GENE EDITING SYSTEMS COMPRISING AN RNA GUIDE TARGETING STATHMIN 2 (STMN2) AND USES THEREOF

Information

  • Patent Application
  • 20230203539
  • Publication Number
    20230203539
  • Date Filed
    August 11, 2022
    2 years ago
  • Date Published
    June 29, 2023
    a year ago
Abstract
A system for genetic editing of a stathmin 2 (STMN2) gene, comprising (i) a Cas12i2 polypeptide or a first nucleic acid encoding the Cas12i2 polypeptide, and (ii) an RNA guide or a second nucleic acid encoding the RNA guide, wherein the RNA guide comprises a spacer sequence specific to a target sequence within an STMN2 gene. Also provided herein are methods for editing a STMN2 gene using the gene editing system disclosed herein and/or for treating diseases associated with the STMN2 gene.
Description
BACKGROUND

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) genes, collectively known as CRISPR-Cas or CRISPR/Cas systems, are adaptive immune systems in archaea and bacteria that defend particular species against foreign genetic elements.


SUMMARY OF THE PRESENT DISCLOSURE

The present disclosure is based, at least in part, on the development of a system for genetic editing of a stathmin 2 (STMN2) gene. The system involves a Cas12i polypeptide such as a Cas12i2 polypeptide and an RNA guide mediating cleavage at a genetic site within the STMN2 gene by the CRISPR nuclease polypeptide. As reported herein, the gene editing system disclosed herein has achieved successful editing of STMN2 gene with high editing efficiency and accuracy.


Without being bound by theory, the gene editing system disclosed herein may exhibit one or more of the following advantageous features. Compared to SpCas9 and Cas12a, Cas12i effectors are smaller (1033 to 1093aa) which, in conjunction with their short mature crRNA (40-43 nt), is preferable in terms of delivery and cost of synthesis. Cas12i cleavage results in larger deletions compared to the small deletions and +1 insertions induced by Cas9 cleavage. Cas12i PAM sequences also differ from those of Cas9. Therefore, larger and different portions of genetic sites of interest can be disrupted with a Cas12i polypeptide and RNA guide compared to Cas9. Using an unbiased approach of tagmentation-based tag integration site sequencing (TTISS), more potential off-target sites with a higher number of unique integration events were identified for SpCas9 compared to Cas12i2. See WO/2021/202800. Therefore, Cas12i such as Cas12i2 may be more specific than Cas9.


Accordingly, provided herein are gene editing systems for editing a STMN2 gene, pharmaceutical compositions or kits comprising such, methods of using the gene editing systems to produce genetically modified cells, and the resultant cells thus produced. Also provided herein are uses of the gene editing systems disclosed herein, the pharmaceutical compositions and kits comprising such, and/or the genetically modified cells thus produced for treating neurodegenerative diseases (e.g., amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD)) in a subject.


In some aspects, the present disclosure features system for genetic editing of a stathmin 2 (STMN2) gene, comprising (i) a Cas12i polypeptide or a first nucleic acid encoding the Cas12i polypeptide, and (ii) an RNA guide or a second nucleic acid encoding the RNA guide. The RNA guide comprises a spacer sequence specific to a target sequence within an STMN2 gene, the target sequence being adjacent to a protospacer adjacent motif (PAM) comprising the motif of 5′-TTN-3′, which is located 5′ to the target sequence.


In some embodiments, the Cas12i is a Cas12i2 polypeptide. In other embodiments, the Cas12i is a Cas12i4 polypeptide.


In some embodiments, the Cas12i polypeptide is a Cas12i2 polypeptide comprising an amino acid sequence at least 95% identical to SEQ ID NO: 448. In some instances, the Cas12i2 polypeptide may comprise one or more mutations relative to SEQ ID NO: 448. In some examples, the one or more mutations in the Cas12i2 polypeptide are at positions D581, G624, F626, P868, 1926, V1030, E1035, and/or S1046 of SEQ ID NO: 448. In some examples, the one or more mutations are amino acid substitutions, which optionally is D581R, G624R, F626R, P868T, I926R, V1030G, E1035R, 51046G, or a combination thereof.


In one example, the Cas12i2 polypeptide comprises mutations at positions D581, D911, 1926, and V1030 (e.g., amino acid substitutions of D581R, D911R, I926R, and V1030G). In another example, the Cas12i2 polypeptide comprises mutations at positions D581, 1926, and V1030 (e.g., amino acid substitutions of D581R, I926R, and V1030G). In yet another example, the Cas12i2 polypeptide comprises mutations at positions D581, 1926, V1030, and 51046 (e.g., amino acid substitutions of D581R, I926R, V1030G, and 51046G). In still another example, the Cas12i2 polypeptide comprises mutations at positions D581, G624, F626, 1926, V1030, E1035, and 51046 (e.g., amino acid substitutions of D581R, G624R, F626R, I926R, V1030G, E1035R, and S1046G). In another example, the Cas12i2 polypeptide comprises mutations at positions D581, G624, F626, P868, 1926, V1030, E1035, and 51046 (e.g., amino acid substitutions of D581R, G624R, F626R, P868T, I926R, V1030G, E1035R, and 51046G).


Exemplary Cas12i2 polypeptides for use in any of the gene editing systems disclosed herein may comprise the amino acid sequence of any one of SEQ ID NOs: 449-453. In one example, the exemplary Cas12i2 polypeptide for use in any of the gene editing systems disclosed herein comprises the amino acid sequence of SEQ ID NO: 450. In another example, the exemplary Cas12i2 polypeptide for use in any of the gene editing systems disclosed herein comprises the amino acid sequence of SEQ ID NO: 453.


In some embodiments, the gene editing system may comprise the first nucleic acid encoding the Cas12i polypeptide (e.g., the Cas12i2 polypeptide). In some instances, the first nucleic acid is located in a first vector (e.g., a viral vector such as an adeno-associated viral vector or AAV vector). In some instances, the first nucleic acid is a messenger RNA (mRNA). In some instances, the coding sequence for the Cas12i polypeptide is codon optimized.


In some embodiments, the target sequence may be within exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, or an intron of the STMN2 gene.


In some embodiments, the RNA guide comprises the sequence of any one of SEQ ID NOs: 4508, 4512, 4559, and 4561, or the second nucleic acid encodes an RNA guide comprising any one of SEQ ID NOs: 4508, 4512, 4559, and 4561.


In some embodiments, the RNA guide comprises the sequence of any one of SEQ ID NOs: 4505, 4506, 4507, 4508, 4509, 4510, 4511, 4512, 4513, 4514, 4515, 4554, 4555, 4556, 4557, 4558, 4559, 4560, 4561, and 4562, or the second nucleic acid encodes an RNA guide comprising any one of SEQ ID NOs: 4505, 4506, 4507, 4508, 4509, 4510, 4511, 4512, 4513, 4514, 4515, 4554, 4555, 4556, 4557, 4558, 4559, 4560, 4561, and 4562.


In some embodiments, the spacer sequence may be 20-30-nucleotides in length. In some examples, the spacer sequence is 20-nucleotides in length.


In some embodiments, the RNA guide comprises the spacer and a direct repeat sequence. In some examples, the direct repeat sequence is 23-36-nucleotides in length. In one example, the direct repeat sequence is at least 90% identical to any one of SEQ ID NOs: 1-10 or a fragment thereof that is at least 23-nucleotides in length. In some specific examples, the direct repeat sequence is any one of SEQ ID NOs: 1-10, or a fragment thereof that is at least 23-nucleotides in length. By way of non-limiting example, the direct repeat sequence is 5′-AGAAAUCCGUCUUUCAUUGACGG-3′ (SEQ ID NO: 10).


In some embodiments, the system may comprise the second nucleic acid encoding the RNA guide. In some examples, the nucleic acid encoding the RNA guide may be located in a viral vector. In some examples, the viral vector comprises the both the first nucleic acid encoding the Cas12i polypeptide (e.g., the Cas12i2 polypeptide) and the second nucleic acid encoding the RNA guide.


In some embodiments, any of the systems described herein may comprise the first nucleic acid encoding the Cas12i polypeptide (e.g., the Cas12i2 polypeptide), which is located in a first vector, and the second nucleic acid encoding the RNA guide, which is located on a second vector. In some examples, the first and/or second vector is a viral vector. In some specific examples, the first and second vectors are the same vector.


In some embodiments, any of the systems described herein may comprise one or more lipid nanoparticles (LNPs), which encompass the Cas12i polypeptide (e.g., the Cas12i2 polypeptide) or the first nucleic acid encoding the Cas12i polypeptide, the RNA guide or the second nucleic acid encoding the RNA guide, or both.


In some embodiments, the system described herein may comprise an LNP, which encompasses the Cas12i polypeptide (e.g., the Cas12i2 polypeptide) or the first nucleic acid encoding the Cas12i polypeptide, and a viral vector comprising the second nucleic acid encoding the RNA guide. In some examples, the viral vector is an AAV vector. In other embodiments, the system described herein may comprise an LNP, which encompasses the RNA guide or the second nucleic acid encoding the RNA guide, and a viral vector comprising the first nucleic acid encoding the Cas12i polypeptide. In some examples, the viral vector is an AAV vector.


In some aspects, the present disclosure also provides a pharmaceutical composition comprising any of the gene editing systems disclosed herein, and a kit comprising the components of the gene editing system.


In other aspects, the present disclosure also features a method for editing a stathmin 2 (STMN2) gene in a cell, the method comprising contacting a host cell with any of the systems disclosed herein to genetically edit the STMN2 gene in the host cell. In some examples, the host cell is cultured in vitro. In other examples, the contacting step is performed by administering the system for editing the STMN2 gene to a subject comprising the host cell.


Also within the scope of the present disclosure is a cell comprising a disrupted a stathmin 2 (STMN2) gene, which can be produced by contacting a host cell with the system disclosed herein genetically edit the STMN2 gene in the host cell.


Still in other aspects, the present disclosure provides a method for treating neurodegenerative diseases (e.g., amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD)) in a subject. The method may comprise administering to a subject in need thereof any of the systems for editing a stathmin 2 (STMN2) gene or any of the cells disclosed herein.


Also provided herein is an RNA guide, comprising (i) a spacer sequence as disclosed herein that is specific to a target sequence in a stathmin 2 (STMN2) gene, wherein the target sequence is adjacent to a protospacer adjacent motif (PAM) comprising the motif of 5′-TTN-3′, which is located 5′ to the target sequence; and (ii) a direct repeat sequence.


In some embodiments, the spacer may be 20-30-nucleotidse in length. In some examples, the spacer is 20-nucleotides in length.


In some embodiments, the direct repeat sequence may be 23-36-nucleotides in length. In some examples, the direct repeat sequence is 23-nucleotides in length.


In some embodiments, the target sequence is within exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, or an intron of the STMN2 gene.


In some embodiments, the RNA guide comprises the sequence of any one of SEQ ID NOs: 4508, 4512, 4559, and 4561, or the second nucleic acid encodes an RNA guide comprising any one of SEQ ID NOs: 4508, 4512, 4559, and 4561.


In some embodiments, the RNA guide comprises the sequence of any one of SEQ ID NOs: 4505, 4506, 4507, 4508, 4509, 4510, 4511, 4512, 4513, 4514, 4515, 4554, 4555, 4556, 4557, 4558, 4559, 4560, 4561, and 4562, or the second nucleic acid encodes an RNA guide comprising any one of SEQ ID NOs: 4505, 4506, 4507, 4508, 4509, 4510, 4511, 4512, 4513, 4514, 4515, 4554, 4555, 4556, 4557, 4558, 4559, 4560, 4561, and 4562.


In some embodiments, the direct repeat sequence may be at least 90% identical to any one of SEQ ID NOs: 1-10 or a fragment thereof that is at least 23-nucleotides in length. In some examples, the direct repeat sequence is any one of SEQ ID NOs: 1-10, or a fragment thereof that is at least 23-nucleotides in length. By way of non-limiting example, the direct repeat sequence is 5′-AGAAAUCCGUCUUUCAUUGACGG-3′ (SEQ ID NO: 10).


Also provided herein are any of the gene editing systems disclosed herein, pharmaceutical compositions or kits comprising such, or genetically modified cells generated by the gene editing system for use in treating neurodegenerative disease (e.g., amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD)) in a subject, as well as uses of the gene editing systems disclosed herein, pharmaceutical compositions or kits comprising such, or genetically modified cells generated by the gene editing system for manufacturing a medicament for treatment of neurodegenerative disease (e.g., amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD)) in a subject.


The details of one or more embodiments of the invention are set forth in the description below. Other features or advantages of the present invention will be apparent from the following drawings and detailed description of several embodiments, and also from the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present disclosure, which can be better understood by reference to the drawing in combination with the detailed description of specific embodiments presented herein.



FIG. 1 shows editing percentage of STMN2 intron target sequences by the indicated guides, as described in Example 1.



FIG. 2A shows disruption of >15% of the cryptic splice site in STMN2 intron 1 by guides 4, 8, 55, and 57.



FIG. 2B shows disruption of >15% of at least one of 3 TDP-43 binding motifs in STMN2 intron 1 by guides 12, 46, 47, 48, and 49.



FIG. 2C shows disruption of >15% of the premature polyadenylation signal in STMN2 intron 1 by guides 17 and 18.



FIG. 3 is a schematic showing the positions where each of the indicated RNA guides binds intron 1 of STMN2 relative to the positions of the cryptic splice site, the TDP-43 binding motifs, and the premature polyadenylation signal.



FIG. 4 shows indel activity of the tested RNA guides in SH-SY5Y cells.



FIG. 5A is a plot comparing indel activity (% indels) demonstrated in HEK293T cells and SH-SY5Y cells from Example 1 and Example 2, respectively. FIG. 5B is a plot comparing splice site motif disruption demonstrated in HEK293T cells and SH-SY5Y cells from Example 1 and Example 2, respectively.





DETAILED DESCRIPTION

The present disclosure relates to a system for genetic editing of a stathmin 2 (STMN2) gene, which comprises (i) a Cas12i polypeptide or a first nucleic acid encoding the Cas12i2 polypeptide; and (ii) an RNA guide or a second nucleic acid encoding the RNA guide, wherein the RNA guide comprises a spacer sequence specific to a target sequence within a STMN2 gene, the target sequence being adjacent to a protospacer adjacent motif (PAM) comprising the motif of 5′-TTN-3′, which is located 5′ to the target sequence. Also provided in the present disclosure are a pharmaceutical composition or a kit comprising such a system as well as uses thereof. Further disclosed herein are a method for editing a STMN2 gene in a cell, a cell so produced that comprises a disrupted a STMN2 gene, a method of treating neurodegenerative disease in a subject, and an RNA guide that comprises (i) a spacer sequence that is specific to a target sequence in a STMN2 gene, wherein the target sequence is adjacent to a protospacer adjacent motif (PAM) comprising the motif of 5′-TTN-3′, which is located 5′ to the target sequence; and (ii) a direct repeat sequence, as well as uses thereof.


The Cas12i polypeptide for use in the gene editing system disclosed herein may be a Cas12i2 polypeptide, e.g., a wild-type Cas12i polypeptide or a variant thereof as those disclosed herein. In some examples, the Cas12i2 polypeptide comprises an amino acid sequence at least 95% identical to SEQ ID NO: 448 and comprises one or more mutations relative to SEQ ID NO: 448. In other examples, the Cas12i polypeptide may be a Cas12i4 polypeptide, which is also disclosed herein.


Definitions

The present disclosure will be described with respect to particular embodiments and with reference to certain Figures, but the present disclosure is not limited thereto but only by the claims. Terms as set forth hereinafter are generally to be understood in their common sense unless indicated otherwise.


As used herein, the term “activity” refers to a biological activity. In some embodiments, activity includes enzymatic activity, e.g., catalytic ability of a Cas12i polypeptide. For example, activity can include nuclease activity.


As used herein the term “STMN2” refers to “stathmin-2.” STMN2 is a neuron-specific member of the stathmin family of proteins and plays roles in regulation of microtubule stability and signal transduction. SEQ ID NO: 454 as set forth herein provides an example of a STMN2 gene sequence. Reference is also made to Gene ID: 11075 for this sequence (www.ncbi.nlm.nih.gov/gene/11075).


As used herein, the term “Cas12i polypeptide” (also referred to herein as Cas12i) refers to a polypeptide that binds to a target sequence on a target nucleic acid specified by an RNA guide, wherein the polypeptide has at least some amino acid sequence homology to a wild-type Cas12i polypeptide. In some embodiments, the Cas12i polypeptide comprises at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity with any one of SEQ ID NOs: 1-5 and 11-18 of U.S. Pat. No. 10,808,245, which is incorporated by reference for the subject matter and purpose referenced herein. In some embodiments, a Cas12i polypeptide comprises at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity with any one of SEQ ID NOs: 4503, 448, 4504, and 482 of the present application. In some embodiments, a Cas12i polypeptide of the disclosure is a Cas12i2 polypeptide as described in WO/2021/202800, the relevant disclosures of which are incorporated by reference for the subject matter and purpose referenced herein. In some embodiments, the Cas12i polypeptide cleaves a target nucleic acid (e.g., as a nick or a double strand break).


As used herein, the term “adjacent to” refers to a nucleotide or amino acid sequence in close proximity to another nucleotide or amino acid sequence. In some embodiments, a nucleotide sequence is adjacent to another nucleotide sequence if no nucleotides separate the two sequences (i.e., immediately adjacent). In some embodiments, a nucleotide sequence is adjacent to another nucleotide sequence if a small number of nucleotides separate the two sequences (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides). In some embodiments, a first sequence is adjacent to a second sequence if the two sequences are separated by about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 nucleotides. In some embodiments, a first sequence is adjacent to a second sequence if the two sequences are separated by up to 2 nucleotides, up to 5 nucleotides, up to 8 nucleotides, up to 10 nucleotides, up to 12 nucleotides, or up to 15 nucleotides. In some embodiments, a first sequence is adjacent to a second sequence if the two sequences are separated by 2-5 nucleotides, 4-6 nucleotides, 4-8 nucleotides, 4-10 nucleotides, 6-8 nucleotides, 6-10 nucleotides, 6-12 nucleotides, 8-10 nucleotides, 8-12 nucleotides, 10-12 nucleotides, 10-15 nucleotides, or 12-15 nucleotides.


As used herein, the term “complex” refers to a grouping of two or more molecules. In some embodiments, the complex comprises a polypeptide and a nucleic acid molecule interacting with (e.g., binding to, coming into contact with, adhering to) one another. For example, the term “complex” can refer to a grouping of an RNA guide and a polypeptide (e.g., a Cas12i polypeptide). Alternatively, the term “complex” can refer to a grouping of an RNA guide, a polypeptide, and the complementary region of a target sequence. As used herein, the term “complex” can refer to a grouping of a STMN2-targeting RNA guide and a Cas12i polypeptide.


As used herein, the term “protospacer adjacent motif” or “PAM” refers to a DNA sequence adjacent to a target sequence (e.g., a STMN2 target sequence). In a double-stranded DNA molecule, the strand containing the PAM motif is called the “PAM-strand” and the complementary strand is called the “non-PAM strand.” The RNA guide binds to a site in the non-PAM strand that is complementary to a target sequence disclosed herein.


In some embodiments, the PAM strand is a coding (e.g., sense) strand. In other embodiments, the PAM strand is a non-coding (e.g., antisense strand). Since an RNA guide binds the non-PAM strand via base-pairing, the non-PAM strand is also known as the target strand, while the PAM strand is also known as the non-target strand.


As used herein, the term “target sequence” refers to a DNA fragment adjacent to a PAM motif (on the PAM strand). The complementary region of the target sequence is on the non-PAM strand. A target sequence may be immediately adjacent to the PAM motif. Alternatively, the target sequence and the PAM may be separately by a small sequence segment (e.g., up to 5 nucleotides, for example, up to 4, 3, 2, or 1 nucleotide). A target sequence may be located at the 3′ end of the PAM motif or at the 5′ end of the PAM motif, depending upon the CRISPR nuclease that recognizes the PAM motif, which is known in the art. For example, a target sequence is located at the 3′ end of a PAM motif for a Cas12i polypeptide (e.g., a Cas12i2 polypeptide such as those disclosed herein). In some embodiments, the target sequence is a sequence within a STMN2 gene sequence, including, but not limited, to the sequence set forth in SEQ ID NO: 454.


As used herein, the term “spacer” or “spacer sequence” is a portion in an RNA guide that is the RNA equivalent of the target sequence (a DNA sequence). The spacer contains a sequence capable of binding to the non-PAM strand via base-pairing at the site complementary to the target sequence (in the PAM strand). Such a spacer is also known as specific to the target sequence. In some instances, the spacer may be at least 75% identical to the target sequence (e.g., at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99%), except for the RNA-DNA sequence difference. In some instances, the spacer may be 100% identical to the target sequence except for the RNA-DNA sequence difference.


As used herein, the term “RNA guide” or “RNA guide sequence” refers to any RNA molecule or a modified RNA molecule that facilitates the targeting of a polypeptide (e.g., a Cas12i polypeptide) described herein to a target sequence (e.g., a sequence of a STMN2 gene). For example, an RNA guide can be a molecule that is designed to be complementary to a specific nucleic acid sequence (a target sequence such as a target sequence within a STMN2 gene). An RNA guide may comprise a spacer sequence and a direct repeat (DR) sequence. In some instances, the RNA guide can be a modified RNA molecule comprising one or more deoxyribonucleotides, for example, in a DNA-binding sequence contained in the RNA guide, which binds a sequence complementary to the target sequence. In some examples, the DNA-binding sequence may contain a DNA sequence or a DNA/RNA hybrid sequence. The terms CRISPR RNA (crRNA), pre-crRNA, and mature crRNA are also used herein to refer to an RNA guide.


As used herein, the term “complementary” refers to a first polynucleotide (e.g., a spacer sequence of an RNA guide) that has a certain level of complementarity to a second polynucleotide (e.g., the complementary sequence of a target sequence) such that the first and second polynucleotides can form a double-stranded complex via base-pairing to permit an effector polypeptide that is complexed with the first polynucleotide to act on (e.g., cleave) the second polynucleotide. In some embodiments, the first polynucleotide may be substantially complementary to the second polynucleotide, i.e., having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% complementarity to the second polynucleotide. In some embodiments, the first polynucleotide is completely complementary to the second polynucleotide, i.e., having 100% complementarity to the second polynucleotide.


The “percent identity” (a.k.a., sequence identity) of two nucleic acids or of two amino acid sequences is determined using the algorithm of Karlin and Altschul Proc. Natl. Acad. Sci. USA 87:2264-68, 1990, modified as in Karlin and Altschul Proc. Natl. Acad. Sci. USA 90:5873-77, 1993. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. J. Mol. Biol. 215:403-10, 1990. BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength-12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the present disclosure. BLAST protein searches can be performed with the XBLAST program, score=50, word length=3 to obtain amino acid sequences homologous to the protein molecules of the present disclosure. Where gaps exist between two sequences, Gapped BLAST can be utilized as described in Altschul et al., Nucleic Acids Res. 25(17):3389-3402, 1997. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.


As used herein, the term “edit” refers to one or more modifications introduced into a target nucleic acid, e.g., within the STMN2 gene. The edit can be one or more substitutions, one or more insertions, one or more deletions, or a combination thereof. As used herein, the term “substitution” refers to a replacement of a nucleotide or nucleotides with a different nucleotide or nucleotides, relative to a reference sequence. As used herein, the term “insertion” refers to a gain of a nucleotide or nucleotides in a nucleic acid sequence, relative to a reference sequence. As used herein, the term “deletion” refers to a loss of a nucleotide or nucleotides in a nucleic acid sequence, relative to a reference sequence.


No particular process is implied in how to make a sequence comprising a deletion. For instance, a sequence comprising a deletion can be synthesized directly from individual nucleotides. In other embodiments, a deletion is made by providing and then altering a reference sequence. The nucleic acid sequence can be in a genome of an organism. The nucleic acid sequence can be in a cell. The nucleic acid sequence can be a DNA sequence. The deletion can be a frameshift mutation or a non-frameshift mutation. A deletion described herein refers to a deletion of up to several kilobases.


As used herein, the terms “upstream” and “downstream” refer to relative positions within a single nucleic acid (e.g., DNA) sequence in a nucleic acid molecule. “Upstream” and “downstream” relate to the 5′ to 3′ direction, respectively, in which RNA transcription occurs. A first sequence is upstream of a second sequence when the 3′ end of the first sequence occurs before the 5′ end of the second sequence. A first sequence is downstream of a second sequence when the 5′ end of the first sequence occurs after the 3′ end of the second sequence. In some embodiments, the 5′-NTTN-3′ or 5′-TTN-3′ sequence is upstream of an indel described herein, and a Cas12i-induced indel is downstream of the 5′-NTTN-3′ or 5′-TTN-3′ sequence.


I. Gene Editing Systems

In some aspects, the present disclosure provides gene editing systems comprising an RNA guide targeting a STMN2 gene. Such a gene editing system can be used to edit the STMN2 target gene, e.g., to disrupt the STMN2 gene.


As used herein the term “STMN2” refers to “stathmin-2.” STMN2 is a neuron-specific member of the stathmin family of proteins and plays roles in regulation of microtubule stability and signal transduction. SEQ ID NO: 454 as set forth herein provides an example of a STMN2 gene sequence. Reference is also made to Gene ID: 11075 for this sequence (www.ncbi.nlm.nih.gov/gene/11075).


In some embodiments, the RNA guide is comprised of a direct repeat component and a spacer sequence. In some embodiments, the RNA guide binds a Cas12i polypeptide. In some embodiments, the spacer sequence is specific to a STMN2 target sequence, wherein the STMN2 target sequence is adjacent to a 5′-NTTN-3′ or 5′-TTN-3′ PAM sequence as described herein. In the case of a double-stranded target, the RNA guide binds to a first strand of the target (i.e., the non-PAM strand) and a PAM sequence as described herein is present in the second, complementary strand (i.e., the PAM strand).


In some embodiments, the present disclosure provides compositions comprising a complex, wherein the complex comprises an RNA guide targeting a STMN2. In some embodiments, the present disclosure comprises a complex comprising an RNA guide and a Cas12i polypeptide. In some embodiments, the RNA guide and the Cas12i polypeptide bind to each other in a molar ratio of about 1:1. In some embodiments, a complex comprising an RNA guide and a Cas12i polypeptide binds to the complementary region of a target sequence within a STMN2 gene. In some embodiments, a complex comprising an RNA guide targeting a STMN2 and a Cas12i polypeptide binds to the complementary region of a target sequence within the STMN2 gene at a molar ratio of about 1:1. In some embodiments, the complex comprises enzymatic activity, such as nuclease activity, that can cleave the STMN2 target sequence and/or the complementary sequence. The RNA guide, the Cas12i polypeptide, and the complementary region of the STMN2 target sequence, either alone or together, do not naturally occur. In some embodiments, the RNA guide in the complex comprises a direct repeat and/or a spacer sequence described herein.


In some embodiments, the present disclosure comprises compositions comprising an RNA guide as described herein and/or an RNA encoding a Cas12i polypeptide as described herein. In some embodiments, the RNA guide and the RNA encoding a Cas12i polypeptide are comprised together within the same composition. In some embodiments, the RNA guide and the RNA encoding a Cas12i polypeptide are comprised within separate compositions. In some embodiments, the RNA guide comprises a direct repeat and/or a spacer sequence described herein.


