from 1 to 3, m ranges from 0 to 500, and n+m ranges from 5 to 1000.


Aspect 20 is the electronic component of any of Aspects 16-19, wherein the first surface layer is in contact with a surface of the electronic chip and the second surface layer is in contact with the heat sink.


Aspect 21 is the electronic component of any of Aspects 16-20, wherein the electronic component further comprises a heat spreader positioned between the heat sink and the electronic chip, wherein the first surface layer is in contact with a surface of the electronic chip and the second surface layer is in contact with the heat spreader.


Aspect 22 is the electronic component of any of Aspects 16-21, the electronic component further comprises a heat spreader positioned between the heat sink and the electronic chip, wherein the first surface layer is in contact with a surface of the heat spreader and the second surface layer is in contact with the heat sink.

Claims
  • 1. A thermal interface material comprising: a polymer matrix including: at least one long chain alkyl silicone oil;at least one long chain alkyl, vinyl terminated alkyl silicone oil; andat least one long chain alkyl, single end hydroxyl terminated silicone oil; wherein at least one of the long chain alkyl silicone oil; the long chain alkyl, vinyl terminated alkyl silicone oil; and the long chain alkyl, single end hydroxyl terminated silicone oil having at least one branch chain of between 2 and 32 alkyl carbons; andat least one thermally conductive filler.
  • 2. The thermal interface material of claim 1, wherein the long chain alkyl silicone oil has a general formula of:
  • 3. The thermal interface material of claim 2, wherein the long chain alkyl, vinyl terminated alkyl silicone oil has a general formula of:
  • 4. The thermal interface material of claim 3, wherein the long chain alkyl, single end hydroxyl terminated silicone oil has a general formula of:
  • 5. The thermal interface material of claim 4, wherein the long chain, single end hydroxyl terminated silicone oil has a hydroxyl value in the range of 1 mgKOH/g to 200 mgKOH/g.
  • 6. The thermal interface material of claim 4, wherein the thermally conductive filler includes at least a first thermally conductive filler and a second thermally conductive filler between 85 wt. % to 97 wt. %, based on the total weight of the thermal interface material.
  • 7. The thermal interface material of claim 1, wherein the thermal interface material has a post cure recovery between 75% and 100% after 50% strain is applied for 2 hours at room temperature.
  • 8. The thermal interface material of claim 1, wherein the thermal interface material comprises: from 0.5 wt. % to 5 wt. % of the long chain alkyl silicone oil;from 0.5 wt. % to 5 wt. % of the long chain alkyl, vinyl terminated alkyl silicone oil;from 0.5 wt. % to 2 wt. % of the long chain alkyl, single end hydroxyl terminated silicone oil; andfrom 50 wt. % to 95 wt. % of the thermally conductive filler.
  • 9. The thermal interface material of claim 1, wherein the thermal interface material has a hardness between 25 Shore OO and 50 Shore OO.
  • 10. A thermal interface material comprising: a polymer matrix including: at least one long chain silicone oil having at least one branch chain of 4 and 16 alkyl carbons; wherein the at least one long chain silicone oil includes: a long chain alkyl silicone oil;a long chain alkyl, vinyl terminated alkyl silicone oil; anda long chain alkyl, single end hydroxyl terminated silicone oil;an addition inhibitor;a crosslinker;a catalyst;a coupling agent; andat least one thermally conductive filler;
  • 11. The thermal interface material of claim 10, wherein the thermal interface material comprises: from 0.5 wt. % to 5 wt. % of the long chain alkyl silicone oil;from 0.5 wt. % to 5 wt. % of the long chain alkyl, vinyl terminated alkyl silicone oil;from 0.5 wt. % to 2 wt. % of the long chain alkyl, single end hydroxyl terminated silicone oil;from 0.01 wt. % to 0.5 wt. % of the catalyst;from 0.01 wt. % to 1 wt. % of the addition inhibitor;from 0.1 wt. % to 1 wt. % of the crosslinker;from 0.1 wt. % to 10 wt. % of the coupling agent; andfrom 50 wt. % to 95 wt. % of the thermally conductive filler.
  • 12. The thermal interface material of claim 10, wherein the thermally conductive filler includes a first thermally conductive filler and a second thermally conductive filler, wherein the first thermally conductive filer is a metal oxide, a ceramic, or a combination thereof, having a particle size greater than 10 microns and the second thermally conductive filler is a metal oxide having a particle size between 1 micron and 10 microns.
