Gels having permanent tack free coatings and method of manufacture

Information

  • Patent Grant
  • 9642608
  • Patent Number
    9,642,608
  • Date Filed
    Thursday, July 16, 2015
    9 years ago
  • Date Issued
    Tuesday, May 9, 2017
    7 years ago
Abstract
The present invention is directed to tack-free gels and to methods for manufacturing a tack-free gel pad, in which a discontinuous layer of fluorinated ultrahigh molecular weight polyethylene is permanently bonded to the gel pad to provide a tack-free coating. The gel pad may be incorporated into a gel cap to provide a surgical access device having a tack-free surface.
Description
BACKGROUND

Technical Field


This invention generally relates to gels having tack-free coatings and, more specifically, to methods for manufacturing gels having a permanent tack-free coating. Such gels are particularly useful when incorporated into surgical devices such as access ports.


Description of the Related Art


A “gel” is often defined as a semisolid condition of a precipitated or coagulated colloid. Despite its derivation from the Latin word gelare “to freeze,” gels differ widely in their fluid/solid characteristics, ranging from more fluid gels, such as those found in gel toothpastes, to more solid gels, such as those used in bicycle seat pads.


Gels tending toward the “solid” end of the spectrum are commonly used to facilitate load distribution. Gels enhance this function by offering a high degree of compliance, which basically increases the amount of area available to support a load. With an increased area of support, the load is accommodated at a considerably reduced pressure. Particularly where the human body is involved, a reduced pressure is desirable in order to maintain capillary blood flow in body tissue. It is with this in mind that gels are commonly used for bicycle seats, wrist pads, insole supports, as well as elbow and shoulder pads.


Gels have been of particular interest in the formation of seals, where the high compliance and extensive elongation of the gel are of considerable value. Such is the case with seals used in trocars and other surgical access devices, including access ports, in which a seal must be formed both in the presence of a surgical instrument (or surgeon's hand) and in the absence of a surgical instrument.


In general, an access device is a surgical device intended to provide access for surgical instruments across a body wall, such as the abdominal wall, and into a body cavity, such as the abdominal cavity. Often, the body cavity is pressurized with a gas, typically carbon dioxide, to enlarge the operative volume of the working environment. Under these conditions, the access device must include appropriate seals to inhibit loss of the pressurizing gas, both with and without a surgical instrument disposed through the seal. Seals formed from a gel material provide a high degree of compliance, significant tear strength and exceptional elongation and thus are particularly useful in access ports.


While the advantageous properties of gels have made them candidates for many applications, one disadvantage has seriously limited their use. Most gels are extremely tacky. This characteristic alone makes them difficult to manufacture and aggravating to use.


Attempts have been made to produce gels that are naturally non-tacky. Such naturally non-tacky gels, however, are not particularly heat tolerant, as low amounts of heat can rapidly cause the materials to take a set and distort, particularly under compressive loads. This can occur over an extended period of time, for example, even at normal room temperatures.


Attempts have been made to enclose tacky gels in a non-tacky pouch. This has also tended to mask the advantageous properties and to significantly increase manufacturing costs.


Lubricants such as silicone oil have been applied to the surface to reduce tackiness. Unfortunately, these lubricants tend to dry out over time leaving the gel in its natural tacky state.


Powders, including starch, have been applied to the tacky surfaces with results limited in both duration and effect. In addition, the use of a starch based powder as a blocking agent and the application of the blocking agent during production increases the cost of manufacture and may necessitate additional cleaning steps, greatly increasing the manufacturing time for producing powdered gel products.


Starch blocking agents further complicate manufacturing by providing a growth medium for bacteria and other microorganisms. Medical devices incorporating gels are typically irradiated at a higher than normal sterilization dose to compensate for this. However, higher sterilization doses are known to compromise mechanical properties of the device materials. Also, because corn starch is not permanently fused to the gel surface, it is easily removed by wetting, revealing the tacky gel and generating corn starch residue.


As noted above, the best gel materials tend to exhibit surfaces that are very tacky. The use of a tacky gel can make the processes of manufacturing and using gels in seals and access devices extremely difficult. A tacky gel also produces significant drag forces during instrument insertion. Furthermore, the tacky surfaces tend to draw and retain particulate matter during the manufacturing and handling processes. For these reasons it is even more desirable to render the highly tacky gel surfaces non-tacky in the case of medical devices such as access ports and other such devices.


SUMMARY

The present invention is directed to tack-free gels and to methods for manufacturing a tack-free gel pad, comprising the steps of providing a mold; applying a fluorinated ultrahigh molecular weight polyethylene to the mold; heating a gel slurry beyond its curing temperature to a molten state, to thereby produce a molten gel; injecting the molten gel into the mold; and cooling the mold until the gel is set to thereby produce a tack-free gel.


In one embodiment, the mold is textured prior to applying the fluorinated ultrahigh molecular weight polyethylene by spraying the mold with blast media. In another embodiment, the mold is preheated to a temperature of approximately 220° F. to approximately 260° F. prior to applying the fluorinated ultrahigh molecular weight polyethylene. Alternatively, the fluorinated ultrahigh molecular weight polyethylene is applied to the mold by electrostatic coating.


In one embodiment, the fluorinated ultrahigh molecular weight polyethylene comprises a powder having a particle size of approximately 5 μm to approximately 100 μm.


In one embodiment, the mold is preheated to a temperature of approximately 110° F. to approximately 160° F. prior to injecting the molten gel.


In one embodiment, the gel slurry comprises an oil and a elastomer or elastomer. In one embodiment, the gel slurry comprises a ratio by weight of oil to elastomer of approximately 7:1 to 10:1. The oil may comprise a mineral oil and the elastomer may comprise block copolymer styrene-ethylene/butylene-styrene polymer.


In another embodiment of the method, the gel slurry is bulk degassed prior to heating the gel slurry to a molten state. In one embodiment, the gel slurry is bulk degassed at a temperature of approximately 120° F. to approximately 130° F.


An alternative method for making a tack-free gel comprises the steps of: providing a mold; applying a fluorinated ultrahigh molecular weight polyethylene to the mold; preheating the mold to a temperature of approximately 110° F. to approximately 160° F.; heating a gel slurry to a temperature of approximately 125° F.; degassing the gel slurry; dispensing the gel slurry into the mold; degassing the gel slurry a second time; and curing the gel in the mold at a temperature of approximately 140° F. to approximately 160° F. to provide a tack-free gel.


In this embodiment, the gel slurry comprises an oil and an elastomer. The oil may comprise a mineral oil and the elastomer may comprise styrene-ethylene/butylene-styrene polymer. The mold may be textured prior to applying the fluorinated ultrahigh molecular weight polyethylene by spraying the mold with blast media.


The present invention is also directed to surgical access devices adapted to provide access to a cavity in a patient while maintaining a seal between the cavity and an area outside the patient, the access device comprising a gel cap comprising a ring and a gel pad; wherein the ring is configured for alignment with an axis of an access channel defined at least in part by an incision extending through a body wall of a patient, wherein the gel pad is coupled with the ring, disposed substantially within the ring and supported at least partially thereby, the gel pad comprises a mixture of an elastomer and an oil, the gel pad comprises a self-sealing valve and defines at least a portion of an access channel, the self-sealing valve is configured to conform around an object extending through the self-sealing valve and seal the working channel in the absence of an object extending through the self-sealing valve, and wherein a discontinuous layer of polyethylene powder is permanently bonded to an outer surface of the gel pad to thereby create a tack-free surface.


In one embodiment, the polyethylene powder comprises at least one of fluorinated ultrahigh molecular weight polyethylene, unmodified ultrahigh molecular weight polyethylene, oxidized ultrahigh molecular weight polyethylene, high density polyethylene, medium density polyethylene, and low density polyethylene.


In one embodiment, the elastomer comprises at least one of polyurethane, polyvinylchloride, polyisoprene, a thermoset elastomer, a thermoplastic elastomer, a tri-block copolymer, styrene-ethylene/butylene-styrene block copolymer, styrene-isoprene-styrene, styrene-butadiene-styrene, styrene-ethylene/propylene-styrene.


In one embodiment, the oil comprises at least one of mineral oil, vegetable oil, petroleum oil, and silicone oil.


In one embodiment, the gel cap of surgical access device is configured to attach to an adjustable wound retractor.


The present invention is also directed to a method for making a tack-free gel, comprising the steps of providing a polyethylene mold; heating a gel slurry beyond its curing temperature to a molten state, to thereby produce a molten gel; dispensing the molten gel into the mold; and cooling the mold until the gel is set to thereby produce a tack-free gel.


The present invention is also directed to a method for making a tack-free gel, comprising the steps of providing a mold; spraying the mold with a polyethylene spray; heating a gel slurry beyond its curing temperature to a molten state, to thereby produce a molten gel; dispensing the molten gel into the mold; and cooling the mold until the gel is set to thereby produce a tack-free gel.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a top perspective view of an access device of the present invention;



FIG. 2 depicts a bottom perspective view of the access device of FIG. 1;



FIG. 3 depicts a top perspective view of a multiple-piece cap having squeeze release buckle connectors molded into the ends of the pieces forming the cap;



FIG. 4 depicts a top perspective view of one of the pieces of the cap having a male squeeze release buckle connector fitting at one end and a female squeeze release buckle connector fitting at the other end;



FIG. 5 depicts a top perspective view of a cap having a gap with a latch pivotally coupled on one side of the gap and a groove for accepting the latch on the other side of the gap;



FIG. 6 depicts a top perspective view of a cap having latches for releasable coupling the cap to a retainer;



FIG. 7 depicts a side view of the cap of FIG. 6;



FIG. 8 depicts a top perspective view of an access device of the present invention including a cap and a retainer, the retainer having a plurality of snaps for releasably coupling the retainer to the cap;



FIG. 9 depicts a top perspective view of the cap of FIG. 8;



FIG. 10 depicts a top perspective view of the retainer of FIG. 8;



FIG. 11 depicts a section view depicting the interaction between the cap and the retainer of FIG. 8;



FIG. 12 depicts a top perspective view of an access device of the present invention including a cap and a retainer, the cap having a plurality of snaps for releasably coupling the cap to the retainer;



FIG. 13 depicts a top perspective view of the cap of FIG. 12;



FIG. 14 depicts a top perspective view of the retainer of FIG. 12;



FIG. 15 depicts a section view depicting the interaction between the cap and the retainer of FIG. 12.



FIG. 16 depicts a flow diagram illustrating one process for producing a tack-free gel cap.





DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

Disclosed herein is a method for producing a tack-free gel. Although described in reference to medical products, and more specifically, to gel pads for use in access systems for laparoscopic surgery, such gels may be used in a wide variety of applications, including non-medical uses, and all such applications are contemplated by this disclosure.


In FIGS. 1 and 2, a surgical access device 50 according to one aspect of the present invention is shown. The device includes a retainer 52 and a cap 54. The cap 54 and the retainer 52 are both substantially annular and both include an opening therethrough. The retainer 52 is adapted to be placed against a body wall. The retainer 52, in one aspect, is rigid and is associated with and/or capable of being coupled to an elongate sleeve 56. The surgical access device 50 is adapted for disposition relative to an incision in a body wall. The surgical access device 50 also facilitates insertion of an instrument through the access device and maintenance of a sealing relationship with the instrument.


In one aspect, the elongate sleeve 56 extends through an incision to a point where an attached retention ring 58 contacts the interior portions of the body cavity and provides tension between the retainer 52 outside the body cavity and the retention ring. The retainer 52 in one aspect also supports or otherwise enables a portion of the elongate sleeve 56 to remain outside of the body cavity. Additionally, the retainer 52, retention ring 58 and elongate sleeve 56 together allow the incision to be retracted and isolated during a surgical procedure. In one aspect, the elongate sleeve 56 and aspects thereof is a wound retractor type device such as described in U.S. Pat. No. 7,650,887, the disclosure of which is hereby incorporated by reference as if set forth in full herein.


As shown, the retainer 52 and retention ring 58 are circular, but as one skilled in the art would appreciate, they may be of different shapes and sizes. The retainer 52 in one aspect may be either rigid, flexible or a combination of both. The retention ring 58 may be flexible to facilitate insertion into the body cavity. As will be described in more detail, the access device 50 includes coupling means that are adapted for coupling the cap 54 and the retainer 52 together.