Use of the gene editing systems disclosed herein has advantages over those of other known nuclease systems. Cas12i polypeptides are smaller than other nucleases. For example, Cas12i2 is 1,054 amino acids in length, whereas S. pyogenes Cas9 (SpCas9) is 1,368 amino acids in length, S. thermophilus Cas9 (StCas9) is 1,128 amino acids in length, FnCpfl is 1,300 amino acids in length, AsCpfl is 1,307 amino acids in length, and LbCpfl is 1,246 amino acids in length. Cas12i RNA guides, which do not require a trans-activating CRISPR RNA (tracrRNA), are also smaller than Cas9 RNA guides. The smaller Cas12i polypeptide and RNA guide sizes are beneficial for delivery. Compositions comprising a Cas12i polypeptide also demonstrate decreased off-target activity compared to compositions comprising an SpCas9 polypeptide. See, WO/2021/202800, the relevant disclosures of which are incorporated by reference for the subject matter and purpose referenced herein. Furthermore, indels induced by compositions comprising a Cas12i polypeptide differ from indels induced by compositions comprising an SpCas9 polypeptide. For example, SpCas9 polypeptides primarily induce insertions and deletions of 1 nucleotide in length. However, Cas12i polypeptides induce larger deletions, which can be beneficial in disrupting a larger portion of a gene such as STMN2.


Also provided herein is a system for genetic editing of a STMN2 gene, which comprises (i) a Cas12i polypeptide (e.g., a Cas12i2 polypeptide) or a first nucleic acid encoding the Cas12i polypeptide (e.g., a Cas12i2 polypeptide comprises an amino acid sequence at least 95% identical to SEQ ID NO: 448, which may and comprises one or more mutations relative to SEQ ID NO: 448); and (ii) an RNA guide or a second nucleic acid encoding the RNA guide, wherein the RNA guide comprises a spacer sequence specific to a target sequence within the STMN2 gene (e.g., within exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, or an intron of the STMN2 gene), the target sequence being adjacent to a protospacer adjacent motif (PAM) comprising the motif of 5′-TTN-3′ (5′-NTTN-3′), which is located 5′ to the target sequence.


A. RNA Guides


In some embodiments, the gene editing system described herein comprises an RNA guide targeting a STMN2 gene, for example, targeting exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, or an intron of the STMN2 gene. In some embodiments, the gene editing system described herein may comprise two or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, or more) RNA guides targeting STMN2.


The RNA guide may direct the Cas12i polypeptide contained in the gene editing system as described herein to an STMN2 target sequence. Two or more RNA guides may direct two or more separate Cas12i polypeptides (e.g., Cas12i polypeptides having the same or different sequence) as described herein to two or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, or more) STMN2 target sequences. Those skilled in the art reading the below examples of particular kinds of RNA guides will understand that, in some embodiments, an RNA guide is STMN2 target-specific. That is, in some embodiments, an RNA guide binds specifically to one or more STMN2 target sequences (e.g., within a cell) and not to non-targeted sequences (e.g., non-specific DNA or random sequences within the same cell).


In some embodiments, the RNA guide comprises a spacer sequence followed by a direct repeat sequence, referring to the sequences in the 5′ to 3′ direction. In some embodiments, the RNA guide comprises a first direct repeat sequence followed by a spacer sequence and a second direct repeat sequence, referring to the sequences in the 5′ to 3′ direction. In some embodiments, the first and second direct repeats of such an RNA guide are identical. In some embodiments, the first and second direct repeats of such an RNA guide are different.


In some embodiments, the spacer sequence and the direct repeat sequence(s) of the RNA guide are present within the same RNA molecule. In some embodiments, the spacer and direct repeat sequences are linked directly to one another. In some embodiments, a short linker is present between the spacer and direct repeat sequences, e.g., an RNA linker of 1, 2, or 3 nucleotides in length. In some embodiments, the spacer sequence and the direct repeat sequence(s) of the RNA guide are present in separate molecules, which are joined to one another by base pairing interactions.


Additional information regarding exemplary direct repeat and spacer components of RNA guides is provided as follows.


(i). Direct Repeat


In some embodiments, the RNA guide comprises a direct repeat sequence. In some embodiments, the direct repeat sequence of the RNA guide has a length of between 12-100, 13-75, 14-50, or 15-40 nucleotides (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 nucleotides).


In some embodiments, the direct repeat sequence is a sequence of Table 1 or a portion of a sequence of Table 1. The direct repeat sequence can comprise nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 2 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 3 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 4 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 5 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 6 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 7 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 8 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 9 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 10 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 11 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 12 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 13 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 14 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can comprise nucleotide 1 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can comprise nucleotide 2 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can comprise nucleotide 3 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can comprise nucleotide 4 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can comprise nucleotide 5 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can comprise nucleotide 6 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can comprise nucleotide 7 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can comprise nucleotide 8 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can comprise nucleotide 9 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can comprise nucleotide 10 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can comprise nucleotide 11 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can comprise nucleotide 12 through nucleotide 34 of SEQ ID NO: 9. In some embodiments, the direct repeat sequence is set forth in SEQ ID NO: 10. In some embodiments, the direct repeat sequence comprises a portion of the sequence set forth in SEQ ID NO: 10.


In some embodiments, the direct repeat sequence has at least 90% identity (e.g., at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity) to a sequence of Table 1 or a portion of a sequence of Table 1. The direct repeat sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 2 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 3 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 4 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 5 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 6 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 7 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 8 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 9 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 10 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 11 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 12 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 13 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 14 through nucleotide 36 of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, or 8. The direct repeat sequence can have at least 90% identity to a sequence comprising 1 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can have at least 90% identity to a sequence comprising 2 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can have at least 90% identity to a sequence comprising 3 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can have at least 90% identity to a sequence comprising 4 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can have at least 90% identity to a sequence comprising 5 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can have at least 90% identity to a sequence comprising 6 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can have at least 90% identity to a sequence comprising 7 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can have at least 90% identity to a sequence comprising 8 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can have at least 90% identity to a sequence comprising 9 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can have at least 90% identity to a sequence comprising 10 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can have at least 90% identity to a sequence comprising 11 through nucleotide 34 of SEQ ID NO: 9. The direct repeat sequence can have at least 90% identity to a sequence comprising 12 through nucleotide 34 of SEQ ID NO: 9. In some embodiments, the direct repeat sequence has at least 90% identity (e.g., at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity) to SEQ ID NO: 10. In some embodiments, the direct repeat sequence has at least 90% identity to a portion of the sequence set forth in SEQ ID NO: 10.


In some embodiments, compositions comprising a Cas12i2 polypeptide and an RNA guide comprising the direct repeat of SEQ ID NO: 10 and a spacer length of 20 nucleotides are capable of introducing indels into a STMN2 target sequence.


In some embodiments, the direct repeat sequence is at least 90% identical to the reverse complement of any one of SEQ ID NOs: 1-10 (see, Table 1). In some embodiments, the direct repeat sequence is the reverse complement of any one of SEQ ID NOs: 1-10.









TABLE 1







Cas12i2 Direct Repeat Sequences








Sequence



identifier
Direct Repeat Sequence





SEQ ID NO:
GUUGCAAAACCCAAGAAAUCCGUCUUUCAUUGACGG


1






SEQ ID NO:
AAUAGCGGCCCUAAGAAAUCCGUCUUUCAUUGACGG


2






SEQ ID NO:
AUUGGAACUGGCGAGAAAUCCGUCUUUCAUUGACGG


3






SEQ ID NO:
CCAGCAACACCUAAGAAAUCCGUCUUUCAUUGACGG


4






SEQ ID NO:
CGGCGCUCGAAUAGGAAAUCCGUCUUUCAUUGACGG


5






SEQ ID NO:
GUGGCAACACCUAAGAAAUCCGUCUUUCAUUGACGG


6






SEQ ID NO:
GUUGCAACACCUAAGAAAUCCGUCUUUCAUUGACGG


7






SEQ ID NO:
GUUGCAAUGCCUAAGAAAUCCGUCUUUCAUUGACGG


8






SEQ ID NO:
GCAACACCUAAGAAAUCCGUCUUUCAUUGACGGG


9






SEQ ID NO:
AGAAAUCCGUCUUUCAUUGACGG


10









In some embodiments, the direct repeat sequence is a sequence of Table 2 or a portion of a sequence of Table 2. The direct repeat sequence can comprise nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 2 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 3 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 4 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 5 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 6 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 7 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 8 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 9 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 10 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 11 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 12 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 13 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can comprise nucleotide 14 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479.


In some embodiments, the direct repeat sequence has at least 95% identity (e.g., at least 95%, 96%, 97%, 98% or 99% identity) to a sequence of Table 2 or a portion of a sequence of Table 2. The direct repeat sequence can have at least 95% identity to a sequence comprising nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 2 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 3 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 4 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 5 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 6 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 7 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 8 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 9 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 10 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 11 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 12 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 95% identity to a sequence comprising 13 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479.


In some embodiments, the direct repeat sequence has at least 90% identity (e.g., at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity) to a sequence of Table 2 or a portion of a sequence of Table 2. The direct repeat sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 2 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 3 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 4 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 5 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 6 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 7 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 8 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 9 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 10 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 11 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 12 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. The direct repeat sequence can have at least 90% identity to a sequence comprising 13 through nucleotide 36 of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479.


In some embodiments, the direct repeat sequence is at least 90% identical to the reverse complement of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. In some embodiments, the direct repeat sequence is at least 95% identical to the reverse complement of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479. In some embodiments, the direct repeat sequence is the reverse complement of any one of SEQ ID NOs: 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, or 479.


In some embodiments, the direct repeat sequence is at least 90% identical to SEQ ID NO: 480 or a portion of SEQ ID NO: 480. In some embodiments, the direct repeat sequence is at least 95% identical to SEQ ID NO: 480 or a portion of SEQ ID NO: 480. In some embodiments, the direct repeat sequence is 100% identical to SEQ ID NO: 480 or a portion of SEQ ID NO: 480.









TABLE 2







Cas12i4 Direct Repeat Sequences








Sequence



identifier
Direct Repeat Sequence





SEQ ID NO:
UCUCAACGAUAGUCAGACAUGUGUCCUCAGUGACAC


462






SEQ ID NO:
UUUUAACAACACUCAGGCAUGUGUCCACAGUGACAC


463






SEQ ID NO:
UUGAACGGAUACUCAGACAUGUGUUUCCAGUGACAC


464






SEQ ID NO:
UGCCCUCAAUAGUCAGAUGUGUGUCCACAGUGACAC


465






SEQ ID NO:
UCUCAAUGAUACUUAGAUACGUGUCCUCAGUGACAC


466






SEQ ID NO:
UCUCAAUGAUACUCAGACAUGUGUCCCCAGUGACAC


467






SEQ ID NO:
UCUCAAUGAUACUAAGACAUGUGUCCUCAGUGACAC


468






SEQ ID NO:
UCUCAACUAUACUCAGACAUGUGUCCUCAGUGACAC


469






SEQ ID NO:
UCUCAACGAUACUCAGACAUGUGUCCUCAGUGACAC


470






SEQ ID NO:
UCUCAACGAUACUAAGAUAUGUGUCCUCAGCGACAC


471






SEQ ID NO:
UCUCAACGAUACUAAGAUAUGUGUCCCCAGUGACAC


472






SEQ ID NO:
UCUCAACGAUACUAAGAUAUGUGUCCACAGUGACAC


473






SEQ ID NO:
UCUCAACAAUACUCAGACAUGUGUCCCCAGUGACAC


474






SEQ ID NO:
UCUCAACAAUACUAAGGCAUGUGUCCCCAGUGACCC


475






SEQ ID NO:
UCUCAAAGAUACUCAGACACGUGUCCCCAGUGACAC


476






SEQ ID NO:
UCUCAAAAAUACUCAGACAUGUGUCCUCAGUGACAC


477






SEQ ID NO:
GCGAAACAACAGUCAGACAUGUGUCCCCAGUGACAC


478






SEQ ID NO:
CCUCAACGAUAUUAAGACAUGUGUCCGCAGUGACAC


479






SEQ ID NO:
AGACAUGUGUCCUCAGUGACAC


480









In some embodiments, the direct repeat sequence is a sequence of Table 3 or a portion of a sequence of Table 3. In some embodiments, the direct repeat sequence has at least 95% identity (e.g., at least 95%, 96%, 97%, 98% or 99% identity) to a sequence of Table 3 or a portion of a sequence of Table 3. In some embodiments, the direct repeat sequence has at least 90% identity (e.g., at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity) to a sequence of Table 3 or a portion of a sequence of Table 3. In some embodiments, the direct repeat sequence is at least 90% identical to the reverse complement of any one of SEQ ID NOs: 485-487. In some embodiments, the direct repeat sequence is at least 95% identical to the reverse complement of any one of SEQ ID NOs: 485-487. In some embodiments, the direct repeat sequence is the reverse complement of any one of SEQ ID NOs: 485-487.









TABLE 3







Cas12i1 Direct Repeat Sequences








Sequence



identifier
Direct Repeat Sequence





SEQ ID NO:
GUUGGAAUGACUAAUUUUUGUGCCCACCGUUGGCAC


485






SEQ ID NO:
AAUUUUUGUGCCCAUCGUUGGCAC


486






SEQ ID NO:
AUUUUUGUGCCCAUCGUUGGCAC


487









In some embodiments, the direct repeat sequence is a sequence of Table 4 or a portion of a sequence of Table 4. In some embodiments, the direct repeat sequence has at least 95% identity (e.g., at least 95%, 96%, 97%, 98% or 99% identity) to a sequence of Table 4 or a portion of a sequence of Table 4. In some embodiments, the direct repeat sequence has at least 90% identity (e.g., at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity) to a sequence of Table 4 or a portion of a sequence of Table 4. In some embodiments, the direct repeat sequence is at least 90% identical to the reverse complement of any one of SEQ ID NOs: 488-490. In some embodiments, the direct repeat sequence is at least 95% identical to the reverse complement of any one of SEQ ID NOs: 488-490. In some embodiments, the direct repeat sequence is the reverse complement of any one of SEQ ID NOs: 488-490.









TABLE 4







Cas12i3 Direct Repeat Sequences.








Sequence



identifier
Direct Repeat Sequence





SEQ ID NO:
CUAGCAAUGACCUAAUAGUGUGUCCUUAGUUGACAU


488






SEQ ID NO:
CCUACAAUACCUAAGAAAUCCGUCCUAAGUUGACGG


489






SEQ ID NO:
AUAGUGUGUCCUUAGUUGACAU


490









In some embodiments, a direct repeat sequence described herein comprises a uracil (U). In some embodiments, a direct repeat sequence described herein comprises a thymine (T). In some embodiments, a direct repeat sequence according to Tables 1-4 comprises a sequence comprising a thymine in one or more places indicated as uracil in Tables 1-4.


(ii). Spacer Sequences


In some embodiments, the RNA guide comprises a DNA targeting or spacer sequence. In some embodiments, the spacer sequence of the RNA guide has a length of between 12-100, 13-75, 14-50, or 15-30 nucleotides (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides) and is complementary to a non-PAM strand sequence. In some embodiments, the spacer sequence is designed to be complementary to a specific DNA strand, e.g., of a genomic locus.


In some embodiments, the RNA guide spacer sequence is substantially identical to a complementary strand of a target sequence. In some embodiments, the RNA guide comprises a sequence having at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 99.5% sequence identity to a complementary strand of a reference nucleic acid sequence, e.g., target sequence. The percent identity between two such nucleic acids can be determined manually by inspection of the two optimally aligned nucleic acid sequences or by using software programs or algorithms (e.g., BLAST, ALIGN, CLUSTAL) using standard parameters.


In some embodiments, the RNA guide comprises a spacer sequence that has a length of between 12-100, 13-75, 14-50, or 15-30 nucleotides (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides) and at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% complementary to a region on the non-PAM strand that is complementary to the target sequence. In some embodiments, the RNA guide comprises a sequence at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% complementary to a target DNA sequence. In some embodiments, the RNA guide comprises a sequence at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% complementary to a target genomic sequence. In some embodiments, the RNA guide comprises a sequence, e.g., RNA sequence, that is a length of up to 50 and at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% complementary to a region on the non-PAM strand that is complementary to the target sequence. In some embodiments, the RNA guide comprises a sequence at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% complementary to a target DNA sequence. In some embodiments, the RNA guide comprises a sequence at least 80%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% complementary to a target genomic sequence.


In some embodiments, the spacer sequence is a sequence of Table 5A or 5B or a portion of a sequence of Table 5A or 5B. It should be understood that an indication of SEQ ID NOs: 229-446 or 2497-4502 should be considered as equivalent to a listing of SEQ ID NOs: 229-446 or 2497-4502, with each of the intervening numbers present in the listing, i.e., 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, and 446, or 2497, 2498, 2499, 2500, 2501, 2502, 2503, 2504, 2505, 2506, 2507, 2508, 2509, 2510, 2511, 2512, 2513, 2514, 2515, 2516, 2517, 2518, 2519, 2520, 2521, 2522, 2523, 2524, 2525, 2526, 2527, 2528, 2529, 2530, 2531, 2532, 2533, 2534, 2535, 2536, 2537, 2538, 2539, 2540, 2541, 2542, 2543, 2544, 2545, 2546, 2547, 2548, 2549, 2550, 2551, 2552, 2553, 2554, 2555, 2556, 2557, 2558, 2559, 2560, 2561, 2562, 2563, 2564, 2565, 2566, 2567, 2568, 2569, 2570, 2571, 2572, 2573, 2574, 2575, 2576, 2577, 2578, 2579, 2580, 2581, 2582, 2583, 2584, 2585, 2586, 2587, 2588, 2589, 2590, 2591, 2592, 2593, 2594, 2595, 2596, 2597, 2598, 2599, 2600, 2601, 2602, 2603, 2604, 2605, 2606, 2607, 2608, 2609, 2610, 2611, 2612, 2613, 2614, 2615, 2616, 2617, 2618, 2619, 2620, 2621, 2622, 2623, 2624, 2625, 2626, 2627, 2628, 2629, 2630, 2631, 2632, 2633, 2634, 2635, 2636, 2637, 2638, 2639, 2640, 2641, 2642, 2643, 2644, 2645, 2646, 2647, 2648, 2649, 2650, 2651, 2652, 2653, 2654, 2655, 2656, 2657, 2658, 2659, 2660, 2661, 2662, 2663, 2664, 2665, 2666, 2667, 2668, 2669, 2670, 2671, 2672, 2673, 2674, 2675, 2676, 2677, 2678, 2679, 2680, 2681, 2682, 2683, 2684, 2685, 2686, 2687, 2688, 2689, 2690, 2691, 2692, 2693, 2694, 2695, 2696, 2697, 2698, 2699, 2700, 2701, 2702, 2703, 2704, 2705, 2706, 2707, 2708, 2709, 2710, 2711, 2712, 2713, 2714, 2715, 2716, 2717, 2718, 2719, 2720, 2721, 2722, 2723, 2724, 2725, 2726, 2727, 2728, 2729, 2730, 2731, 2732, 2733, 2734, 2735, 2736, 2737, 2738, 2739, 2740, 2741, 2742, 2743, 2744, 2745, 2746, 2747, 2748, 2749, 2750, 2751, 2752, 2753, 2754, 2755, 2756, 2757, 2758, 2759, 2760, 2761, 2762, 2763, 2764, 2765, 2766, 2767, 2768, 2769, 2770, 2771, 2772, 2773, 2774, 2775, 2776, 2777, 2778, 2779, 2780, 2781, 2782, 2783, 2784, 2785, 2786, 2787, 2788, 2789, 2790, 2791, 2792, 2793, 2794, 2795, 2796, 2797, 2798, 2799, 2800, 2801, 2802, 2803, 2804, 2805, 2806, 2807, 2808, 2809, 2810, 2811, 2812, 2813, 2814, 2815, 2816, 2817, 2818, 2819, 2820, 2821, 2822, 2823, 2824, 2825, 2826, 2827, 2828, 2829, 2830, 2831, 2832, 2833, 2834, 2835, 2836, 2837, 2838, 2839, 2840, 2841, 2842, 2843, 2844, 2845, 2846, 2847, 2848, 2849, 2850, 2851, 2852, 2853, 2854, 2855, 2856, 2857, 2858, 2859, 2860, 2861, 2862, 2863, 2864, 2865, 2866, 2867, 2868, 2869, 2870, 2871, 2872, 2873, 2874, 2875, 2876, 2877, 2878, 2879, 2880, 2881, 2882, 2883, 2884, 2885, 2886, 2887, 2888, 2889, 2890, 2891, 2892, 2893, 2894, 2895, 2896, 2897, 2898, 2899, 2900, 2901, 2902, 2903, 2904, 2905, 2906, 2907, 2908, 2909, 2910, 2911, 2912, 2913, 2914, 2915, 2916, 2917, 2918, 2919, 2920, 2921, 2922, 2923, 2924, 2925, 2926, 2927, 2928, 2929, 2930, 2931, 2932, 2933, 2934, 2935, 2936, 2937, 2938, 2939, 2940, 2941, 2942, 2943, 2944, 2945, 2946, 2947, 2948, 2949, 2950, 2951, 2952, 2953, 2954, 2955, 2956, 2957, 2958, 2959, 2960, 2961, 2962, 2963, 2964, 2965, 2966, 2967, 2968, 2969, 2970, 2971, 2972, 2973, 2974, 2975, 2976, 2977, 2978, 2979, 2980, 2981, 2982, 2983, 2984, 2985, 2986, 2987, 2988, 2989, 2990, 2991, 2992, 2993, 2994, 2995, 2996, 2997, 2998, 2999, 3000, 3001, 3002, 3003, 3004, 3005, 3006, 3007, 3008, 3009, 3010, 3011, 3012, 3013, 3014, 3015, 3016, 3017, 3018, 3019, 3020, 3021, 3022, 3023, 3024, 3025, 3026, 3027, 3028, 3029, 3030, 3031, 3032, 3033, 3034, 3035, 3036, 3037, 3038, 3039, 3040, 3041, 3042, 3043, 3044, 3045, 3046, 3047, 3048, 3049, 3050, 3051, 3052, 3053, 3054, 3055, 3056, 3057, 3058, 3059, 3060, 3061, 3062, 3063, 3064, 3065, 3066, 3067, 3068, 3069, 3070, 3071, 3072, 3073, 3074, 3075, 3076, 3077, 3078, 3079, 3080, 3081, 3082, 3083, 3084, 3085, 3086, 3087, 3088, 3089, 3090, 3091, 3092, 3093, 3094, 3095, 3096, 3097, 3098, 3099, 3100, 3101, 3102, 3103, 3104, 3105, 3106, 3107, 3108, 3109, 3110, 3111, 3112, 3113, 3114, 3115, 3116, 3117, 3118, 3119, 3120, 3121, 3122, 3123, 3124, 3125, 3126, 3127, 3128, 3129, 3130, 3131, 3132, 3133, 3134, 3135, 3136, 3137, 3138, 3139, 3140, 3141, 3142, 3143, 3144, 3145, 3146, 3147, 3148, 3149, 3150, 3151, 3152, 3153, 3154, 3155, 3156, 3157, 3158, 3159, 3160, 3161, 3162, 3163, 3164, 3165, 3166, 3167, 3168, 3169, 3170, 3171, 3172, 3173, 3174, 3175, 3176, 3177, 3178, 3179, 3180, 3181, 3182, 3183, 3184, 3185, 3186, 3187, 3188, 3189, 3190, 3191, 3192, 3193, 3194, 3195, 3196, 3197, 3198, 3199, 3200, 3201, 3202, 3203, 3204, 3205, 3206, 3207, 3208, 3209, 3210, 3211, 3212, 3213, 3214, 3215, 3216, 3217, 3218, 3219, 3220, 3221, 3222, 3223, 3224, 3225, 3226, 3227, 3228, 3229, 3230, 3231, 3232, 3233, 3234, 3235, 3236, 3237, 3238, 3239, 3240, 3241, 3242, 3243, 3244, 3245, 3246, 3247, 3248, 3249, 3250, 3251, 3252, 3253, 3254, 3255, 3256, 3257, 3258, 3259, 3260, 3261, 3262, 3263, 3264, 3265, 3266, 3267, 3268, 3269, 3270, 3271, 3272, 3273, 3274, 3275, 3276, 3277, 3278, 3279, 3280, 3281, 3282, 3283, 3284, 3285, 3286, 3287, 3288, 3289, 3290, 3291, 3292, 3293, 3294, 3295, 3296, 3297, 3298, 3299, 3300, 3301, 3302, 3303, 3304, 3305, 3306, 3307, 3308, 3309, 3310, 3311, 3312, 3313, 3314, 3315, 3316, 3317, 3318, 3319, 3320, 3321, 3322, 3323, 3324, 3325, 3326, 3327, 3328, 3329, 3330, 3331, 3332, 3333, 3334, 3335, 3336, 3337, 3338, 3339, 3340, 3341, 3342, 3343, 3344, 3345, 3346, 3347, 3348, 3349, 3350, 3351, 3352, 3353, 3354, 3355, 3356, 3357, 3358, 3359, 3360, 3361, 3362, 3363, 3364, 3365, 3366, 3367, 3368, 3369, 3370, 3371, 3372, 3373, 3374, 3375, 3376, 3377, 3378, 3379, 3380, 3381, 3382, 3383, 3384, 3385, 3386, 3387, 3388, 3389, 3390, 3391, 3392, 3393, 3394, 3395, 3396, 3397, 3398, 3399, 3400, 3401, 3402, 3403, 3404, 3405, 3406, 3407, 3408, 3409, 3410, 3411, 3412, 3413, 3414, 3415, 3416, 3417, 3418, 3419, 3420, 3421, 3422, 3423, 3424, 3425, 3426, 3427, 3428, 3429, 3430, 3431, 3432, 3433, 3434, 3435, 3436, 3437, 3438, 3439, 3440, 3441, 3442, 3443, 3444, 3445, 3446, 3447, 3448, 3449, 3450, 3451, 3452, 3453, 3454, 3455, 3456, 3457, 3458, 3459, 3460, 3461, 3462, 3463, 3464, 3465, 3466, 3467, 3468, 3469, 3470, 3471, 3472, 3473, 3474, 3475, 3476, 3477, 3478, 3479, 3480, 3481, 3482, 3483, 3484, 3485, 3486, 3487, 3488, 3489, 3490, 3491, 3492, 3493, 3494, 3495, 3496, 3497, 3498, 3499, 3500, 3501, 3502, 3503, 3504, 3505, 3506, 3507, 3508, 3509, 3510, 3511, 3512, 3513, 3514, 3515, 3516, 3517, 3518, 3519, 3520, 3521, 3522, 3523, 3524, 3525, 3526, 3527, 3528, 3529, 3530, 3531, 3532, 3533, 3534, 3535, 3536, 3537, 3538, 3539, 3540, 3541, 3542, 3543, 3544, 3545, 3546, 3547, 3548, 3549, 3550, 3551, 3552, 3553, 3554, 3555, 3556, 3557, 3558, 3559, 3560, 3561, 3562, 3563, 3564, 3565, 3566, 3567, 3568, 3569, 3570, 3571, 3572, 3573, 3574, 3575, 3576, 3577, 3578, 3579, 3580, 3581, 3582, 3583, 3584, 3585, 3586, 3587, 3588, 3589, 3590, 3591, 3592, 3593, 3594, 3595, 3596, 3597, 3598, 3599, 3600, 3601, 3602, 3603, 3604, 3605, 3606, 3607, 3608, 3609, 3610, 3611, 3612, 3613, 3614, 3615, 3616, 3617, 3618, 3619, 3620, 3621, 3622, 3623, 3624, 3625, 3626, 3627, 3628, 3629, 3630, 3631, 3632, 3633, 3634, 3635, 3636, 3637, 3638, 3639, 3640, 3641, 3642, 3643, 3644, 3645, 3646, 3647, 3648, 3649, 3650, 3651, 3652, 3653, 3654, 3655, 3656, 3657, 3658, 3659, 3660, 3661, 3662, 3663, 3664, 3665, 3666, 3667, 3668, 3669, 3670, 3671, 3672, 3673, 3674, 3675, 3676, 3677, 3678, 3679, 3680, 3681, 3682, 3683, 3684, 3685, 3686, 3687, 3688, 3689, 3690, 3691, 3692, 3693, 3694, 3695, 3696, 3697, 3698, 3699, 3700, 3701, 3702, 3703, 3704, 3705, 3706, 3707, 3708, 3709, 3710, 3711, 3712, 3713, 3714, 3715, 3716, 3717, 3718, 3719, 3720, 3721, 3722, 3723, 3724, 3725, 3726, 3727, 3728, 3729, 3730, 3731, 3732, 3733, 3734, 3735, 3736, 3737, 3738, 3739, 3740, 3741, 3742, 3743, 3744, 3745, 3746, 3747, 3748, 3749, 3750, 3751, 3752, 3753, 3754, 3755, 3756, 3757, 3758, 3759, 3760, 3761, 3762, 3763, 3764, 3765, 3766, 3767, 3768, 3769, 3770, 3771, 3772, 3773, 3774, 3775, 3776, 3777, 3778, 3779, 3780, 3781, 3782, 3783, 3784, 3785, 3786, 3787, 3788, 3789, 3790, 3791, 3792, 3793, 3794, 3795, 3796, 3797, 3798, 3799, 3800, 3801, 3802, 3803, 3804, 3805, 3806, 3807, 3808, 3809, 3810, 3811, 3812, 3813, 3814, 3815, 3816, 3817, 3818, 3819, 3820, 3821, 3822, 3823, 3824, 3825, 3826, 3827, 3828, 3829, 3830, 3831, 3832, 3833, 3834, 3835, 3836, 3837, 3838, 3839, 3840, 3841, 3842, 3843, 3844, 3845, 3846, 3847, 3848, 3849, 3850, 3851, 3852, 3853, 3854, 3855, 3856, 3857, 3858, 3859, 3860, 3861, 3862, 3863, 3864, 3865, 3866, 3867, 3868, 3869, 3870, 3871, 3872, 3873, 3874, 3875, 3876, 3877, 3878, 3879, 3880, 3881, 3882, 3883, 3884, 3885, 3886, 3887, 3888, 3889, 3890, 3891, 3892, 3893, 3894, 3895, 3896, 3897, 3898, 3899, 3900, 3901, 3902, 3903, 3904, 3905, 3906, 3907, 3908, 3909, 3910, 3911, 3912, 3913, 3914, 3915, 3916, 3917, 3918, 3919, 3920, 3921, 3922, 3923, 3924, 3925, 3926, 3927, 3928, 3929, 3930, 3931, 3932, 3933, 3934, 3935, 3936, 3937, 3938, 3939, 3940, 3941, 3942, 3943, 3944, 3945, 3946, 3947, 3948, 3949, 3950, 3951, 3952, 3953, 3954, 3955, 3956, 3957, 3958, 3959, 3960, 3961, 3962, 3963, 3964, 3965, 3966, 3967, 3968, 3969, 3970, 3971, 3972, 3973, 3974, 3975, 3976, 3977, 3978, 3979, 3980, 3981, 3982, 3983, 3984, 3985, 3986, 3987, 3988, 3989, 3990, 3991, 3992, 3993, 3994, 3995, 3996, 3997, 3998, 3999, 4000, 4001, 4002, 4003, 4004, 4005, 4006, 4007, 4008, 4009, 4010, 4011, 4012, 4013, 4014, 4015, 4016, 4017, 4018, 4019, 4020, 4021, 4022, 4023, 4024, 4025, 4026, 4027, 4028, 4029, 4030, 4031, 4032, 4033, 4034, 4035, 4036, 4037, 4038, 4039, 4040, 4041, 4042, 4043, 4044, 4045, 4046, 4047, 4048, 4049, 4050, 4051, 4052, 4053, 4054, 4055, 4056, 4057, 4058, 4059, 4060, 4061, 4062, 4063, 4064, 4065, 4066, 4067, 4068, 4069, 4070, 4071, 4072, 4073, 4074, 4075, 4076, 4077, 4078, 4079, 4080, 4081, 4082, 4083, 4084, 4085, 4086, 4087, 4088, 4089, 4090, 4091, 4092, 4093, 4094, 4095, 4096, 4097, 4098, 4099, 4100, 4101, 4102, 4103, 4104, 4105, 4106, 4107, 4108, 4109, 4110, 4111, 4112, 4113, 4114, 4115, 4116, 4117, 4118, 4119, 4120, 4121, 4122, 4123, 4124, 4125, 4126, 4127, 4128, 4129, 4130, 4131, 4132, 4133, 4134, 4135, 4136, 4137, 4138, 4139, 4140, 4141, 4142, 4143, 4144, 4145, 4146, 4147, 4148, 4149, 4150, 4151, 4152, 4153, 4154, 4155, 4156, 4157, 4158, 4159, 4160, 4161, 4162, 4163, 4164, 4165, 4166, 4167, 4168, 4169, 4170, 4171, 4172, 4173, 4174, 4175, 4176, 4177, 4178, 4179, 4180, 4181, 4182, 4183, 4184, 4185, 4186, 4187, 4188, 4189, 4190, 4191, 4192, 4193, 4194, 4195, 4196, 4197, 4198, 4199, 4200, 4201, 4202, 4203, 4204, 4205, 4206, 4207, 4208, 4209, 4210, 4211, 4212, 4213, 4214, 4215, 4216, 4217, 4218, 4219, 4220, 4221, 4222, 4223, 4224, 4225, 4226, 4227, 4228, 4229, 4230, 4231, 4232, 4233, 4234, 4235, 4236, 4237, 4238, 4239, 4240, 4241, 4242, 4243, 4244, 4245, 4246, 4247, 4248, 4249, 4250, 4251, 4252, 4253, 4254, 4255, 4256, 4257, 4258, 4259, 4260, 4261, 4262, 4263, 4264, 4265, 4266, 4267, 4268, 4269, 4270, 4271, 4272, 4273, 4274, 4275, 4276, 4277, 4278, 4279, 4280, 4281, 4282, 4283, 4284, 4285, 4286, 4287, 4288, 4289, 4290, 4291, 4292, 4293, 4294, 4295, 4296, 4297, 4298, 4299, 4300, 4301, 4302, 4303, 4304, 4305, 4306, 4307, 4308, 4309, 4310, 4311, 4312, 4313, 4314, 4315, 4316, 4317, 4318, 4319, 4320, 4321, 4322, 4323, 4324, 4325, 4326, 4327, 4328, 4329, 4330, 4331, 4332, 4333, 4334, 4335, 4336, 4337, 4338, 4339, 4340, 4341, 4342, 4343, 4344, 4345, 4346, 4347, 4348, 4349, 4350, 4351, 4352, 4353, 4354, 4355, 4356, 4357, 4358, 4359, 4360, 4361, 4362, 4363, 4364, 4365, 4366, 4367, 4368, 4369, 4370, 4371, 4372, 4373, 4374, 4375, 4376, 4377, 4378, 4379, 4380, 4381, 4382, 4383, 4384, 4385, 4386, 4387, 4388, 4389, 4390, 4391, 4392, 4393, 4394, 4395, 4396, 4397, 4398, 4399, 4400, 4401, 4402, 4403, 4404, 4405, 4406, 4407, 4408, 4409, 4410, 4411, 4412, 4413, 4414, 4415, 4416, 4417, 4418, 4419, 4420, 4421, 4422, 4423, 4424, 4425, 4426, 4427, 4428, 4429, 4430, 4431, 4432, 4433, 4434, 4435, 4436, 4437, 4438, 4439, 4440, 4441, 4442, 4443, 4444, 4445, 4446, 4447, 4448, 4449, 4450, 4451, 4452, 4453, 4454, 4455, 4456, 4457, 4458, 4459, 4460, 4461, 4462, 4463, 4464, 4465, 4466, 4467, 4468, 4469, 4470, 4471, 4472, 4473, 4474, 4475, 4476, 4477, 4478, 4479, 4480, 4481, 4482, 4483, 4484, 4485, 4486, 4487, 4488, 4489, 4490, 4491, 4492, 4493, 4494, 4495, 4496, 4497, 4498, 4499, 4500, 4501, or 4502.