  • 13. The thermal interface material of claim 10, wherein the long chain alkyl silicone oil has a general formula of:
  • 14. The thermal interface material of claim 13, wherein the long chain alkyl, vinyl terminated alkyl silicone oil has a general formula of:
  • 15. The thermal interface material of claim 14, wherein the long chain alkyl, single end hydroxyl terminated silicone oil has a general formula of:
  • 16. An electronic component comprising: a heat sink;an electronic chip;a thermal interface material having a first surface layer and a second surface layer, the thermal interface material positioned between the heat sink and electronic chip, the thermal interface material including:a polymer matrix including: at least one long chain silicone oil having at least one branch chain of 4 and 16 alkyl carbons; wherein the at least one long chain silicone oil includes: a long chain alkyl silicone oil; a long chain;a long chain alkyl, vinyl terminated alkyl silicone oil; anda long chain alkyl, single end hydroxyl terminated silicone oil;an addition inhibitor;a crosslinker;a catalyst;a coupling agent; andat least one thermally conductive filler;
  • 17. The electronic component of claim 16, wherein the long chain alkyl silicone oil has a general formula of:
  • 18. The electronic component of claim 17, wherein the long chain alkyl, vinyl terminated alkyl silicone oil has a general formula of:
  • 19. The electronic component of claim 18, wherein the long chain alkyl, single end hydroxyl terminated silicone oil has a general formula of:
  • 20. The electronic component of claim 16, wherein the first surface layer is in contact with a surface of the electronic chip and the second surface layer is in contact with the heat sink.
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Application No. 62/837,442, filed Apr. 23, 2019, which is herein incorporated by reference in its entirety.

US Referenced Citations (339)
Number Name Date Kind
1655133 Clase Jan 1928 A
2451600 Woodcock Oct 1948 A
2810203 Bachofer Oct 1957 A
3262997 Cameron et al. Jul 1966 A
4006530 Nicolas Feb 1977 A
4087918 Schmid et al. May 1978 A
4180498 Spivack Dec 1979 A
4265026 Meyer May 1981 A
4446266 Von et al. May 1984 A
4459185 Obata et al. Jul 1984 A
4559709 Beseme et al. Dec 1985 A
4565610 Nobel et al. Jan 1986 A
4604424 Cole et al. Aug 1986 A
4652624 Allen et al. Mar 1987 A
4787149 Possati et al. Nov 1988 A
4816086 Oleske Mar 1989 A
4832781 Mears May 1989 A
4839955 Jean Jun 1989 A
4871782 Modic Oct 1989 A
4910050 Oldham et al. Mar 1990 A
5162555 Remmers et al. Nov 1992 A
5167851 Jamison et al. Dec 1992 A
5294923 Juergens et al. Mar 1994 A
5391924 Uchida et al. Feb 1995 A
5403580 Bujanowski et al. Apr 1995 A
5562814 Kirby Oct 1996 A
5660917 Fujimori et al. Aug 1997 A
5816699 Keith et al. Oct 1998 A
5930115 Tracy et al. Jul 1999 A
5950066 Hanson et al. Sep 1999 A
6040362 Mine et al. Mar 2000 A
6054198 Bunyan et al. Apr 2000 A
6090484 Bergerson Jul 2000 A
6096414 Young Aug 2000 A
6165612 Misra Dec 2000 A
6197859 Hanson et al. Mar 2001 B1
6238596 Nguyen et al. May 2001 B1
