This invention relates to gemstone positioning fixtures, and in particular to such fixtures generally for use in connection with engravements made with electron beam or ion beam sources.
New technology has emerged in the jewelry and gemstone industry that allows for the nano-engraving of the table of a polished gemstone, so small as to not be visible to the naked human eye, or even with a common 10× loop. This nano-engraving is done with sophisticated focused ion beams (charged particles) that ablate the surface of the gemstone on the scale of about 30 nanometers deep. The targeting and manipulation of the ion beam is done on such a small scale, and with such power, that the charged ion particles are prone to build up an electrical charge on the surface of gemstone as it is engraved. This build-up of electrical charge can cause the ion beam to spread or distort, resulting in an unpredictable engravement on the gem table surface. Current practice requires preparing the gemstone for engraving using a conductive coating like gold, and then affixing the coated gemstone to a grounded fixture using a conductive adhesive. This process requires specialized handling of the gemstones requiring extra time and adding the risk of breaking of fragile parts the gemstone. Additionally, the use of adhesives and grounding holders allows for significant misalignment of the individual gemstones that must be corrected in time consuming programming of the focused ion beam device.
This invention relates to improvements to the systems described above, and to solutions to some of the problems raised or not solved thereby.
The gemstone positioning fixture of the present invention is designed to securely hold single or multiple gemstones in such a way as to be properly positioned for processing in manufacturing or grading, including nano-scale engraving using focused ion or electron beams without having to coat the gemstones or attach the gemstones to a holder with adhesive. The design of the fixture causes the gemstone to be held without adhesives while allowing any electrical charge to be siphoned to ground. Additionally, alignment and centering of the gemstones relative to the manufacturing or grading processing is achieved mechanically through the features designed into the fixture, thereby eliminating the need for custom programming and targeting of the processing equipment on the individual gemstones. The fixture is useful for positioning gemstones for any number of processes in the manufacture and grading of gemstones, including methods of shaping, engraving or cutting using lasers or other charged beams even though such other methods may not have dissipation of electrical charge as a problem. The present invention may be used by gemstone and jewelry manufacturers and grading companies having a need to securely hold the gemstone in a predetermined alignment for processing, including the process of engraving gemstones.
The invention therefore provides a gemstone positioning fixture, including a cover plate and base. The base supports the covering plate. The cover plate has a number of apertures matching in position and number the gems to be worked. A biasing member is positioned beneath the apertures. The biasing member bears on a support plate with a top surface adapted to receive and support a gem in a position so that a working surface of the gem faces the aperture. The biasing member may be a coil spring, a leaf spring, or other type of biasing member.
Another embodiment of the invention provides a gemstone positioning fixture, including a base. The base has one or more plunger holes formed therein. A cover plate is applied over the base. The cover plate has a number of apertures matching in position and number the plunger holes in the base. A biasing member is positioned within one or more of the plunger holes. A plunger is positioned atop each biasing member within the respective plunger hole, and has a top surface adapted to receive and support a gem in a position so that a working surface of the gem faces away from the plunger. A fixture base plate has spring compression pins, and is positioned at the bottom of the base. A spring compression base plate has holes which align in number and position with the spring compression pins, and the spring compression pins are inserted into those holes. A spring compression plate is positioned above the spring compression base plate and below the biasing members, and in contact with the spring compression pins. Thus, when the fixture base plate is applied, the spring compression pins contact the spring compression plate, which in turn provides an upward force to the biasing members, the plungers and the gems. The cover plate, and possibly others of the parts, are formed of materials that conduct electricity, so as to conduct any charged particles away from the gem working surface.
Other objects and advantages of the invention will become apparent hereinafter.
The present invention provides a gemstone positioning fixture 10, for positioning a gem 35 and presenting a work surface 36 of the gem for certain work. The work includes the use of a high energy particle beam such as an ion beam and/or electron beam to direct charged particles onto the work surface 36 to engrave indicia, such as numbers or bar codes, onto the work surface.