A gel pad 60 may be coupled to, attached to, formed or integrated with the cap 54 so that a gas-tight conduit is formed between the cap and the sleeve 56. The gel pad 60 covers and seals the entire opening in the cap 54. In one aspect, the gel pad includes a plurality of intersecting dead-end slits 62, 64 that form an access portion or passage through the gel pad 60. Unlike foam rubber or other similar types of elastic materials, the gel pad 60 provides a gas tight seal around a variety of shapes and sizes of hands or instruments inserted therethrough.


In one aspect, the gel material from which the gel pad 60 is made is an elastomeric gel. Some such gels have been described in U.S. Pat. No. 7,473,221, U.S. Pat. No. 7,481,765, U.S. Pat. No. 7,951,076 and U.S. Pat. No. 8,105,234, the disclosures of which are hereby incorporated by reference as if set forth in full herein. The gel can be prepared by mixing a triblock copolymer with a solvent for the midblocks. The endblocks are typically thermoplastic materials such as styrene and the midblocks are thermoset elastomers such as isoprene or butadiene, e.g., Styrene-Ethylene-Butylene-Styrene (SEBS). In one aspect, the solvent used is mineral oil. Upon heating this mixture or slurry, the midblocks are dissolved into the mineral oil and a network of the insoluble endblocks forms. The resulting network has enhanced elastomeric properties over the parent copolymer. In one aspect, the triblock copolymer used is KRATON G1651, which has a styrene to rubber ratio of 33/67. Once formed, the gel is substantially permanent and, by the nature of the endblocks, processable as thermoplastic elastomers henceforward. The mixture or slurry has a minimum temperature at which it becomes a gel, i.e., the minimum gelling temperature (MGT). This temperature, in one aspect, corresponds to the glass transition temperature of the thermoplastic endblock plus a few degrees. For example, the MGT for the mixture of KRATON G1651 and mineral oil is about 120° C. When the slurry reaches the MGT and the transformation to a gel state takes place, the gel becomes more transparent, thereby providing means for visually confirming when the transformation of the slurry to the gel state is substantially complete and that the gel may be cooled. In addition to triblocks, there are also diblock versions of the materials that may be used where Styrene is present at only one end of the formula, for example, Styrene-Ethylene/Butylene (SEB).


For a given mass of slurry to form into a complete gel, the entire mass of the slurry is heated to the MGT and remains heated at the MGT for sufficient time for the end blocks to form a matrix of interconnections. The slurry will continue to form into gel at temperatures above the MGT until the slurry/gel reaches temperatures at which the components within the slurry/gel begin to decompose or oxidize. For example, when the slurry/gel is heated at temperatures above 250° C., the mineral oil in the slurry/gel will begin to be volatile and oxidize. Oxidizing may cause the gel to turn brown and become oily.


The speed at which a given volume of slurry forms a gel is dependent on the speed with which the entire mass of slurry reaches the MGT. Also, with the application of temperatures higher than the MGT, this speed is further enhanced as the end block networks distribute and form more rapidly.


The various base formulas may also be alloyed with one another to achieve a variety of intermediate properties. For example, KRATON G1701X is a 70% SEB 30% SEBS mixture with an overall Styrene to rubber ratio of 28/72. It can be appreciated that an almost infinite number of combinations, alloys, and Styrene to rubber ratios can be formulated, each capable of providing advantages to a particular embodiment of the invention. These advantages will typically include low durometer, high elongation, and good tear strength.


It is contemplated that the gel material may also include silicone, soft urethanes and even harder plastics that might provide the desired sealing qualities with the addition of a foaming agent. The silicone material may be of the types currently used for electronic encapsulation. The harder plastics may include PVC, Isoprene, KRATON neat, and other KRATON/oil mixtures. In the KRATON/oil mixture, oils such as vegetable oils, petroleum oils and silicone oils may be substituted for the mineral oil.


Any of the gel materials contemplated could be modified to achieve different properties such as enhanced lubricity, appearance, and wound protection. Additives may be incorporated directly into the gel or applied as a surface treatment. Other compounds may be added to the gel to modify its physical properties or to assist in subsequent modification of the surface by providing bonding sites or a surface charge. Additionally, oil based colorants may be added to the slurry to create gels of different colors.


The ratio of mineral oil to KRATON G1651 may be varied depending on the desired gel characteristics and the method of casting the gel pad. In one aspect, the mixture/slurry used with the various embodiments of the caps that are described herein are composed of about 90% by weight of mineral oil and about 10% by weight of KRATON G1651, a nine to one ratio. This is particularly useful in cold cast processes, as described herein. In another aspect, the mixture/slurry are composed of about 89% by weight of mineral oil and about 11% by weight of KRATON G1651, an eight to one ratio. This is preferred for use in hot cast processes, also as described herein. From a thermodynamic standpoint, these mixtures behave similar to mineral oil. Mineral oil has a considerable heat capacity and, therefore, at about 130° C. it can take 3 or 4 hours to heat a pound of the slurry sufficiently to form a homogeneous gel. Once formed, the gel can be cooled as quickly as practical with no apparent deleterious effects on the gel. This cooling, in one aspect, is accomplished with cold-water immersion. In another aspect, the gel may be air-cooled. Those familiar with the art will recognize that other cooling techniques that are well known in the art may be employed and are contemplated as within the scope of the present invention.


Many of the properties of the KRATON/oil mixture will vary with adjustments in the weight ratio of the components. In general, the greater the percentage of mineral oil the less firm the mixture; the greater the percentage of KRATON, the more firm the mixture. If the resultant gel is too soft it can lead to excessive tenting or doming of the gel cap during surgery when a patient's abdominal cavity is insufflated. Excessive tenting or doming may cause the slits 62, 64 to open, providing a leak path. Additionally, if the gel is too soft it might not provide an adequate seal. However, the gel should be sufficiently soft to be comfortable for the surgeon while simultaneously providing good sealing both in the presence of an instrument and in the absence of an instrument.


If the slurry is permitted to sit for a prolonged period of time, the copolymer, such as KRATON, and the solvent, such as mineral oil, may separate. The slurry may be mixed, such as with high shear blades, to make the slurry more homogeneous. However, mixing the slurry may introduce or add air to the slurry. To remove air from the slurry, the slurry may be degassed. In one aspect, the slurry may be degassed in a vacuum, such as within a vacuum chamber. In one aspect, the applied vacuum may be 0.79 meters (29.9 inches) of mercury, or about 1.0 atmosphere. The slurry may be stirred while the slurry is under vacuum to facilitate removal of the air. During degassing within a vacuum, the slurry typically expands, then bubbles, and then reduces in volume. The vacuum may be discontinued when the bubbling substantially ceases. Degassing the slurry in a vacuum chamber reduces the volume of the slurry by about 10%. Degassing the slurry helps reduce the potential of the finished gel to oxidize.


Degassing the slurry tends to make the resultant gel firmer. A degassed slurry composed of about 91.6% by weight of mineral oil and about 8.4% by weight of KRATON G1651, an eleven-to-one ratio, results in a gel having about the same firmness as a gel made from a slurry that is not degassed and that is composed of about 90% by weight of mineral oil and about 10% by weight of KRATON G1651, a nine-to-one ratio.


Mineral oil is of a lighter density than KRATON and the two components will separate after mixing, with the lighter mineral oil rising to the top of the container. This separation may occur when attempting to form static slurry into gel over a period of several hours. The separation can cause the resulting gel to have a higher concentration of mineral oil at the top and a lower concentration at the bottom, e.g., a non-homogeneous gel. The speed of separation is a function of the depth or head height of the slurry being heated. The mass of slurry combined with the head height, the temperature at which the gel sets and the speed with which the energy can be transferred to the gel, factor into the determination or result of homogeneous gel versus a non-homogeneous gel.


The gel pad or gel cap in various aspects of the present invention may be gamma sterilized. The relative or comparative simplicity of qualifying the sterilization process, for example of gamma versus ethylene oxide, of the gel pad and the device with the gel pad is desirable. However, under gamma sterilization large bubbles can form in the gel pad causing potential cosmetic or aesthetic issues in the sterilized devices. The bubbles are more than 99% room air, so removal of the dissolved air in the slurry is performed prior to forming the slurry into gel. For example, the slurry may be degassed via vacuum, as described above, and turned into gel by heat. Bubbles may still form in the gel during gamma sterilization but disappear in a period of about 24 to 72 hours. In one aspect, the percentage of dissolved gas in the mineral oil at room temperature is about 10%. The removal of the air in the gel has an additional effect of making the gel firmer. This however is counterbalanced by the softening effect on the gel caused by gamma radiation during gamma sterilization.


If the gel pad is to be gamma sterilized, the gel may include about 89%-90% mineral oil by weight and about 10%-11% KRATON by weight. As stated above, degassing the slurry has the effect of making the gel firmer. However, the gamma radiation softens the gel to substantially the same firmness as a gel having about 89%-90% mineral oil by weight and about 10%-11% KRATON by weight that is not degassed and gamma sterilized.


In one aspect, cyanoacrylate, e.g., SUPERGLUE or KRAZY GLUE, may be used to bond or otherwise couple or attach the gel pad 60 to the cap 54. The glue may attach to either the rubber or styrene component of the tri-block and the bond is frequently stronger than the gel material itself. In another aspect, a solvent may be used to dissolve the plastics in the cap and the polystyrene in the gel. The solution of solvent is applied to the gel pad and cap in either a spray or dip form. In effect, the solution melts both the plastic of the cap as well as the polystyrene in the gel pad to allow a chemical bond to form between the two, which remains when the solvent evaporates.


Polyethylene can be dissolved in mineral oil and then applied to the gel pad. The mineral oil will not evaporate but will over time absorb into the gel pad and impart a polyethylene layer on the gel pad that may have some beneficial properties.


In one aspect, the gel pad 60 is cast into a DYNAFLEX or KRATON polymer support structure, e.g., the cap 54. By using KRATON polymer or a similar material in the cap, ring adhesion between the gel pad 60 and the cap 54 can be achieved. The polystyrene in the gel is identified as achieving adhesion with polyphenylene oxide (PPO), polystyrene and other polymers.


The cap 54, in one aspect, includes a polymer, e.g., polyethylene (PE). In one aspect, the polyethylene is a low density polyethylene (LDPE) or high density polyethylene (HDPE), or ultrahigh molecular weight polyethylene (UHMWPE). In one aspect, the cap 54 may be made of a polymer, such as polycarbonate and may be fabricated by methods including injection molding.


The gel includes mineral oil. PE has a higher molecular weight than mineral oil. PE is dissolved by mineral oil at high temperatures. As such, as the PE and the mineral oil in the gel pad 60 intermix as both are heated to and held at temperatures above about 130° C., a bond between the PE and gel pad is formed.


In one aspect, the cap 54 includes polycarbonate. The polycarbonate of the cap 54 does not form bonds with the gel pad 60 at 130° C. However, by raising the temperature to about 150° C. for a few minutes during casting, bonding occurs between the gel pad 60 and the cap 54. As such, heating the gel pad 60 and cap 54 to temperatures at which both the polystyrene of the gel and the polycarbonate are simultaneously beyond their melt points allow bonds to form between the gel pad and the cap. Alternatively, the gel pad 60 and cap 54 may be heated to near or at the glass transition temperature of the polycarbonate cap to form the bond between the gel pad and the cap.


Referring to FIGS. 3-5, the cap 100, 130 includes at least one gap 101, 132 along the annular perimeter of the cap. The at least one gap 101, 132 creates at least one first end 103, 134 and at least one second end 105, 138 of the cap 100, 130. The gap 101, 132 facilitates a transition in the cap from a first, larger periphery to a second, smaller periphery. As will be discussed in more detail below, the cap 100, 130 includes means for maintaining the cap at the second, smaller periphery. When the cap 100, 130 is set at the first, larger periphery, the retainer 52 (FIG. 1) may be inserted into or removed from the opening of the cap. The retainer 52 (FIG. 1) may be fixedly coupled to the cap 100, 130 by transitioning the perimeter of the cap to the second, smaller periphery while the retainer is positioned within the opening of the cap, and maintaining the periphery of the cap at the second, smaller periphery with the maintaining means.


Referring to FIGS. 3-4, the cap 100 incorporates squeeze release buckles 102 molded into or otherwise coupled to the cap. The cap 100 includes a first arc 108 and a second arc 110, the first and second arcs being separated by first and second gaps 101. The first arc 108 has a first barbed portion 112 extending from a first end and adapted to be inserted in a snap fit mating relationship with a second, receiver portion 114 extending from a second end of the second arc 110, thereby coupling the at least one first end 103 of the cap 100 to the at least one second end 105 of the cap. Another barbed portion 112 may extend from the first end of the second arc 110, which is operationally inserted in a snap fit mating relationship with another receiver portion 114 extending from the second end 105 of the first arc 108. In another aspect, the first arc 108 has a barbed portion 112 on each end of the arc with the second arc 110 having corresponding receiver portions 114 on each end of the second arc.