6339120 Misra et al. Jan 2002 B1
6372337 Takahashi et al. Apr 2002 B2
6372997 Hill et al. Apr 2002 B1
6391442 Duvall et al. May 2002 B1
6400565 Shabbir et al. Jun 2002 B1
6432320 Bonsignore et al. Aug 2002 B1
6432497 Bunyan Aug 2002 B2
6451422 Nguyen Sep 2002 B1
6475962 Khatri Nov 2002 B1
6496373 Chung Dec 2002 B1
6500891 Kropp et al. Dec 2002 B1
6506332 Pedigo Jan 2003 B2
6562180 Bohin et al. May 2003 B1
6597575 Matayabas et al. Jul 2003 B1
6605238 Nguyen et al. Aug 2003 B2
6610635 Khatri Aug 2003 B2
6616999 Freuler et al. Sep 2003 B1
6617517 Hill et al. Sep 2003 B2
6620515 Feng et al. Sep 2003 B2
6624224 Misra Sep 2003 B1
6645643 Zafarana et al. Nov 2003 B2
6649325 Gundale et al. Nov 2003 B1
6657297 Jewram et al. Dec 2003 B1
6673434 Nguyen Jan 2004 B2
6706219 Nguyen Mar 2004 B2
6761928 Hill et al. Jul 2004 B2
6764759 Duvall et al. Jul 2004 B2
6783692 Bhagwagar Aug 2004 B2
6791839 Bhagwagar Sep 2004 B2
6797382 Nguyen et al. Sep 2004 B2
6797758 Misra et al. Sep 2004 B2
6811725 Nguyen et al. Nov 2004 B2
6815486 Bhagwagar et al. Nov 2004 B2
6835453 Greenwood et al. Dec 2004 B2
6838182 Kropp et al. Jan 2005 B2
6841757 Marega et al. Jan 2005 B2
6874573 Collins et al. Apr 2005 B2
6900163 Khatri May 2005 B2
6901675 Edwards et al. Jun 2005 B2
6908669 Nguyen Jun 2005 B2
6908682 Mistele Jun 2005 B2
6913686 Hilgarth Jul 2005 B2
6921780 Ducros et al. Jul 2005 B2
6924027 Matayabas et al. Aug 2005 B2
6926955 Jayaraman et al. Aug 2005 B2
6940721 Hill Sep 2005 B2
6946190 Bunyan Sep 2005 B2
6956739 Bunyan Oct 2005 B2
6975944 Zenhausern Dec 2005 B1
6984685 Misra et al. Jan 2006 B2
7013965 Zhong et al. Mar 2006 B2
7038009 Sagal et al. May 2006 B2
7056566 Freuler et al. Jun 2006 B2
7074490 Feng et al. Jul 2006 B2
7078109 Hill et al. Jul 2006 B2
7119143 Jarnjevic et al. Oct 2006 B2
7135232 Yamada et al. Nov 2006 B2
7147367 Balian et al. Dec 2006 B2
7172711 Nguyen Feb 2007 B2
7208191 Freedman Apr 2007 B2
7241707 Meagley et al. Jul 2007 B2
7244491 Nguyen Jul 2007 B2
7253523 Dani et al. Aug 2007 B2
7262369 English Aug 2007 B1
7291396 Huang et al. Nov 2007 B2
7294394 Jayaraman et al. Nov 2007 B2
RE39992 Misra et al. Jan 2008 E
7326042 Alper et al. Feb 2008 B2
7328547 Mehta et al. Feb 2008 B2
7369411 Hill et al. May 2008 B2
7440281 Bailey et al. Oct 2008 B2
7446158 Okamoto et al. Nov 2008 B2
7462294 Kumar et al. Dec 2008 B2
7463496 Robinson et al. Dec 2008 B2
7465605 Raravikar et al. Dec 2008 B2
7538075 Yamada et al. May 2009 B2
7550097 Tonapi et al. Jun 2009 B2
7572494 Mehta et al. Aug 2009 B2
7608324 Nguyen et al. Oct 2009 B2
7641811 Kumar et al. Jan 2010 B2
7646778 Sajassi Jan 2010 B2
7682690 Bunyan et al. Mar 2010 B2
7695817 Lin et al. Apr 2010 B2
7700943 Raravikar et al. Apr 2010 B2
7732829 Murphy Jun 2010 B2
7744991 Fischer et al. Jun 2010 B2
7763673 Okamoto et al. Jul 2010 B2
RE41576 Bunyan et al. Aug 2010 E
7765811 Hershberger et al. Aug 2010 B2
7807756 Wakabayashi et al. Oct 2010 B2
7816785 Iruvanti et al. Oct 2010 B2
7842381 Johnson Nov 2010 B2
7846778 Rumer et al. Dec 2010 B2
7850870 Ahn et al. Dec 2010 B2
7867609 Nguyen Jan 2011 B2
7893170 Wakioka et al. Feb 2011 B2