The spacer sequence can comprise nucleotide 1 through nucleotide 16 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 17 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 18 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 19 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 20 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 21 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 22 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 23 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 24 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 25 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 26 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 27 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 28 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 29 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can comprise nucleotide 1 through nucleotide 30 of any one of SEQ ID NOs: 229-446 or 2497-4502.


In some embodiments, the spacer sequence has at least 90% identity (e.g., at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity) to a sequence of Table 5A or 5B or a portion of a sequence of Table 5A or 5B. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 16 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 17 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 18 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 19 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 20 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 21 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 22 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 23 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 24 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 25 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 26 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 27 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 28 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 29 of any one of SEQ ID NOs: 229-446 or 2497-4502. The spacer sequence can have at least 90% identity to a sequence comprising nucleotide 1 through nucleotide 30 of any one of SEQ ID NOs: 229-446 or 2497-4502.









TABLE 5A







Target and Spacer Sequences − Exons













ref_id
Strand
PAM

target

spacer
















STMN2_
+
TT
11
CCTTCGCCACTGCTCAGC
229
CCUUCGCCACUGCUCAGC


exon1

TG

GTCTGCACATCC

GUCUGCACAUCC





STMN2_
+
CT
12
GCCACTGCTCAGCGTCTG
230
GCCACUGCUCAGCGUCU


exon1

TC

CACATCCCTACA

GCACAUCCCUACA





STMN2_
+
CT
13
GCCTTCGCCACTGCTCAG
231
GCCUUCGCCACUGCUCAG


exon1

TT

CGTCTGCACATC

CGUCUGCACAUC





STMN2_

CT
14
CCCATTGCTGTTTTAGCC
232
CCCAUUGCUGUUUUAGCC


exon1

TA

ATTGTAGGGATG

AUUGUAGGGAUG





STMN2_

AT
15
CTGTTTTAGCCATTGTAG
233
CUGUUUUAGCCAUUGUAG


exon1

TG

GGATGTGCAGAC

GGAUGUGCAGAC





STMN2_

GT
16
TAGCCATTGTAGGGATGT
234
UAGCCAUUGUAGGGAUGU


exon1

TT

GCAGACGCTGAG

GCAGACGCUGAG





STMN2_

TT
17
AGCCATTGTAGGGATGTG
235
AGCCAUUGUAGGGAUGU


exon1

TT

CAGACGCTGAGC

GCAGACGCUGAGC





STMN2_

TT
18
GCCATTGTAGGGATGTGC
236
GCCAUUGUAGGGAUGUG


exon1

TA

AGACGCTGAGCA

CAGACGCUGAGCA





STMN2_

AT
19
TAGGGATGTGCAGACGCT
237
UAGGGAUGUGCAGACGC


exon1

TG

GAGCAGTGGCGA

UGAGCAGUGGCGA





STMN2_
+
GT
20
TCCGTCGGCTCTACCTGG
238
UCCGUCGGCUCUACCUG


exon1

TC

AGCCCACCTCT

GAGCCCACCUCU





STMN2_

TT
21
GTTTTCTAAGCCAGGGAG
239
GUUUUCUAAGCCAGGGAG


exon2

TG

GTTTTGAAAGAT

GUUUUGAAAGAU





STMN2_
+
CT
22
CAAAACCTCCCTGGCTTA
240
CAAAACCUCCCUGGCUUA


exon2

TT

GAAAACCAAATT

GAAAACCAAAUU





STMN2_
+
TT
23
AAAACCTCCCTGGCTTAG
241
AAAACCUCCCUGGCUUAG


exon2

TC

AAAACCAAATTT

AAAACCAAAUUU





STMN2_
+
CT
24
GAAAACCAAATTTTTGTAG
242
GAAAACCAAAUUUUUGUA


exon2

TA

AGAGAGATGGG

GAGAGAGAUGGG





STMN2_

AT
25
GGTTTTCTAAGCCAGGGA
243
GGUUUUCUAAGCCAGGGA


exon2

TT

GGTTTTGAAAGA

GGUUUUGAAAGA





STMN2_
+
TT
26
TGTAGAGAGAGATGGGTA
244
UGUAGAGAGAGAUGGGUA


exon2

TT

GAATCTAATTTT

GAAUCUAAUUUU





STMN2_
+
AT
27
TTGTAGAGAGAGATGGGT
245
UUGUAGAGAGAGAUGGG


exon2

TT

AGAATCTAATTT

UAGAAUCUAAUUU





STMN2_

AT
28
GATTCTACCCATCTCTCTC
246
GAUUCUACCCAUCUCUCU


exon2

TA

TACAAAAATTT

CUACAAAAAUUU





STMN2_

AT
29
TACCCATCTCTCTCTACAA
247
UACCCAUCUCUCUCUACA


exon2

TC

AAATTTGGTTT

AAAAUUUGGUUU





STMN2_

TT
30
GAATAAAATTAGATTCTAC
248
GAAUAAAAUUAGAUUCUA


exon2

TA

CCATCTCTCTC

CCCAUCUCUCUC





STMN2_

CT
31
AGAATAAAATTAGATTCTA
249
AGAAUAAAAUUAGAUUCU


exon2

TT

CCCATCTCTCT

ACCCAUCUCUCU





STMN2_

AT
32
CTTTAGAATAAAATTAGAT
250
CUUUAGAAUAAAAUUAGA


exon2

TG

TCTACCCATCT

UUCUACCCAUCU





STMN2_
+
AT
33
TAAAGCAATTAGCATTACA
251
UAAAGCAAUUAGCAUUAC


exon2

TC

TCATCACAGCA

AUCAUCACAGCA





STMN2_
+
TT
34
TTCTAAAGCAATTAGCATT
252
UUCUAAAGCAAUUAGCAU


exon2

TA

ACATCATCACA

UACAUCAUCACA





STMN2_
+
AT
35
TATTCTAAAGCAATTAGCA
253
UAUUCUAAAGCAAUUAGC


exon2

TT

TTACATCATCA

AUUACAUCAUCA





STMN2_
+
TT
36
ATTCTAAAGCAATTAGCAT
254
AUUCUAAAGCAAUUAGCA


exon2

TT

TACATCATCAC

UUACAUCAUCAC





STMN2_
+
TT
37
GTAGAGAGAGATGGGTAG
255
GUAGAGAGAGAUGGGUA


exon2

TT

AATCTAATTTTA

GAAUCUAAUUUUA





STMN2_
+
TT
38
TAGAGAGAGATGGGTAGA
256
UAGAGAGAGAUGGGUAGA


exon2

TG

ATCTAATTTTAT

AUCUAAUUUUAU





STMN2_
+
AT
39
GCATTACATCATCACAGC
257
GCAUUACAUCAUCACAGC


exon2

TA

AG

AG





STMN2_

GT
40
TCTAAGCCAGGGAGGTTT
258
UCUAAGCCAGGGAGGUUU


exon2

TT

TGAAAGATT

UGAAAGAUU





STMN2_

TT
41
CTAAGCCAGGGAGGTTTT
259
CUAAGCCAGGGAGGUUUU


exon2

TT

GAAAGATT

GAAAGAUU





STMN2_

TT
42
TAAGCCAGGGAGGTTTTG
260
UAAGCCAGGGAGGUUUU


exon2

TC

AAAGATT

GAAAGAUU





STMN2_

GT
43
CGAGGTTCCGGGTAAAAG
261
CGAGGUUCCGGGUAAAAG


exon3

TG

CAAGAGCAGATC

CAAGAGCAGAUC





STMN2_

CT
44
TAGGCTGAAATGAAAAGC
262
UAGGCUGAAAUGAAAAGC


exon3

TG

TGAAGATTAGTA

UGAAGAUUAGUA





STMN2_

GT
45
CGGGTAAAAGCAAGAGCA
263
CGGGUAAAAGCAAGAGCA


exon3

TC

GATCAGTGACAG

GAUCAGUGACAG





STMN2_

TT
46
CCTTGTAGGCTGAAATGA
264
CCUUGUAGGCUGAAAUGA


exon3

TT

AAAGCTGAAGAT

AAAGCUGAAGAU





STMN2_

TT
47
TCCTTGTAGGCTGAAATG
265
UCCUUGUAGGCUGAAAUG


exon3

TT

AAAAGCTGAAGA

AAAAGCUGAAGA





STMN2_

TT
48
TTCCTTGTAGGCTGAAAT
266
UUCCUUGUAGGCUGAAAU


exon3

TT

GAAAAGCTGAAG

GAAAAGCUGAAG





STMN2_

AT
49
TTTCCTTGTAGGCTGAAAT
267
UUUCCUUGUAGGCUGAAA


exon3

TT

GAAAAGCTGAA

UGAAAAGCUGAA





STMN2_

CT
50
ATTTTTTCCTTGTAGGCTG
268
AUUUUUUCCUUGUAGGCU


exon3

TC

AAATGAAAAGC

GAAAUGAAAAGC





STMN2_
+
AT
51
AGAAAAAATGAAATATACT
269
AGAAAAAAUGAAAUAUAC


exon3

TC

AATCTTCAGCT

UAAUCUUCAGCU





STMN2_
+
CT
52
AGCTTTTCATTTCAGCCTA
270
AGCUUUUCAUUUCAGCCU


exon3

TC

CAAGGAAAAAA

ACAAGGAAAAAA





STMN2_
+
CT
53
TCATTTCAGCCTACAAGG
271
UCAUUUCAGCCUACAAGG


exon3

TT

AAAAAATGAAGG

AAAAAAUGAAGG





STMN2_

TT
54
CTTGTAGGCTGAAATGAA
272
CUUGUAGGCUGAAAUGAA


exon3

TC

AAGCTGAAGATT

AAGCUGAAGAUU





STMN2_
+
TT
55
ATTTCAGCCTACAAGGAA
273
AUUUCAGCCUACAAGGAA


exon3

TC

AAAATGAAGGAG

AAAAUGAAGGAG





STMN2_
+
TT
56
CATTTCAGCCTACAAGGA
274
CAUUUCAGCCUACAAGGA


exon3

TT

AAAAATGAAGGA

AAAAAUGAAGGA





STMN2_

GT
57
CTCACCATCGTAAGTATA
275
CUCACCAUCGUAAGUAUA


exon3

TA

GATGTTGATGTT

GAUGUUGAUGUU





STMN2_

TT
58
CAAATGATCTAGCTAGCA
276
CAAAUGAUCUAGCUAGCA


exon3

TC

GGGGTATGTCTA

GGGGUAUGUCUA





STMN2_

CT
59
CCAAATGATCTAGCTAGC
277
CCAAAUGAUCUAGCUAGC


exon3

TT

AGGGGTATGTCT

AGGGGUAUGUCU





STMN2_
+
CT
60
CGATGGTGAGTAACCTAG
278
CGAUGGUGAGUAACCUAG


exon3

TA

GATAGACATACC

GAUAGACAUACC





STMN2_
+
TT
61
CCCGGAACCTCGCAACAT
279
CCCGGAACCUCGCAACAU


exon3

TA

CAACATCTATAC

CAACAUCUAUAC





STMN2_

GT
62
ATGTTGCGAGGTTCCGGG
280
AUGUUGCGAGGUUCCGG


exon3

TG

TAAAAGCAAGAG

GUAAAAGCAAGAG





STMN2_
+
CT
63
TACCCGGAACCTCGCAAC
281
UACCCGGAACCUCGCAAC


exon3

TT

ATCAACATCTAT

AUCAACAUCUAU





STMN2_
+
CT
64
CTTTTACCCGGAACCTCG
282
CUUUUACCCGGAACCUCG


exon3

TG

CAACATCAACAT

CAACAUCAACAU





STMN2_
+
TT
65
AGCCTACAAGGAAAAAAT
283
AGCCUACAAGGAAAAAAU


exon3

TC

GAAGGAGCTGTC

GAAGGAGCUGUC





STMN2_
+
AT
66
CAGCCTACAAGGAAAAAA
284
CAGCCUACAAGGAAAAAA


exon3

TT

TGAAGGAGCTGT

UGAAGGAGCUGU





STMN2_
+
TT
67
ACCCGGAACCTCGCAACA
285
ACCCGGAACCUCGCAACA


exon3

TT

TCAACATCTATA

UCAACAUCUAUA





STMN2_

AT
68
GTATATTTCATTTTTTCTG
286
GUAUAUUUCAUUUUUUCU


exon3

TA

AATTTCTC

GAAUUUCUC





STMN2_

TT
69
TTCTGGATCTCCTCCAGG
287
UUCUGGAUCUCCUCCAGG


exon4

TC

GACAGGTCTTTC

GACAGGUCUUUC





STMN2_

CT
70
TGGATCTCCTCCAGGGAC
288
UGGAUCUCCUCCAGGGAC


exon4

TC

AGGTCTTTCTTC

AGGUCUUUCUUC





STMN2_

CT
71
CTTCTTTGGAGAAGCTAA
289
CUUCUUUGGAGAAGCUAA


exon4

TT

AGTTCGTGGGGC

AGUUCGUGGGGC





STMN2_

TT
72
TTCTTTGGAGAAGCTAAA
290
UUCUUUGGAGAAGCUAAA


exon4

TC

GTTCGTGGGGCT

GUUCGUGGGGCU





STMN2_

CT
73
TTTGGAGAAGCTAAAGTT
291
UUUGGAGAAGCUAAAGUU


exon4

TC

CGTGGGGCTTCT

CGUGGGGCUUCU





STMN2_

CT
74
GGAGAAGCTAAAGTTCGT
292
GGAGAAGCUAAAGUUCGU


exon4

TT

GGGGCTTCTGAG

GGGGCUUCUGAG





STMN2_

TT
75
GAGAAGCTAAAGTTCGTG
293
GAGAAGCUAAAGUUCGUG


exon4

TG

GGGCTTCTGAGA

GGGCUUCUGAGA





STMN2_

GT
76
GTGGGGCTTCTGAGATAG
294
GUGGGGCUUCUGAGAUA


exon4

TC

GAGATGGTGGCT

GGAGAUGGUGGCU





STMN2_

CT
77
TGAGATAGGAGATGGTGG
295
UGAGAUAGGAGAUGGUG


exon4

TC

CTTCAAGATCAG

GCUUCAAGAUCAG





STMN2_

TT
78
TTGATTTGCTTCACTTCCA
296
UUGAUUUGCUUCACUUCC


exon4

TG

TATCTGAAAAG

AUAUCUGAAAAG





STMN2_

GT
79
GTTGATTTGCTTCACTTCC
297
GUUGAUUUGCUUCACUUC


exon4

TT

ATATCTGAAAA

CAUAUCUGAAAA





STMN2_

GT
80
ATTTGCTTCACTTCCATAT
298
AUUUGCUUCACUUCCAUA


exon4

TG

CTGAAAAGTGA

UCUGAAAAGUGA





STMN2_

AT
81
GCTTCACTTCCATATCTGA
299
GCUUCACUUCCAUAUCUG


exon4

TT

AAAGTGAACAT

AAAAGUGAACAU





STMN2_

TT
82
CTTCACTTCCATATCTGAA
300
CUUCACUUCCAUAUCUGA


exon4

TG

AAGTGAACATT

AAAGUGAACAUU





STMN2_

CT
83
ACTTCCATATCTGAAAAGT
301
ACUUCCAUAUCUGAAAAG


exon4

TC

GAACATTTGAG

UGAACAUUUGAG





STMN2_

CT
84
CATATCTGAAAAGTGAAC
302
CAUAUCUGAAAAGUGAAC


exon4

TC

ATTTGAGAATGT

AUUUGAGAAUGU





STMN2_

AT
85
GAGAATGTTAAGCATACA
303
GAGAAUGUUAAGCAUACA


exon4

TT

AAGCTTGCAGCA

AAGCUUGCAGCA





STMN2_

TT
86
AGAATGTTAAGCATACAAA
304
AGAAUGUUAAGCAUACAA


exon4

TG

GCTTGCAGCAT

AGCUUGCAGCAU





STMN2_

GT
87
CTTCTGGATCTCCTCCAG
305
CUUCUGGAUCUCCUCCAG


exon4

TT

GGACAGGTCTTT

GGACAGGUCUUU





STMN2_

CT
88
AAGATCAGCTCAAAAGCC
306
AAGAUCAGCUCAAAAGCC


exon4

TC

TGGCCAGAGGCA

UGGCCAGAGGCA





STMN2_

TT
89
CTCTGCAGCCTCCAGTTT
307
CUCUGCAGCCUCCAGUUU


exon4

TC

CTTCTGGATCTC

CUUCUGGAUCUC





STMN2_
+
TT
90
AGATATGGAAGTGAAGCA
308
AGAUAUGGAAGUGAAGCA


exon4

TC

AATCAACAAACG

AAUCAACAAACG





STMN2_

CT
91
TTTCCTCTGCAGCCTCCA
309
UUUCCUCUGCAGCCUCCA


exon4

TC

GTTTCTTCTGGA

GUUUCUUCUGGA





STMN2_
+
TT
92
TATGCTTAACATTCTCAAA
310
UAUGCUUAACAUUCUCAA


exon4

TG

TGTTCACTTTT

AUGUUCACUUUU





STMN2_
+
CT
93
ACATTCTCAAATGTTCACT
311
ACAUUCUCAAAUGUUCAC


exon4

TA

TTTCAGATATG

UUUUCAGAUAUG





STMN2_
+
AT
94
TCAAATGTTCACTTTTCAG
312
UCAAAUGUUCACUUUUCA


exon4

TC

ATATGGAAGTG

GAUAUGGAAGUG





STMN2_
+
GT
95
ACTTTTCAGATATGGAAGT
313
ACUUUUCAGAUAUGGAAG


exon4

TC

GAAGCAAATCA

UGAAGCAAAUCA





STMN2_
+
CT
96
TCAGATATGGAAGTGAAG
314
UCAGAUAUGGAAGUGAAG


exon4

TT

CAAATCAACAAA

CAAAUCAACAAA





STMN2_
+
TT
97
CAGATATGGAAGTGAAGC
315
CAGAUAUGGAAGUGAAGC


exon4

TT

AAATCAACAAAC

AAAUCAACAAAC





STMN2_
+
CT
98
TGAGCTGATCTTGAAGCC
316
UGAGCUGAUCUUGAAGCC


exon4

TT

ACCATCTCCTAT

ACCAUCUCCUAU





STMN2_
+
TT
99
GAGCTGATCTTGAAGCCA
317
GAGCUGAUCUUGAAGCCA


exon4

TT

CCATCTCCTATC

CCAUCUCCUAUC





STMN2_
+
TT
100
AGCTGATCTTGAAGCCAC
318
AGCUGAUCUUGAAGCCAC


exon4

TG

CATCTCCTATCT

CAUCUCCUAUCU





STMN2_
+
CT
101
AAGCCACCATCTCCTATC
319
AAGCCACCAUCUCCUAUC


exon4

TG

TCAGAAGCCCCA

UCAGAAGCCCCA





STMN2_
+
CT
102
AGCTTCTCCAAAGAAGAA
320
AGCUUCUCCAAAGAAGAA


exon4

TT

AGACCTGTCCCT

AGACCUGUCCCU





STMN2_
+
TT
103
GCTTCTCCAAAGAAGAAA
321
GCUUCUCCAAAGAAGAAA


exon4

TA

GACCTGTCCCTG

GACCUGUCCCUG





STMN2_
+
CT
104
TCCAAAGAAGAAAGACCT
322
UCCAAAGAAGAAAGACCU


exon4

TC

GTCCCTGGAGGA

GUCCCUGGAGGA





STMN2_
+
CT
105
TTCCATAGGTTTTCCTTCT
323
UUCCAUAGGUUUUCCUUC


exon4

TT

CTCTCTCCCTC

UCUCUCUCCCUC





STMN2_
+
TT
106
TCCATAGGTTTTCCTTCTC
324
UCCAUAGGUUUUCCUUCU


exon4

TT

TCTCTCCCTCC

CUCUCUCCCUCC





STMN2_
+
TT
107
CCATAGGTTTTCCTTCTCT
325
CCAUAGGUUUUCCUUCUC


exon4

TT

CTCTCCCTCCC

UCUCUCCCUCCC





STMN2_
+
TT
108
CATAGGTTTTCCTTCTCTC
326
CAUAGGUUUUCCUUCUCU


exon4

TC

TCTCCCTCCCC

CUCUCCCUCCCC





STMN2_
+
GT
109
TCCTTCTCTCTCTCCCTCC
327
UCCUUCUCUCUCUCCCUC


exon4

TT

CCTGCTCCTCC

CCCUGCUCCUCC





STMN2_

GT
110
CCTTTCTTCTTTCCTCTGC
328
CCUUUCUUCUUUCCUCUG


exon4

TA

AGCCTCCAGTT

CAGCCUCCAGUU





STMN2_

CT
111
CTTCTTTCCTCTGCAGCCT
329
CUUCUUUCCUCUGCAGCC


exon4

TT

CCAGTTTCTTC

UCCAGUUUCUUC





STMN2_

TT
112
TTCTTTCCTCTGCAGCCTC
330
UUCUUUCCUCUGCAGCCU


exon4

TC

CAGTTTCTTCT

CCAGUUUCUUCU





STMN2_

CT
113
CCTCTGCAGCCTCCAGTT
331
CCUCUGCAGCCUCCAGUU


exon4

TT

TCTTCTGGATCT

UCUUCUGGAUCU





STMN2_
+
CT
114
GTATGCTTAACATTCTCAA
332
GUAUGCUUAACAUUCUCA


exon4

TT

ATGTTCACTTT

AAUGUUCACUUU





STMN2_
+
TT
115
CCTTCTCTCTCTCCCTCC
333
CCUUCUCUCUCUCCCUCC


exon4

TT

CCTGCTCCTCC

CCUGCUCCUCC





STMN2_
+
TT
116
CTTCTCTCTCTCCCTCCC
334
CUUCUCUCUCUCCCUCCC


exon4

TC

CTGCTCCTCC

CUGCUCCUCC





STMN2_
+
CT
117
TCTCTCTCCCTCCCCTGC
335
UCUCUCUCCCUCCCCUGC


exon4

TC

TCCTCC

UCCUCC





STMN2_

GT
118
AGCATACAAAGCTTGCAG
336
AGCAUACAAAGCUUGCAG


exon4

TA

CATGG

CAUGG





STMN2_
+
GT
119
GTGTTTGGATAATTATAAG
337
GUGUUUGGAUAAUUAUAA


exon5

TT

ATGGCTATGTT

GAUGGCUAUGUU





STMN2_

TT
120
CTGCAGACGTTCAATAAT
338
CUGCAGACGUUCAAUAAU


exon5

TC

AGCAGCTAGATT

AGCAGCUAGAUU





STMN2_

TT
121
AGGATCAGCTTTTCCTCC
339
AGGAUCAGCUUUUCCUCC


exon5

TC

GCCATCTTGCTG

GCCAUCUUGCUG





STMN2_

CT
122
TCCTCCGCCATCTTGCTG
340
UCCUCCGCCAUCUUGCUG


exon5

TT

AAGTTGTTGTTC

AAGUUGUUGUUC





STMN2_

TT
123
CCTCCGCCATCTTGCTGA
341
CCUCCGCCAUCUUGCUGA


exon5

TT

AGTTGTTGTTCT

AGUUGUUGUUCU





STMN2_

TT
124
CTCCGCCATCTTGCTGAA
342
CUCCGCCAUCUUGCUGAA


exon5

TC

GTTGTTGTTCTC

GUUGUUGUUCUC





STMN2_

CT
125
CTGAAGTTGTTGTTCTCCT
343
CUGAAGUUGUUGUUCUCC


exon5

TG

CCAAAGCCTTC

UCCAAAGCCUUC





STMN2_

GT
126
TTGTTCTCCTCCAAAGCCT
344
UUGUUCUCCUCCAAAGCC


exon5

TG

TCTGAAGGACT

UUCUGAAGGACU





STMN2_

GT
127
TTCTCCTCCAAAGCCTTCT
345