With the first and second arcs 108, 110 placed adjacent to each other, such that the first end 103 of the first arc corresponds with the second end 105 of the second arc and the second end 105 of the first arc corresponds with the first end 103 of the second arc, and prior to being snapped together, the arcs define a first, larger periphery to allow placement of a retainer 52 (FIG. 1) between the two arcs. The barbed portions 112 engage with corresponding receivers 114 coupling the arcs together. Each barbed portion has a plurality of resilient arms 122, two of which have projections 124 extending therefrom. Each receiver 114 has corresponding sidewalls 126 for engaging projections 124 from the barbed portion, which causes the arms 122 to flex towards each other as the arms slide into a channel 128 defined by the receiver. As the projections 124 clear the ends of the sidewalls 126, the arms 122 are allowed to flex away from each other. Engagement or contact between the edges of the projections 124 with edges of the end of the sidewall 126 prevents the arcs 108, 110 from being detached from each other. By coupling the two arcs 108, 110 together, the delimited circumference is reduced to a second, smaller periphery to capture or hold the retainer 52 (FIG. 1). Flexing the arms 122 toward each other allows the barbed portions 112 to disengage from the sidewalls of the corresponding receiver 114 and to slide out from the receiver, thereby allowing the arcs 108, 110 to separate and detach from the retainer 52 (FIG. 1).


Although not shown, additional barbed portions and receiver snap engagements may be included in each arc to assist in the coupling between the cap 100 and the retainer 52 (FIG. 1) or allow for other size and shape configurations of the cap and/or retainer. In one aspect, the cap 100 includes a single gap 101 and a single barbed portion 112 and receiver portion 114 is provided. In one aspect the cap 100 having the single barbed portion 112 and receiver portion 114 may be provided with a hinge or pivot on another portion of the arc.


Referring now to FIG. 5, a cap 130 has a gap or opening 132 along a portion of the periphery of the cap. A latch 136 is hinged or pivotally coupled to the cap proximate a first end 134 of the opening 132 of the cap 130. Proximate a second, opposite end 138 of the opening 132, a latch receiver, such as an aperture or channel 140 defined by substantially parallel channel walls 142, 144, is configured to releasably receive the latch 136. The latch 136 has a shaft 146 coupled to the cap 130 on one end and an enlarged or bulbous head 148 having a perimeter or diameter larger than the perimeter or diameter of the shaft on the non-hinged end of the latch. The head 148 of the latch 136 is configured to be graspable and the latch swung so that the head may engage and be held in the channel 140 defined by the channel walls 142, 144. The width of the channel 140 is smaller than the diameter of the head 148 of the latch 136 and the channel walls 142, 144 are resilient such that the walls flex away from each other during receipt of the head of the latch. Alternatively, or additionally, portions of the head 148 may compress so that the head may be received and held in the channel 140. In one aspect, one or more projections extend from one or both channel walls 142, 144 and engage notches in the head 148, or vice versa, to secure the latch 136 to the channel 140.


In this manner, with the latch 136 open or not engaged with the channel 140, the initial periphery of the cap 130 allows simple placement of the retainer 52 (FIG. 1) within the periphery of the cap. Actuating the latch 136 closes the cap 130 and reduces the size of the periphery delimited by the cap, thereby securing the cap to the retainer 52 (FIG. 1).


Referring back to FIGS. 3-5, with the cap 100, 130 being separable or otherwise disjointed, placement of the respective retainer 52 (FIG. 1) within the inner periphery of the cap is eased. Subsequent joining or recoupling of the cap together secures the retainer and cap to each other. As such, one skilled in the art would recognize that other types of couplings or engagements may be used to couple or join separate portions of the cap and/or the retainer together to close or delimit a periphery to encase or otherwise secure the cap and the retainer together and vice versa. In one aspect, the retainer, or both the retainer and the cap, are separable, having couplings and/or engagements to recouple the separate portions together to secure the cap and retainer to each other.


In FIGS. 6-7, the retainer 150 has one or more latches 152 to releasably couple the retainer to a cap 54 (FIGS. 1 and 2). In one aspect, a plurality of latches 152 is spaced along the periphery of the retainer 150. The latches 152 are hinged or pivotally coupled to the retainer 150 and are spaced along the periphery of the retainer. In one aspect, each of the latches is coupled to the retainer 150 with a live hinge. In a first position, the latches 152 extend laterally from the periphery of the retainer 150 in a substantially planar relationship with the retainer. Each latch 152 has a projection 156 extending substantially orthogonally from the latch. After placing or fitting the cap 54 on the retainer 150 and/or vice versa, the latches 152 are actuated to couple the cap and retainer together. In particular, the latches 152 are rotated toward the cap to a second position in which the latches engage a portion or edge of the cap 54 to couple the retainer to the cap. In one aspect, the engagement portion of the cap 54 is an opening, aperture, notch, step, projection or other similar type of receiver or engagement to secure the projection of the latch 152 to the cap.


In one aspect, one or more of the latches 152 has notches or openings for receiving corresponding projections or protrusions extending laterally from the cap 54 to couple the retainer 150 to the cap. Additionally or alternatively, although not shown, the cap may have one or more latches hinged along the periphery of the cap for engagement with portions or edges of the retainer to releasably couple the cap and retainer together.


Referring now to FIGS. 8-11, the retainer 160 has one or more resilient snaps 162 for releasably coupling the retainer and a cap 164 together. The snaps 162 extend from the outer periphery or edge of the retainer 160 in a substantially perpendicular direction from a substantially planar, annular surface 166 of the retainer. The planar, annular surface 166 of the retainer 160 secures the sleeve 56 (FIGS. 1 and 2) to the retainer. In one aspect, the surface 166 has projections or hooks to catch and secure the sleeve 56 to the retainer 160 under tension. The edge of the retainer 160 is also slightly raised to assist in the holding of the sleeve 56 and the handling of the retainer.


Multiple snaps 162 may be spaced along the periphery of the retainer 160. In one aspect, portions of the edge of the retainer 160 adjacent to each snap are elevated, thereby forming sidewall portions 167 on either side of each snap. The sidewall portions 167 protect the snaps 162 and strengthen or bolster the coupling between the retainer 160 and the cap 164 once coupled together. Additionally, the sidewall portions 167 facilitate handling and coupling the retainer 160 to the cap 164. Corresponding openings or cutouts 169 are disposed along the edges of the cap 164 to receive the sidewall portions 167 of the retainer 160.


Each snap 162 also has a projection 168 extending substantially perpendicular and radially inwardly from the snap. After placing or fitting a cap 164 on the retainer 160 and/or vice versa, both are squeezed together. The snaps 162 are configured to flex or deflect radially outwardly to slide over a corresponding receiver portion 170, such as a lip portion or an edge, of the cap 164 when the cap and retainer are brought together in a mating relationship. The snaps 162 are also configured to return toward a neutral position after the projection 168 on the snaps pass the receiver portion 170 of the cap 164 such that the projection of the snaps engages the receiver portion 170 of the cap. The receiver portion 170 in one aspect has an opening, aperture, notch, step, projection or other similar type of receiver or engagement means to secure the projection 168 of the snap 162 to the cap 164. Alternatively, one or more of the snaps 162 have notches or openings (not shown) for receiving corresponding projections or protrusions (not shown) extending from the cap to secure the snaps of the retainer 160 to the cap 164. The cap 164 and retainer 160 may each be made via injection molding. Additionally, the cap 164 and retainer 160 may each be made of a polycarbonate material.


In one aspect, as shown in FIGS. 12-15, a cap 180 has one or more snaps 182 for releasably coupling the cap to a retainer 184. The snaps 182 extend perpendicularly from the periphery of the cap 180 for engagement with portions 188, such as corresponding lip portions, and/or edges of the retainer 184. Each snap 182 has a projection 186 extending substantially perpendicular and radially inwardly from the snap. After placing or fitting the cap 180 on the retainer 184, both are squeezed together. The snaps 182 flex or deflect radially outwardly to slide over the lip or edge 188 of the retainer 184 when the cap 180 and retainer are brought together in a mating relationship, thereby securing the cap, retainer and sleeve 56 disposed therebetween. Each snap 182 is configured to return toward a neutral position after the projection 186 on the snap passes the lip portion 188 of the retainer 184 such that the projection of the snap engages the lip portion of the retainer.


Referring now to FIGS. 1-15, the retainers and caps previously described in one aspect are rigid, thereby providing manufacturing benefits as well as easing the assembly of the device. In one aspect, the caps 54, 70, 90, 100, 130, 164, 180 also incorporate an inner cylindrical wall 172 (see FIG. 9) to which the gel pad 60 is bonded or otherwise coupled or attached to the cap. In this manner, the gel pad 60 attaches to a “skeleton” inside the sleeve 56 and provides a sealing area between the device and the wound, incision and/or body cavity. The coupling or intersection of the sleeve, cap and retainer together also provides another sealing area between the device and the body.


By securing the gel pad 60 to the inner cylindrical wall 172, the thickness of the gel pad and corresponding cap 54, 70, 90, 100, 130, 164, 180 is minimized along with the overall footprint of the device. A reduced thickness and overall size of the device provides a lighter device and allows for easier hand or instrument exchanges. With the gel pad thickness reduced and the gel pad being able to be substantially flush or recessed in the cap, the “doming” phenomena produced by gas pressure exerted on the body and device during insufflation is also reduced.


In various aspects (FIGS. 6-15) in accordance with the present invention, the retainer 150, 160 has a raised edge 158, 174 disposed around the outer periphery of the retainer. A raised edge 159, 190, in one aspect, is also disposed around the inner periphery of the retainer 150, 184. The inner periphery defines an opening 157, 192 through which the sleeve extends. The outer raised edge 158, 174 assists in maintaining or securing the releasable coupling between the cap and the retainer. In one aspect, a groove 129 (FIG. 3) extends along the circumference of the cap for receiving the outer raised edge to further enhance the coupling between the cap and retainer. Similarly, the inner raised edge assists in maintaining or securing the releasable coupling between the retainer and the sleeve. The inner raised edge also facilitates the seal between the inner cylindrical wall and/or gel pad, the sleeve and the retainer. In one aspect, notches or spaced valleys or openings 155 (FIG. 6) are disposed along the inner raised edge 159, which facilitates the engagement of the inner cylindrical wall and/or gel pad with the retainer by reducing binding between the components.


Several of the above-described attachments could be modified to integrate the retainer or a retainer like component directly into a sleeve to which the cap is releasably coupled. Similarly, the cap may be integrated directly into the retainer and/or sleeve creating a non-releasable coupling between the components.


In one aspect, casting the gel pad 60 into the cap 54 to form a gel cap 66 includes placing the cap into a mold cavity of a casting mold. The mold cavity may include support for the annular walls of the cap 54. The mold may be made of aluminum, copper, brass, or other mold material having good heat dissipation properties. However, those familiar with the art will recognize that other mold materials having lower heat dissipation properties will produce acceptable parts and these are contemplated as within the scope of the present invention as well.


In another aspect, the gel pad 60 may be molded separately from the cap 54 and coupled to the cap 54 by a secondary operation, such as by bonding. In one aspect, the gel pad 60 may be molded into a gel slug 60 having an outer perimeter smaller than the inner cylindrical wall of the cap 54 and to a height higher that the height of the cap. The gel slug 60 may then be placed within the inner cylindrical wall of the cap 54. The gel slug 60 may be cooled and/or frozen prior to placing it within the inner cylindrical wall of the cap 54. The gel slug 60 may be coupled to the cap 54 through compression molding with the gel slug being compressed longitudinally so that the outer perimeter of the gel slug expands and compresses against the inner cylindrical wall of the cap. The gel slug 60 and cap 54 are heated to a sufficient temperature for the polystyrene of the gel and the polymer of the cap to form bonds between the gel and the cap. Molding the gel slug 60 separately from the cap 54 and heat bonding the gel slug to the cap at a later time is especially useful when the cap is made of a material that has a lower melting temperature than the MGT. In such situations, the gel slug 60 can be molded first and heat bonded to the cap 54 without melting the cap.