7955900 Jadhav et al. Jun 2011 B2
7960019 Jayaraman et al. Jun 2011 B2
7973108 Okamoto et al. Jul 2011 B2
8009429 Sundstrom et al. Aug 2011 B1
8039961 Suhir et al. Oct 2011 B2
8076773 Jewram et al. Dec 2011 B2
8081468 Hill et al. Dec 2011 B2
8102058 Hsieh et al. Jan 2012 B2
8105504 Gerster et al. Jan 2012 B2
8110919 Jewram et al. Feb 2012 B2
8112884 Tullidge et al. Feb 2012 B2
8115303 Bezama et al. Feb 2012 B2
8138239 Prack et al. Mar 2012 B2
8167463 Loh May 2012 B2
8223498 Lima Jul 2012 B2
8308861 Rolland et al. Nov 2012 B2
8324313 Funahashi Dec 2012 B2
8362607 Scheid et al. Jan 2013 B2
8373283 Masuko et al. Feb 2013 B2
8431647 Dumont et al. Apr 2013 B2
8431655 Dershem Apr 2013 B2
8445102 Strader et al. May 2013 B2
8518302 Gerster et al. Aug 2013 B2
8535478 Pouchelon et al. Sep 2013 B2
8535787 Lima Sep 2013 B1
8557896 Jeong et al. Oct 2013 B2
8586650 Zhang et al. Nov 2013 B2
8587945 Hartmann et al. Nov 2013 B1
8618211 Bhagwagar et al. Dec 2013 B2
8632879 Weisenberger Jan 2014 B2
8633478 Cummings et al. Jan 2014 B2
8638001 Kimura et al. Jan 2014 B2
8647752 Strader et al. Feb 2014 B2
8758892 Bergin et al. Jun 2014 B2
8796068 Stender et al. Aug 2014 B2
8837151 Hill et al. Sep 2014 B2
8865800 Stammer et al. Oct 2014 B2
8917510 Boday et al. Dec 2014 B2
8937384 Bao et al. Jan 2015 B2
9055694 Lima Jun 2015 B2
9070660 Lowe et al. Jun 2015 B2
9080000 Ahn et al. Jul 2015 B2
9222735 Hill et al. Dec 2015 B2
9260645 Bruzda Feb 2016 B2
9353304 Merrill et al. May 2016 B2
9392730 Hartmann et al. Jul 2016 B2
9481851 Matsumoto et al. Nov 2016 B2
9527988 Habimana et al. Dec 2016 B2
9537095 Stender et al. Jan 2017 B2
9593209 Dent et al. Mar 2017 B2
9593275 Tang et al. Mar 2017 B2
9598575 Bhagwagar et al. Mar 2017 B2
10056314 Lowe et al. Aug 2018 B2
10155894 Liu et al. Dec 2018 B2
10287471 Zhang et al. May 2019 B2
10312177 Zhang et al. Jun 2019 B2
10501671 Zhang et al. Dec 2019 B2
10781349 Zhang et al. Sep 2020 B2
20020018885 Takahashi et al. Feb 2002 A1
20020132896 Nguyen Sep 2002 A1
20020140082 Matayabas Oct 2002 A1
20020143092 Matayabas Oct 2002 A1
20030031876 Obeng et al. Feb 2003 A1
20030068487 Nguyen et al. Apr 2003 A1
20030112603 Roesner et al. Jun 2003 A1
20030128521 Matayabas et al. Jul 2003 A1
20030151030 Gurin Aug 2003 A1
20030159938 Hradil Aug 2003 A1
20030171487 Ellsworth et al. Sep 2003 A1
20030178139 Clouser et al. Sep 2003 A1
20030203181 Ellsworth et al. Oct 2003 A1
20030207064 Bunyan et al. Nov 2003 A1
20030207128 Uchiya et al. Nov 2003 A1
20030230403 Webb Dec 2003 A1
20040037965 Salter Feb 2004 A1
20040053059 Mistele Mar 2004 A1
20040069454 Bonsignore et al. Apr 2004 A1
20040097635 Fan et al. May 2004 A1
20040149587 Hradil Aug 2004 A1
20040161571 Duvall et al. Aug 2004 A1
20040206941 Gurin Oct 2004 A1
20050020738 Jackson et al. Jan 2005 A1
20050025984 Odell et al. Feb 2005 A1
20050045855 Tonapi et al. Mar 2005 A1
20050072334 Czubarow et al. Apr 2005 A1
20050110133 Yamada et al. May 2005 A1
20050148721 Tonapi et al. Jul 2005 A1
20050228097 Zhong Oct 2005 A1
20050256291 Okamoto et al. Nov 2005 A1
20050287362 Garcia-Ramirez et al. Dec 2005 A1