UUCUCCUCCAAAGCCUUC


exon5

TG

GAAGGACTTCT

UGAAGGACUUCU





STMN2_

GT
128
TCCTCCAAAGCCTTCTGA
346
UCCUCCAAAGCCUUCUGA


exon5

TC

AGGACTTCTCGC

AGGACUUCUCGC





STMN2_

CT
129
TGAAGGACTTCTCGCTCG
347
UGAAGGACUUCUCGCUCG


exon5

TC

TGTTCCCTCTTC

UGUUCCCUCUUC





STMN2_

TT
130
CAGGATCAGCTTTTCCTC
348
CAGGAUCAGCUUUUCCUC


exon5

TT

CGCCATCTTGCT

CGCCAUCUUGCU





STMN2_

CT
131
TCGCTCGTGTTCCCTCTT
349
UCGCUCGUGUUCCCUCU


exon5

TC

CTCTGCCAATTG

UCUCUGCCAAUUG





STMN2_

CT
132
TCTGCCAATTGTTTCAGCA
350
UCUGCCAAUUGUUUCAGC


exon5

TC

CCTGGGCCTCC

ACCUGGGCCUCC





STMN2_

AT
133
TTTCAGCACCTGGGCCTC
351
UUUCAGCACCUGGGCCUC


exon5

TG

CTGAGACTGGGG

CUGAGACUGGGG





STMN2_

GT
134
CAGCACCTGGGCCTCCTG
352
CAGCACCUGGGCCUCCU


exon5

TT

AGACTGGGGAAG

GAGACUGGGGAAG





STMN2_

TT
135
AGCACCTGGGCCTCCTGA
353
AGCACCUGGGCCUCCUGA


exon5

TC

GACTGGGGAAGA

GACUGGGGAAGA





STMN2_

GT
136
AATAATAGCAGCTAGATTA
354
AAUAAUAGCAGCUAGAUU


exon5

TC

GCCTCACGGTT

AGCCUCACGGUU





STMN2_

TT
137
CCTGCAGACGTTCAATAA
355
CCUGCAGACGUUCAAUAA


exon5

TT

TAGCAGCTAGAT

UAGCAGCUAGAU





STMN2_

CT
138
TCCTGCAGACGTTCAATA
356
UCCUGCAGACGUUCAAUA


exon5

TT

ATAGCAGCTAGA

AUAGCAGCUAGA





STMN2_

AT
139
CCTTTTCCTGCAGACGTT
357
CCUUUUCCUGCAGACGUU


exon5

TA

CAATAATAGCAG

CAAUAAUAGCAG





STMN2_
+
AT
140
AACGTCTGCAGGAAAAGG
358
AACGUCUGCAGGAAAAGG


exon5

TG

TAATCTCAGCAG

UAAUCUCAGCAG





STMN2_

GT
141
CCTCTTCTCTGCCAATTGT
359
CCUCUUCUCUGCCAAUUG


exon5

TC

TTCAGCACCTG

UUUCAGCACCUG





STMN2_

AT
142
TCAGGATCAGCTTTTCCT
360
UCAGGAUCAGCUUUUCCU


exon5

TT

CCGCCATCTTGC

CCGCCAUCUUGC





STMN2_

GT
143
CATTTTCAGGATCAGCTTT
361
CAUUUUCAGGAUCAGCUU


exon5

TC

TCCTCCGCCAT

UUCCUCCGCCAU





STMN2_
+
CT
144
AGAAGGCTTTGGAGGAGA
362
AGAAGGCUUUGGAGGAGA


exon5

TC

ACAACAACTTCA

ACAACAACUUCA





STMN2_
+
TT
145
GATAATTATAAGATGGCTA
363
GAUAAUUAUAAGAUGGCU


exon5

TG

TGTTTTTCTTC

AUGUUUUUCUUC





STMN2_
+
AT
146
TAAGATGGCTATGTTTTTC
364
UAAGAUGGCUAUGUUUUU


exon5

TA

TTCCCCAGTCT

CUUCCCCAGUCU





STMN2_
+
GT
147
TTCTTCCCCAGTCTCAGG
365
UUCUUCCCCAGUCUCAGG


exon5

TT

AGGCCCAGGTGC

AGGCCCAGGUGC





STMN2_
+
TT
148
TCTTCCCCAGTCTCAGGA
366
UCUUCCCCAGUCUCAGGA


exon5

TT

GGCCCAGGTGCT

GGCCCAGGUGCU





STMN2_
+
TT
149
CTTCCCCAGTCTCAGGAG
367
CUUCCCCAGUCUCAGGAG


exon5

TT

GCCCAGGTGCTG

GCCCAGGUGCUG





STMN2_
+
TT
150
TTCCCCAGTCTCAGGAGG
368
UUCCCCAGUCUCAGGAGG


exon5

TC

CCCAGGTGCTGA

CCCAGGUGCUGA





STMN2_
+
CT
151
CCCAGTCTCAGGAGGCCC
369
CCCAGUCUCAGGAGGCCC


exon5

TC

AGGTGCTGAAAC

AGGUGCUGAAAC





STMN2_
+
AT
152
GCAGAGAAGAGGGAACA
370
GCAGAGAAGAGGGAACAC


exon5

TG

CGAGCGAGAAGTC

GAGCGAGAAGUC





STMN2_

TT
153
TTCCATTTTCAGGATCAGC
371
UUCCAUUUUCAGGAUCAG


exon5

TG

TTTTCCTCCGC

CUUUUCCUCCGC





STMN2_
+
GT
154
GGATAATTATAAGATGGC
372
GGAUAAUUAUAAGAUGGC


exon5

TT

TATGTTTTTCTT

UAUGUUUUUCUU





STMN2_
+
CT
155
GGAGGAGAACAACAACTT
373
GGAGGAGAACAACAACUU


exon5

TT

CAGCAAGATGGC

CAGCAAGAUGGC





STMN2_
+
CT
156
AGCAAGATGGCGGAGGA
374
AGCAAGAUGGCGGAGGAA


exon5

TC

AAAGCTGATCCTG

AAGCUGAUCCUG





STMN2_
+
AT
157
AGGAAAACCGTGAGGCTA
375
AGGAAAACCGUGAGGCUA


exon5

TA

ATCTAGCTGCTA

AUCUAGCUGCUA





STMN2_
+
AT
158
TTGAACGTCTGCAGGAAA
376
UUGAACGUCUGCAGGAAA


exon5

TA

AGGTAATCTCAG

AGGUAAUCUCAG





STMN2_

AT
159
GCCTCACGGTTTTCCTTA
377
GCCUCACGGUUUUCCUUA


exon5

TA

ATTTGTTCCATT

AUUUGUUCCAUU





STMN2_

GT
160
TCCTTAATTTGTTCCATTT
378
UCCUUAAUUUGUUCCAUU


exon5

TT

TCAGGATCAGC

UUCAGGAUCAGC





STMN2_

TT
161
CCTTAATTTGTTCCATTTT
379
CCUUAAUUUGUUCCAUUU


exon5

TT

CAGGATCAGCT

UCAGGAUCAGCU





STMN2_

TT
162
CTTAATTTGTTCCATTTTC
380
CUUAAUUUGUUCCAUUUU


exon5

TC

AGGATCAGCTT

CAGGAUCAGCUU





STMN2_

CT
163
ATTTGTTCCATTTTCAGGA
381
AUUUGUUCCAUUUUCAGG


exon5

TA

TCAGCTTTTCC

AUCAGCUUUUCC





STMN2_

AT
164
GTTCCATTTTCAGGATCA
382
GUUCCAUUUUCAGGAUCA


exon5

TT

GCTTTTCCTCCG

GCUUUUCCUCCG





STMN2_
+
TT
165
GAGGAGAACAACAACTTC
383
GAGGAGAACAACAACUUC


exon5

TG

AGCAAGATGGCG

AGCAAGAUGGCG





STMN2_
+
TT
166
TGTTTGGATAATTATAAGA
384
UGUUUGGAUAAUUAUAAG


exon5

TG

TGGCTATGTTT

AUGGCUAUGUUU





STMN2_

CT
167
TAATTATCCAAACACAAAC
385
UAAUUAUCCAAACACAAA


exon5

TA

CTAG

CCUAG





STMN2_

GT
168
AGAAGAAATAAACTTGAC
386
AGAAGAAAUAAACUUGAC


exon6

TC

CAGCTATAAAGT

CAGCUAUAAAGU





STMN2_

CT
169
TCGTTAAACTCTATTAATC
387
UCGUUAAACUCUAUUAAU


exon6

TA

TCAAGGAGTCT

CUCAAGGAGUCU





STMN2_

TT
170
GTTCAGAAGAAATAAACTT
388
GUUCAGAAGAAAUAAACU


exon6

TA

GACCAGCTATA

UGACCAGCUAUA





STMN2_

CT
171
ACCAGCTATAAAGTAAAA
389
ACCAGCUAUAAAGUAAAA


exon6

TG

CTTATCGTTAAA

CUUAUCGUUAAA





STMN2_

CT
172
TAGTTCAGAAGAAATAAAC
390
UAGUUCAGAAGAAAUAAA


exon6

TT

TTGACCAGCTA

CUUGACCAGCUA





STMN2_
+
CT
173
AGATTAATAGAGTTTAACG
391
AGAUUAAUAGAGUUUAAC


exon6

TG

ATAAGTTTTAC

GAUAAGUUUUAC





STMN2_
+
AT
174
ATAGAGTTTAACGATAAGT
392
AUAGAGUUUAACGAUAAG


exon6

TA

TTTACTTTATA

UUUUACUUUAUA





STMN2_
+
GT
175
AACGATAAGTTTTACTTTA
393
AACGAUAAGUUUUACUUU


exon6

TT

TAGCTGGTCAA

AUAGCUGGUCAA





STMN2_
+
TT
176
ACGATAAGTTTTACTTTAT
394
ACGAUAAGUUUUACUUUA


exon6

TA

AGCTGGTCAAG

UAGCUGGUCAAG





STMN2_
+
GT
177
TACTTTATAGCTGGTCAAG
395
UACUUUAUAGCUGGUCAA


exon6

TT

TTTATTTCTTC

GUUUAUUUCUUC





STMN2_
+
TT
178
ACTTTATAGCTGGTCAAGT
396
ACUUUAUAGCUGGUCAAG


exon6

TT

TTATTTCTTCT

UUUAUUUCUUCU





STMN2_
+
TT
179
CTTTATAGCTGGTCAAGTT
397
CUUUAUAGCUGGUCAAGU


exon6

TA

TATTTCTTCTG

UUAUUUCUUCUG





STMN2_
+
CT
180
ATAGCTGGTCAAGTTTATT
398
AUAGCUGGUCAAGUUUAU


exon6

TT

TCTTCTGAACT

UUCUUCUGAACU





STMN2_
+
TT
181
TAGCTGGTCAAGTTTATTT
399
UAGCUGGUCAAGUUUAUU


exon6

TA

CTTCTGAACTA

UCUUCUGAACUA





STMN2_
+
GT
182
ATTTCTTCTGAACTAAAAG
400
AUUUCUUCUGAACUAAAA


exon6

TT

AATCTATAGAG

GAAUCUAUAGAG





STMN2_
+
TT
183
TTTCTTCTGAACTAAAAGA
401
UUUCUUCUGAACUAAAAG


exon6

TA

ATCTATAGAGT

AAUCUAUAGAGU





STMN2_
+
AT
184
CTTCTGAACTAAAAGAATC
402
CUUCUGAACUAAAAGAAU


exon6

TT

TATAGAGTCTC

CUAUAGAGUCUC





STMN2_
+
TT
185
TTCTGAACTAAAAGAATCT
403
UUCUGAACUAAAAGAAUC


exon6

TC

ATAGAGTCTCA

UAUAGAGUCUCA





STMN2_
+
CT
186
TGAACTAAAAGAATCTATA
404
UGAACUAAAAGAAUCUAU


exon6

TC

GAGTCTCAATT

AGAGUCUCAAUU





STMN2_
+
AT
187
CTGGAGCTTCAGAGGGAA
405
CUGGAGCUUCAGAGGGAA


exon6

TT

GGAGAGAAGCAA

GGAGAGAAGCAA





STMN2_
+
TT
188
TGGAGCTTCAGAGGGAAG
406
UGGAGCUUCAGAGGGAA


exon6

TC

GAGAGAAGCAAT

GGAGAGAAGCAAU





STMN2_
+
CT
189
AGAGGGAAGGAGAGAAG
407
AGAGGGAAGGAGAGAAGC


exon6

TC

CAATGTAAGCAAC

AAUGUAAGCAAC





STMN2_

AT
190
TTTTAGTTCAGAAGAAATA
408
UUUUAGUUCAGAAGAAAU


exon6

TC

AACTTGACCAG

AAACUUGACCAG





STMN2_

AT
191
AGACTCTATAGATTCTTTT
409
AGACUCUAUAGAUUCUUU


exon6

TG

AGTTCAGAAGA

UAGUUCAGAAGA





STMN2_

CT
192
CCTCTGAAGCTCCAGAAA
410
CCUCUGAAGCUCCAGAAA


exon6

TC

TTGAGACTCTAT

UUGAGACUCUAU





STMN2_

CT
193
TCTCCTTCCCTCTGAAGC
411
UCUCCUUCCCUCUGAAGC


exon6

TC

TCCAGAAATTGA

UCCAGAAAUUGA





STMN2_

AT
194
CTTCTCTCCTTCCCTCTGA
412
CUUCUCUCCUUCCCUCUG


exon6

TG

AGCTCCAGAAA

AAGCUCCAGAAA





STMN2_

CT
195
CATTGCTTCTCTCCTTCCC
413
CAUUGCUUCUCUCCUUCC


exon6

TA

TCTGAAGCTCC

CUCUGAAGCUCC





STMN2_

TT
196
AGTTCAGAAGAAATAAACT
414
AGUUCAGAAGAAAUAAAC


exon6

TT

TGACCAGCTAT

UUGACCAGCUAU





STMN2_

TT
197
TGTAGAATGTTGCTTACAT
415
UGUAGAAUGUUGCUUACA


exon6

TC

TGCTTCTCTCC

UUGCUUCUCUCC





STMN2_

TT
198
TATTTCTGTAGAATGTTGC
416
UAUUUCUGUAGAAUGUUG


exon6

TA

TTACATTGCTT

CUUACAUUGCUU





STMN2_

AT
199
ATATTTCTGTAGAATGTTG
417
AUAUUUCUGUAGAAUGUU


exon6

TT

CTTACATTGCT

GCUUACAUUGCU





STMN2_

AT
200
TTTATATTTCTGTAGAATG
418
UUUAUAUUUCUGUAGAAU


exon6

TA

TTGCTTACATT

GUUGCUUACAUU





STMN2_

AT
201
GTAGTATTATTTATATTTC
419
GUAGUAUUAUUUAUAUUU


exon6

TA

TGTAGAATGTT

CUGUAGAAUGUU





STMN2_

AT
202
TTAGTAGTATTATTTATATT
420
UUAGUAGUAUUAUUUAUA


exon6

TA

TCTGTAGAAT

UUUCUGUAGAAU





STMN2_
+
AT
203
TACAGAAATATAAATAATA
421
UACAGAAAUAUAAAUAAUA


exon6

TC

CTACTAATAAT

CUACUAAUAAU





STMN2_

AT
204
CTGTAGAATGTTGCTTACA
422
CUGUAGAAUGUUGCUUAC


exon6

TT

TTGCTTCTCTC

AUUGCUUCUCUC





STMN2_

GT
205
CTTACATTGCTTCTCTCCT
423
CUUACAUUGCUUCUCUCC


exon6

TG

TCCCTCTGAAG

UUCCCUCUGAAG





STMN2_

GT
206
AACTCTATTAATCTCAAGG
424
AACUCUAUUAAUCUCAAG


exon6

TA

AGTCTACA

GAGUCUACA





STMN2_
+
TT
207
GTGTTTTTTAGGAGAGGC
425
GUGUUUUUUAGGAGAGG


exon7

TT

ATGCTGCGGAGG

CAUGCUGCGGAGG





STMN2_
+
TT
208
TTCTTCCTTTTGTGTTTTTT
426
UUCUUCCUUUUGUGUUUU


exon7

TC

AGGAGAGGCA

UUAGGAGAGGCA





STMN2_
+
TT
209
TGTTTTTTAGGAGAGGCA
427
UGUUUUUUAGGAGAGGCA


exon7

TG

TGCTGCGGAGGT

UGCUGCGGAGGU





STMN2_
+
GT
210
TTTAGGAGAGGCATGCTG
428
UUUAGGAGAGGCAUGCU


exon7

TT

CGGAGGTGCGCA

GCGGAGGUGCGCA





STMN2_
+
CT
211
CTTTTGTGTTTTTTAGGAG
429
CUUUUGUGUUUUUUAGGA


exon7

TC

AGGCATGCTGC

GAGGCAUGCUGC





STMN2_
+
TT
212
TAGGAGAGGCATGCTGCG
430
UAGGAGAGGCAUGCUGC


exon7

TT

GAGGTGCGCAGG

GGAGGUGCGCAGG





STMN2_
+
TT
213
AGGAGAGGCATGCTGCG
431
AGGAGAGGCAUGCUGCG


exon7

TT

GAGGTGCGCAGGA

GAGGUGCGCAGGA





STMN2_
+
TT
214
GGAGAGGCATGCTGCGG
432
GGAGAGGCAUGCUGCGG


exon7

TA

AGGTGCGCAGGAA

AGGUGCGCAGGAA





STMN2_
+
GT
215
AACTGTCTGGCTGAAGCA
433
AACUGUCUGGCUGAAGCA


exon7

TG

AGGGAGGGTCTG

AGGGAGGGUCUG





STMN2_

AT
216
ACTATTGGTGGGGCGTGC
434
ACUAUUGGUGGGGCGUG


exon7

TT

CAGACCCTCCCT

CCAGACCCUCCCU





STMN2_
+
AT
217
CTTCTTCCTTTTGTGTTTT
435
CUUCUUCCUUUUGUGUUU


exon7

TT

TTAGGAGAGGC

UUUAGGAGAGGC





STMN2_

TT
218
CTATTGGTGGGGCGTGCC
436
CUAUUGGUGGGGCGUGC


exon7

TA

AGACCCTCCCTT

CAGACCCUCCCUU





STMN2_

CT
219
CTTCAGCCAGACAGTTCA
437
CUUCAGCCAGACAGUUCA


exon7

TG

ACCTGGAGTTCC

ACCUGGAGUUCC





STMN2_

CT
220
AGCCAGACAGTTCAACCT
438
AGCCAGACAGUUCAACCU


exon7

TC

GGAGTTCCTTGT

GGAGUUCCUUGU





STMN2_

GT
221
AACCTGGAGTTCCTTGTT
439
AACCUGGAGUUCCUUGUU


exon7

TC

CCTGCGCACCTC

CCUGCGCACCUC





STMN2_

GT
222
CTTGTTCCTGCGCACCTC
440
CUUGUUCCUGCGCACCUC


exon7

TC

CGCAGCATGCCT

CGCAGCAUGCCU





STMN2_

CT
223
TTCCTGCGCACCTCCGCA
441
UUCCUGCGCACCUCCGCA


exon7

TG

GCATGCCTCTCC

GCAUGCCUCUCC





STMN2_

GT
224
CTGCGCACCTCCGCAGCA
442
CUGCGCACCUCCGCAGCA


exon7

TC

TGCCTCTCCTAA

UGCCUCUCCUAA





STMN2_
+
CT
225
TGTGTTTTTTAGGAGAGG
443
UGUGUUUUUUAGGAGAG


exon7

TT

CATGCTGCGGAG

GCAUGCUGCGGAG





STMN2_
+
CT
226
TTCCTTTTGTGTTTTTTAG
444
UUCCUUUUGUGUUUUUUA


exon7

TC

GAGAGGCATGC

GGAGAGGCAUGC





STMN2_

AT
227
GTGGGGCGTGCCAGACC
445
GUGGGGCGUGCCAGACC


exon7

TG

CTCCCTTGCTTCA

CUCCCUUGCUUCA





STMN2_
+
TT
228
TTAGGAGAGGCATGCTGC
446
UUAGGAGAGGCAUGCUG


exon7

TT

GGAGGTGCGCAG

CGGAGGUGCGCAG
















TABLE 5B







Target and Spacer Sequences − Intron













ref_id
strand
PAM

target

spacer
















STMN2_
+
GTT
491
TCCGTCGGCTCTACCT
2497
UCCGUCGGCUCUACCU


intron1

C

GGAGCCCACCTCTC

GGAGCCCACCUCUC





STMN2_

ATT
492
GGAAGTATTTTCTCTT
2498
GGAAGUAUUUUCUCUU


intron1

T

CAAGGTGAGTCTGT

CAAGGUGAGUCUGU





STMN2_

ATT
493
AAACTAGGCATCAAT
2499
AAACUAGGCAUCAAUU


intron1

A

TTGGAAGTATTTTCT

UGGAAGUAUUUUCU





STMN2_

TTT
494
AATAAGCCCCAGGTA
2500
AAUAAGCCCCAGGUAA


intron1

G

AGCTATTAAAACTAG

GCUAUUAAAACUAG





STMN2_

ATT
495
GAATAAGCCCCAGGT
2501
GAAUAAGCCCCAGGUA


intron1

T

AAGCTATTAAAACTA

AGCUAUUAAAACUA





STMN2_

ATT
496
TTTGAATAAGCCCCAG
2502
UUUGAAUAAGCCCCAG


intron1

A

GTAAGCTATTAAAA

GUAAGCUAUUAAAA





STMN2_

TTTC
497
TCCCAAAGCCTAAATC
2503
UCCCAAAGCCUAAAUC


intron1



ATGGCAATTATTTG

AUGGCAAUUAUUUG





STMN2_

CTTT
498
CTCCCAAAGCCTAAAT
2504
CUCCCAAAGCCUAAAU


intron1



CATGGCAATTATTT

CAUGGCAAUUAUUU





STMN2_

GTT
499
CAACCCACACGGCCTC
2505
CAACCCACACGGCCUC


intron1

A

ATAGCTCTCTTTCT

AUAGCUCUCUUUCU





STMN2_

GTT
500
CCACCAGAAATCGAT
2506
CCACCAGAAAUCGAUG


intron1

C

GCTGTGCTGAGCCTG

CUGUGCUGAGCCUG





STMN2_

TTTC
501
TGGAACTGGTCATCA
2507
UGGAACUGGUCAUCAG


intron1



GAGTGTGTTCCCACC

AGUGUGUUCCCACC





STMN2_

ATT
502
CTGGAACTGGTCATCA
2508
CUGGAACUGGUCAUCA


intron1

T

GAGTGTGTTCCCAC

GAGUGUGUUCCCAC





STMN2_

GTT
503
TTTCTGGAACTGGTCA
2509
UUUCUGGAACUGGUCA


intron1

A

TCAGAGTGTGTTCC

UCAGAGUGUGUUCC





STMN2_

ATT
504
AGTCAATGTTATTTCT
2510
AGUCAAUGUUAUUUCU


intron1

A

GGAACTGGTCATCA

GGAACUGGUCAUCA





STMN2_

TTT
505
AAATGTGCTAACCAT
2511
AAAUGUGCUAACCAUG


intron1

G

GATGGGACTGAGGAG

AUGGGACUGAGGAG





STMN2_

TTTT
506
GAAATGTGCTAACCA
2512
GAAAUGUGCUAACCAU


intron1



TGATGGGACTGAGGA

GAUGGGACUGAGGA





STMN2_

ATT
507
TGAAATGTGCTAACC
2513
UGAAAUGUGCUAACCA


intron1

T

ATGATGGGACTGAGG

UGAUGGGACUGAGG





STMN2_

GTT
508
AGGAGGCATTTTGAA
2514
AGGAGGCAUUUUGAAA


intron1

A

ATGTGCTAACCATGA

UGUGCUAACCAUGA





STMN2_

GTT
509
AAACTAAATATCTCTG
2515
AAACUAAAUAUCUCUG


intron1

A

GCCTATGGAAGTAG

GCCUAUGGAAGUAG





STMN2_

ATT
510
AACAAAATGTTAAAA
2516
AACAAAAUGUUAAAAC


intron1

C

CTAAATATCTCTGGC

UAAAUAUCUCUGGC





STMN2_

TTT
511
TTCAACAAAATGTTAA
2517
UUCAACAAAAUGUUAA


intron1

A

AACTAAATATCTCT

AACUAAAUAUCUCU





STMN2_

TTTT
512
ATTCAACAAAATGTTA
2518
AUUCAACAAAAUGUUA


intron1



AAACTAAATATCTC

AAACUAAAUAUCUC





STMN2_

ATT
513
TATTCAACAAAATGTT
2519
UAUUCAACAAAAUGUU


intron1

T

AAAACTAAATATCT

AAAACUAAAUAUCU





STMN2_

TTT
514
TTTTATTCAACAAAAT
2520
UUUUAUUCAACAAAAU


intron1

A

GTTAAAACTAAATA

GUUAAAACUAAAUA





STMN2_

ATT
515
ATTTTATTCAACAAAA
2521
AUUUUAUUCAACAAAA


intron1

T

TGTTAAAACTAAAT

UGUUAAAACUAAAU





STMN2_

ATT
516
AATGTGAATGTGTAA
2522
AAUGUGAAUGUGUAAA


intron1

A

atttattttattcaa

UUUAUUUUAUUCAA





STMN2_

GTT
517
TATTAAATGTGAATGT
2523
UAUUAAAUGUGAAUGU


intron1

A

GTAAATTTATTTTA

GUAAAUUUAUUUUA





STMN2_

CTT
518
AAATAACATCTAATA
2524
AAAUAACAUCUAAUAG


intron1

G

GTTATATTAAATGTG

UUAUAUUAAAUGUG





STMN2_

TTT
519
GAAGTATTTTCTCTTC
2525
GAAGUAUUUUCUCUUC


intron1

G

AAGGTGAGTCTGTG

AAGGUGAGUCUGUG





STMN2_

TTT
520
ATGGTAATATGAAGA
2526
AUGGUAAUAUGAAGAG


intron1

G

GAATCTTGAAATAAC

AAUCUUGAAAUAAC





STMN2_

ATT
521
TCTCTTCAAGGTGAGT
2527
UCUCUUCAAGGUGAGU


intron1

T

CTGTGATCAGAAAG

CUGUGAUCAGAAAG





STMN2_

TTTC
522
TCTTCAAGGTGAGTCT
2528
UCUUCAAGGUGAGUCU


intron1



GTGATCAGAAAGGA

GUGAUCAGAAAGGA





STMN2_

ATT
523
CGGGAAAATGTTTGA
2529
CGGGAAAAUGUUUGAG


intron1

G

GTAAAGAAATAGGAA

UAAAGAAAUAGGAA





STMN2_

GTT
524
AAAGAAAGCACCATT
2530
AAAGAAAGCACCAUUG


intron1