Whether molded with the cap or separately, when removed from the mold, the gel pad 60 typically has a tacky surface. In the present invention, the process for manufacturing the gel pad is modified to produce a permanent tack-free coating.


The process integrates powdering and casting steps into one continuous process and permanently bonds a discontinuous layer of fluorinated ultrahigh molecular weight polyethylene (UHMWPE) to the gel pad, creating a tack-free surface. The integration of powdering and casting eliminates the need for secondary powdering and cleaning processes that greatly decreases the amount of time required to touch up gel pads and clean the molds. Using previous processes for manufacturing gel pads, gel remnants are removed from the gel pad, which is then powdered and cleaned of excess oil and powder. The molds of gel that are cast at room temperature and cured in an oven, are left with a sticky residue and require considerable amounts of clean up. Using this new process, the gel is cast hot from an injection molding machine or from an extruder and is free of remnants. Excess powder on the gel pad can be quickly removed using a wipe. Also, pre-powdered molds have no residue and the excess powder left behind in the mold can easily be removed.


The use of polyethylene powder as opposed to starch powder also contributes to process and product improvement. Polyethylene significantly lowers the bioburden of the gel pad as polyethylene is not a growth medium for microorganisms. Further, during the new hot casting process the polyethylene powder is essentially fused onto the surface of the gel, thus eliminating the chance of losing coating residue during gel pad use. In addition, the new process creates a discontinuous coating that doesn't interfere with any of the functional properties of the product or mechanical properties of the material such as sealing and elasticity, respectively. The discontinuous coating allows the gel to be stretched and return to its original form without surface cracking occurring. A continuous coating must have similar elasticity as the gel to prevent cracking or delamination. Materials with high elasticity are generally tacky, the conforming nature of elastomers make it unlikely to have a tack-free surface.


Preferably, gel molds are textured prior to being used in the manufacturing process. Texturing helps stabilize particles on the gel surface by inhibiting particle flow, which would result in uneven particle placement. An abrasive blast cabinet may be utilized to texture the molds. Molds, for example, aluminum molds, are placed inside the cabinet and sprayed with blast media (grit range from about 80 to about 100 grit/mesh) using a pneumatically powered hose until the surface of the mold is uniformly textured. The molds are then removed and sprayed with an air hose to remove excess media.


As an alternative to texturing the molds, the molds may be preheated to a temperature of approximately 240° F. so that the particles adhere more strongly to the smooth surface of the mold. In still another embodiment, charged particles can be held in place during casting by the process of electrostatic coating (e-coating). The electrically conductive molds attract and hold charged particles that are applied to the surface by either spraying or dipping the mold. The e-coating process is robust enough to hold the particles in place until the molten gel is dispensed into the mold.


The molds are powdered with fluorinated UHMWPE prior to adding the gel. In one embodiment, the fluorinated UHMWPE is a powder. In one embodiment, the particle size of the fluorinated UHMWPE powder is approximately 40-50 μm. In another embodiment, the particle size of the fluorinated UHMWPE powder is approximately 45 μm. The particle size of the fluorinated UHMWPE can be varied depending on the desired degree of tackiness. In general, very small particles pack more densely, providing a more tack-free surface, particularly when the underlying gel is stretched.


In other embodiments, other powders than fluorinated UHMWPE can be used to achieve a tack-free surface. Assorted forms of polyethylene powder can be used similarly to the fluorinated UHMWPE. Oxidized UHMWPE essentially provides identical results to that of the fluorinated UHMWPE, the only difference being the method utilized for surface modification of the powder. Also, oxidized UHMWPE may leave a slight residue on the hand after handling gels post radiation sterilization. Other forms of polyethylene powder, such as high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), and unmodified UHMWPE, can also be employed to achieve the desired tack-free product. However, different powders and their respective particle size provide variable coverage of the tack-free layer. In general, particle sizes ranging from 24 μm to 350 μm may be used to provide gels of varying degrees of tackiness.


In some embodiments, the fluorinated UHMWPE powdered mold is preheated prior to adding the molten gel. Optionally, the powdered mold is preheated with a cap ring or other insert, depending on the final gel product. In one embodiment, the mold is preheated to a temperature range of approximately 110-160° F. The skilled artisan will appreciate that the preheating temperature may vary depending on the thickness of the mold walls and that molds made from very thin walls may not require preheating.


A gel slurry comprising an oil and an elastomer or co-polymer is heated beyond its curing temperature to a molten state and added to the powdered mold. In some embodiments, the oil comprises at least one of mineral oil, vegetable oil, petroleum oil, and silicone oil. In one embodiment, the oil is a mineral oil.


In some embodiments, the elastomer comprises at least one of polyurethane, polyvinylchloride, polyisoprene, a thermoset elastomer, a thermoplastic elastomer, a tri-block copolymer, styrene-ethylene/butylene-styrene block copolymer, styrene-isoprene-styrene, styrene-butadiene-styrene, styrene-ethylene/propylene-styrene. In one embodiment, the elastomer is a block copolymer styrene-ethylene/butylene-styrene polymer. In another embodiment, the elastomer is KRATON G1651.


The ratio by weight of oil to elastomer may vary depending on the desired consistency of the final gel product. For products such as a gel cap useful as an access device in surgery, gel slurries having a ratio by weight of oil to elastomer from approximately 7:1 to approximately 10:1 are useful. In one embodiment, the ratio by weight of oil to elastomer is 8:1.


Because the higher temperatures used to heat the gel slurry to a molten state result in a reduction in molecular weight via oxidative degradation, resulting in a softer durometer gel, a lower ratio of oil to elastomer is generally used than in a cold cast process to compensate for the loss in firmness. By way of example, if a gel is normally produced using a 9:1 ratio by weight of mineral oil to elastomer in a cold-cast process, an 8:1 ratio by weight of mineral oil to elastomer would be used to produce a gel product of similar firmness using the present hot-cast method. As one skilled in the art will appreciate, other ratios may be used to achieve the desired gel characteristics.


In one embodiment, the gel slurry is bulk degassed and pumped into an injection molding machine or an extruder, where it is heated beyond its curing temperature to a molten state. The gel slurry may be degassed at room temperature or at higher temperatures. In one embodiment, the gel slurry is degassed at approximately 125° F.


The molten gel, in one embodiment having a temperature of approximately 460° F. to approximately 480° F., is cast into the mold. If the mold contains a cap or other insert, the gel is cast such that the gel is in contact with the cap/insert.


The powdered mold lid is placed and the unit is cooled to room temperature. The gel cap 66 may be cooled, such as by air-cooling, cold-water immersion, or other cooling means that are well known in the art. At 150° C. the gel pad is soft and if it were distorted during cooling it would set with the distortion included. To reduce the likelihood of distorting the gel pad 60, the gel cap 66 may be cooled within the mold. Cooling times may vary based on parameters including size and configuration of the mold, quantity of gel, temperature and quantity of cooling medium, cooling medium properties and the mold material. As an example, the cooling time may be about two (2) hours if cooling in air and about fifteen (15) minutes if cooling in water. Whether cooling with air or water, the final properties of the gel are substantially the same. The gel cap 66 is typically cooled to about ambient room temperature, but may be cooled to lower temperatures.


The gel cap 66 may be removed from the mold at any time after the gel has set. The powdered molds facilitate demolding as the powder acts as a mold release agent. Accordingly, the gel pad may be removed simply by inverting the mold. The molds are then cleaned and prepared to repeat the process. Using the hot cast process described above, the molten gel is dispensed into the mold as a homogeneous mixture with minimal free oil, eliminating the waxy residue left by cold cast processes after demolding and producing molds that are easier to clean and a consistent tack-free surface on the gel pad. This is significant, because gel slurry batches can vary in the amount of free oil present in the slurry and can lead to difficulties in achieving consistent results. Using a molten gel eliminates this problem.


An overview of the process for producing gel pads having a discontinuous permanent tack-free coating is shown in FIG. 16. In FIG. 16, the gel pad is shown being cast with a cap ring to form a gel cap. However, as one of skill in the art will appreciate, addition of the cap ring is optional for other forms and uses of gel pads. Also, as described above, a cap ring may be added to a gel pad after the gel pad is formed.


Although the preferred process for producing a tack-free gel involves hot casting molten gel, the process can also be used in cold-casting gels. In a cold-cast process, the gel slurry is generally used at a 9:1 ratio by weight of oil to co-polymer. The slurry is heated to approximately 125° F. during degassing before dispensing the degassed slurry into molds, optionally with a cap ring, and degassed a second time prior to curing the gel in the molds at approximately 150° C. for approximately 1.5 hours. The molds can be pre-powdered with fluorinated UHMWPE to provide a tack-free gel, as described above, but because there is more free mineral oil present in the gel slurry, a waxy residue is left behind on the molds after demolding that requires additional cleaning steps before the molds can be reused. Also, gel slurries are more heterogeneous than a molten gel and thus produce a less consistent tack free surface.


In an alternative embodiment of the described methods for producing a tack-free gel, polyethylene molds having varying densities (LDPE, HDPE, for example) can be used in place of traditional metallic molds. In this process, no pre-powdering is required. Gel is cast into the polyethylene mold and cooled to room temperature. Once cool, the gel can be peeled from the mold, with a thin layer of polyethylene transferring to the gel, producing a tack-free surface. Gel can be cast using the above mentioned mold injection method or using a “hot pot” type method. In the “hot pot” method, gel is heated and stirred until molten and poured into a desired cavity. This method may be difficult to control, however, and the molded in stress from the plastic molds sometimes leads to cracks and defects on the tack-free surface. In addition, the high temperatures required to make the gel molten can cause the polyethylene molds to melt or deform and the gel to degrade. As an alternative to the polyethylene mold, a polyethylene insert in a metal mold may be used. The insert is an injection molded polyethylene dish shaped like the desired gel product, which is placed into the mold prior to adding the molten gel. The mold supports the insert and gel. Once the gel is cool, it can be removed from the mold and the insert, leaving a thin layer of polyethylene deposited on the surface of the gel.


Another embodiment utilizes an aerosol polyethylene spray. As with the polyethylene mold process, this method does not require pre-powdering. In this embodiment, molds are sprayed with a polyethylene spray, leaving a thin layer of polyethylene on the surface of the mold. Gel is hot cast into the sprayed molds and cooled to produce a gel product having a residue of polyethylene, leaving behind a tack-free surface. The gel may be cast by either mold injection or the “hot pot” technique. However, it can be difficult to get a uniform coating of polyethylene by spraying the mold surface, producing an uneven distribution of polyethylene on the gel product surface after demolding. A light coating will leave sections of the gel tacky and a heavy coating will lead to cracking of the tack-free layer. Additionally, aerosol sprays release volatile organic compounds (VOCs) to the environment and so are not preferred for manufacturing processes.


Accordingly, the present invention provides a gel having a permanent tack-free coating, methods for making a gel with a permanent tack-free coating and use of such gel in access devices. Although this invention has been described in certain specific embodiments, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that this invention may be practiced otherwise than specifically described, including various changes in the size, shape and materials, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.