20060040112 Dean et al. Feb 2006 A1
20060057364 Nguyen Mar 2006 A1
20060094809 Simone et al. May 2006 A1
20060122304 Matayabas Jun 2006 A1
20060155029 Zucker Jul 2006 A1
20060208354 Liu et al. Sep 2006 A1
20060228542 Czubarow Oct 2006 A1
20060260948 Zschintzsch et al. Nov 2006 A2
20060264566 Cassar et al. Nov 2006 A1
20070013054 Ruchert et al. Jan 2007 A1
20070051773 Ruchert et al. Mar 2007 A1
20070097651 Canale et al. May 2007 A1
20070116626 Pan et al. May 2007 A1
20070131913 Cheng et al. Jun 2007 A1
20070161521 Sachdev et al. Jul 2007 A1
20070164424 Dean et al. Jul 2007 A1
20070166554 Ruchert et al. Jul 2007 A1
20070179232 Collins et al. Aug 2007 A1
20070219312 David Sep 2007 A1
20070241303 Zhong et al. Oct 2007 A1
20070241307 Nguyen Oct 2007 A1
20070249753 Lin et al. Oct 2007 A1
20070293604 Frenkel et al. Dec 2007 A1
20080021146 Komatsu et al. Jan 2008 A1
20080023665 Weiser et al. Jan 2008 A1
20080044670 Nguyen Feb 2008 A1
20080110609 Fann et al. May 2008 A1
20080116416 Chacko May 2008 A1
20080141629 Alper et al. Jun 2008 A1
20080149176 Sager et al. Jun 2008 A1
20080269405 Okamoto et al. Oct 2008 A1
20080291634 Weiser et al. Nov 2008 A1
20080302064 Rauch Dec 2008 A1
20090053515 Luo et al. Feb 2009 A1
20090072408 Kabir et al. Mar 2009 A1
20090111925 Burnham et al. Apr 2009 A1
20090184283 Chung et al. Jul 2009 A1
20100040768 Dhindsa Feb 2010 A1
20100048435 Yamagata et al. Feb 2010 A1
20100048438 Carey et al. Feb 2010 A1
20100075135 Kendall et al. Mar 2010 A1
20100129648 Xu et al. May 2010 A1
20100197533 Kendall et al. Aug 2010 A1
20100256280 Bruzda Oct 2010 A1
20100304152 Clarke Dec 2010 A1
20110000516 Hershberger et al. Jan 2011 A1
20110038124 Burnham et al. Feb 2011 A1
20110121435 Mitsukura et al. May 2011 A1
20110141698 Chiou et al. Jun 2011 A1
20110187009 Masuko et al. Aug 2011 A1
20110192564 Mommer et al. Aug 2011 A1
20110204280 Bruzda Aug 2011 A1
20110205708 Andry et al. Aug 2011 A1
20110265979 Chen et al. Nov 2011 A1
20110294958 Ahn et al. Dec 2011 A1
20110308782 Merrill et al. Dec 2011 A1
20120048528 Bergin et al. Mar 2012 A1
20120060826 Weisenberger Mar 2012 A1
20120087094 Hill et al. Apr 2012 A1
20120142832 Varma et al. Jun 2012 A1
20120174956 Smythe et al. Jul 2012 A1
20120182693 Boday et al. Jul 2012 A1
20120195822 Werner et al. Aug 2012 A1
20120253033 Boucher et al. Oct 2012 A1
20120280382 Im et al. Nov 2012 A1
20120285673 Cola et al. Nov 2012 A1
20120288725 Tanaka et al. Nov 2012 A1
20120292005 Bruzda et al. Nov 2012 A1
20130127069 Boday et al. May 2013 A1
20130199724 Dershem Aug 2013 A1
20130248163 Bhagwagar et al. Sep 2013 A1
20130265721 Strader et al. Oct 2013 A1
20130285233 Bao et al. Oct 2013 A1
20130288462 Stender et al. Oct 2013 A1
20130299140 Ling et al. Nov 2013 A1
20140043754 Hartmann et al. Feb 2014 A1
20140190672 Swaroop et al. Jul 2014 A1
20140264818 Lowe et al. Sep 2014 A1
20150000151 Roth et al. Jan 2015 A1
20150008361 Hattori Jan 2015 A1
20150125646 Tournilhac et al. May 2015 A1
20150138739 Hishiki May 2015 A1
20150158982 Saito et al. Jun 2015 A1
20150183951 Bhagwagar et al. Jul 2015 A1
20150275060 Kuroda et al. Oct 2015 A1