G

GCGGGAAAATGTTTG

CGGGAAAAUGUUUG





STMN2_

TTT
525
TGAATACACCAGAAA
2531
UGAAUACACCAGAAAA


intron1

A

AACAGTTGAAAGAAA

ACAGUUGAAAGAAA





STMN2_

ATT
526
ATGAATACACCAGAA
2532
AUGAAUACACCAGAAA


intron1

T

AAACAGTTGAAAGAA

AACAGUUGAAAGAA





STMN2_

CTT
527
CCATAGAGAATCTGG
2533
CCAUAGAGAAUCUGGA


intron1

C

AATTTATGAATACAC

AUUUAUGAAUACAC





STMN2_

GTT
528
CTTCCCATAGAGAATC
2534
CUUCCCAUAGAGAAUC


intron1

A

TGGAATTTATGAAT

UGGAAUUUAUGAAU





STMN2_

GTT
529
AATCAATCAATAAAA
2535
AAUCAAUCAAUAAAAG


intron1

A

GTTACTTCCCATAGA

UUACUUCCCAUAGA





STMN2_

GTT
530
TATGTGCTATACAAGG
2536
UAUGUGCUAUACAAGG


intron1

A

GTTAAATCAATCAA

GUUAAAUCAAUCAA





STMN2_

CTT
531
CATGTTATATGTGCTA
2537
CAUGUUAUAUGUGCUA


intron1

G

TACAAGGGTTAAAT

UACAAGGGUUAAAU





STMN2_

CTT
532
GAACAATGCCTTGCAT
2538
GAACAAUGCCUUGCAU


intron1

A

GTTATATGTGCTAT

GUUAUAUGUGCUAU





STMN2_

GTT
533
TTAGAACAATGCCTTG
2539
UUAGAACAAUGCCUUG


intron1

C

CATGTTATATGTGC

CAUGUUAUAUGUGC





STMN2_

GTT
534
ATATGTGGAAAGTTCT
2540
AUAUGUGGAAAGUUCU


intron1

A

TAGAACAATGCCTT

UAGAACAAUGCCUU





STMN2_

ATT
535
ACACAGTTAATATGTG
2541
ACACAGUUAAUAUGUG


intron1

A

GAAAGTTCTTAGAA

GAAAGUUCUUAGAA





STMN2_

ATT
536
AGTGATTAACACAGTT
2542
AGUGAUUAACACAGUU


intron1

A

AATATGTGGAAAGT

AAUAUGUGGAAAGU





STMN2_

ATT
537
TTAAGTGATTAACACA
2543
UUAAGUGAUUAACACA


intron1

A

GTTAATATGTGGAA

GUUAAUAUGUGGAA





STMN2_

CTT
538
GGATTATTAAGTGATT
2544
GGAUUAUUAAGUGAUU


intron1

A

AACACAGTTAATAT

AACACAGUUAAUAU





STMN2_

TTTC
539
CATATCTGTAATAGAA
2545
CAUAUCUGUAAUAGAA


intron1



CCTACTTAGGATTA

CCUACUUAGGAUUA





STMN2_

GTT
540
CCATATCTGTAATAGA
2546
CCAUAUCUGUAAUAGA


intron1

T

ACCTACTTAGGATT

ACCUACUUAGGAUU





STMN2_

TTTC
541
TGTGCCTCAGTTTCCA
2547
UGUGCCUCAGUUUCCA


intron1



TATCTGTAATAGAA

UAUCUGUAAUAGAA





STMN2_

CTTT
542
CTGTGCCTCAGTTTCC
2548
CUGUGCCUCAGUUUCC


intron1



ATATCTGTAATAGA

AUAUCUGUAAUAGA





STMN2_

CTT
543
AACTTTCTGTGCCTCA
2549
AACUUUCUGUGCCUCA


intron1

C

GTTTCCATATCTGT

GUUUCCAUAUCUGU





STMN2_

CTT
544
AGTAAGATACTTCAA
2550
AGUAAGAUACUUCAAC


intron1

G

CTTTCTGTGCCTCAG

UUUCUGUGCCUCAG





STMN2_

ATT
545
TGGATCTGACTAACTG
2551
UGGAUCUGACUAACUG


intron1

C

TGTGACCTTGAGTA

UGUGACCUUGAGUA





STMN2_

ATT
546
CGAAGCCAGATGGCC
2552
CGAAGCCAGAUGGCCU


intron1

C

TGGGCCCAAATTCTG

GGGCCCAAAUUCUG





STMN2_

TTT
547
AATAAAATGGTGATA
2553
AAUAAAAUGGUGAUAU


intron1

A

TCACAGGTGTGACCT

CACAGGUGUGACCU





STMN2_

GTT
548
AAATAAAATGGTGAT
2554
AAAUAAAAUGGUGAUA


intron1

T

ATCACAGGTGTGACC

UCACAGGUGUGACC





STMN2_

CTT
549
AAGGTGAGTCTGTGA
2555
AAGGUGAGUCUGUGAU


intron1

C

TCAGAAAGGAGAAGA

CAGAAAGGAGAAGA





STMN2_

TTTT
550
CTCTTCAAGGTGAGTC
2556
CUCUUCAAGGUGAGUC


intron1



TGTGATCAGAAAGG

UGUGAUCAGAAAGG





STMN2_

CTTT
551
GATGGTAATATGAAG
2557
GAUGGUAAUAUGAAGA


intron1



AGAATCTTGAAATAA

GAAUCUUGAAAUAA





STMN2_

GTT
552
TCTCCTGCCTGCCTGC
2558
UCUCCUGCCUGCCUGC


intron1

C

CTGCTTTGATGGTA

CUGCUUUGAUGGUA





STMN2_

CTT
553
CTACAGTTCTCTCCTG
2559
CUACAGUUCUCUCCUG


intron1

C

CCTGCCTGCCTGCT

CCUGCCUGCCUGCU





STMN2_

ATT
554
TTGTTATGGTTTTATA
2560
UUGUUAUGGUUUUAUA


intron1

T

GTATAATATGTGGC

GUAUAAUAUGUGGC





STMN2_

CTT
555
AAATATTTTTGTTATG
2561
AAAUAUUUUUGUUAUG


intron1

A

GTTTTATAGTATAA

GUUUUAUAGUAUAA





STMN2_

TTT
556
CTCTGGAGGTCAACA
2562
CUCUGGAGGUCAACAA


intron1

A

ACAAGTGAGAACAAA

CAAGUGAGAACAAA





STMN2_

TTTT
557
ACTCTGGAGGTCAAC
2563
ACUCUGGAGGUCAACA


intron1



AACAAGTGAGAACAA

ACAAGUGAGAACAA





STMN2_

ATT
558
TACTCTGGAGGTCAAC
2564
UACUCUGGAGGUCAAC


intron1

T

AACAAGTGAGAACA

AACAAGUGAGAACA





STMN2_

ATT
559
AATATTTTACTCTGGA
2565
AAUAUUUUACUCUGGA


intron1

A

GGTCAACAACAAGT

GGUCAACAACAAGU





STMN2_

TTTC
560
CAGAGTATTAAATATT
2566
CAGAGUAUUAAAUAUU


intron1



TTACTCTGGAGGTC

UUACUCUGGAGGUC





STMN2_

CTTT
561
CCAGAGTATTAAATAT
2567
CCAGAGUAUUAAAUAU


intron1



TTTACTCTGGAGGT

UUUACUCUGGAGGU





STMN2_

TTT
562
AAACCCATAACTTTCC
2568
AAACCCAUAACUUUCC


intron1

G

AGAGTATTAAATAT

AGAGUAUUAAAUAU





STMN2_

TTTT
563
GAAACCCATAACTTTC
2569
GAAACCCAUAACUUUC


intron1



CAGAGTATTAAATA

CAGAGUAUUAAAUA





STMN2_

ATT
564
TGAAACCCATAACTTT
2570
UGAAACCCAUAACUUU


intron1

T

CCAGAGTATTAAAT

CCAGAGUAUUAAAU





STMN2_

CTT
565
CCATAAAATAAATTTT
2571
CCAUAAAAUAAAUUUU


intron1

G

GAAACCCATAACTT

GAAACCCAUAACUU





STMN2_

TTTC
566
TTGCCATAAAATAAAT
2572
UUGCCAUAAAAUAAAU


intron1



TTTGAAACCCATAA

UUUGAAACCCAUAA





STMN2_

ATT
567
CTTGCCATAAAATAA
2573
CUUGCCAUAAAAUAAA


intron1

T

ATTTTGAAACCCATA

UUUUGAAACCCAUA





STMN2_

ATT
568
TCTATTTCTTGCCATA
2574
UCUAUUUCUUGCCAUA


intron1

A

AAATAAATTTTGAA

AAAUAAAUUUUGAA





STMN2_

TTT
569
AATGTGCTCTATGAGA
2575
AAUGUGCUCUAUGAGA


intron1

A

ACTGTAATTATCTA

ACUGUAAUUAUCUA





STMN2_

TTTT
570
AAATGTGCTCTATGAG
2576
AAAUGUGCUCUAUGAG


intron1



AACTGTAATTATCT

AACUGUAAUUAUCU





STMN2_

ATT
571
TAAATGTGCTCTATGA
2577
UAAAUGUGCUCUAUGA


intron1

T

GAACTGTAATTATC

GAACUGUAAUUAUC





STMN2_

ATT
572
TTTTAAATGTGCTCTA
2578
UUUUAAAUGUGCUCUA


intron1

A

TGAGAACTGTAATT

UGAGAACUGUAAUU





STMN2_

TTT
573
CCCTATAAAAATAAA
2579
CCCUAUAAAAAUAAAU


intron1

G

TTATTTTAAATGTGC

UAUUUUAAAUGUGC





STMN2_

TTTT
574
GCCCTATAAAAATAA
2580
GCCCUAUAAAAAUAAA


intron1



ATTATTTTAAATGTG

UUAUUUUAAAUGUG





STMN2_

TTTT
575
TGCCCTATAAAAATA
2581
UGCCCUAUAAAAAUAA


intron1



AATTATTTTAAATGT

AUUAUUUUAAAUGU





STMN2_

ATT
576
TTGCCCTATAAAAATA
2582
UUGCCCUAUAAAAAUA


intron1

T

AATTATTTTAAATG

AAUUAUUUUAAAUG





STMN2_

ATT
577
AGTCCTAGGCAATATT
2583
AGUCCUAGGCAAUAUU


intron1

C

TTTGCCCTATAAAA

UUUGCCCUAUAAAA





STMN2_

TTT
578
TAAAAAAAAAAAAAT
2584
UAAAAAAAAAAAAAUC


intron1

G

CATTCAGTCCTAGGC

AUUCAGUCCUAGGC





STMN2_

CTTT
579
GTAAAAAAAAAAAAA
2585
GUAAAAAAAAAAAAAU


intron1



TCATTCAGTCCTAGG

CAUUCAGUCCUAGG





STMN2_

TTT
580
CAATCTTTGTAAAAAA
2586
CAAUCUUUGUAAAAAA


intron1

A

AAAAAAATCATTCA

AAAAAAAUCAUUCA





STMN2_

TTTT
581
TGTTATGGTTTTATAG
2587
UGUUAUGGUUUUAUAG


intron1



TATAATATGTGGCT

UAUAAUAUGUGGCU





STMN2_

TTTT
582
GTTATGGTTTTATAGT
2588
GUUAUGGUUUUAUAGU


intron1



ATAATATGTGGCTC

AUAAUAUGUGGCUC





STMN2_

TTT
583
TTATGGTTTTATAGTA
2589
UUAUGGUUUUAUAGUA


intron1

G

TAATATGTGGCTCC

UAAUAUGUGGCUCC





STMN2_

GTT
584
TGGTTTTATAGTATAA
2590
UGGUUUUAUAGUAUAA


intron1

A

TATGTGGCTCCTAC

UAUGUGGCUCCUAC





STMN2_

ATT
585
AAAACCTTCCTACAGT
2591
AAAACCUUCCUACAGU


intron1

C

TCTCTCCTGCCTGC

UCUCUCCUGCCUGC





STMN2_

TTTC
586
ACAAGGGATTCAAAA
2592
ACAAGGGAUUCAAAAC


intron1



CCTTCCTACAGTTCT

CUUCCUACAGUUCU





STMN2_

GTT
587
CACAAGGGATTCAAA
2593
CACAAGGGAUUCAAAA


intron1

T

ACCTTCCTACAGTTC

CCUUCCUACAGUUC





STMN2_

ATT
588
AAAATGTTTCACAAG
2594
AAAAUGUUUCACAAGG


intron1

A

GGATTCAAAACCTTC

GAUUCAAAACCUUC





STMN2_

ATT
589
AAAGATAATTAAAAA
2595
AAAGAUAAUUAAAAAU


intron1

A

TGTTTCACAAGGGAT

GUUUCACAAGGGAU





STMN2_

TTT
590
TTAAAAGATAATTAA
2596
UUAAAAGAUAAUUAAA


intron1

A

AAATGTTTCACAAGG

AAUGUUUCACAAGG





STMN2_

CTTT
591
ATTAAAAGATAATTA
2597
AUUAAAAGAUAAUUAA


intron1



AAAATGTTTCACAAG

AAAUGUUUCACAAG





STMN2_

ATT
592
CTTTATTAAAAGATAA
2598
CUUUAUUAAAAGAUAA


intron1

C

TTAAAAATGTTTCA

UUAAAAAUGUUUCA





STMN2_

CTT
593
ACAAATGACAGGGCC
2599
ACAAAUGACAGGGCCU


intron1

G

TGATTCCTTTATTAA

GAUUCCUUUAUUAA





STMN2_

TTT
594
CTACTGCAAATGTCTC
2600
CUACUGCAAAUGUCUC


intron1

A

CTTGACAAATGACA

CUUGACAAAUGACA





STMN2_

CTTT
595
ACTACTGCAAATGTCT
2601
ACUACUGCAAAUGUCU


intron1



CCTTGACAAATGAC

CCUUGACAAAUGAC





STMN2_

ATT
596
TAAACACAAGCTTTAC
2602
UAAACACAAGCUUUAC


intron1

A

TACTGCAAATGTCT

UACUGCAAAUGUCU





STMN2_

TTT
597
ATCATGACTAATAAA
2603
AUCAUGACUAAUAAAA


intron1

A

AATGGATATTATAAA

AUGGAUAUUAUAAA





STMN2_

GTT
598
GAGTAAAGAAATAGG
2604
GAGUAAAGAAAUAGGA


intron1

T

AAGACTTATTGGCTC

AGACUUAUUGGCUC





STMN2_

CTTT
599
AATCATGACTAATAA
2605
AAUCAUGACUAAUAAA


intron1



AAATGGATATTATAA

AAUGGAUAUUAUAA





STMN2_

TTT
600
TGAGAACAAATGTAC
2606
UGAGAACAAAUGUACA


intron1

G

ACAAATGTTATCTTT

CAAAUGUUAUCUUU





STMN2_

TTTT
601
GTGAGAACAAATGTA
2607
GUGAGAACAAAUGUAC


intron1



CACAAATGTTATCTT

ACAAAUGUUAUCUU





STMN2_

GTT
602
TGTGAGAACAAATGT
2608
UGUGAGAACAAAUGUA


intron1

T

ACACAAATGTTATCT

CACAAAUGUUAUCU





STMN2_

TTT
603
CACTCATATAAAAGT
2609
CACUCAUAUAAAAGUG


intron1

A

GTTTTGTGAGAACAA

UUUUGUGAGAACAA





STMN2_

CTTT
604
ACACTCATATAAAAG
2610
ACACUCAUAUAAAAGU


intron1



TGTTTTGTGAGAACA

GUUUUGUGAGAACA





STMN2_

ATT
605
ACCTTTACACTCATAT
2611
ACCUUUACACUCAUAU


intron1

A

AAAAGTGTTTTGTG

AAAAGUGUUUUGUG





STMN2_

ATT
606
ATTAACCTTTACACTC
2612
AUUAACCUUUACACUC


intron1

A

ATATAAAAGTGTTT

AUAUAAAAGUGUUU





STMN2_

TTTC
607
CACATGACCAGCAAA
2613
CACAUGACCAGCAAAA


intron1



ATGATGGCTGAAATG

UGAUGGCUGAAAUG





STMN2_

ATT
608
CCACATGACCAGCAA
2614
CCACAUGACCAGCAAA


intron1

T

AATGATGGCTGAAAT

AUGAUGGCUGAAAU





STMN2_

ATT
609
CTAAAGAAGCTATATT
2615
CUAAAGAAGCUAUAUU


intron1

C

TCCACATGACCAGC

UCCACAUGACCAGC





STMN2_

TTT
610
TAGTATAATATGTGGC
2616
UAGUAUAAUAUGUGGC


intron1

A

TCCTACTCTAAGTA

UCCUACUCUAAGUA





STMN2_

TTTT
611
ATAGTATAATATGTGG
2617
AUAGUAUAAUAUGUGG


intron1



CTCCTACTCTAAGT

CUCCUACUCUAAGU





STMN2_

GTT
612
TATAGTATAATATGTG
2618
UAUAGUAUAAUAUGUG


intron1

T

GCTCCTACTCTAAG

GCUCCUACUCUAAG





STMN2_

GTT
613
TCTTTAATCATGACTA
2619
UCUUUAAUCAUGACUA


intron1

A

ATAAAAATGGATAT

AUAAAAAUGGAUAU





STMN2_

TTT
614
AGTAAAGAAATAGGA
2620
AGUAAAGAAAUAGGAA


intron1

G

AGACTTATTGGCTCG

GACUUAUUGGCUCG





STMN2_

CTT
615
TTGGCTCGAGGCCCTC
2621
UUGGCUCGAGGCCCUC


intron1

A

AAGTTTAGATTTTT

AAGUUUAGAUUUUU





STMN2_

ATT
616
GCTCGAGGCCCTCAA
2622
GCUCGAGGCCCUCAAG


intron1

G

GTTTAGATTTTTGTC

UUUAGAUUUUUGUC





STMN2_

TTT
617
TTTTAATTTCTTCAGT
2623
UUUUAAUUUCUUCAGU


intron1

G

ATTGCTATTCATAA

AUUGCUAUUCAUAA





STMN2_

TTTT
618
GTTTTAATTTCTTCAG
2624
GUUUUAAUUUCUUCAG


intron1



TATTGCTATTCATA

UAUUGCUAUUCAUA





STMN2_

CTTT
619
TGTTTTAATTTCTTCA
2625
UGUUUUAAUUUCUUCA


intron1



GTATTGCTATTCAT

GUAUUGCUAUUCAU





STMN2_

ATT
620
AGACAGCAATCTTTTG
2626
AGACAGCAAUCUUUUG


intron1

G

TTTTAATTTCTTCA

UUUUAAUUUCUUCA





STMN2_

TTT
621
GTAAATAATAAATAT
2627
GUAAAUAAUAAAUAUA


intron1

G

AAGATATATTGAGAC

AGAUAUAUUGAGAC





STMN2_

ATT
622
GGTAAATAATAAATA
2628
GGUAAAUAAUAAAUAU


intron1

T

TAAGATATATTGAGA

AAGAUAUAUUGAGA





STMN2_

CTT
623
GAATAATTTGGTAAAT
2629
GAAUAAUUUGGUAAAU


intron1

A

AATAAATATAAGAT

AAUAAAUAUAAGAU





STMN2_

ATT
624
AGGAAGAAATACTCT
2630
AGGAAGAAAUACUCUU


intron1

C

TAGAATAATTTGGTA

AGAAUAAUUUGGUA





STMN2_

TTTC
625
TCACATGGTATTCAGG
2631
UCACAUGGUAUUCAGG


intron1



AAGAAATACTCTTA

AAGAAAUACUCUUA





STMN2_

TTTT
626
CTCACATGGTATTCAG
2632
CUCACAUGGUAUUCAG


intron1



GAAGAAATACTCTT

GAAGAAAUACUCUU





STMN2_

ATT
627
TCTCACATGGTATTCA
2633
UCUCACAUGGUAUUCA


intron1

T

GGAAGAAATACTCT

GGAAGAAAUACUCU





STMN2_

CTT
628
AGAATTTTCTCACATG
2634
AGAAUUUUCUCACAUG


intron1

A

GTATTCAGGAAGAA

GUAUUCAGGAAGAA





STMN2_

ATT
629
TTAAGAATTTTCTCAC
2635
UUAAGAAUUUUCUCAC


intron1

C

ATGGTATTCAGGAA

AUGGUAUUCAGGAA





STMN2_

TTTC
630
AAATATACAGTCATA
2636
AAAUAUACAGUCAUAC


intron1



CTCAATAAATTCTTA

UCAAUAAAUUCUUA





STMN2_

TTTT
631
CAAATATACAGTCAT
2637
CAAAUAUACAGUCAUA


intron1



ACTCAATAAATTCTT

CUCAAUAAAUUCUU





STMN2_

CTTT
632
TCAAATATACAGTCAT
2638
UCAAAUAUACAGUCAU


intron1



ACTCAATAAATTCT

ACUCAAUAAAUUCU





STMN2_

CTT
633
GATAAGCAGAAGAAA
2639
GAUAAGCAGAAGAAAA


intron1

A

ACACTCTTTTCAAAT

CACUCUUUUCAAAU





STMN2_

ATT
634
GCTTAGATAAGCAGA
2640
GCUUAGAUAAGCAGAA


intron1

G

AGAAAACACTCTTTT

GAAAACACUCUUUU





STMN2_

TTT
635
TTGGCTTAGATAAGCA
2641
UUGGCUUAGAUAAGCA


intron1

A

GAAGAAAACACTCT

GAAGAAAACACUCU





STMN2_

CTTT
636
ATTGGCTTAGATAAGC
2642
AUUGGCUUAGAUAAGC


intron1



AGAAGAAAACACTC

AGAAGAAAACACUC





STMN2_

ATT
637
AATAATGAAGATCCTT
2643
AAUAAUGAAGAUCCUU


intron1

G

TATTGGCTTAGATA

UAUUGGCUUAGAUA





STMN2_

GTT
638
GAATTGAATAATGAA
2644
GAAUUGAAUAAUGAAG


intron1

A

GATCCTTTATTGGCT

AUCCUUUAUUGGCU





STMN2_

CTT
639
GAAAGTTAGAATTGA
2645
GAAAGUUAGAAUUGAA


intron1

A

ATAATGAAGATCCTT

UAAUGAAGAUCCUU





STMN2_

CTT
640
CTTAGAAAGTTAGAA
2646
CUUAGAAAGUUAGAAU


intron1

C

TTGAATAATGAAGAT

UGAAUAAUGAAGAU





STMN2_

GTT
641
ACTTCCTTAGAAAGTT
2647
ACUUCCUUAGAAAGUU


intron1

G

AGAATTGAATAATG

AGAAUUGAAUAAUG





STMN2_

TTTC
642
TGATCTGTAGGTTGAC
2648
UGAUCUGUAGGUUGAC


intron1



TTCCTTAGAAAGTT

UUCCUUAGAAAGUU





STMN2_

CTTT
643
CTGATCTGTAGGTTGA
2649
CUGAUCUGUAGGUUGA


intron1



CTTCCTTAGAAAGT

CUUCCUUAGAAAGU





STMN2_

GTT
644
TAATTTCTTCAGTATT
2650
UAAUUUCUUCAGUAUU


intron1

T

GCTATTCATAAATG

GCUAUUCAUAAAUG





STMN2_

TTTT
645
AATTTCTTCAGTATTG
2651
AAUUUCUUCAGUAUUG


intron1



CTATTCATAAATGA

CUAUUCAUAAAUGA





STMN2_

TTT
646
ATTTCTTCAGTATTGC
2652
AUUUCUUCAGUAUUGC


intron1

A

TATTCATAAATGAT

UAUUCAUAAAUGAU





STMN2_

ATT
647
CTTCAGTATTGCTATT
2653
CUUCAGUAUUGCUAUU


intron1

T

CATAAATGATAGTA

CAUAAAUGAUAGUA





STMN2_

ATT
648
AGAGAGAGTGATGGG
2654
AGAGAGAGUGAUGGGG


intron1

A

GCAGAACACATAATT

CAGAACACAUAAUU





STMN2_

TTT
649
AAAATCCAATTAAGA
2655
AAAAUCCAAUUAAGAG


intron1

A

GAGAGTGATGGGGCA

AGAGUGAUGGGGCA





STMN2_

TTTT
650
AAAAATCCAATTAAG
2656
AAAAAUCCAAUUAAGA


intron1



AGAGAGTGATGGGGC

GAGAGUGAUGGGGC





STMN2_

ATT
651
TAAAAATCCAATTAA
2657
UAAAAAUCCAAUUAAG


intron1

T

GAGAGAGTGATGGGG

AGAGAGUGAUGGGG





STMN2_

CTT
652
TGCCGAGTCCTGCAAT
2658
UGCCGAGUCCUGCAAU


intron1

C

ATGAATATAATTTT

AUGAAUAUAAUUUU





STMN2_

TTTC
653
TCTCGAAGGTCTTCTG
2659
UCUCGAAGGUCUUCUG


intron1



CCGAGTCCTGCAAT

CCGAGUCCUGCAAU





STMN2_

CTTT
654
CTCTCGAAGGTCTTCT
2660
CUCUCGAAGGUCUUCU


intron1



GCCGAGTCCTGCAA

GCCGAGUCCUGCAA





STMN2_

TTTC
655
TACCTTTCTCTCGAAG
2661
UACCUUUCUCUCGAAG


intron1



GTCTTCTGCCGAGT

GUCUUCUGCCGAGU





STMN2_

TTTT
656
CTACCTTTCTCTCGAA
2662
CUACCUUUCUCUCGAA


intron1



GGTCTTCTGCCGAG

GGUCUUCUGCCGAG





STMN2_

ATT
657
TCTACCTTTCTCTCGA
2663
UCUACCUUUCUCUCGA


intron1

T

AGGTCTTCTGCCGA

AGGUCUUCUGCCGA





STMN2_

CTT
658
TTTTCTACCTTTCTCTC
2664