Claims
  • 1. A method for making a tack-free gel, comprising the steps of: providing a mold;applying a fluorinated ultrahigh molecular weight polyethylene to the mold;heating a gel slurry beyond its curing temperature to a molten state, to thereby produce a molten gel;injecting the molten gel into the mold; andcooling the mold until the gel is set to thereby produce a tack-free gel.
  • 2. The method of claim 1, wherein the mold is textured prior to applying the fluorinated ultrahigh molecular weight polyethylene by spraying the mold with blast media.
  • 3. The method of claim 1, wherein the mold is preheated to a temperature of approximately 220° F. to approximately 260° F. prior to applying the fluorinated ultrahigh molecular weight polyethylene.
  • 4. The method of claim 1, wherein the fluorinated ultrahigh molecular weight polyethylene is applied to the mold by electrostatic coating.
  • 5. The method of claim 1, wherein the fluorinated ultrahigh molecular weight polyethylene comprises a powder having a particle size of approximately 5 μm to approximately 100 μm.
  • 6. The method of claim 1, wherein the mold is preheated to a temperature of approximately 110° F. to approximately 160° F. prior to injecting the molten gel.
  • 7. The method of claim 1, wherein the gel slurry comprises an oil and an elastomer.
  • 8. The method of claim 7, wherein the gel slurry comprises a ratio by weight of oil to elastomer from approximately 7:1 to approximately 10:1.
  • 9. The method of claim 7, wherein the oil comprises a mineral oil and the elastomer comprises block copolymer styrene-ethylene/butylene-styrene polymer.
  • 10. The method of claim 1, wherein the gel slurry is bulk degassed prior to heating the gel slurry to a molten state.
  • 11. The method of claim 10, wherein the gel slurry is bulk degassed at a temperature of approximately 120° F. to approximately 130° F.
  • 12. A method for making a tack-free gel, comprising the steps of: providing a mold;applying a fluorinated ultrahigh molecular weight polyethylene to the mold;preheating the mold to a temperature of approximately 110° F. to approximately 160° F.;heating a gel slurry to a temperature of approximately 125° F.;degassing the gel slurry;dispensing the gel slurry into the mold;degassing the gel slurry a second time; andcuring the gel in the mold at a temperature of approximately 140° F. to approximately 160° F. to provide a tack-free gel.
  • 13. The method of claim 12, wherein the mold is textured prior to applying the fluorinated ultrahigh molecular weight polyethylene by spraying the mold with blast media.
  • 14. The method of claim 12, wherein the gel slurry comprises an oil and an elastomer.
  • 15. The method of claim 14, wherein the oil comprises a mineral oil and the elastomer comprises styrene-ethylene/butylene-styrene polymer.
  • 16. A method for making a tack-free gel, comprising the steps of: providing a mold;spraying the mold with a polyethylene spray;heating a gel slurry beyond its curing temperature to a molten state, to thereby produce a molten gel;dispensing the molten gel into the mold; andcooling the mold until the gel is set to thereby produce a tack-free gel.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Application No. 62/026,317, filed Jul. 18, 2014, the entire disclosure of which is incorporated by reference.