20150279762 Lowe et al. Oct 2015 A1
20150307743 Ireland et al. Oct 2015 A1
20160009865 Jiang et al. Jan 2016 A1
20160160102 Minegishi et al. Jun 2016 A1
20160160104 Bruzda et al. Jun 2016 A1
20160226114 Hartmann et al. Aug 2016 A1
20160272839 Yamamoto et al. Sep 2016 A1
20170009362 Werner et al. Jan 2017 A1
20170018481 Zeng et al. Jan 2017 A1
20170107415 Shiono Apr 2017 A1
20170137685 Liu et al. May 2017 A1
20170167716 Ezaki et al. Jun 2017 A1
20170226396 Yang et al. Aug 2017 A1
20170243849 Sasaki et al. Aug 2017 A1
20170317257 Ezaki et al. Nov 2017 A1
20170321100 Zhang et al. Nov 2017 A1
20180016404 Tselepis et al. Jan 2018 A1
20180030327 Zhang et al. Feb 2018 A1
20180030328 Zhang et al. Feb 2018 A1
20180085977 Ezaki Mar 2018 A1
20180194982 Ezaki et al. Jul 2018 A1
20180267315 Yonemura Sep 2018 A1
20180358283 Zhang et al. Dec 2018 A1
20180370189 Tang et al. Dec 2018 A1
20190048245 Liu et al. Feb 2019 A1
20190078007 Zhang et al. Mar 2019 A1
20190085225 Zhang et al. Mar 2019 A1
20190092993 Naik et al. Mar 2019 A1
20190119544 Shen et al. Apr 2019 A1
20190122954 Bruzda et al. Apr 2019 A1
20190249007 Shen et al. Aug 2019 A1
Foreign Referenced Citations (178)
Number Date Country
2311067 Jan 2001 CA
2433637 Dec 2002 CA
1407141 Apr 2003 CN
1456710 Nov 2003 CN
1549875 Nov 2004 CN
1580116 Feb 2005 CN
1638952 Jul 2005 CN
1940007 Apr 2007 CN
1970666 May 2007 CN
1972988 May 2007 CN
100351075 Nov 2007 CN
101067030 Nov 2007 CN
101113241 Jan 2008 CN
101126016 Feb 2008 CN
100394566 Jun 2008 CN
101288353 Oct 2008 CN
101445627 Jun 2009 CN
101525489 Sep 2009 CN
101090922 Aug 2010 CN
101942197 Jan 2011 CN
101735619 Nov 2011 CN
102627943 Aug 2012 CN
102634212 Aug 2012 CN
101835830 Feb 2013 CN
102348763 Apr 2013 CN
103087389 May 2013 CN
103102552 May 2013 CN
103102689 May 2013 CN
103214848 Jul 2013 CN
103254647 Aug 2013 CN
102134474 Oct 2013 CN
103333447 Oct 2013 CN
103709757 Apr 2014 CN
103756631 Apr 2014 CN
103773322 May 2014 CN
103849356 Jun 2014 CN
102341474 Sep 2014 CN
104098914 Oct 2014 CN
104136569 Nov 2014 CN
104152103 Nov 2014 CN
104194733 Dec 2014 CN
104449550 Mar 2015 CN
104471012 Mar 2015 CN
104497574 Apr 2015 CN
104513487 Apr 2015 CN
103409116 Jul 2015 CN
104804705 Jul 2015 CN
104861661 Aug 2015 CN
103436027 Oct 2015 CN
105111750 Dec 2015 CN
105349113 Feb 2016 CN
105419339 Mar 2016 CN
103131138 May 2016 CN
104479623 May 2016 CN
105566920 May 2016 CN
105670555 Jun 2016 CN
103923463 Aug 2016 CN
105838322 Aug 2016 CN
105925243 Sep 2016 CN
105980512 Sep 2016 CN
106221236 Dec 2016 CN
106243720 Dec 2016 CN
103865271 Apr 2017 CN
104140678 Apr 2017 CN
107057370 Aug 2017 CN
102007037435 Feb 2009 DE
102009001722 Sep 2010 DE
0466188 Jan 1992 EP
0519138 Dec 1992 EP
0816423 Jan 1998 EP
1099734 May 2001 EP
1291913 Mar 2003 EP
1414063 Apr 2004 EP
1149519 Nov 2004 EP
1514956 Nov 2005 EP
1224669 Apr 2006 EP
2194165 Jun 2010 EP
1629059 May 2012 EP
2848215 Jun 2004 FR
2508320 Jul 2014 GB
57-027188 Jun 1982 JP
06-209057 Jul 1994 JP
2611364 May 1997 JP
2000-143808 May 2000 JP
2001-139818 May 2001 JP
2002-003830 Jan 2002 JP
2003-218296 Jul 2003 JP
2005-032468 Feb 2005 JP