UUUUCUACCUUUCUCU


intron1

A

GAAGGTCTTCTGC

CGAAGGUCUUCUGC





STMN2_

ATT
659
TTATTTTCTACCTTTCT
2665
UUAUUUUCUACCUUUC


intron1

C

CTCGAAGGTCTTC

UCUCGAAGGUCUUC





STMN2_

CTT
660
GGCAGGCTGTCTGTCT
2666
GGCAGGCUGUCUGUCU


intron1

A

CTCTCTCTCGCACA

CUCUCUCUCGCACA





STMN2_

CTT
661
AAGATCCTCTTTCTGA
2667
AAGAUCCUCUUUCUGA


intron1

G

TCTGTAGGTTGACT

UCUGUAGGUUGACU





STMN2_

CTT
662
TTAGGCAGGCTGTCTG
2668
UUAGGCAGGCUGUCUG


intron1

C

TCTCTCTCTCTCGC

UCUCUCUCUCUCGC





STMN2_

ATT
663
CTTCTTAGGCAGGCTG
2669
CUUCUUAGGCAGGCUG


intron1

T

TCTGTCTCTCTCTC

UCUGUCUCUCUCUC





STMN2_

ATT
664
ATTTCTTCTTAGGCAG
2670
AUUUCUUCUUAGGCAG


intron1

C

GCTGTCTGTCTCTC

GCUGUCUGUCUCUC





STMN2_

ATT
665
ACATTCATTTCTTCTT
2671
ACAUUCAUUUCUUCUU


intron1

C

AGGCAGGCTGTCTG

AGGCAGGCUGUCUG





STMN2_

CTT
666
TCAACTGTGCCACAAG
2672
UCAACUGUGCCACAAG


intron1

G

CCGCATTCACATTC

CCGCAUUCACAUUC





STMN2_

TTT
667
TCATCCTTGTCAACTG
2673
UCAUCCUUGUCAACUG


intron1

A

TGCCACAAGCCGCA

UGCCACAAGCCGCA





STMN2_

ATT
668
ATCATCCTTGTCAACT
2674
AUCAUCCUUGUCAACU


intron1

T

GTGCCACAAGCCGC

GUGCCACAAGCCGC





STMN2_

ATT
669
ATTTATCATCCTTGTC
2675
AUUUAUCAUCCUUGUC


intron1

G

AACTGTGCCACAAG

AACUGUGCCACAAG





STMN2_

ATT
670
TTGATTTATCATCCTT
2676
UUGAUUUAUCAUCCUU


intron1

A

GTCAACTGTGCCAC

GUCAACUGUGCCAC





STMN2_

CTT
671
CATTATTGATTTATCA
2677
CAUUAUUGAUUUAUCA


intron1

G

TCCTTGTCAACTGT

UCCUUGUCAACUGU





STMN2_

ATT
672
ATAAATGATAGTAAG
2678
AUAAAUGAUAGUAAGC


intron1

C

CTTGCATTATTGATT

UUGCAUUAUUGAUU





STMN2_

ATT
673
CTATTCATAAATGATA
2679
CUAUUCAUAAAUGAUA


intron1

G

GTAAGCTTGCATTA

GUAAGCUUGCAUUA





STMN2_

CTT
674
AGTATTGCTATTCATA
2680
AGUAUUGCUAUUCAUA


intron1

C

AATGATAGTAAGCT

AAUGAUAGUAAGCU





STMN2_

TTTC
675
TTCAGTATTGCTATTC
2681
UUCAGUAUUGCUAUUC


intron1



ATAAATGATAGTAA

AUAAAUGAUAGUAA





STMN2_

TTTC
676
TTCTTAGGCAGGCTGT
2682
UUCUUAGGCAGGCUGU


intron1



CTGTCTCTCTCTCT

CUGUCUCUCUCUCU





STMN2_

CTTT
677
ACAATCTTTGTAAAAA
2683
ACAAUCUUUGUAAAAA


intron1



AAAAAAAATCATTC

AAAAAAAAUCAUUC





STMN2_

ATT
678
CTTGAAGATCCTCTTT
2684
CUUGAAGAUCCUCUUU


intron1

C

CTGATCTGTAGGTT

CUGAUCUGUAGGUU





STMN2_

CTTT
679
GATGCTATTCCTTGAA
2685
GAUGCUAUUCCUUGAA


intron1



GATCCTCTTTCTGA

GAUCCUCUUUCUGA





STMN2_

CTT
680
GTCCAACTTTGTGTTG
2686
GUCCAACUUUGUGUUG


intron1

A

AGTAACAGTATATT

AGUAACAGUAUAUU





STMN2_

TTT
681
AGACTTAGTCCAACTT
2687
AGACUUAGUCCAACUU


intron1

G

TGTGTTGAGTAACA

UGUGUUGAGUAACA





STMN2_

CTTT
682
GAGACTTAGTCCAACT
2688
GAGACUUAGUCCAACU


intron1



TTGTGTTGAGTAAC

UUGUGUUGAGUAAC





STMN2_

GTT
683
ACAACAACTGAATGG
2689
ACAACAACUGAAUGGC


intron1

A

CTAACTTTGAGACTT

UAACUUUGAGACUU





STMN2_

CTT
684
TGAGAGACCCTGAAA
2690
UGAGAGACCCUGAAAU


intron1

C

TGAACTGTTAACAAC

GAACUGUUAACAAC





STMN2_

TTTC
685
CCAGCTTCTGAGAGAC
2691
CCAGCUUCUGAGAGAC


intron1



CCTGAAATGAACTG

CCUGAAAUGAACUG





STMN2_

GTT
686
CCCAGCTTCTGAGAGA
2692
CCCAGCUUCUGAGAGA


intron1

T

CCCTGAAATGAACT

CCCUGAAAUGAACU





STMN2_

ATT
687
CAAAAATGGAAAGTT
2693
CAAAAAUGGAAAGUUU


intron1

G

TCCCAGCTTCTGAGA

CCCAGCUUCUGAGA





STMN2_

CTT
688
AATGTACAAGAAATT
2694
AAUGUACAAGAAAUUG


intron1

C

GCAAAAATGGAAAGT

CAAAAAUGGAAAGU





STMN2_

TTTC
689
CTTCAATGTACAAGA
2695
CUUCAAUGUACAAGAA


intron1



AATTGCAAAAATGGA

AUUGCAAAAAUGGA





STMN2_

CTTT
690
CCTTCAATGTACAAGA
2696
CCUUCAAUGUACAAGA


intron1



AATTGCAAAAATGG

AAUUGCAAAAAUGG





STMN2_

CTT
691
CTTTCCTTCAATGTAC
2697
CUUUCCUUCAAUGUAC


intron1

C

AAGAAATTGCAAAA

AAGAAAUUGCAAAA





STMN2_

CTT
692
AGTGTGTCTTCCTTTC
2698
AGUGUGUCUUCCUUUC


intron1

A

CTTCAATGTACAAG

CUUCAAUGUACAAG





STMN2_

TTT
693
TAATGCTGTCTTAAGT
2699
UAAUGCUGUCUUAAGU


intron1

G

GTGTCTTCCTTTCC

GUGUCUUCCUUUCC





STMN2_

TTTT
694
GTAATGCTGTCTTAAG
2700
GUAAUGCUGUCUUAAG


intron1



TGTGTCTTCCTTTC

UGUGUCUUCCUUUC





STMN2_

CTTT
695
TGTAATGCTGTCTTAA
2701
UGUAAUGCUGUCUUAA


intron1



GTGTGTCTTCCTTT

GUGUGUCUUCCUUU





STMN2_

ATT
696
CTTTTGTAATGCTGTC
2702
CUUUUGUAAUGCUGUC


intron1

A

TTAAGTGTGTCTTC

UUAAGUGUGUCUUC





STMN2_

TTT
697
AAACATGAATTACTTT
2703
AAACAUGAAUUACUUU


intron1

A

TGTAATGCTGTCTT

UGUAAUGCUGUCUU





STMN2_

ATT
698
AAAACATGAATTACTT
2704
AAAACAUGAAUUACUU


intron1

T

TTGTAATGCTGTCT

UUGUAAUGCUGUCU





STMN2_

ATT
699
AACATTTAAAACATG
2705
AACAUUUAAAACAUGA


intron1

A

AATTACTTTTGTAAT

AUUACUUUUGUAAU





STMN2_

GTT
700
TACAGAGAGCCCTGC
2706
UACAGAGAGCCCUGCC


intron1

A

CCGACTGCCAGAATT

CGACUGCCAGAAUU





STMN2_

TTT
701
TCATCTCCAAATGAGG
2707
UCAUCUCCAAAUGAGG


intron1

G

TTATACAGAGAGCC

UUAUACAGAGAGCC





STMN2_

TTTT
702
GTCATCTCCAAATGAG
2708
GUCAUCUCCAAAUGAG


intron1



GTTATACAGAGAGC

GUUAUACAGAGAGC





STMN2_

TTTT
703
TGTCATCTCCAAATGA
2709
UGUCAUCUCCAAAUGA


intron1



GGTTATACAGAGAG

GGUUAUACAGAGAG





STMN2_

ATT
704
TTGTCATCTCCAAATG
2710
UUGUCAUCUCCAAAUG


intron1

T

AGGTTATACAGAGA

AGGUUAUACAGAGA





STMN2_

TTT
705
GATTTTTGTCATCTCC
2711
GAUUUUUGUCAUCUCC


intron1

A

AAATGAGGTTATAC

AAAUGAGGUUAUAC





STMN2_

GTT
706
AGATTTTTGTCATCTC
2712
AGAUUUUUGUCAUCUC


intron1

T

CAAATGAGGTTATA

CAAAUGAGGUUAUA





STMN2_

CTTT
707
GTGTTGAGTAACAGT
2713
GUGUUGAGUAACAGUA


intron1



ATATTCTGCAAACCC

UAUUCUGCAAACCC





STMN2_

TTT
708
TGTTGAGTAACAGTAT
2714
UGUUGAGUAACAGUAU


intron1

G

ATTCTGCAAACCCT

AUUCUGCAAACCCU





STMN2_

GTT
709
AGTAACAGTATATTCT
2715
AGUAACAGUAUAUUCU


intron1

G

GCAAACCCTGAAGC

GCAAACCCUGAAGC





STMN2_

ATT
710
TGCAAACCCTGAAGCT
2716
UGCAAACCCUGAAGCU


intron1

C

AGTTTTATTTGGGA

AGUUUUAUUUGGGA





STMN2_

TTTC
711
CAGAAAGGTGGTAAT
2717
CAGAAAGGUGGUAAUG


intron1



GGCTGCATGGTCAGC

GCUGCAUGGUCAGC





STMN2_

ATT
712
CCAGAAAGGTGGTAA
2718
CCAGAAAGGUGGUAAU


intron1

T

TGGCTGCATGGTCAG

GGCUGCAUGGUCAG





STMN2_

TTT
713
CAGCATAATATTTCCA
2719
CAGCAUAAUAUUUCCA


intron1

G

GAAAGGTGGTAATG

GAAAGGUGGUAAUG





STMN2_

TTTT
714
GCAGCATAATATTTCC
2720
GCAGCAUAAUAUUUCC


intron1



AGAAAGGTGGTAAT

AGAAAGGUGGUAAU





STMN2_

TTTT
715
TGCAGCATAATATTTC
2721
UGCAGCAUAAUAUUUC


intron1



CAGAAAGGTGGTAA

CAGAAAGGUGGUAA





STMN2_

ATT
716
TTGCAGCATAATATTT
2722
UUGCAGCAUAAUAUUU


intron1

T

CCAGAAAGGTGGTA

CCAGAAAGGUGGUA





STMN2_

ATT
717
TATCATTTTTGCAGCA
2723
UAUCAUUUUUGCAGCA


intron1

G

TAATATTTCCAGAA

UAAUAUUUCCAGAA





STMN2_

TTTC
718
GTGTATTGTATCATTT
2724
GUGUAUUGUAUCAUUU


intron1



TTGCAGCATAATAT

UUGCAGCAUAAUAU





STMN2_

ATT
719
CGTGTATTGTATCATT
2725
CGUGUAUUGUAUCAUU


intron1

T

TTTGCAGCATAATA

UUUGCAGCAUAAUA





STMN2_

TTT
720
AGATATTTCGTGTATT
2726
AGAUAUUUCGUGUAUU


intron1

G

GTATCATTTTTGCA

GUAUCAUUUUUGCA





STMN2_

ATT
721
GAGATATTTCGTGTAT
2727
GAGAUAUUUCGUGUAU


intron1

T

TGTATCATTTTTGC

UGUAUCAUUUUUGC





STMN2_

TTT
722
ATTTGAGATATTTCGT
2728
AUUUGAGAUAUUUCGU


intron1

A

GTATTGTATCATTT

GUAUUGUAUCAUUU





STMN2_

TTTT
723
AATTTGAGATATTTCG
2729
AAUUUGAGAUAUUUCG


intron1



TGTATTGTATCATT

UGUAUUGUAUCAUU





STMN2_

TTT
724
ATGCTATTCCTTGAAG
2730
AUGCUAUUCCUUGAAG


intron1

G

ATCCTCTTTCTGAT

AUCCUCUUUCUGAU





STMN2_

TTTT
725
TAATTTGAGATATTTC
2731
UAAUUUGAGAUAUUUC


intron1



GTGTATTGTATCAT

GUGUAUUGUAUCAU





STMN2_

ATT
726
TTTAATTTGAGATATT
2732
UUUAAUUUGAGAUAUU


intron1

T

TCGTGTATTGTATC

UCGUGUAUUGUAUC





STMN2_

GTT
727
TATTTTTTAATTTGAG
2733
UAUUUUUUAAUUUGAG


intron1

A

ATATTTCGTGTATT

AUAUUUCGUGUAUU





STMN2_

TTT
728
GGAAATGTTATATTTT
2734
GGAAAUGUUAUAUUUU


intron1

G

TTAATTTGAGATAT

UUAAUUUGAGAUAU





STMN2_

ATT
729
GGGAAATGTTATATTT
2735
GGGAAAUGUUAUAUUU


intron1

T

TTTAATTTGAGATA

UUUAAUUUGAGAUA





STMN2_

TTT
730
GTGCCCTATTTGGGAA
2736
GUGCCCUAUUUGGGAA


intron1

A

ATGTTATATTTTTT

AUGUUAUAUUUUUU





STMN2_

TTTT
731
AGTGCCCTATTTGGGA
2737
AGUGCCCUAUUUGGGA


intron1



AATGTTATATTTTT

AAUGUUAUAUUUUU





STMN2_

TTTT
732
TAGTGCCCTATTTGGG
2738
UAGUGCCCUAUUUGGG


intron1



AAATGTTATATTTT

AAAUGUUAUAUUUU





STMN2_

GTT
733
TTAGTGCCCTATTTGG
2739
UUAGUGCCCUAUUUGG


intron1

T

GAAATGTTATATTT

GAAAUGUUAUAUUU





STMN2_

TTT
734
GGATCATGTTTTTAGT
2740
GGAUCAUGUUUUUAGU


intron1

G

GCCCTATTTGGGAA

GCCCUAUUUGGGAA





STMN2_

ATT
735
GGGATCATGTTTTTAG
2741
GGGAUCAUGUUUUUAG


intron1

T

TGCCCTATTTGGGA

UGCCCUAUUUGGGA





STMN2_

TTT
736
TTTGGGATCATGTTTT
2742
UUUGGGAUCAUGUUUU


intron1

A

TAGTGCCCTATTTG

UAGUGCCCUAUUUG





STMN2_

TTTT
737
ATTTGGGATCATGTTT
2743
AUUUGGGAUCAUGUUU


intron1



TTAGTGCCCTATTT

UUAGUGCCCUAUUU





STMN2_

GTT
738
TATTTGGGATCATGTT
2744
UAUUUGGGAUCAUGUU


intron1

T

TTTAGTGCCCTATT

UUUAGUGCCCUAUU





STMN2_

TTTT
739
TTAATTTGAGATATTT
2745
UUAAUUUGAGAUAUUU


intron1



CGTGTATTGTATCA

CGUGUAUUGUAUCA





STMN2_

ATT
740
CCAGAGTAATAAAAT
2746
CCAGAGUAAUAAAAUC


intron1

C

CCCCAGGTATATGAG

CCCAGGUAUAUGAG





STMN2_

GTT
741
CTTTACAATCTTTGTA
2747
CUUUACAAUCUUUGUA


intron1

G

AAAAAAAAAAAATC

AAAAAAAAAAAAUC





STMN2_

ATT
742
CAGAAGAATAACTGC
2748
CAGAAGAAUAACUGCU


intron1

C

TAAATGGGCACTCTT

AAAUGGGCACUCUU





STMN2_

TTTT
743
TATTTTTGTTCTCATA
2749
UAUUUUUGUUCUCAUA


intron1



ATACCTGGCACAGG

AUACCUGGCACAGG





STMN2_

ATT
744
TTATTTTTGTTCTCAT
2750
UUAUUUUUGUUCUCAU


intron1

T

AATACCTGGCACAG

AAUACCUGGCACAG





STMN2_

TTTC
745
TGCAAAAGACTAAAT
2751
UGCAAAAGACUAAAUC


intron1



CCACCAAGGGTGAGG

CACCAAGGGUGAGG





STMN2_

TTTT
746
CTGCAAAAGACTAAA
2752
CUGCAAAAGACUAAAU


intron1



TCCACCAAGGGTGAG

CCACCAAGGGUGAG





STMN2_

TTTT
747
TCTGCAAAAGACTAA
2753
UCUGCAAAAGACUAAA


intron1



ATCCACCAAGGGTGA

UCCACCAAGGGUGA





STMN2_

TTTT
748
TTCTGCAAAAGACTA
2754
UUCUGCAAAAGACUAA


intron1



AATCCACCAAGGGTG

AUCCACCAAGGGUG





STMN2_

TTTT
749
TTTCTGCAAAAGACTA
2755
UUUCUGCAAAAGACUA


intron1



AATCCACCAAGGGT

AAUCCACCAAGGGU





STMN2_

CTTT
750
TTTTCTGCAAAAGACT
2756
UUUUCUGCAAAAGACU


intron1



AAATCCACCAAGGG

AAAUCCACCAAGGG





STMN2_

TTTC
751
TGACATGTACAGGAT
2757
UGACAUGUACAGGAUC


intron1



CTTTTTTTCTGGAAA

UUUUUUUCUGCAAA





STMN2_

CTTT
752
CTGACATGTACAGGA
2758
CUGACAUGUACAGGAU


intron1



TCTTTTTTTCTGCAA

CUUUUUUUCUGCAA





STMN2_

ATT
753
AACTTTCTGACATGTA
2759
AACUUUCUGACAUGUA


intron1

G

CAGGATCTTTTTTT

CAGGAUCUUUUUUU





STMN2_

ATT
754
CTATTGAACTTTCTGA
2760
CUAUUGAACUUUCUGA


intron1

A

CATGTACAGGATCT

CAUGUACAGGAUCU





STMN2_

ATT
755
TTACTATTGAACTTTC
2761
UUACUAUUGAACUUUC


intron1

A

TGACATGTACAGGA

UGACAUGUACAGGA





STMN2_

ATT
756
CCATTATTACTATTGA
2762
CCAUUAUUACUAUUGA


intron1

A

ACTTTCTGACATGT

ACUUUCUGACAUGU





STMN2_

GTT
757
TAAATTACCATTATTA
2763
UAAAUUACCAUUAUUA


intron1

A

CTATTGAACTTTCT

CUAUUGAACUUUCU





STMN2_

TTT
758
TAGTTATAAATTACCA
2764
UAGUUAUAAAUUACCA


intron1

A

TTATTACTATTGAA

UUAUUACUAUUGAA





STMN2_

ATT
759
ATAGTTATAAATTACC
2765
AUAGUUAUAAAUUACC


intron1

T

ATTATTACTATTGA

AUUAUUACUAUUGA





STMN2_

CTT
760
CATTTATAGTTATAAA
2766
CAUUUAUAGUUAUAAA


intron1

C

TTACCATTATTACT

UUACCAUUAUUACU





STMN2_

ATT
761
TGAGATGGTGACTTCC
2767
UGAGAUGGUGACUUCC


intron1

G

ATTTATAGTTATAA

AUUUAUAGUUAUAA





STMN2_

GTT
762
AGATGGTGAAATTGT
2768
AGAUGGUGAAAUUGUG


intron1

A

GAGATGGTGACTTCC

AGAUGGUGACUUCC





STMN2_

ATT
763
TTAAGATGGTGAAATT
2769
UUAAGAUGGUGAAAUU


intron1

G

GTGAGATGGTGACT

GUGAGAUGGUGACU





STMN2_

TTT
764
ACAAAATTGTTAAGA
2770
ACAAAAUUGUUAAGAU


intron1

A

TGGTGAAATTGTGAG

GGUGAAAUUGUGAG





STMN2_

GTT
765
AACAAAATTGTTAAG
2771
AACAAAAUUGUUAAGA


intron1

T

ATGGTGAAATTGTGA

UGGUGAAAUUGUGA





STMN2_

ATT
766
TAGGGCAGTTTAACA
2772
UAGGGCAGUUUAACAA


intron1

G

AAATTGTTAAGATGG

AAUUGUUAAGAUGG





STMN2_

CTT
767
TAATATTGTAGGGCA
2773
UAAUAUUGUAGGGCAG


intron1

G

GTTTAACAAAATTGT

UUUAACAAAAUUGU





STMN2_

ATT
768
TGTACTATCTTGTAAT
2774
UGUACUAUCUUGUAAU


intron1

A

ATTGTAGGGCAGTT

AUUGUAGGGCAGUU





STMN2_

GTT
769
CTAGTGTATCATTATG
2775
CUAGUGUAUCAUUAUG


intron1

A

TACTATCTTGTAAT

UACUAUCUUGUAAU





STMN2_

TTTT
770
ATTTTTGTTGTGATAA
2116
AUUUUUGUUCUCAUAA


intron1



TACCTGGCACAGGC

UACCUGGCACAGGC





STMN2_

GTT
771
ATGTTACTAGTGTATC
2777
AUGUUACUAGUGUAUC


intron1

G

ATTATGTACTATCT

AUUAUGUACUAUCU





STMN2_

TTT
772
TTTTTGTTCTCATAAT
2778
UUUUUGUUCUCAUAAU


intron1

A

ACCTGGCACAGGCT

ACCUGGCACAGGCU





STMN2_

TTTT
773
TGTTCTCATAATACCT
Til9
UGUUCUCAUAAUACCU


intron1



GGCACAGGCTTCAG

GGCACAGGCUUCAG





STMN2_

TTTT
774
GATAGGTAAATAATA
2780
GAUAGGUAAAUAAUAU


intron1



TACACAACTTTATTA

ACACAACUUUAUUA





STMN2_

ATT
775
TGATAGGTAAATAAT
2781
UGAUAGGUAAAUAAUA


intron1

T

ATACACAACTTTATT

UACACAACUUUAUU





STMN2_

ATT
776
CATATAAATATTTTGA
2782
CAUAUAAAUAUUUUGA


intron1

A

TAGGTAAATAATAT

UAGGUAAAUAAUAU





STMN2_

TTT
777
TATATTACATATAAAT
2783
UAUAUUACAUAUAAAU


intron1

A

ATTTTGATAGGTAA

AUUUUGAUAGGUAA





STMN2_

ATT
778
ATATATTACATATAAA
2784
AUAUAUUACAUAUAAA


intron1

T

TATTTTGATAGGTA

UAUUUUGAUAGGUA





STMN2_

TTT
779
CATGAATGTGTATATA
2785
CAUGAAUGUGUAUAUA


intron1

G

TGTATGAAATAGGC

UGUAUGAAAUAGGC





STMN2_

TTTT
780
GCATGAATGTGTATAT
2786
GCAUGAAUGUGUAUAU


intron1



ATGTATGAAATAGG

AUGUAUGAAAUAGG





STMN2_

ATT
781
TGCATGAATGTGTATA
2787
UGCAUGAAUGUGUAUA


intron1

T

TATGTATGAAATAG

UAUGUAUGAAAUAG





STMN2_

CTT
782
TTTTGCATGAATGTGT
2788
UUUUGCAUGAAUGUGU


intron1

A

ATATATGTATGAAA

AUAUAUGUAUGAAA





STMN2_

ATT
783
CAGGACAGTGGAGGG
2789
CAGGACAGUGGAGGGA


intron1

A

AGTGCTAAACCTTAT

GUGCUAAACCUUAU





STMN2_

TTT
784
TTACAGGACAGTGGA
2790
UUACAGGACAGUGGAG


intron1

A

GGGAGTGCTAAACCT

GGAGUGCUAAACCU





STMN2_

TTTT
785
ATTACAGGACAGTGG
2791
AUUACAGGACAGUGGA


intron1



AGGGAGTGCTAAACC

GGGAGUGCUAAACC





STMN2_

GTT
786
TATTACAGGACAGTG
2792
UAUUACAGGACAGUGG


intron1

T

GAGGGAGTGCTAAAC

AGGGAGUGCUAAAC





STMN2_

ATT
787
TCACTGTGCATGTTTT
2793
UCACUGUGCAUGUUUU


intron1

C

ATTACAGGACAGTG

AUUACAGGACAGUG





STMN2_

TTT
788
AACTGAAGACAAATA
2794
AACUGAAGACAAAUAU


intron1

A

TGCCTCGTGTATGAC

GCCUCGUGUAUGAC





STMN2_

CTTT
789
AAACTGAAGACAAAT
2795
AAACUGAAGACAAAUA


intron1



ATGCCTCGTGTATGA

UGCCUCGUGUAUGA





STMN2_

GTT
790
GTGACACTGACTATCA
2796
GUGACACUGACUAUCA


intron1

A

ATGACTTTAAACTG

AUGACUUUAAACUG





STMN2_

TTT
791
GTTAGTGACACTGACT
2797
GUUAGUGACACUGACU


intron1

A

ATCAATGACTTTAA

AUCAAUGACUUUAA





STMN2_

CTTT
792