US Referenced Citations (822)
Number Name Date Kind
558364 Doolittle Apr 1896 A
1157202 Bates et al. Oct 1915 A
1598284 Kinney Aug 1926 A
1690995 Pratt Nov 1928 A
1180466 Deutsch Jun 1931 A
1810466 Deutsch Jun 1931 A
2219564 Reyniers Oct 1940 A
2305289 Coburg Dec 1942 A
2478586 Krapp Aug 1949 A
2669991 Curutchet Feb 1954 A
2695608 Gibbon Nov 1954 A
2812758 Blumenschein Nov 1957 A
2835253 Borgeson May 1958 A
2853075 Hoffman et al. Sep 1958 A
3039468 Price Jun 1962 A
3057350 Cowley Oct 1962 A
3111943 Orndorff Nov 1963 A
3127457 Di Pinto Mar 1964 A
3195934 Parrish Jul 1965 A
3244169 Baxter Apr 1966 A
3253594 Matthews et al. May 1966 A
3313299 Spademan Apr 1967 A
3329390 Hulsey Jul 1967 A
3332417 Blanford et al. Jul 1967 A
3347226 Harrower Oct 1967 A
3347227 Harrower Oct 1967 A
3397692 Creager, Jr. et al. Aug 1968 A
3402710 Paleschuck Sep 1968 A
3416520 Creager, Jr. Dec 1968 A
3447533 Spicer Jun 1969 A
3522800 Lesser Aug 1970 A
3523534 Nolan Aug 1970 A
3570475 Weinstein Mar 1971 A
3656485 Robertson Apr 1972 A
3685786 Woodson Aug 1972 A
3717151 Collett Feb 1973 A
3717883 Mosher Feb 1973 A
3729006 Wilder et al. Apr 1973 A
3729027 Bare Apr 1973 A
3782370 McDonald Jan 1974 A
3797478 Walsh et al. Mar 1974 A
3799166 Marsan Mar 1974 A
3807393 McDonald Apr 1974 A
3828764 Jones Aug 1974 A
3831583 Edmunds et al. Aug 1974 A
3841332 Treacle Oct 1974 A
3850172 Cazalis Nov 1974 A
3853126 Schulte Dec 1974 A
3853127 Spademan Dec 1974 A
3856021 McIntosh Dec 1974 A
3860274 Ledstrom et al. Jan 1975 A
3861416 Wichterle Jan 1975 A
3907389 Cox et al. Sep 1975 A
3915171 Shermeta Oct 1975 A
3965890 Gauthier Jun 1976 A
3970089 Saice Jul 1976 A
3996623 Kaster Dec 1976 A
4000739 Stevens Jan 1977 A
4016884 Kwan-Gett Apr 1977 A
4024872 Muldoon May 1977 A
4030500 Ronnquist Jun 1977 A
4043328 Cawood, Jr. et al. Aug 1977 A
4069913 Harrigan Jan 1978 A
4083370 Taylor Apr 1978 A
4096853 Weigand Jun 1978 A
4112932 Chiulli Sep 1978 A
4117847 Clayton Oct 1978 A
4130113 Graham Dec 1978 A
4177814 Knepshield et al. Dec 1979 A
4183357 Bentley et al. Jan 1980 A
4187849 Stim Feb 1980 A
4188945 Wenander Feb 1980 A
4217664 Faso Aug 1980 A
4222126 Boretos et al. Sep 1980 A
4228792 Rhys-Davies Oct 1980 A
4239036 Krieger Dec 1980 A
4240411 Hosono Dec 1980 A
4253201 Ross et al. Mar 1981 A
4254973 Benjamin Mar 1981 A
4306562 Osborne Dec 1981 A
4321915 Leighton Mar 1982 A
4331138 Jessen May 1982 A
4338934 Spademan Jul 1982 A
4338937 Lerman Jul 1982 A
4367728 Mutke Jan 1983 A
4369284 Chen Jan 1983 A
4399816 Spangler Aug 1983 A
4402683 Kopman Sep 1983 A
4411659 Jensen et al. Oct 1983 A
4421296 Stephens Dec 1983 A
4424833 Spector et al. Jan 1984 A
4428364 Bartolo Jan 1984 A
4430081 Timmermans Feb 1984 A
4434791 Darnell Mar 1984 A
4436519 O'Neill Mar 1984 A
4454873 Laufenberg et al. Jun 1984 A
4473067 Schiff Sep 1984 A
4475548 Muto Oct 1984 A
4485490 Akers et al. Dec 1984 A
4488877 Klein Dec 1984 A
4543088 Bootman et al. Sep 1985 A
4550713 Hyman Nov 1985 A
4553537 Rosenberg Nov 1985 A
4555242 Saudagar Nov 1985 A
4556996 Wallace Dec 1985 A
4601710 Moll Jul 1986 A
4610665 Matsumoto et al. Sep 1986 A
4626245 Weinstein Dec 1986 A
4634424 O'Boyle Jan 1987 A
4634432 Kocak Jan 1987 A
4644951 Bays Feb 1987 A
4649904 Krauter Mar 1987 A
4653476 Bonnet Mar 1987 A
4654030 Moll et al. Mar 1987 A
4655752 Honkanen et al. Apr 1987 A
4673393 Suzuki et al. Jun 1987 A
4673394 Fenton Jun 1987 A
4691942 Ford Sep 1987 A
4714749 Hughes et al. Dec 1987 A
4738666 Fuqua Apr 1988 A
4755170 Golden Jul 1988 A
4760933 Christner et al. Aug 1988 A
4776843 Martinez et al. Oct 1988 A
4777943 Chvapil Oct 1988 A
4784646 Feingold Nov 1988 A
4796629 Grayzel Jan 1989 A
4798594 Hillstead Jan 1989 A
4802694 Vargo Feb 1989 A
4808168 Warring Feb 1989 A
4809679 Shimonaka et al. Mar 1989 A
4828554 Griffin May 1989 A
4842931 Zook Jun 1989 A
4848575 Nakamura et al. Jul 1989 A
4856502 Ersfeld et al. Aug 1989 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
4889107 Kaufman Dec 1989 A
4895565 Hillstead Jan 1990 A
4897081 Poirier Jan 1990 A
4903710 Jessamine et al. Feb 1990 A
4911974 Shimizu et al. Mar 1990 A
4915132 Hodge et al. Apr 1990 A
4926882 Lawrence May 1990 A
4929235 Merry et al. May 1990 A
4944732 Russo Jul 1990 A
4950222 Scott et al. Aug 1990 A
4950223 Silvanov Aug 1990 A
4984564 Yuen Jan 1991 A
4991593 LeVahn Feb 1991 A
4998538 Charowsky et al. Mar 1991 A
5000745 Guest et al. Mar 1991 A
5009224 Cole Apr 1991 A
5015228 Columbus et al. May 1991 A
5019101 Purkait et al. May 1991 A
5026366 Leckrone Jun 1991 A
5037379 Clayman et al. Aug 1991 A
5041095 Littrell Aug 1991 A
5045070 Grodecki et al. Sep 1991 A
D320658 Quigley et al. Oct 1991 S
5071411 Hillstead Dec 1991 A
5073169 Raiken Dec 1991 A
5074878 Bark et al. Dec 1991 A
5082005 Kaldany Jan 1992 A
5086763 Hathman Feb 1992 A
5092846 Nishijima et al. Mar 1992 A
5104389 Deem Apr 1992 A
5125396 Ray Jun 1992 A
5125897 Quinn et al. Jun 1992 A
5127626 Hilal et al. Jul 1992 A
5129885 Green et al. Jul 1992 A
5141498 Christian Aug 1992 A
5149327 Oshiyama Sep 1992 A
5156617 Reid Oct 1992 A
5158553 Berry et al. Oct 1992 A
5159921 Hoover Nov 1992 A
5161773 Tower Nov 1992 A
5167636 Clement Dec 1992 A
5167637 Okada et al. Dec 1992 A
5176648 Holmes et al. Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5176697 Hasson et al. Jan 1993 A
5178162 Bose Jan 1993 A
5180365 Ensminger et al. Jan 1993 A
5183471 Wilk Feb 1993 A
5188595 Jacobi Feb 1993 A
5188607 Wu Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5197955 Stephens et al. Mar 1993 A
5207656 Kranys May 1993 A
5209737 Ritchart et al. May 1993 A
5211370 Powers May 1993 A
5211633 Stouder, Jr. May 1993 A
5213114 Bailey, Jr. May 1993 A
5226890 Ianniruberto et al. Jul 1993 A
5234455 Mulhollan Aug 1993 A
5241968 Slater Sep 1993 A
5242400 Blake, III et al. Sep 1993 A
5242409 Buelna Sep 1993 A
5242412 Blake, III Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5248304 Vigdorchik et al. Sep 1993 A
5256150 Quiachon et al. Oct 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5261883 Hood et al. Nov 1993 A
5262468 Chen Nov 1993 A
5263922 Sova et al. Nov 1993 A
5269763 Boehmer et al. Dec 1993 A
5269772 Wilk Dec 1993 A
5273449 Mattis et al. Dec 1993 A
5273545 Hunt et al. Dec 1993 A
D343236 Quigley et al. Jan 1994 S
5279575 Sugarbaker Jan 1994 A
5290310 Makower et al. Mar 1994 A
D346022 Quigley et al. Apr 1994 S
5299582 Potts Apr 1994 A
5300034 Behnke Apr 1994 A
5300035 Clement Apr 1994 A
5300036 Mueller et al. Apr 1994 A
5308336 Hart et al. May 1994 A
5309896 Moll et al. May 1994 A
5312391 Wilk May 1994 A
5314417 Stephens et al. May 1994 A
5316541 Fischer May 1994 A
5320611 Bonutti et al. Jun 1994 A
5330437 Durman Jul 1994 A
5330486 Wilk Jul 1994 A
5330497 Freitas et al. Jul 1994 A
5331975 Bonutti Jul 1994 A
5334143 Carroll Aug 1994 A
5334646 Chen Aug 1994 A
5336192 Palestrant Aug 1994 A
5336708 Chen Aug 1994 A
5338313 Mollenauer et al. Aug 1994 A
5342315 Rowe et al. Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5350364 Stephens et al. Sep 1994 A
5353786 Wilk Oct 1994 A
5354280 Haber et al. Oct 1994 A
5360417 Gravener et al. Nov 1994 A
5364345 Lowery et al. Nov 1994 A
5364372 Danks et al. Nov 1994 A
5366446 Tal et al. Nov 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5368545 Schaller et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5380288 Hart et al. Jan 1995 A
5383861 Hempel et al. Jan 1995 A
5385552 Haber et al. Jan 1995 A
5385553 Hart et al. Jan 1995 A
5385560 Wulf Jan 1995 A
5389080 Yoon Feb 1995 A
5389081 Castro Feb 1995 A
5391153 Haber et al. Feb 1995 A
5391156 Hildwein et al. Feb 1995 A
5395367 Wilk Mar 1995 A
5403264 Wohlers et al. Apr 1995 A
5403336 Kieturakis et al. Apr 1995 A
5407433 Loomas Apr 1995 A
5411483 Loomas May 1995 A
5413571 Katsaros et al. May 1995 A
5423848 Washizuka et al. Jun 1995 A
5429609 Yoon Jul 1995 A
5431676 Dubrul et al. Jul 1995 A
5437683 Neumann et al. Aug 1995 A
5439455 Kieturakis et al. Aug 1995 A
5441486 Yoon Aug 1995 A
5443452 Hart et al. Aug 1995 A
5456284 Ryan et al. Oct 1995 A
5460170 Hammerslag Oct 1995 A
5460616 Weinstein et al. Oct 1995 A
5468248 Chin et al. Nov 1995 A
5476475 Gadberry Dec 1995 A
5480410 Cuschieri et al. Jan 1996 A
5486426 McGee et al. Jan 1996 A
5490843 Hildwein et al. Feb 1996 A
5492304 Smith et al. Feb 1996 A
5496280 Vandenbroek et al. Mar 1996 A
5503112 Luhman et al. Apr 1996 A
5507758 Thomason et al. Apr 1996 A
5508334 Chen Apr 1996 A
5511564 Wilk Apr 1996 A
5514109 Mollenauer et al. May 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5518278 Sampson May 1996 A
5520632 Leveen May 1996 A
5522791 Leyva Jun 1996 A
5522824 Ashby Jun 1996 A
5524644 Crook Jun 1996 A
5526536 Cartmill Jun 1996 A
5531758 Uschold et al. Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5540711 Kieturakis et al. Jul 1996 A
5545150 Danks et al. Aug 1996 A
5545179 Williamson, IV Aug 1996 A
5549563 Kronner Aug 1996 A
5549637 Crainich Aug 1996 A
5554124 Alvarado Sep 1996 A
5562632 Davila et al. Oct 1996 A
5562677 Hildwein et al. Oct 1996 A
5562688 Riza Oct 1996 A
5571115 Nicholas Nov 1996 A
5571137 Marlow et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5577993 Zhu et al. Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5580344 Hasson Dec 1996 A
5584850 Hart et al. Dec 1996 A
5601579 Semertzides Feb 1997 A
5601581 Fogarty et al. Feb 1997 A
5603702 Smith et al. Feb 1997 A
5607443 Kieturakis et al. Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5620420 Kriesel Apr 1997 A
5628732 Antoon, Jr. et al. May 1997 A
5632284 Graether May 1997 A
5632979 Goldberg et al. May 1997 A
5634911 Hermann et al. Jun 1997 A
5634936 Linden et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5636645 Ou Jun 1997 A
5640977 Leahy et al. Jun 1997 A
5643301 Mollenauer Jul 1997 A
5649550 Crook Jul 1997 A
5651771 Tangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5657963 Hinchliffe et al. Aug 1997 A
5658272 Hasson Aug 1997 A
5658306 Kieturakis et al. Aug 1997 A
5662615 Blake, III Sep 1997 A
5672168 de la Torre et al. Sep 1997 A
5681341 Lunsford et al. Oct 1997 A
5683378 Christy Nov 1997 A
5685854 Green et al. Nov 1997 A
5685857 Negus et al. Nov 1997 A
5697914 Brimhall Dec 1997 A
5707703 Rothrum et al. Jan 1998 A
5709664 Vandenbroek et al. Jan 1998 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5720730 Blake, III Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5728103 Picha et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander et al. Apr 1998 A
5738628 Sierocuk et al. Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741298 MacLeod Apr 1998 A
5743884 Hasson et al. Apr 1998 A
5749882 Hart et al. May 1998 A
5755660 Tyagi May 1998 A
5760117 Chen Jun 1998 A
5769783 Fowler Jun 1998 A
5782812 Hart et al. Jul 1998 A
5782817 Franzel et al. Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5788676 Yoon Aug 1998 A
5792119 Marx Aug 1998 A
5795290 Bridges Aug 1998 A
5803919 Hart et al. Sep 1998 A
5803921 Bonadio Sep 1998 A
5803923 Singh-Derewa et al. Sep 1998 A
5807350 Diaz Sep 1998 A
5810712 Dunn Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5814026 Yoon Sep 1998 A
5817062 Flom et al. Oct 1998 A
5819375 Kastner Oct 1998 A
5820555 Watkins, III et al. Oct 1998 A
5820600 Carlson et al. Oct 1998 A
5830191 Hildwein et al. Nov 1998 A
5832925 Rothrum Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5841298 Huang Nov 1998 A
5842971 Yoon Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853395 Crook et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5860995 Berkelaar Jan 1999 A
5865728 Moll et al. Feb 1999 A
5865729 Meehan et al. Feb 1999 A
5865807 Blake, III Feb 1999 A
5865817 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5879368 Hoskin et al. Mar 1999 A
5882344 Stouder, Jr. Mar 1999 A
5884639 Chen Mar 1999 A
5894843 Benetti et al. Apr 1999 A
5895377 Smith et al. Apr 1999 A
5899208 Bonadio May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5913847 Yoon Jun 1999 A
5916198 Dillow Jun 1999 A
5916232 Hart Jun 1999 A
5919476 Fischer et al. Jul 1999 A
5931832 Jensen Aug 1999 A
5947922 MacLeod Sep 1999 A
5951467 Picha et al. Sep 1999 A
5951588 Moenning Sep 1999 A
5957888 Hinchliffe Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5962572 Chen Oct 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5989232 Yoon Nov 1999 A
5989233 Yoon Nov 1999 A
5989266 Foster Nov 1999 A
5993471 Riza et al. Nov 1999 A
5993485 Beckers Nov 1999 A
5994450 Pearce Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6004303 Peterson Dec 1999 A
6010494 Schafer et al. Jan 2000 A
6017355 Hessel et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6025067 Fay Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6035559 Freed et al. Mar 2000 A
6042573 Lucey Mar 2000 A
6045535 Ben Nun Apr 2000 A
6048309 Flom et al. Apr 2000 A
6050871 Chen Apr 2000 A
6053934 Andrews et al. Apr 2000 A
6059816 Moenning May 2000 A
6066117 Fox et al. May 2000 A
6068639 Fogarty et al. May 2000 A
6076560 Stahle et al. Jun 2000 A
6077288 Shimomura Jun 2000 A
6086603 Termin et al. Jul 2000 A
6090043 Austin et al. Jul 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6123689 To et al. Sep 2000 A
6142935 Flom et al. Nov 2000 A
6142936 Beane et al. Nov 2000 A
6149642 Gerhart et al. Nov 2000 A
6150608 Wambeke et al. Nov 2000 A
6159182 Davis Dec 2000 A
6162172 Cosgrove et al. Dec 2000 A
6162196 Hart et al. Dec 2000 A
6162206 Bindokas Dec 2000 A