3662715 Jun 2005 JP
2006-502248 Jan 2006 JP
2007-002002 Jan 2007 JP
2007-106809 Apr 2007 JP
2007-131798 May 2007 JP
4016326 Dec 2007 JP
2008-063412 Mar 2008 JP
2009-102577 May 2009 JP
2009-138036 Jun 2009 JP
4288469 Jul 2009 JP
2009-292914 Dec 2009 JP
2010-120979 Jun 2010 JP
4480457 Jun 2010 JP
2010-248277 Nov 2010 JP
2010-248349 Nov 2010 JP
2010-278115 Dec 2010 JP
2011-144234 Jul 2011 JP
2011-165792 Aug 2011 JP
2012-119725 Jun 2012 JP
2012-201106 Oct 2012 JP
5137538 Feb 2013 JP
5269366 Aug 2013 JP
5318733 Oct 2013 JP
5372270 Dec 2013 JP
5390202 Jan 2014 JP
5463116 Apr 2014 JP
2014-105283 Jun 2014 JP
2014-194006 Oct 2014 JP
5607298 Oct 2014 JP
5687167 Mar 2015 JP
2015-212318 Nov 2015 JP
2016-506992 Mar 2016 JP
5944306 Jul 2016 JP
2016-216523 Dec 2016 JP
6323398 May 2018 JP
2019-522711 Aug 2019 JP
10-0479857 Mar 2005 KR
10-0685013 Feb 2007 KR
10-2007-0089169 Aug 2007 KR
10-2007-0116654 Dec 2007 KR
10-0820902 Apr 2008 KR
0953679 Apr 2010 KR
1175948 Aug 2012 KR
10-2015-0049376 May 2015 KR
10-2016-0130273 Nov 2016 KR
569348 Jan 2004 TW
200904959 Feb 2009 TW
200907040 Feb 2009 TW
201033268 Sep 2010 TW
201527309 Jul 2015 TW
201546257 Dec 2015 TW
8706492 Nov 1987 WO
9726297 Jul 1997 WO
0120618 Mar 2001 WO
0193648 Dec 2001 WO
0352818 Jun 2003 WO
0364148 Aug 2003 WO
2004001844 Dec 2003 WO
2004008497 Jan 2004 WO
2004022330 Mar 2004 WO
2005011146 Feb 2005 WO
2005021257 Mar 2005 WO
2005111146 Nov 2005 WO
2005119771 Dec 2005 WO
2006014171 Feb 2006 WO
2006023860 Mar 2006 WO
2007027670 Mar 2007 WO
2008014171 Jan 2008 WO
2008103219 Aug 2008 WO
2008121491 Oct 2008 WO
2008121970 Oct 2008 WO
2009032212 Mar 2009 WO
2010104534 Sep 2010 WO
2010104542 Sep 2010 WO
2013074920 May 2013 WO
2013129600 Sep 2013 WO
2013168291 Nov 2013 WO
2013191116 Dec 2013 WO
2014007119 Jan 2014 WO
2014021980 Feb 2014 WO
2014160067 Oct 2014 WO
2015120773 Aug 2015 WO
2015131370 Sep 2015 WO
2015179056 Nov 2015 WO
2016004565 Jan 2016 WO
2016103424 Jun 2016 WO
2016111139 Jul 2016 WO
2018022288 Feb 2018 WO
2018022293 Feb 2018 WO
2018068222 Apr 2018 WO
Non-Patent Literature Citations (40)
Entry
“Dynasylan 1146: Oligomeric Diamino-Silane-System” Evonik Industries, pp. 1-3, 2008.
“Hi-Flow 225F-AC Reinforced, Phase Change Thermal Interlace Material,” The Bergquist Company, 1 page, available at least as early as the filing date of the present application.
Phase Change Material: DAPCM80-1'\MH&W International Corp., May 2012, http://mhw-thermal.com, 1 pages.
“Semicosil 9212B.” Wacker Silicones Material Safety Data Sheet, pp. 1-8, printed Dec. 11, 2009.
“Therm-A-Gap HCS10,569,570,579 and 580 Thermally Conductive Gap Filler Pads,” Parker Chomerics, Engineering Your Success, pp. 11-12, available at least as early as the filing dale of the present application.
Aranzabe, Estibaliz, et al. “More than Color: Pigments with Thermal Storage Capacity; Processing and Degradation Behavior.” Advances in Materials Physics and Chemistry, 5:171-184, 2015.
Dow Corning.RTM. Two-Part RTV Silicone Sealant: Total Assembly Solutions for Home Appliance Production; www.dowcoming.com; Form No. 80-3375-01; 6 pages.