AGTTAGTGACACTGA
2798
AGUUAGUGACACUGAC


intron1



CTATCAATGACTTTA

UAUCAAUGACUUUA





STMN2_

TTT
793
CTTTAGTTAGTGACAC
2799
CUUUAGUUAGUGACAC


intron1

A

TGACTATCAATGAC

UGACUAUCAAUGAC





STMN2_

TTTT
794
ACTTTAGTTAGTGACA
2800
ACUUUAGUUAGUGACA


intron1



CTGACTATCAATGA

CUGACUAUCAAUGA





STMN2_

ATT
795
TACTTTAGTTAGTGAC
2801
UACUUUAGUUAGUGAC


intron1

T

ACTGACTATCAATG

ACUGACUAUCAAUG





STMN2_

GTT
796
GTGCTCCAATCTATTT
2802
GUGCUCCAAUCUAUUU


intron1

G

TACTTTAGTTAGTG

UACUUUAGUUAGUG





STMN2_

CTT
797
AGAACAAAGTTGGTG
2803
AGAACAAAGUUGGUGC


intron1

C

CTCCAATCTATTTTA

UCCAAUCUAUUUUA





STMN2_

GTT
798
TCATAATACCTGGCAC
2804
UCAUAAUACCUGGCAC


intron1

C

AGGCTTCAGAACAA

AGGCUUCAGAACAA





STMN2_

TTT
799
TTCTCATAATACCTGG
2805
UUCUCAUAAUACCUGG


intron1

G

CACAGGCTTCAGAA

CACAGGCUUCAGAA





STMN2_

TTTT
800
GTTCTCATAATACCTG
2806
GUUCUCAUAAUACCUG


intron1



GCACAGGCTTCAGA

GCACAGGCUUCAGA





STMN2_

ATT
801
TTGTTCTCATAATACC
2807
UUGUUCUCAUAAUACC


intron1

T

TGGCACAGGCTTCA

UGGCACAGGCUUCA





STMN2_

CTT
802
CTAGTTGATGTTACTA
2808
CUAGUUGAUGUUACUA


intron1

C

GTGTATCATTATGT

GUGUAUCAUUAUGU





STMN2_

CTT
803
GTACTTCCTAGTTGAT
2809
GUACUUCCUAGUUGAU


intron1

G

GTTACTAGTGTATC

GUUACUAGUGUAUC





STMN2_

TTT
804
GTGGATCTTGGTACTT
2810
GUGGAUCUUGGUACUU


intron1

G

CCTAGTTGATGTTA

CCUAGUUGAUGUUA





STMN2_
+
TTTT
805
ACTGAGAATCAGCAG
2811
ACUGAGAAUCAGCAGC


intron1



CGTTTGAGGAGCTAG

GUUUGAGGAGCUAG





STMN2_
+
ATT
806
TACTGAGAATCAGCA
2812
UACUGAGAAUCAGCAG


intron1

T

GCGTTTGAGGAGCTA

CGUUUGAGGAGCUA





STMN2_
+
CTT
807
CCAAATTTTACTGAGA
2813
CCAAAUUUUACUGAGA


intron1

C

ATCAGCAGCGTTTG

AUCAGCAGCGUUUG





STMN2_
+
ATT
808
AAATGCTTCCCAAATT
2814
AAAUGCUUCCCAAAUU


intron1

A

TTACTGAGAATCAG

UUACUGAGAAUCAG





STMN2_
+
TTT
809
ATTAAAATGCTTCCCA
2815
AUUAAAAUGCUUCCCA


intron1

A

AATTTTACTGAGAA

AAUUUUACUGAGAA





STMN2_
+
CTTT
810
AATTAAAATGCTTCCC
2816
AAUUAAAAUGCUUCCC


intron1



AAATTTTACTGAGA

AAAUUUUACUGAGA





STMN2_
+
ATT
811
TTTAATTAAAATGCTT
2817
UUUAAUUAAAAUGCUU


intron1

C

CCCAAATTTTACTG

CCCAAAUUUUACUG





STMN2_
+
TTT
812
ATGAGTCCATCAACCA
2818
AUGAGUCCAUCAACCA


intron1

A

ATCTGGCCAGAGAA

AUCUGGCCAGAGAA





STMN2_
+
ATT
813
AATGAGTCCATCAACC
2819
AAUGAGUCCAUCAACC


intron1

T

AATCTGGCCAGAGA

AAUCUGGCCAGAGA





STMN2_
+
TTT
814
AATATTTAATGAGTCC
2820
AAUAUUUAAUGAGUCC


intron1

A

ATCAACCAATCTGG

AUCAACCAAUCUGG





STMN2_
+
ATT
815
AAATATTTAATGAGTC
2821
AAAUAUUUAAUGAGUC


intron1

T

CATCAACCAATCTG

CAUCAACCAAUCUG





STMN2_
+
ATT
816
CAAGATAGTACATAA
2822
CAAGAUAGUACAUAAU


intron1

A

TGATACACTAGTAAC

GAUACACUAGUAAC





STMN2_
+
GTT
817
AACTGCCCTACAATAT
2823
AACUGCCCUACAAUAU


intron1

A

TACAAGATAGTACA

UACAAGAUAGUACA





STMN2_
+
TTT
818
TTAAACTGCCCTACAA
2824
UUAAACUGCCCUACAA


intron1

G

TATTACAAGATAGT

UAUUACAAGAUAGU





STMN2_
+
TTTT
819
GTTAAACTGCCCTACA
2825
GUUAAACUGCCCUACA


intron1



ATATTACAAGATAG

AUAUUACAAGAUAG





STMN2_
+
ATT
820
TGTTAAACTGCCCTAC
2826
UGUUAAACUGCCCUAC


intron1

T

AATATTACAAGATA

AAUAUUACAAGAUA





STMN2_
+
CTT
821
ACAATTTTGTTAAACT
2827
ACAAUUUUGUUAAACU


intron1

A

GCCCTACAATATTA

GCCCUACAAUAUUA





STMN2_
+
TTTC
822
ACCATCTTAACAATTT
2828
ACCAUCUUAACAAUUU


intron1



TGTTAAACTGCCCT

UGUUAAACUGCCCU





STMN2_
+
ATT
823
CACCATCTTAACAATT
2829
CACCAUCUUAACAAUU


intron1

T

TTGTTAAACTGCCC

UUGUUAAACUGCCC





STMN2_
+
TTT
824
TAACTATAAATGGAA
2830
UAACUAUAAAUGGAAG


intron1

A

GTCACCATCTCACAA

UCACCAUCUCACAA





STMN2_
+
ATT
825
ATAACTATAAATGGA
2831
AUAACUAUAAAUGGAA


intron1

T

AGTCACCATCTCACA

GUCACCAUCUCACA





STMN2_
+
GTT
826
AATAGTAATAATGGT
2832
AAUAGUAAUAAUGGUA


intron1

C

AATTTATAACTATAA

AUUUAUAACUAUAA





STMN2_
+
TTT
827
CAGAAAAAAAGATCC
2833
CAGAAAAAAAGAUCCU


intron1

G

TGTACATGTCAGAAA

GUACAUGUCAGAAA





STMN2_
+
TTTT
828
GCAGAAAAAAAGATC
2834
GCAGAAAAAAAGAUCC


intron1



CTGTACATGTCAGAA

UGUACAUGUCAGAA





STMN2_
+
CTTT
829
TGCAGAAAAAAAGAT
2835
UGCAGAAAAAAAGAUC


intron1



CCTGTACATGTCAGA

CUGUACAUGUCAGA





STMN2_
+
TTT
830
GTCTTTTGCAGAAAAA
2836
GUCUUUUGCAGAAAAA


intron1

A

AAGATCCTGTACAT

AAGAUCCUGUACAU





STMN2_
+
ATT
831
AGTCTTTTGCAGAAAA
2837
AGUCUUUUGCAGAAAA


intron1

T

AAAGATCCTGTACA

AAAGAUCCUGUACA





STMN2_
+
TTT
832
CTGAGAATCAGCAGC
2838
CUGAGAAUCAGCAGCG


intron1

A

GTTTGAGGAGCTAGC

UUUGAGGAGCUAGC





STMN2_
+
GTT
833
GAGGAGCTAGCCTCC
2839
GAGGAGCUAGCCUCCA


intron1

T

ACCCCCAGAGGTTCT

CCCCCAGAGGUUCU





STMN2_
+
TTT
834
AGGAGCTAGCCTCCA
2840
AGGAGCUAGCCUCCAC


intron1

G

CCCCCAGAGGTTCTC

CCCCAGAGGUUCUC





STMN2_
+
GTT
835
TCACTCTATTAGGTCT
2841
UCACUCUAUUAGGUCU


intron1

C

GAAGCAGGTCCCAT

GAAGCAGGUCCCAU





STMN2_

TTTT
836
GGTGGATCTTGGTACT
2842
GGUGGAUCUUGGUACU


intron1



TCCTAGTTGATGTT

UCCUAGUUGAUGUU





STMN2_

CTTT
837
TGGTGGATCTTGGTAC
2843
UGGUGGAUCUUGGUAC


intron1



TTCCTAGTTGATGT

UUCCUAGUUGAUGU





STMN2_

TTTC
838
AGCCTTTTGGTGGATC
2844
AGCCUUUUGGUGGAUC


intron1



TTGGTACTTCCTAG

UUGGUACUUCCUAG





STMN2_

TTTT
839
CAGCCTTTTGGTGGAT
2845
CAGCCUUUUGGUGGAU


intron1



CTTGGTACTTCCTA

CUUGGUACUUCCUA





STMN2_

TTTT
840
TCAGCCTTTTGGTGGA
2846
UCAGCCUUUUGGUGGA


intron1



TCTTGGTACTTCCT

UCUUGGUACUUCCU





STMN2_

ATT
841
TTCAGCCTTTTGGTGG
2847
UUCAGCCUUUUGGUGG


intron1

T

ATCTTGGTACTTCC

AUCUUGGUACUUCC





STMN2_

TTT
842
AATTTTTGAGGGTTTT
2848
AAUUUUUCAGCCUUUU


intron1

A

GGTGGATCTTGGTA

GGUGGAUCUUGGUA





STMN2_

ATT
843
AAATTTTTGAGGGTTT
2849
AAAUUUUUCAGCCUUU


intron1

T

TGGTGGATCTTGGT

UGGUGGAUCUUGGU





STMN2_

ATT
844
AATATTTAAATTTTTC
2850
AAUAUUUAAAUUUUUC


intron1

A

AGCCTTTTGGTGGA

AGCCUUUUGGUGGA





STMN2_

GTT
845
ATGGACTCATTAAATA
2851
AUGGACUCAUUAAAUA


intron1

G

TTTAAATTTTTCAG

UUUAAAUUUUUCAG





STMN2_

ATT
846
GTTGATGGACTCATTA
2852
GUUGAUGGACUCAUUA


intron1

G

AATATTTAAATTTT

AAUAUUUAAAUUUU





STMN2_

ATT
847
TCTGGCCAGATTGGTT
2853
UCUGGCCAGAUUGGUU


intron1

C

GATGGACTCATTAA

GAUGGACUCAUUAA





STMN2_

ATT
848
AAGAATTCTCTGGCCA
2854
AAGAAUUCUCUGGCCA


intron1

A

GATTGGTTGATGGA

GAUUGGUUGAUGGA





STMN2_

TTT
849
ATAGGTAAATAATAT
2855
AUAGGUAAAUAAUAUA


intron1

G

ACACAACTTTATTAT

CACAACUUUAUUAU





STMN2_

TTT
850
ATTAAAGAATTCTCTG
2856
AUUAAAGAAUUCUCUG


intron1

A

GCCAGATTGGTTGA

GCCAGAUUGGUUGA





STMN2_

ATT
851
TAATTAAAGAATTCTC
2857
UAAUUAAAGAAUUCUC


intron1

T

TGGCCAGATTGGTT

UGGCCAGAUUGGUU





STMN2_

TTT
852
GGAAGCATTTTAATTA
2858
GGAAGCAUUUUAAUUA


intron1

G

AAGAATTCTCTGGC

AAGAAUUCUCUGGC





STMN2_

ATT
853
GGGAAGCATTTTAATT
2859
GGGAAGCAUUUUAAUU


intron1

T

AAAGAATTCTCTGG

AAAGAAUUCUCUGG





STMN2_

ATT
854
TCAGTAAAATTTGGG
2860
UCAGUAAAAUUUGGGA


intron1

C

AAGCATTTTAATTAA

AGCAUUUUAAUUAA





STMN2_

CTT
855
AGACCTAATAGAGTG
2861
AGACCUAAUAGAGUGA


intron1

C

AGAACCTCTGGGGGT

GAACCUCUGGGGGU





STMN2_

GTT
856
GAAATGCAAATCCAT
2862
GAAAUGCAAAUCCAUG


intron1

A

GGGACCTGCTTCAGA

GGACCUGCUUCAGA





STMN2_

CTT
857
TTAGAAATGCAAATC
2863
UUAGAAAUGCAAAUCC


intron1

G

CATGGGACCTGCTTC

AUGGGACCUGCUUC





STMN2_

GTT
858
TGAATCAGCCTCATCA
2864
UGAAUCAGCCUCAUCA


intron1

c

GCACCACCTGGGAG

GCACCACCUGGGAG





STMN2_
+
TTTC
859
TAACAAGCTCCCAGGT
2865
UAACAAGCUCCCAGGU


intron1



GGTGCTGATGAGGC

GGUGCUGAUGAGGC





STMN2_
+
ATT
860
CTAACAAGCTCCCAG
2866
CUAACAAGCUCCCAGG


intron1

T

GTGGTGCTGATGAGG

UGGUGCUGAUGAGG





STMN2_
+
TTT
861
CATTTCTAACAAGCTC
2867
CAUUUCUAACAAGCUC


intron1

G

CCAGGTGGTGCTGA

CCAGGUGGUGCUGA





STMN2_
+
ATT
862
GCATTTCTAACAAGCT
2868
GCAUUUCUAACAAGCU


intron1

T

CCCAGGTGGTGCTG

CCCAGGUGGUGCUG





STMN2_
+
ATT
863
GGTCTGAAGCAGGTC
2869
GGUCUGAAGCAGGUCC


intron1

A

CCATGGATTTGCATT

CAUGGAUUUGCAUU





STMN2_

TTTT
864
AATTAAAGAATTCTCT
2870
AAUUAAAGAAUUCUCU


intron1



GGCCAGATTGGTTG

GGCCAGAUUGGUUG





STMN2_

CTTT
865
ATTATATGTAATATAT
2871
AUUAUAUGUAAUAUAU


intron1



ATATTATATGTTAT

AUAUUAUAUGUUAU





STMN2_

TTT
866
TTATATGTAATATATA
2872
UUAUAUGUAAUAUAUA


intron1

A

TATTATATGTTATA

UAUUAUAUGUUAUA





STMN2_

ATT
867
TATGTAATATATATAT
2873
UAUGUAAUAUAUAUAU


intron1

A

TATATGTTATAATA

UAUAUGUUAUAAUA





STMN2_

TTT
868
TTAATGGAAGTTAAA
2874
UUAAUGGAAGUUAAAC


intron1

G

CTTTATGGCTGCATT

UUUAUGGCUGCAUU





STMN2_

CTTT
869
GTTAATGGAAGTTAA
2875
GUUAAUGGAAGUUAAA


intron1



ACTTTATGGCTGCAT

CUUUAUGGCUGCAU





STMN2_

TTT
870
CTGTGAGCAGCTTTGT
2876
CUGUGAGCAGCUUUGU


intron1

A

TAATGGAAGTTAAA

UAAUGGAAGUUAAA





STMN2_

GTT
871
ACTGTGAGCAGCTTTG
2877
ACUGUGAGCAGCUUUG


intron1

T

TTAATGGAAGTTAA

UUAAUGGAAGUUAA





STMN2_

ATT
872
TAATAGGTTTACTGTG
2878
UAAUAGGUUUACUGUG


intron1

A

AGCAGCTTTGTTAA

AGCAGCUUUGUUAA





STMN2_

ATT
873
TTATAATAGGTTTACT
2879
UUAUAAUAGGUUUACU


intron1

A

GTGAGCAGCTTTGT

GUGAGCAGCUUUGU





STMN2_

GTT
874
CTCCTCACTAGGAAGC
2880
CUCCUCACUAGGAAGC


intron1

G

CCAAACTGGGAAAC

CCAAACUGGGAAAC





STMN2_

GTT
875
GGTTGCTCCTCACTAG
2881
GGUUGCUCCUCACUAG


intron1

A

GAAGCCCAAACTGG

GAAGCCCAAACUGG





STMN2_

TTTC
876
GTGTGAGTTAGGTTGC
2882
GUGUGAGUUAGGUUGC


intron1



TCCTCACTAGGAAG

UCCUCACUAGGAAG





STMN2_

GTT
877
CGTGTGAGTTAGGTTG
2883
CGUGUGAGUUAGGUUG


intron1

T

CTCCTCACTAGGAA

CUCCUCACUAGGAA





STMN2_

GTT
878
TTTCGTGTGAGTTAGG
2884
UUUCGUGUGAGUUAGG


intron1

G

TTGCTCCTCACTAG

UUGCUCCUCACUAG





STMN2_

GTT
879
GGGTTGTTTCGTGTGA
2885
GGGUUGUUUCGUGUGA


intron1

G

GTTAGGTTGCTCCT

GUUAGGUUGCUCCU





STMN2_

ATT
880
TAAGTTGGGGTTGTTT
2886
UAAGUUGGGGUUGUUU


intron1

A

CGTGTGAGTTAGGT

CGUGUGAGUUAGGU





STMN2_

TTT
881
TAACAGTCAATATATT
2887
UAACAGUCAAUAUAUU


intron1

G

ATAAGTTGGGGTTG

AUAAGUUGGGGUUG





STMN2_

TTTT
882
GTAACAGTCAATATAT
2888
GUAACAGUCAAUAUAU


intron1



TATAAGTTGGGGTT

UAUAAGUUGGGGUU





STMN2_

GTT
883
TGTAACAGTCAATATA
2889
UGUAACAGUCAAUAUA


intron1

T

TTATAAGTTGGGGT

UUAUAAGUUGGGGU





STMN2_

TTTC
884
TGGTCTCAGTTTTGTA
2890
UGGUCUCAGUUUUGUA


intron1



ACAGTCAATATATT

ACAGUCAAUAUAUU





STMN2_

TTTT
885
CTGGTCTCAGTTTTGT
2891
CUGGUCUCAGUUUUGU


intron1



AACAGTCAATATAT

AACAGUCAAUAUAU





STMN2_

ATT
886
TCTGGTCTCAGTTTTG
2892
UCUGGUCUCAGUUUUG


intron1

T

TAACAGTCAATATA

UAACAGUCAAUAUA





STMN2_

CTT
887
ATGGGATTTTCTGGTC
2893
AUGGGAUUUUCUGGUC


intron1

G

TCAGTTTTGTAACA

UCAGUUUUGUAACA





STMN2_

CTT
888
CCGAGAGTCTGGAAA
2894
CCGAGAGUCUGGAAAU


intron1

C

TGATAACAGTACCAT

GAUAACAGUACCAU





STMN2_

GTT
889
TTCCCGAGAGTCTGGA
2895
UUCCCGAGAGUCUGGA


intron1

C

AATGATAACAGTAC

AAUGAUAACAGUAC





STMN2_

ATT
890
ATGTTCTTCCCGAGAG
2896
AUGUUCUUCCCGAGAG


intron1

A

TCTGGAAATGATAA

UCUGGAAAUGAUAA





STMN2_

GTT
891
CCAGGGAGGCTGCAA
2897
CCAGGGAGGCUGCAAU


intron1

C

TAAGTCTATCCTAAA

AAGUCUAUCCUAAA





STMN2_

GTT
892
TGAAGCAGAGTTCCC
2898
UGAAGCAGAGUUCCCA


intron1

C

AGGGAGGCTGCAATA

GGGAGGCUGCAAUA





STMN2_

ATT
893
TGTTCTGAAGCAGAGT
2899
UGUUCUGAAGCAGAGU


intron1

A

TCCCAGGGAGGCTG

UCCCAGGGAGGCUG





STMN2_

ATT
894
ATAAAAATAATTATGT
2900
AUAAAAAUAAUUAUGU


intron1

A

TCTGAAGCAGAGTT

UCUGAAGCAGAGUU





STMN2_

GTT
895
ATGGAAGTTAAACTTT
2901
AUGGAAGUUAAACUUU


intron1

A

ATGGCTGCATTTCA

AUGGCUGCAUUUCA





STMN2_

GTT
896
AACTTTATGGCTGCAT
2902
AACUUUAUGGCUGCAU


intron1

A

TTCATAAGGAAAAA

UUCAUAAGGAAAAA





STMN2_

CTTT
897
ATGGCTGCATTTCATA
2903
AUGGCUGCAUUUCAUA


intron1



AGGAAAAAAAACTT

AGGAAAAAAAACUU





STMN2_

TTT
898
TGGCTGCATTTCATAA
2904
UGGCUGCAUUUCAUAA


intron1

A

GGAAAAAAAACTTC

GGAAAAAAAACUUC





STMN2_

ATT
899
TTCCAGAAGAATAAC
2905
UUCCAGAAGAAUAACU


intron1

A

TGCTAAATGGGCACT

GCUAAAUGGGCACU





STMN2_

GTT
900
ATGTGCGAACTCCAAC
2906
AUGUGCGAACUCCAAC


intron1

A

ATCCAAAATACAAT

AUCCAAAAUACAAU





STMN2_

CTT
901
TACTAATGGTTAATGT
2907
UACUAAUGGUUAAUGU


intron1

G

GCGAACTCCAACAT

GCGAACUCCAACAU





STMN2_

ATT
902
GGTACTTGTACTAATG
2908
GGUACUUGUACUAAUG


intron1

G

GTTAATGTGCGAAC

GUUAAUGUGCGAAC





STMN2_

GTT
903
TATTGGGTACTTGTAC
2909
UAUUGGGUACUUGUAC


intron1

A

TAATGGTTAATGTG

UAAUGGUUAAUGUG





STMN2_

ATT
904
TTATATTGGGTACTTG
2910
UUAUAUUGGGUACUUG


intron1

G

TACTAATGGTTAAT

UACUAAUGGUUAAU





STMN2_

ATT
905
TCCTGATGATCTATTG
2911
UCCUGAUGAUCUAUUG


intron1

A

TTATATTGGGTACT

UUAUAUUGGGUACU





STMN2_

TTT
906
TTATCCTGATGATCTA
2912
UUAUCCUGAUGAUCUA


intron1

A

TTGTTATATTGGGT

UUGUUAUAUUGGGU





STMN2_

ATT
907
ATTATCCTGATGATCT
2913
AUUAUCCUGAUGAUCU


intron1

T

ATTGTTATATTGGG

AUUGUUAUAUUGGG





STMN2_

TTT
908
TCCTGATATAAAGAC
2914
UCCUGAUAUAAAGACA


intron1

A

ATACAACTAAAAGAT

UACAACUAAAAGAU





STMN2_

CTTT
909
ATCCTGATATAAAGA
2915
AUCCUGAUAUAAAGAC


intron1



CATACAACTAAAAGA

AUACAACUAAAAGA





STMN2_

ATT
910
TCTTTATCCTGATATA
2916
UCUUUAUCCUGAUAUA


intron1

C

AAGACATACAACTA

AAGACAUACAACUA





STMN2_

TTTC
911
ACTCAATTCTCTTTAT
2917
ACUCAAUUCUCUUUAU


intron1



CCTGATATAAAGAC

CCUGAUAUAAAGAC





STMN2_

GTT
912
GAAATAAAAAGTAAC
2918
GAAAUAAAAAGUAACU


intron1

G

TCTGCATTAATAAAA

CUGCAUUAAUAAAA





STMN2_

ATT
913
CACTCAATTCTCTTTA
2919
CACUCAAUUCUCUUUA


intron1

T

TCCTGATATAAAGA

UCCUGAUAUAAAGA





STMN2_

GTT
914
AGATAAATTTCACTCA
2920
AGAUAAAUUUCACUCA


intron1

T

ATTCTCTTTATCCT

AUUCUCUUUAUCCU





STMN2_

TTT
915
TGGGACTAGGTTTAG
2921
UGGGACUAGGUUUAGA


intron1

G

ATAAATTTCACTCAA

UAAAUUUCACUCAA





STMN2_

ATT
916
GTGGGACTAGGTTTA
2922
GUGGGACUAGGUUUAG


intron1

T

GATAAATTTCACTCA

AUAAAUUUCACUCA





STMN2_

CTT
917
TAAAAGTATTTGTGGG
2923
UAAAAGUAUUUGUGGG


intron1

G

ACTAGGTTTAGATA

ACUAGGUUUAGAUA





STMN2_

TTT
918
ACATGCTCTCTTGTAA
2924
ACAUGCUCUCUUGUAA


intron1

A

AAGTATTTGTGGGA

AAGUAUUUGUGGGA





STMN2_

CTTT
919
AACATGCTCTCTTGTA
2925
AACAUGCUCUCUUGUA


intron1



AAAGTATTTGTGGG

AAAGUAUUUGUGGG





STMN2_

TTT
920
CACTTTAACATGCTCT
2926
CACUUUAACAUGCUCU


intron1

A

CTTGTAAAAGTATT

CUUGUAAAAGUAUU





STMN2_

ATT
921
ACACTTTAACATGCTC
2927
ACACUUUAACAUGCUC


intron1

T

TCTTGTAAAAGTAT

UCUUGUAAAAGUAU





STMN2_

TTT
922
ATTTACACTTTAACAT
2928
AUUUACACUUUAACAU


intron1

A

GCTCTCTTGTAAAA

GCUCUCUUGUAAAA





STMN2_

ATT
923
AATTTACACTTTAACA
2929
AAUUUACACUUUAACA


intron1

T

TGCTCTCTTGTAAA

UGCUCUCUUGUAAA





STMN2_

CTT
924
CAAAGACAGAGTAGA
2930
CAAAGACAGAGUAGAA


intron1

C

ATGCTAATAAAAATT

UGCUAAUAAAAAUU





STMN2_

TTTC
925
ATAAGGAAAAAAAAC
2931
AUAAGGAAAAAAAACU


intron1