6163949 Neuenschwander Dec 2000 A
6164279 Tweedle Dec 2000 A
6171282 Ragsdale Jan 2001 B1
6183486 Snow et al. Feb 2001 B1
6197002 Peterson Mar 2001 B1
6217555 Hart et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6224612 Bates et al. May 2001 B1
6228063 Aboul-Hosn May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6254533 Fadem et al. Jul 2001 B1
6254534 Butler et al. Jul 2001 B1
6258065 Dennis et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6267751 Mangosong Jul 2001 B1
6276661 Laird Aug 2001 B1
6287280 Lampropoulos et al. Sep 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6322541 West Nov 2001 B2
6325384 Berry, Sr. et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6371968 Kogasaka et al. Apr 2002 B1
6382211 Crook May 2002 B1
6383162 Sugarbaker May 2002 B1
6391043 Moll et al. May 2002 B1
6413244 Bestetti et al. Jul 2002 B1
6413458 Pearce Jul 2002 B1
6420475 Chen Jul 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6482181 Racenet et al. Nov 2002 B1
6485435 Bakal Nov 2002 B1
6485467 Crook et al. Nov 2002 B1
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6527787 Fogarty et al. Mar 2003 B1
6533734 Corley, III et al. Mar 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6551276 Mann et al. Apr 2003 B1
6551344 Thill Apr 2003 B2
6552109 Chen Apr 2003 B1
6554793 Pauker et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6569120 Green May 2003 B1
6578577 Bonadio et al. Jun 2003 B2
6579281 Palmer et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6589167 Shimomura et al. Jul 2003 B1
6589211 MacLeod Jul 2003 B1
6607504 Haarala et al. Aug 2003 B2
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6627275 Chen Sep 2003 B1
6663598 Carrillo et al. Dec 2003 B1
6669674 Macoviak et al. Dec 2003 B1
6676639 Ternström Jan 2004 B1
6692817 Silva Feb 2004 B1
6702787 Racenet et al. Mar 2004 B2
6705989 Cuschieri et al. Mar 2004 B2
6706050 Giannadakis Mar 2004 B1
6714298 Ryer Mar 2004 B2
6716201 Blanco Apr 2004 B2
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6793621 Butler et al. Sep 2004 B2
6794440 Chen Sep 2004 B2
6796940 Bonadio et al. Sep 2004 B2
6797765 Pearce Sep 2004 B2
6800084 Davison et al. Oct 2004 B2
6811546 Callas et al. Nov 2004 B1
6814078 Crook Nov 2004 B2
6814700 Mueller et al. Nov 2004 B1
6817974 Cooper et al. Nov 2004 B2
6830578 O'Heeron et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadio et al. Jan 2005 B2
6860463 Hartley Mar 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6866861 Luhman Mar 2005 B1
6867253 Chen Mar 2005 B1
6869393 Butler Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890295 Michels et al. May 2005 B2
6895965 Scarberry et al. May 2005 B2
6902541 McNally et al. Jun 2005 B2
6902569 Parmer et al. Jun 2005 B2
6908430 Caldwell et al. Jun 2005 B2
6909220 Chen Jun 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6936037 Bubb et al. Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6979324 Bybordi et al. Dec 2005 B2
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7052454 Taylor May 2006 B2
7056304 Bacher et al. Jun 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7067583 Chen Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7083626 Hart et al. Aug 2006 B2
7093599 Chen Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Lui et al. Sep 2006 B2
7105009 Johnson et al. Sep 2006 B2
7105607 Chen Sep 2006 B2
7112185 Hart et al. Sep 2006 B2
7118528 Piskun Oct 2006 B1
7134929 Chen Nov 2006 B2
7153261 Wenchell Dec 2006 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7193002 Chen Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7222380 Chen May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7226484 Chen Jun 2007 B2
7235062 Brustad Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7244244 Racenet et al. Jul 2007 B2
7276075 Callas et al. Oct 2007 B1
7290367 Chen Nov 2007 B2
7294103 Bertolero et al. Nov 2007 B2
7297106 Yamada et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7316699 McFarlane Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7338473 Campbell et al. Mar 2008 B2
7344546 Wulfman et al. Mar 2008 B2
7344547 Piskun Mar 2008 B2
7344568 Chen Mar 2008 B2
7377898 Ewers et al. May 2008 B2
7390317 Taylor et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7445597 Butler et al. Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7481765 Ewers et al. Jan 2009 B2
7537564 Bonadio et al. May 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7578832 Johnson Aug 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7661164 Chen Feb 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7717847 Smith May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7727255 Taylor et al. Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7749415 Brustad et al. Jul 2010 B2
7753901 Piskun et al. Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7766824 Jensen et al. Aug 2010 B2
7811251 Wenchell et al. Oct 2010 B2
7815567 Albrecht et al. Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
7841765 Keller Nov 2010 B2
7850667 Gresham Dec 2010 B2
7867164 Butler et al. Jan 2011 B2
7878974 Brustad et al. Feb 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7909760 Albrecht et al. Mar 2011 B2
7930782 Chen Apr 2011 B2
7998068 Bonadio et al. Aug 2011 B2
8021296 Bonadio Sep 2011 B2
8317690 Ransden Nov 2012 B2
8343047 Albrecht Jan 2013 B2
RE44380 de la Torre et al. Jul 2013 E
8574153 Richard Nov 2013 B2
RE44790 de la Torre et al. Mar 2014 E
20010037053 Bonadio et al. Nov 2001 A1
20010047188 Bonadio et al. Nov 2001 A1
20020002324 McManus Jan 2002 A1
20020010389 Butler et al. Jan 2002 A1
20020013542 Bonadio et al. Jan 2002 A1
20020016607 Bonadio et al. Feb 2002 A1
20020026230 Moll et al. Feb 2002 A1
20020038077 de la Torre et al. Mar 2002 A1
20020049276 Zwick Apr 2002 A1
20020072762 Bonadio et al. Jun 2002 A1
20020111536 Cuschieri et al. Aug 2002 A1
20030004253 Chen Jan 2003 A1
20030014076 Mollenauer et al. Jan 2003 A1
20030028179 Piskun Feb 2003 A1
20030040711 Racenet et al. Feb 2003 A1
20030078478 Bonadio et al. Apr 2003 A1
20030139756 Brustad Jul 2003 A1
20030167040 Bacher et al. Sep 2003 A1
20030187376 Rambo Oct 2003 A1
20030192553 Rambo Oct 2003 A1
20030225392 McMichael et al. Dec 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040015185 Ewers et al. Jan 2004 A1
20040024363 Goldberg Feb 2004 A1
20040049099 Ewers et al. Mar 2004 A1
20040049100 Butler Mar 2004 A1
20040054353 Taylor Mar 2004 A1
20040063833 Chen Apr 2004 A1
20040068232 Hart et al. Apr 2004 A1
20040070187 Chen Apr 2004 A1
20040072942 Chen Apr 2004 A1
20040073090 Butler Apr 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040092796 Butler et al. May 2004 A1
20040093018 Johnson May 2004 A1
20040097793 Butler et al. May 2004 A1
20040106942 Taylor et al. Jun 2004 A1
20040111061 Curran Jun 2004 A1
20040127772 Ewers et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040143158 Hart et al. Jul 2004 A1
20040154624 Bonadio et al. Aug 2004 A1
20040167559 Taylor et al. Aug 2004 A1
20040173218 Yamada et al. Sep 2004 A1
20040215063 Bonadio et al. Oct 2004 A1
20040230161 Zeiner Nov 2004 A1
20040243144 Bonadio et al. Dec 2004 A1
20040249248 Bonadio et al. Dec 2004 A1
20040254426 Wenchell Dec 2004 A1
20040260244 Piechowicz et al. Dec 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20050020884 Hart et al. Jan 2005 A1
20050033246 Ahlberg Feb 2005 A1
20050059865 Kahle et al. Mar 2005 A1
20050065475 Hart et al. Mar 2005 A1
20050065543 Kahle et al. Mar 2005 A1
20050080319 Dinkler, II et al. Apr 2005 A1
20050090713 Gonzales et al. Apr 2005 A1
20050090716 Bonadio et al. Apr 2005 A1
20050090717 Bonadio et al. Apr 2005 A1
20050096695 Olich May 2005 A1
20050131349 Albrecht et al. Jun 2005 A1
20050137615 Mapes Jun 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050155611 Vaugh et al. Jul 2005 A1
20050159647 Hart et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050192598 Johnson et al. Sep 2005 A1
20050197537 Bonadio et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050209510 Bonadio et al. Sep 2005 A1
20050222582 Wenchell Oct 2005 A1
20050240082 Bonadio et al. Oct 2005 A1
20050241647 Nguyen Nov 2005 A1
20050251124 Zvuloni et al. Nov 2005 A1
20050261720 Caldwell et al. Nov 2005 A1
20050267419 Smith Dec 2005 A1
20050277946 Greenhalgh Dec 2005 A1
20050283050 Gundlapalli et al. Dec 2005 A1
20050288558 Ewers et al. Dec 2005 A1
20050288634 O'Heeron et al. Dec 2005 A1
20060020164 Butler et al. Jan 2006 A1
20060020241 Piskun et al. Jan 2006 A1
20060030755 Ewers et al. Feb 2006 A1
20060041270 Lenker Feb 2006 A1
20060047284 Gresham Mar 2006 A1
20060047293 Haberland et al. Mar 2006 A1
20060052669 Hart Mar 2006 A1
20060084842 Hart et al. Apr 2006 A1
20060106402 McLucas May 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060149137 Pingleton et al. Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh, II et al. Nov 2006 A1
20060258899 Gill et al. Nov 2006 A1
20060264706 Piskun Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20070004968 Bonadio et al. Jan 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070088202 Albrecht et al. Apr 2007 A1
20070088204 Albrecht Apr 2007 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070149859 Albrecht Jun 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070156023 Frasier et al. Jul 2007 A1
20070185387 Albrecht et al. Aug 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070255219 Vaugh et al. Nov 2007 A1
20070270752 Labombard Nov 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080027476 Piskun Jan 2008 A1
20080048011 Weller Feb 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080097163 Butler et al. Apr 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20080281161 Albrecht et al. Nov 2008 A1
20080281162 Albrecht et al. Nov 2008 A1
20090012477 Norton et al. Jan 2009 A1
20090036745 Bonadio et al. Feb 2009 A1
20090069837 Bonadio et al. Mar 2009 A1
20090093683 Richard et al. Apr 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090131754 Ewers et al. May 2009 A1
20090137879 Ewers et al. May 2009 A1
20090149714 Bonadio Jun 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090182282 Okihisa Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090227843 Smith et al. Sep 2009 A1
20090292176 Bonadio et al. Nov 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20100063362 Bonadio et al. Mar 2010 A1
20100063364 Bonadio et al. Mar 2010 A1
20100081880 Widenhouse et al. Apr 2010 A1
20100081881 Murray et al. Apr 2010 A1
20100081995 Widenhouse et al. Apr 2010 A1
20100100043 Racenet Apr 2010 A1
20100113882 Widenhouse et al. May 2010 A1
20100217087 Bonadio et al. Aug 2010 A1
20100228091 Widenhouse et al. Sep 2010 A1
20100228092 Ortiz et al. Sep 2010 A1
20100228094 Ortiz et al. Sep 2010 A1
20100240960 Richard Sep 2010 A1
20100249523 Spiegal et al. Sep 2010 A1
20100249524 Ransden et al. Sep 2010 A1
20100249525 Shelton, IV et al. Sep 2010 A1
20100249694 Choi et al. Sep 2010 A1
20100261972 Widenhouse et al. Oct 2010 A1
20100261975 Huey et al. Oct 2010 A1
20100286484 Stellon et al. Nov 2010 A1
20100298646 Stellon et al. Nov 2010 A1
20110021877 Fortier et al. Jan 2011 A1
20110028891 Okoniewski Feb 2011 A1
20110034935 Kleyman Feb 2011 A1
20110034946 Kleyman Feb 2011 A1
20110034947 Kleyman Feb 2011 A1
20110071462 Ewers et al. Mar 2011 A1
20110071463 Ewers et al. Mar 2011 A1
20120095297 Dang et al. Apr 2012 A1
Foreign Referenced Citations (131)
Number Date Country
26 05 148 Aug 1977 DE
33 36 279 Jan 1986 DE
37 39 532 Dec 1988 DE
37 37 121 May 1989 DE
296 00 939 Jun 1996 DE
19828099 Dec 1999 DE
0 113 520 Jul 1984 EP
0 142 262 May 1985 EP
0 517 248 Dec 1992 EP
0 537 768 Apr 1993 EP
0 807 416 Nov 1997 EP
0 849 517 Jun 1998 EP
0950376 Oct 1999 EP
1 118 657 Jul 2001 EP
1 125 552 Aug 2001 EP
1 312 318 May 2003 EP
1 407 715 Apr 2004 EP
2 044 889 Apr 2009 EP
1 948 047 Sep 2010 EP
2 272 449 Jan 2011 EP
2 272 450 Jan 2011 EP
2 340 792 Jul 2011 EP
1456623 Sep 1966 FR
1151993 May 1969 GB
1355611 Jun 1974 GB
1372491 Oct 1974 GB
1379772 Jan 1975 GB
1400808 Jul 1975 GB
1407023 Sep 1975 GB
1482857 Aug 1977 GB
1496696 Dec 1977 GB
2071502 Sep 1981 GB
2255019 Oct 1992 GB
2275420 Aug 1994 GB
2298906 Sep 1996 GB
930649 Sep 1993 IE
930650 Sep 1993 IE
S940150 Feb 1994 IE
S940613 Aug 1994 IE
S940960 Dec 1994 IE
S950055 Jan 1995 IE
S950266 Apr 1995 IE
S75368 Aug 1997 IE
S960196 Aug 1997 IE
S970810 Nov 1997 IE
991010 Jul 2000 IE
990218 Nov 2000 IE
990219 Nov 2000 IE
990220 Nov 2000 IE
990660 Feb 2001 IE
990795 Mar 2001 IE
10-108868 Apr 1998 JP
11-290327 Oct 1999 JP
2001-61850 Mar 2001 JP
2002-28163 Jan 2002 JP
02003 235879 Aug 2003 JP
2004-195037 Jul 2004 JP
1342485 Jan 1997 SU
WO 8606272 Nov 1986 WO
WO 8606316 Nov 1986 WO
WO 9211880 Jul 1992 WO
WO 9221292 Dec 1992 WO
WO 9305740 Apr 1993 WO
WO 9314801 Aug 1993 WO
WO 9404067 Mar 1994 WO
WO 9422357 Oct 1994 WO
WO 9505207 Feb 1995 WO
WO 9507056 Mar 1995 WO
WO 9522289 Aug 1995 WO
WO 9524864 Sep 1995 WO
WO 9527445 Oct 1995 WO
WO 9527468 Oct 1995 WO
WO 9636283 Nov 1996 WO
WO 9711642 Apr 1997 WO
WO 9732514 Sep 1997 WO
WO 9732515 Sep 1997 WO
WO 9742889 Nov 1997 WO
WO 9819853 May 1998 WO
WO 9835614 Aug 1998 WO
WO 9848724 Nov 1998 WO
WO 9903416 Jan 1999 WO
WO 9915068 Apr 1999 WO
WO 9916368 Apr 1999 WO
WO 9922804 May 1999 WO
WO 9925268 May 1999 WO
WO 9929250 Jun 1999 WO
WO 0032116 Jun 2000 WO
WO 0032117 Jun 2000 WO
WO 0032119 Jun 2000 WO
WO 0032120 Jun 2000 WO