In the embodiments shown in
Within each plunger hole 20 in the base 15 is positioned a biasing member 25. Each biasing member 25 co-acts with a plunger 30. The plunger 30 has substantially the same cross sectional shape as the plunger hole 20, with outside dimensions just smaller than the dimensions of the plunger hole, so as to allow the plunger to move freely vertically in the plunger hole without significant lateral movement. In the embodiment shown in the figures, the plunger holes 20 and the plungers 30 are cylindrical, and the diameter of the plunger just smaller than the diameter of the plunger hole. Each plunger 30 preferably has a bottom surface adapted and shaped to interact with the biasing member 25, such as cupped to interact with a coil spring. The top surface of each plunger 30 is shaped to interact with a gem 35 so as to provide support without exerting undue force on portions of the gem that are more fragile, and to present the surface of the gem to be worked or speculated, hereafter called the work surface 36, at the top. Gem 35 could be a rough, uncut, gem, or a cut gem, and could be a diamond, ruby, sapphire or other precious gem.
For the instance where the gem 35 is a diamond and the work surface 36 is the table, or top surface, of the diamond, the top surface of the plunger 30 is shaped with a depression, with its lowest point at the center, so that the center lowest point 37, or culet, of the diamond, is well supported. The plunger 30 could even have a cone-shaped depression formed in its top surface. Further, an opening 32 could be formed in the top surface of the plunger 30, generally at its center, to place the least amount of force possible on the culet in supporting the gem 35.
In the embodiments shown, referring now mainly to
In a preferred version of this embodiment, chamber 17 is preferably closed by a spring compression base plate 45 securely attached to the base 15, trapping the bottom spring compression plate 40 within chamber 17. In the embodiments shown, the attachment of the spring compression base plate 45 is by means of fasteners 50 (shown in
A preferred version of this embodiment of fixture 10 further includes a fixture base plate 55, which is provided with spring compression pins 60 attached to or integrally formed with the fixture base plate and projecting substantially vertically upward. Fixture base plate 55 is sized and positioned to cover the underside of the spring compression base plate 45. As shown best in
In the most preferred version of this embodiment, shown in
Then, when the upward force is applied by the fixture base plate 55, the spring compression pins 60 bear on spring compression plate 40, forcing plate 40 upward within chamber 17, thereby moving biasing members 25, plungers 30 and gems 35 upward until the work surfaces 36 of the gems 35 contact the underside of the cover plate 75. The gems 35 are thus held securely in position, and the work surface 36 of each gem suitably exposed, for the application of a high-energy particle beam, such as an electron beam 80 and/or an ion beam 85, as shown in
In the most preferred version of this embodiment, the cover plate 75, as well as possibly other parts, are made of conductive material, such as copper, brass, aluminum, steel, and so on, and the entire fixture, especially the cover plate 75 is connected to an electrical ground 99, and the size of the apertures 78 is determined, so that any electrical charges that might otherwise build up on any of these parts is suitably and harmlessly conducted away from the work surface 36 itself.
In the embodiment shown in
A fixture 110 according to another embodiment of the invention is shown in cross section in
A fixture 210 constructed according to yet another embodiment of the invention is shown in
A fixture 310 according to another embodiment of the invention, shown in cross section in
The invention thus provides a fixture that is novel and useful in holding gems and presenting their work surfaces for various desired work, including the application of indicia by use of a high energy particle beam such as an ion beam and/or electron beam to direct charged particles onto the work surface 36.
While the apparatus described above is effectively adapted to fulfill its intended objectives as set forth, it is to be understood that the invention is not intended to be limited to the specific preferred embodiments of gemstone positioning fixture as described in this description. Rather, it is to be taken as including all reasonable equivalents to the subject matter of the claims as set out below.
This application claims the benefit of Provisional Application Ser. No. 61/196,823, filed Oct. 21, 2008.
Number | Name | Date | Kind |
---|---|---|---|
4189230 | Zasio | Feb 1980 | A |
4629384 | Beshke et al. | Dec 1986 | A |
5458733 | Tessmer et al. | Oct 1995 | A |
5760367 | Rosenwasser et al. | Jun 1998 | A |
6035522 | Larson et al. | Mar 2000 | A |
6553644 | Karmaniolas et al. | Apr 2003 | B2 |
7336347 | Sasian et al. | Feb 2008 | B2 |
20060144821 | Wang | Jul 2006 | A1 |
20080006615 | Rosario et al. | Jan 2008 | A1 |
Entry |
---|
Search report dated Feb. 3, 2010, for International Application No. PCT/US 09/61565. |
Number | Date | Country | |
---|---|---|---|
20100102039 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
61196823 | Oct 2008 | US |