Evonik, Silanes for Adhesives and Sealants, 2013, p. 1-24.
Extended European Search Report issued in EP Application 14867847.7, dated Jun. 26, 2017, 7 pages.
Extended European Search Report issued in EP Application 15749120.0, dated Aug. 11, 2017, 6 pages.
Extended European Search Report issued in EP Application No. 14897036.1, dated Feb. 7, 2018, 7 pages.
Extended Search Report issued in EP Application 14907530.1, dated Jun. 27, 2018, 9 pages.
Fink, Johannes Karl. “Chapter 18: Metal Deactivators.” in: A Concise Introduction to Additives for Thermoplastic Polymers, Wiley-Scrivener, pp. 165-171, Jan. 1, 2010.
Gowda, Arun, et al. “Choosing the Right Thermal Interface Material.” Solid State Technology, Insights for Electronics Manufacturing, Online Blog, 9 pages, 2005. Retrieved May 25, 2017 from the Internet <http://electroiq.com/blog/2005/03/choosing-the-right-therrnal-interfa- ce-material/.
International Search Report and Written Opinion issued in PCT/CN2014/081724. dated Apr. 1, 2015, 12 pages.
International Search Report and Written Opinion issued in PCT/CN2014/093138, dated Sep. 6, 2015, 8 pages.
International Search Report and Written Opinion issued in PCT/CN2015/072202, dated Apr. 29, 2015, 14 pages.
International Search Report and Written Opinion issued in PCT/CN2016/075827, dated Dec. 1, 2016, 7 pages.
International Search Report and Written Opinion issued in PCT/CN2016/101874, dated Apr. 28, 2017, 12 pages.
International Search Report and Written Opinion issued in PCT/US2009/069090, dated Aug. 17, 2010, 6 pages.
International Search Report and Written Opinion issued in PCT/US2014/068033, dated Mar. 26, 2015, 12 pages.
International Search Report and Written Opinion issued in PCT/US2017/041498, dated Oct. 20, 2017, 10 pages.
International Search Report and Written Opinion issued in PCT/US2018/049218, dated Dec. 28, 2018, 13 pages.
International Search Report and Written Opinion issued in PCT/US2018/056870, dated Feb. 8, 2019, 9 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US17/41447, dated Oct. 19, 2017, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/049218, dated Dec. 28, 2018, 11 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/017743, dated May 28, 2019, 10 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/028908, dated Jul. 31, 2020, 11 pages.
Martyak et al., On the oxidation of tin(II) in methanesulfonate solutions and the role of sulfate, Gaivanotechnik (2005), 96(3), 594-601 (Abstract).
Ping, Ding, et al. “Preparation and Application Research of Novel Silicone Gel for High-Power IGBT.” Insulating Materials, 47(2):52-55, Chinese text with English translation of Abstract, 2014.
Ramaswamy, C., et al. “Phase Change Materials as a Viable Thermal Interface Material for High-Power Electronic Applications.” The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE, 2:687-691, 2004.
Search Report issued in Chinese patent application 201410411725X (with English Translation), report dated Jul. 6, 2016, 4 pages.
Search Report issued in CN application 201480066502.2, dated May 18, 2017, 2 pages.
Singaporean Search Report and Written Opinion issued in SG Application No. 11201704238Y, dated May 18, 2018, 9 pages.
Singaporean Written Opinion issued in SG Application No. 11201704238Y, dated Apr. 11, 2019, 5 pages.
Singaporean Written Opinion issued in SG Application No. 11201704238Y, dated Feb. 7, 2019, 7 pages.
Wacker Silicones, Catalyst EP/Inhibitor PT 88 product data sheet, p. 1-3, Oct. 6, 2008.
Yasuhiro Aoyagi et al., “Effects of antioxidants and the solild component on the thermal stability of polyol-ester-based thermal pastes”, J Mater Sci (2007) 42:2358-2375; Mar. 12, 2007.
Yasuhiro Aoyagi et al., “Polyol-Based Phase-Change Thermal Interface Materials”, Journal of Electronic Materials, vol. 35, No. 3, (2006); pp. 416-424.
Yunsheng Xu et al., “Lithium Doped Polyethylene-Glycol-Based Thermal Interface Pastes for High Thermal Contact Conductance”, Transactions of the ASME; Journal of Electronic Packagiing, vol. 124, Sep. 2002; pp. 188-191.
Related Publications (1)
Number Date Country
20200343154 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
62837442 Apr 2019 US