WO 0035356 Jun 2000 WO
WO 0054675 Sep 2000 WO
WO 0054676 Sep 2000 WO
WO 0054677 Sep 2000 WO
WO 0108563 Feb 2001 WO
WO 0108581 Feb 2001 WO
WO 0126558 Apr 2001 WO
WO 0126559 Apr 2001 WO
WO 0145568 Jun 2001 WO
WO 0149363 Jul 2001 WO
WO 0191652 Dec 2001 WO
WO 0207611 Jan 2002 WO
WO 0217800 Mar 2002 WO
WO 0234108 May 2002 WO
WO 03011153 Feb 2003 WO
WO 03011551 Feb 2003 WO
WO 03026512 Apr 2003 WO
WO 03032819 Apr 2003 WO
WO 03034908 May 2003 WO
WO 03061480 Jul 2003 WO
WO 03077726 Sep 2003 WO
WO 03103548 Dec 2003 WO
WO 2004026153 Apr 2004 WO
WO 2004030547 Apr 2004 WO
WO 2004075730 Sep 2004 WO
WO 2004075741 Sep 2004 WO
WO 2004075930 Sep 2004 WO
WO 2005009257 Feb 2005 WO
WO 2005013803 Feb 2005 WO
WO 2005034766 Apr 2005 WO
WO 2005089661 Sep 2005 WO
WO 2006040748 Apr 2006 WO
WO 2006059318 Jun 2006 WO
WO 2006100658 Sep 2006 WO
WO 2007044849 Apr 2007 WO
WO 2008015566 Feb 2008 WO
WO 2008093313 Aug 2008 WO
WO 2008121294 Oct 2008 WO
WO 2010045253 Apr 2010 WO
WO 2010082722 Jul 2010 WO
WO 2010104259 Sep 2010 WO
Non-Patent Literature Citations (114)
Entry
U.S. Appl. No. 10/381,220, filed Mar. 20, 2003; Title: Surgical Access Apparatus and Method, now USPN 7,473,221 issued Jan. 6, 2009.
U.S. Appl. No. 10/436,522, filed May 13, 2003; Title: Laparoscopic Illumination Apparatus and Method, now USPN 6,939,296 issued Sep. 6, 2005.
U.S. Appl. No. 10/399,209, filed Aug. 22, 2003; Title: Wound Retraction Apparatus and Method, now USPN 6,958,037 issued Oct. 25, 2005.
U.S. Appl. No. 11/218,412, filed Sep. 1, 2005; Title: Wound Retraction Apparatus and Method, now USPN 7,238,154 issued Jul. 3, 2007.
U.S. Appl. No. 10/399,057, filed Apr. 11, 2003; Title: Sealed Surgical Access Device, now USPN 7,052,454 issued May 30, 2006.
U.S. Appl. No. 10/666,579, filed Sep. 17, 2003; Title: Surgical Instrument Access Device, now USPN 7,163,510 issued Jan. 16, 2007.
U.S. Appl. No. 10/052,297, filed Jan. 18, 2002; Title: Hand Access Port Device, now USPN 6,908,430 issued Jun. 21, 2005.
U.S. Appl. No. 08/015,765, filed Feb. 10, 1993; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters, now USPN 5,407,433 issued Apr. 18, 1995.
U.S. Appl. No. 08/040,373, filed Mar. 30, 1993; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters, now USPN 5,411,483 issued May 2, 1995.
U.S. Appl. No. 10/902,756, filed Jul. 29, 2004; Title: Hand Access Port Device, now abandoned.
U.S. Appl. No. 10/802,125, filed Mar. 15, 2004; Title: Surgical Guide Valve, now abandoned.
U.S. Appl. No. 10/516,198, filed Nov. 30, 2004; Title: Wound Retractor, now USPN 7,650,887 issued Jan. 26, 2010.
U.S. Appl. No. 10/927,551, filed Aug. 25, 2004; Title: Surgical Access System, now abandoned.
U.S. Appl. No. 11/244,647, filed Oct. 5, 2005; Title: Surgical Access Apparatus and Method, now USPN 7,481,765 issued Jan. 27, 2009.
U.S. Appl. No. 11/548,746, filed Oct. 12, 2006; Title: Method of Making a Hand Access Laparoscopic Device, now USPN 7,749,415 issued Jul. 6, 2010.
U.S. Appl. No. 11/548,765, filed Oct. 12, 2006; Title: Split Hoop Wound Retractor, now USPN 7,815,567 issued Oct. 26, 2010.
U.S. Appl. No. 11/548,767, filed Oct. 12, 2006; Title: Circular Surgical Retractor now USPN 7,704,207 issued Apr. 27, 2010.
U.S. Appl. No. 11/548,781, filed Oct. 12, 2006; Title: Wound Retractor With Gel Cap, now USPN 7,727,146 issued Jun. 1, 2010.
U.S. Appl. No. 11/548,955, filed Oct. 12, 2006; Title: Hand Access Laparoscopic Device, now USPN 7,736,306 issued Jun. 15, 2010.
U.S. Appl. No. 11/755,305, filed May 30, 2007; Title: Wound Retraction Apparatus and Method, now USPN 7,377,898 issued May 27, 2008.
U.S. Appl. No. 11/548,758, filed Oct. 12, 2007; Title: Split Hoop Wound Retractor With Gel Pad, now USPN 7,909,760 issued Mar. 22, 2011.
U.S. Appl. No. 12/693,242, filed Jan. 1, 2010; Title: Wound Retractor, now USPN 7,913,697 issued Mar. 29, 2011.
U.S. Appl. No. 12/768,328, filed Apr. 27, 2010; Title: Circular Surgical Retractor, now USPN 7,892,172 issued Feb. 22, 2011.
U.S. Appl. No. 12/791,666, filed Jun. 1, 2010; Title: Wound Retractor With Gel Cap, now USPN 7,883,461 issued Feb. 8, 2011.
U.S. Appl. No. 12/815,986, filed Jun. 15, 2010; Title: Hand Access Laparoscopic Device, now USPN 7,878,974 issued Feb. 1, 2011.
U.S. Appl. No. 10/695,295, filed Oct. 28, 2003; Title: Surgical Gel Seal.
U.S. Appl. No. 11/132,741, filed May 18, 2005; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters.
U.S. Appl. No. 11/245,709, filed Oct. 7, 2005; Title: Surgical Access System.
U.S. Appl. No. 11/330,661, filed Jan. 12, 2006; Title: Sealed Surgical Access Device.
U.S. Appl. No. 11/564,409, filed Nov. 29, 2006; Title: Surgical Instrument Access Device.
U.S. Appl. No. 12/108,400, filed Apr. 23, 2008; Title: Wound Retraction Apparatus and Method.
U.S. Appl. No. 12/119,371, filed May 12, 2008; Title: Surgical Retractor With Gel Pad.
U.S. Appl. No. 12/119,414, filed May 12, 2008; Title: Surgical Retractor.
U.S. Appl. No. 12/358,080, filed Jan. 22, 2009; Title: Surgical Instrument Access Device.
U.S. Appl. No. 12/360,634, filed Jan. 27, 2009; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/360,710, filed Jan. 27, 2009; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/578,422, filed Oct. 13, 2009; Title: Single Port Access System.
U.S. Appl. No. 12/905,932, filed Oct. 15, 2010; Title: Split Hoop Wound Retractor.
U.S. Appl. No. 12/960,449, filed Dec. 3, 2010; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/960,458, filed Dec. 3, 2010; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 13/006,727, filed Jan. 14, 2011; Title: Hand Access Laparoscopic Device.
U.S.Appl. No. 13/008,728, filed Jan. 18, 2011; Title: Wound Retractor With Gel Cap.
U.S. Appl. No. 13/023,334, filed Feb. 8, 2011; Title: Circular Surgical Retractor.
U.S. Appl. No. 13/031,892, filed Feb. 22, 2011; Title: Wound Retractor.
U.S. Appl. No. 13/050,042, filed Mar. 17, 2011; Title: Split Hoop Wound Retractor With Gel Pad.
U.S. Appl. No. 10/446,365, filed May 28, 2003; Title: Screw-Type Seal With Inflatable Membrane.
U.S. Appl. No. 12/004,439, filed Dec. 20, 2007; Title: Skin Seal.
U.S. Appl. No. 12/004,441, filed Dec. 20, 2007; Title: Screw-Type Skin Seal With Inflatable Membrane.
U.S. Appl. No. 12/607,667, filed Oct. 28, 2009; Title: Screw-Type Skin Seal With Inflatable Membrane.
U.S. Appl. No. 10/965,217, filed Oct. 15, 2004; Title: Surgical Sealing Device.
U.S. Appl. No. 10/981,730, filed Nov. 5, 2004; Title: Surgical Sealing Device.
U.S. Appl. No. 11/246,909, filed Oct. 11, 2005; Title: Instrument Access Device.
U.S. Appl. No. 11/291,089, filed Dec. 1, 2005; Title: A Surgical Sealing Device.
U.S. Appl. No. 11/486,383, filed Jul. 14, 2006; Title: Wound Retractor.
U.S. Appl. No. 11/785,752, filed Apr. 19, 2007; Title: Instrument Access Device.
U.S. Appl. No. 12/244,024, filed Oct. 2, 2008; Title: Seal Anchor for Use in Surgical Procedures.
U.S. Appl. No. 12/578,832, filed Oct. 14, 2009; Title: Flexible Access Device for Use in Surgical Procedure.
U.S. Appl. No. 12/706,043, filed Feb. 16, 2010; Title: Flexible Port Seal.
U.S. Appl. No. 12/719,341, filed Mar. 8, 2010; Title: Foam Port and Introducer Assembly.
U.S. Appl. No. 10/895,546, filed Jul. 21, 2004; Title: Laparoscopic.
U.S. Appl. No. 10/913,565, filed Aug. 5, 2004; Title: Surgical Device With Tack-Free Gel and Method of Manufacture.
Dexterity Protractor Instruction Manual by Dexterity Surgical, Inc., dated 1999.
European Patent Office, European Search Report for European Application No. EP 10 18 4681, entitled “Wound Retraction Apparatus and Method”,dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 4608, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 4648, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 4731, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 4661, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 4677, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 9325, entitled “Split Hoop Wound Retractor”, dated Dec. 14, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 9327, entitled “Split Hoop Wound Retractor”, dated Dec. 14, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 9328, entitled “Split Hoop Wound Retractor”, dated Dec. 15, 2010.
European Patent Office, European Search Report for European Application No. EP 04 00 2888, entitled “Hand Access Port Device”, dated Sep. 10, 2004.
European Patent Office, European Search Report for European Application No. EP 04 00 2889, entitled “Hand Access Port Device”, dated Sep. 13, 2004.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/040154, mailed Jan. 30, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/040073, mailed Jan. 26, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039905, mailed Jan. 17, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039883, mailed Jan. 31, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039800, mailed Apr. 16, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039799, mailed Mar. 27, 2007.
European Patent Office, European Search Report for European Application No. EP 08253236 dated Feb. 10, 2009.
Horigame, et al., Silicone Rumen Cannula with a Soft Cylindrical Part and a Hard Flange, Journal of Dairy Science, Nov. 1989, vol. 72, No. 11, pp. 3230-3232.
Horigame, et al., Technical Note: Development of Duodoenal Cannula for Sheep, Journal of Animal Science, Apr. 1992, vol. 70, Issue 4, pp. 1216-1219.
International Searching Authority/US, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US04/05484, mailed on Nov. 12, 2004.
International Searching Authority/US, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US01/29682, mailed on Jun. 14, 2002.
Mcsweeney, Cannulation of the Rumen in Cattle and Buffaloes, Australian Veterniary Journal, Aug. 1989, vol. 66, No. 8, pp. 266-268.
Neil Sheehan, Supplemental Expert Report of Neil Sheehan, Re: U.S. Pat. No. 5,741,298, United States District Court for the Central District of California, Civil Action No. SACV 03-1322 JVS, Aug. 9, 2005.
Office Action in co-pending U.S. Appl. No. 12/360,634, dated Jan. 24, 2011 in 12 pages.
Office Action in co-pending U.S. Appl. No. 12/360,710, dated Jan. 24, 2011 in 12 pages.
Technical Note: Development of Duodenal Cannula for Sheep, Faculty of Agriculture and School of Medicine Tohokju University, Sendai 981, Japan, dated 1992.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2004/028250, dated Aug. 29, 2006.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2006/039799, dated Apr. 16, 2008.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2006/039800 dated Apr. 16, 2008.
Yamazaki, et al., Diurnal Changes in the Composition of Abomasal Digesta in Fasted and Fed Sheep, The Tohoki Journal of Agricultural Research, Mar. 1987, vol. 37, No. 3-4, pp. 49-58.
Kagaya, Laparascopic cholecystecomy via two ports, using the “Twin-Port” system, J. Hepatobiliary Pancreat Surg (2001) 8:76-80, dated Feb. 20, 2001.
Declaration of John R. Brustad dated Dec. 10, 2009, submitted in U.S. Appl. No. 11/548,955, including Appendices A-D regarding product sales brochures and production drawings from 2001 and 2005.
International Search Report and Written Opinion for PCT/IE2005/000113, mailed on Feb. 22, 2006.
International Searching Authority-US, International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US04/25511, mailed Nov. 7, 2007.
International Bureau of WIPO, International Report on Patentability for International Application No. PCT/US04/25511, mailed Dec. 6, 2007.
International Search Report and Written Opinion for PCT/IE2007/000050 mailed on Aug. 13, 2007.
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US08/63445, mailed Sep. 29, 2008.
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US08/063463 mailed Sep. 10, 2008.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2008/063463, entitled “Surgical Retractor”, dated Nov. 17, 2009.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US08/63445, entitled “Surgical Retractor with Gel Pad”, dated Nov. 17, 2009.
International Searching Authority—European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2011/054266, mailed Feb. 9, 2012.
European Patent Office, European Search Report for European U.S. Pat. No. 11172709.5, dated Aug. 16, 2011.
European Patent Office, European Search Report for European U.S. Pat. No. 11172706.1, dated Aug. 16, 2011.
European Patent Office, European Search Report for European U.S. Pat. No. 12151288, dated Feb. 10, 2012.
European Patent Office, European Search Report for European U.S. Pat. No. 08755332, dated Apr. 18, 2012.
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755322, dated Apr. 18, 2012.
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755336, dated Jun. 15, 2012.
Harold W. Harrower, M.D., Isolation of Incisions into Body Cavities, The American Journal of Surgery, vol. 116, pp. 824-826, Dec. 1968.
International Searching Authority—European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/037213, mailed Jul. 3, 2013.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2011/054266, titled, Natural Orifice Surgery System dated Apr. 2, 2013.
International Searching Authority—European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/040798, mailed Dec. 14, 2015, 21 pgs.
Related Publications (1)
Number Date Country
20160015425 A1 Jan 2016 US
Provisional Applications (1)
Number Date Country
62026317 Jul 2014 US