TTCCAAAGACAGAGT

UCCAAAGACAGAGU





STMN2_

ATT
926
CATAAGGAAAAAAAA
2932
CAUAAGGAAAAAAAAC


intron1

T

CTTCCAAAGACAGAG

UUCCAAAGACAGAG





STMN2_

TTT
927
GATAAATTTCACTCAA
2933
GAUAAAUUUCACUCAA


intron1

A

TTCTCTTTATCCTG

UUCUCUUUAUCCUG





STMN2_

CTT
928
CAGGCGTTGCTTTACA
2934
CAGGCGUUGCUUUACA


intron1

G

ATCTTTGTAAAAAA

AUCUUUGUAAAAAA





STMN2_

TTT
929
TTGGAAATAAAAAGT
2935
UUGGAAAUAAAAAGUA


intron1

G

AACTCTGCATTAATA

ACUCUGCAUUAAUA





STMN2_

TTTT
930
TGTTGGAAATAAAAA
2936
UGUUGGAAAUAAAAAG


intron1



GTAACTCTGCATTAA

UAACUCUGCAUUAA





STMN2_

TTTT
931
GAACATTTTTTAGTCT
2937
GAACAUUUUUUAGUCU


intron1



TCTATGCTTGCCTG

UCUAUGCUUGCCUG





STMN2_

CTTT
932
TGAACATTTTTTAGTC
2938
UGAACAUUUUUUAGUC


intron1



TTCTATGCTTGCCT

UUCUAUGCUUGCCU





STMN2_

TTTC
933
TTTTGAACATTTTTTA
2939
UUUUGAACAUUUUUUA


intron1



GTCTTCTATGCTTG

GUCUUCUAUGCUUG





STMN2_

TTTT
934
CTTTTGAACATTTTTT
2940
CUUUUGAACAUUUUUU


intron1



AGTCTTCTATGCTT

AGUCUUCUAUGCUU





STMN2_

TTTT
935
TCTTTTGAACATTTTT
2941
UCUUUUGAACAUUUUU


intron1



TAGTCTTCTATGCT

UAGUCUUCUAUGCU





STMN2_

ATT
936
TTCTTTTGAACATTTT
2942
UUCUUUUGAACAUUUU


intron1

T

TTAGTCTTCTATGC

UUAGUCUUCUAUGC





STMN2_

TTT
937
ATTTTTCTTTTGAACA
2943
AUUUUUCUUUUGAACA


intron1

A

TTTTTTAGTCTTCT

UUUUUUAGUCUUCU





STMN2_

ATT
938
AATTTTTCTTTTGAAC
2944
AAUUUUUCUUUUGAAC


intron1

T

ATTTTTTAGTCTTC

AUUUUUUAGUCUUC





STMN2_

TTTC
939
TAAAAATGACAAGGT
2945
UAAAAAUGACAAGGUC


intron1



CCCATATAGATAGAT

CCAUAUAGAUAGAU





STMN2_

TTTT
940
CTAAAAATGACAAGG
2946
CUAAAAAUGACAAGGU


intron1



TCCCATATAGATAGA

CCCAUAUAGAUAGA





STMN2_

GTT
941
TCTAAAAATGACAAG
2947
UCUAAAAAUGACAAGG


intron1

T

GTCCCATATAGATAG

UCCCAUAUAGAUAG





STMN2_

ATT
942
AAAAGGATGAAGCAG
2948
AAAAGGAUGAAGCAGG


intron1

C

GTGAATGTTTTCTAA

UGAAUGUUUUCUAA





STMN2_

ATT
943
TATGAAGATTCAAAA
2949
UAUGAAGAUUCAAAAG


intron1

A

GGATGAAGCAGGTGA

GAUGAAGCAGGUGA





STMN2_

CTT
944
TATAGTATGCCCATCT
2950
UAUAGUAUGCCCAUCU


intron1

G

CAGAGGGATTATAT

CAGAGGGAUUAUAU





STMN2_

TTT
945
AATAAGACAACTTGT
2951
AAUAAGACAACUUGUA


intron1

A

ATAGTATGCCCATCT

UAGUAUGCCCAUCU





STMN2_

CTTT
946
AAATAAGACAACTTG
2952
AAAUAAGACAACUUGU


intron1



TATAGTATGCCCATC

AUAGUAUGCCCAUC





STMN2_

TTT
947
CCAATCTTTAAATAAG
2953
CCAAUCUUUAAAUAAG


intron1

A

ACAACTTGTATAGT

ACAACUUGUAUAGU





STMN2_

ATT
948
ACCAATCTTTAAATAA
2954
ACCAAUCUUUAAAUAA


intron1

T

GACAACTTGTATAG

GACAACUUGUAUAG





STMN2_

CTT
949
AATTTACCAATCTTTA
2955
AAUUUACCAAUCUUUA


intron1

A

AATAAGACAACTTG

AAUAAGACAACUUG





STMN2_

TTT
950
AGCTTAAATTTACCAA
2956
AGCUUAAAUUUACCAA


intron1

G

TCTTTAAATAAGAC

UCUUUAAAUAAGAC





STMN2_

ATT
951
GAGCTTAAATTTACCA
2957
GAGCUUAAAUUUACCA


intron1

T

ATCTTTAAATAAGA

AUCUUUAAAUAAGA





STMN2_

ATT
952
TTTGAGCTTAAATTTA
2958
UUUGAGCUUAAAUUUA


intron1

A

CCAATCTTTAAATA

CCAAUCUUUAAAUA





STMN2_

CTT
953
CCACTGAATAAATTAT
2959
CCACUGAAUAAAUUAU


intron1

G

TTGAGCTTAAATTT

UUGAGCUUAAAUUU





STMN2_

GTT
954
CGAGTCTGCCTCTGAG
2960
CGAGUCUGCCUCUGAG


intron1

C

GCTTGCCACTGAAT

GCUUGCCACUGAAU





STMN2_

ATT
955
GACCTGTGTTCCGAGT
2961
GACCUGUGUUCCGAGU


intron1

A

CTGCCTCTGAGGCT

CUGCCUCUGAGGCU





STMN2_

GTT
956
TAATATATATATAATA
2962
UAAUAUAUAUAUAAUA


intron1

A

TATATTAGACCTGT

UAUAUUAGACCUGU





STMN2_

ATT
957
TATGTTATAATATATA
2963
UAUGUUAUAAUAUAUA


intron1

A

TATAATATATATTA

UAUAAUAUAUAUUA





STMN2_

TTT
958
AACATTTTTTAGTCTT
2964
AACAUUUUUUAGUCUU


intron1

G

CTATGCTTGCCTGC

CUAUGCUUGCCUGC





STMN2_

ATT
959
TTTAGTCTTCTATGCT
2965
UUUAGUCUUCUAUGCU


intron1

T

TGCCTGCTCCTTTT

UGCCUGCUCCUUUU





STMN2_

TTTT
960
TTAGTCTTCTATGCTT
2966
UUAGUCUUCUAUGCUU


intron1



GCCTGCTCCTTTTA

GCCUGCUCCUUUUA





STMN2_

TTTT
961
TAGTCTTCTATGCTTG
2967
UAGUCUUCUAUGCUUG


intron1



CCTGCTCCTTTTAA

CCUGCUCCUUUUAA





STMN2_

ATT
962
TTGTTGGAAATAAAA
2968
UUGUUGGAAAUAAAAA


intron1

T

AGTAACTCTGCATTA

GUAACUCUGCAUUA





STMN2_

CTT
963
AATAATAACAATAGA
2969
AAUAAUAACAAUAGAU


intron1

A

TATTTTTGTTGGAAA

AUUUUUGUUGGAAA





STMN2_

TTTC
964
TCAGATAAAGCTGTA
2970
UCAGAUAAAGCUGUAA


intron1



AGACTTAAATAATAA

GACUUAAAUAAUAA





STMN2_

ATT
965
CTCAGATAAAGCTGT
2971
CUCAGAUAAAGCUGUA


intron1

T

AAGACTTAAATAATA

AGACUUAAAUAAUA





STMN2_

ATT
966
GAATTTCTCAGATAAA
2972
GAAUUUCUCAGAUAAA


intron1

G

GCTGTAAGACTTAA

GCUGUAAGACUUAA





STMN2_

ATT
967
TGAGAAGGGTGCTAA
2973
UGAGAAGGGUGCUAAU


intron1

A

TTGGAATTTCTCAGA

UGGAAUUUCUCAGA





STMN2_

TTT
968
TTATGAGAAGGGTGC
2974
UUAUGAGAAGGGUGCU


intron1

A

TAATTGGAATTTCTC

AAUUGGAAUUUCUC





STMN2_

ATT
969
ATTATGAGAAGGGTG
2975
AUUAUGAGAAGGGUGC


intron1

T

CTAATTGGAATTTCT

UAAUUGGAAUUUCU





STMN2_

TTT
970
AATATTTATTATGAGA
2976
AAUAUUUAUUAUGAGA


intron1

G

AGGGTGCTAATTGG

AGGGUGCUAAUUGG





STMN2_

GTT
971
GAATATTTATTATGAG
2977
GAAUAUUUAUUAUGAG


intron1

T

AAGGGTGCTAATTG

AAGGGUGCUAAUUG





STMN2_

TTTC
972
ATGTGTTTGAATATTT
2978
AUGUGUUUGAAUAUUU


intron1



ATTATGAGAAGGGT

AUUAUGAGAAGGGU





STMN2_

TTTT
973
CATGTGTTTGAATATT
2979
CAUGUGUUUGAAUAUU


intron1



TATTATGAGAAGGG

UAUUAUGAGAAGGG





STMN2_

TTTT
974
TCATGTGTTTGAATAT
2980
UCAUGUGUUUGAAUAU


intron1



TTATTATGAGAAGG

UUAUUAUGAGAAGG





STMN2_

TTTT
975
GTTGGAAATAAAAAG
2981
GUUGGAAAUAAAAAGU


intron1



TAACTCTGCATTAAT

AACUCUGCAUUAAU





STMN2_

ATT
976
TTCATGTGTTTGAATA
2982
UUCAUGUGUUUGAAUA


intron1

T

TTTATTATGAGAAG

UUUAUUAUGAGAAG





STMN2_

CTTT
977
GGTAATTTTTCATGTG
2983
GGUAAUUUUUCAUGUG


intron1



TTTGAATATTTATT

UUUGAAUAUUUAUU





STMN2_

ATT
978
AAAGACTAGAACAAC
2984
AAAGACUAGAACAACU


intron1

A

TTTGGTAATTTTTCA

UUGGUAAUUUUUCA





STMN2_

TTT
979
AAGTGACAAGAGTGC
2985
AAGUGACAAGAGUGCA


intron1

A

AGGATCATGTAATAT

GGAUCAUGUAAUAU





STMN2_

TTTT
980
AAAGTGACAAGAGTG
2986
AAAGUGACAAGAGUGC


intron1



CAGGATCATGTAATA

AGGAUCAUGUAAUA





STMN2_

TTTT
981
TAAAGTGACAAGAGT
2987
UAAAGUGACAAGAGUG


intron1



GCAGGATCATGTAAT

CAGGAUCAUGUAAU





STMN2_

ATT
982
TTAAAGTGACAAGAG
2988
UUAAAGUGACAAGAGU


intron1

T

TGCAGGATCATGTAA

GCAGGAUCAUGUAA





STMN2_

TTT
983
AAAAACTATATAAGA
2989
AAAAACUAUAUAAGAA


intron1

A

AAAAAATCATCAGAA

AAAAAUCAUCAGAA





STMN2_

TTTT
984
AAAAAACTATATAAG
2990
AAAAAACUAUAUAAGA


intron1



AAAAAAATCATCAGA

AAAAAAUCAUCAGA





STMN2_

CTTT
985
TAAAAAACTATATAA
2991
UAAAAAACUAUAUAAG


intron1



GAAAAAAATCATCAG

AAAAAAAUCAUCAG





STMN2_

CTT
986
CCTGCTCCTTTTAAAA
2992
CCUGCUCCUUUUAAAA


intron1

G

AACTATATAAGAAA

AACUAUAUAAGAAA





STMN2_

CTT
987
TATGCTTGCCTGCTCC
2993
UAUGCUUGCCUGCUCC


intron1

C

TTTTAAAAAACTAT

UUUUAAAAAACUAU





STMN2_

TTT
988
GTCTTCTATGCTTGCC
2994
GUCUUCUAUGCUUGCC


intron1

A

TGCTCCTTTTAAAA

UGCUCCUUUUAAAA





STMN2_

TTTT
989
AGTCTTCTATGCTTGC
2995
AGUCUUCUAUGCUUGC


intron1



CTGCTCCTTTTAAA

CUGCUCCUUUUAAA





STMN2_

TTT
990
GTAATTTTTCATGTGT
2996
GUAAUUUUUCAUGUGU


intron1

G

TTGAATATTTATTA

UUGAAUAUUUAUUA





STMN2_
+
CTT
991
GTGGATTTAGTCTTTT
2997
GUGGAUUUAGUCUUUU


intron1

G

GCAGAAAAAAAGAT

GCAGAAAAAAAGAU





STMN2_

GTT
992
GGAAGTAAAATATTTT
2998
GGAAGUAAAAUAUUUU


intron1

C

GTAAAGATTACCAT

GUAAAGAUUACCAU





STMN2_

TTTT
993
GTAAAGATTACCATA
2999
GUAAAGAUUACCAUAG


intron1



GATTTAAAAATGTTA

AUUUAAAAAUGUUA





STMN2_

TTT
994
CCTTTTTGTGGGGGAA
3000
CCUUUUUGUGGGGGAA


intron1

A

AGGGATGAGGGCAA

AGGGAUGAGGGCAA





STMN2_

ATT
995
ACCTTTTTGTGGGGGA
3001
ACCUUUUUGUGGGGGA


intron1

T

AAGGGATGAGGGCA

AAGGGAUGAGGGCA





STMN2_

CTT
996
AAATGAACAACTGGA
3002
AAAUGAACAACUGGAG


intron1

A

GACAAATTTACCTTT

ACAAAUUUACCUUU





STMN2_

TTT
997
TAACTTAAAATGAAC
3003
UAACUUAAAAUGAACA


intron1

A

AACTGGAGACAAATT

ACUGGAGACAAAUU





STMN2_

CTTT
998
ATAACTTAAAATGAA
3004
AUAACUUAAAAUGAAC


intron1



CAACTGGAGACAAAT

AACUGGAGACAAAU





STMN2_

TTT
999
CTTTATAACTTAAAAT
3005
CUUUAUAACUUAAAAU


intron1

G

GAACAACTGGAGAC

GAACAACUGGAGAC





STMN2_

ATT
1000
GCTTTATAACTTAAAA
3006
GCUUUAUAACUUAAAA


intron1

T

TGAACAACTGGAGA

UGAACAACUGGAGA





STMN2_

CTT
1001
GCCACATGAACATAC
3007
GCCACAUGAACAUACA


intron1

A

ATAATCCTGGCAGGA

UAAUCCUGGCAGGA





STMN2_

CTT
1002
CACATGTATCTTAGCC
3008
CACAUGUAUCUUAGCC


intron1

G

ACATGAACATACAT

ACAUGAACAUACAU





STMN2_

CTT
1003
GCAAGCACTTGCACAT
3009
GCAAGCACUUGCACAU


intron1

A

GTATCTTAGCCACA

GUAUCUUAGCCACA





STMN2_

GTT
1004
GCACACAAACCCTGCT
3010
GCACACAAACCCUGCU


intron1

G

CTTAGCAAGCACTT

CUUAGCAAGCACUU





STMN2_

TTTC
1005
CAGCAATCGTTGGCAC
3011
CAGCAAUCGUUGGCAC


intron1



ACAAACCCTGCTCT

ACAAACCCUGCUCU





STMN2_

TTTT
1006
CCAGCAATCGTTGGCA
3012
CCAGCAAUCGUUGGCA


intron1



CACAAACCCTGCTC

CACAAACCCUGCUC





STMN2_

ATT
1007
TCCAGCAATCGTTGGC
3013
UCCAGCAAUCGUUGGC


intron1

T

ACACAAACCCTGCT

ACACAAACCCUGCU





STMN2_

TTT
1008
CAGAGAATTTTCCAGC
3014
CAGAGAAUUUUCCAGC


intron1

G

AATCGTTGGCACAC

AAUCGUUGGCACAC





STMN2_

CTTT
1009
GCAGAGAATTTTCCA
3015
GCAGAGAAUUUUCCAG


intron1



GCAATCGTTGGCACA

CAAUCGUUGGCACA





STMN2_

ATT
1010
TTTGCAGAGAATTTTC
3016
UUUGCAGAGAAUUUUC


intron1

C

CAGCAATCGTTGGC

CAGCAAUCGUUGGC





STMN2_

ATT
1011
CAGCCACAAACAATT
3017
CAGCCACAAACAAUUC


intron1

G

CTTTGCAGAGAATTT

UUUGCAGAGAAUUU





STMN2_

ATT
1012
TCACCCATTGCAGCCA
3018
UCACCCAUUGCAGCCA


intron1

C

CAAACAATTCTTTG

CAAACAAUUCUUUG





STMN2_

ATT
1013
TATATGTGTATTCTCA
3019
UAUAUGUGUAUUCUCA


intron1

A

CCCATTGCAGCCAC

CCCAUUGCAGCCAC





STMN2_

GTT
1014
AAGATCATCTCAATTA
3020
AAGAUCAUCUCAAUUA


intron1

G

TATATGTGTATTCT

UAUAUGUGUAUUCU





STMN2_

CTT
1015
TGTTGAAGATCATCTC
3021
UGUUGAAGAUCAUCUC


intron1

A

AATTATATATGTGT

AAUUAUAUAUGUGU





STMN2_

TTT
1016
TAGATATAACCTTATG
3022
UAGAUAUAACCUUAUG


intron1

A

TTGAAGATCATCTC

UUGAAGAUCAUCUC





STMN2_

ATT
1017
ATAGATATAACCTTAT
3023
AUAGAUAUAACCUUAU


intron1

T

GTTGAAGATCATCT

GUUGAAGAUCAUCU





STMN2_

TTT
1018
TATATTTATAGATATA
3024
UAUAUUUAUAGAUAUA


intron1

A

ACCTTATGTTGAAG

ACCUUAUGUUGAAG





STMN2_

ATT
1019
ATATATTTATAGATAT
3025
AUAUAUUUAUAGAUAU


intron1

T

AACCTTATGTTGAA

AACCUUAUGUUGAA





STMN2_

TTT
1020
TGCATAAACTATATTT
3026
UGCAUAAACUAUAUUU


intron1

G

ATATATTTATAGAT

AUAUAUUUAUAGAU





STMN2_

CTTT
1021
TTGTGGGGGAAAGGG
3027
UUGUGGGGGAAAGGGA


intron1



ATGAGGGCAATTAGG

UGAGGGCAAUUAGG





STMN2_

TTTT
1022
GTGCATAAACTATATT
3028
GUGCAUAAACUAUAUU


intron1



TATATATTTATAGA

UAUAUAUUUAUAGA





STMN2_

TTTT
1023
TGTGGGGGAAAGGGA
3029
UGUGGGGGAAAGGGAU


intron1



TGAGGGCAATTAGGA

GAGGGCAAUUAGGA





STMN2_

TTT
1024
TGGGGGAAAGGGATG
3030
UGGGGGAAAGGGAUGA


intron1

G

AGGGCAATTAGGAGG

GGGCAAUUAGGAGG





STMN2_

GTT
1025
TGGACTGCGGGGCTG
3031
UGGACUGCGGGGCUGA


intron1

G

AAAAAAGAGGTTCCA

AAAAAGAGGUUCCA





STMN2_

CTT
1026
GCTGGGAGGGGCTCG
3032
GCUGGGAGGGGCUCGG


intron1

G

GTGCTGGGGCTGAGA

UGCUGGGGCUGAGA





STMN2_

TTTC
1027
TGCAGAGCCACCCGCT
3033
UGCAGAGCCACCCGCU


intron1



TGGCTGGGAGGGGC

UGGCUGGGAGGGGC





STMN2_

TTTT
1028
CTGCAGAGCCACCCG
3034
CUGCAGAGCCACCCGC


intron1



CTTGGCTGGGAGGGG

UUGGCUGGGAGGGG





STMN2_

CTTT
1029
TCTGCAGAGCCACCCG
3035
UCUGCAGAGCCACCCG


intron1



CTTGGCTGGGAGGG

CUUGGCUGGGAGGG





STMN2_

TTT
1030
TGTGGCCGGGCGGGG
3036
UGUGGCCGGGCGGGGC


intron1

G

CTCGAGCCAGCTTTT

UCGAGCCAGCUUUU





STMN2_

CTTT
1031
GTGTGGCCGGGCGGG
3037
GUGUGGCCGGGCGGGG


intron1



GCTCGAGCCAGCTTT

CUCGAGCCAGCUUU





STMN2_

CTT
1032
GGCTGGGGGAAAAAA
3038
GGCUGGGGGAAAAAAA


intron1

G

AGCCCCGAGCTCCGC

GCCCCGAGCUCCGC





STMN2_

ATT
1033
TGGAAAATCATAGAG
3039
UGGAAAAUCAUAGAGA


intron1

C

AACAGAGGGTGGGCG

ACAGAGGGUGGGCG





STMN2_

CTT
1034
GAGAAGCCCCTCGCG
3040
GAGAAGCCCCUCGCGG


intron1

A

GGGTCTCCATTCTGG

GGUCUCCAUUCUGG





STMN2_

ATT
1035
TGGAAAGCGGGGGTA
3041
UGGAAAGCGGGGGUAG


intron1

G

GCTCAGGACACTGCG

CUCAGGACACUGCG





STMN2_

TTTC
1036
TGGACGTGCGAGTGA
3042
UGGACGUGCGAGUGAA


intron1



ACTGCGAATTGTGGA

CUGCGAAUUGUGGA





STMN2_

CTTT
1037
CTGGACGTGCGAGTG
3043
CUGGACGUGCGAGUGA


intron1



AACTGCGAATTGTGG

ACUGCGAAUUGUGG





STMN2_

ATT
1038
TCAGAACCTTTCTGGA
3044
UCAGAACCUUUCUGGA


intron1

C

CGTGCGAGTGAACT

CGUGCGAGUGAACU





STMN2_

TTTC
1039
TGAGGGGTGCAGAAA
3045
UGAGGGGUGCAGAAAG


intron1



GCGAGGCGAGATCGC

CGAGGCGAGAUCGC





STMN2_

CTTT
1040
CTGAGGGGTGCAGAA
3046
CUGAGGGGUGCAGAAA


intron1



AGCGAGGCGAGATCG

GCGAGGCGAGAUCG





STMN2_

TTT
1041
CAGCCACTAGCCTGCA
3047
CAGCCACUAGCCUGCA


intron1

G

GCGGAAACCTTTCT

GCGGAAACCUUUCU





STMN2_

GTT
1042
GCAGCCACTAGCCTGC
3048
GCAGCCACUAGCCUGC


intron1

T

AGCGGAAACCTTTC

AGCGGAAACCUUUC





STMN2_

TTT
1043
AAATGATAATAATAC
3049
AAAUGAUAAUAAUACU


intron1

G

TGATGATGACGATGA

GAUGAUGACGAUGA





STMN2_

ATT
1044
GAAATGATAATAATA
3050
GAAAUGAUAAUAAUAC


intron1

T

CTGATGATGACGATG

UGAUGAUGACGAUG





STMN2_

ATT
1045
AATAATAACAACGAT
3051
AAUAAUAACAACGAUU


intron1

A

TTGAAATGATAATAA

UGAAAUGAUAAUAA





STMN2_

TTT
1046
AACAAATGAGAACAA
3052
AACAAAUGAGAACAAA


intron1

G

ACAAGGCTACTGAAT

CAAGGCUACUGAAU





STMN2_

TTTT
1047
GAACAAATGAGAACA
3053
GAACAAAUGAGAACAA


intron1



AACAAGGCTACTGAA

ACAAGGCUACUGAA





STMN2_

CTTT
1048
TGAACAAATGAGAAC
3054
UGAACAAAUGAGAACA


intron1



AAACAAGGCTACTGA

AACAAGGCUACUGA





STMN2_

CTT
1049
ACCAAGAGCAATCCA
3055
ACCAAGAGCAAUCCAC


intron1

A

CGTCCCTTTTGAACA

GUCCCUUUUGAACA





STMN2_

GTT
1050
ATCCTTAACCAAGAGC
3056
AUCCUUAACCAAGAGC


intron1

A

AATCCACGTCCCTT

AAUCCACGUCCCUU





STMN2_

ATT
1051
GGAGGAAGCAAAGCG
3057
GGAGGAAGCAAAGCGA


intron1

A

AACGCAACAAGGGTT

ACGCAACAAGGGUU





STMN2_

TTTT
1052
GTGGGGGAAAGGGAT
3058
GUGGGGGAAAGGGAUG


intron1



GAGGGCAATTAGGAG

AGGGCAAUUAGGAG





STMN2_

ATT
1053
TGTGCATAAACTATAT
3059
UGUGCAUAAACUAUAU


intron1

T

TTATATATTTATAG

UUAUAUAUUUAUAG





STMN2_

CTT
1054
AAATTTTGTGCATAAA
3060
AAAUUUUGUGCAUAAA


intron1

A

CTATATTTATATAT

CUAUAUUUAUAUAU





STMN2_

TTTC
1055
AGGGGAAAAAACTTA
3061
AGGGGAAAAAACUUAA


intron1



AAATTTTGTGCATAA

AAUUUUGUGCAUAA





STMN2_

ATT
1056
ATTTCAAAATCTATTA
3062
AUUUCAAAAUCUAUUA


intron1

A

TTTTAATACTGCAG

UUUUAAUACUGCAG





STMN2_

ATT
1057
GAATTAATTTCAAAAT
3063
GAAUUAAUUUCAAAAU


intron1

G

CTATTATTTTAATA

CUAUUAUUUUAAUA





STMN2_

TTT
1058
AAATTGGAATTAATTT
3064
AAAUUGGAAUUAAUUU


intron1

G

CAAAATCTATTATT

CAAAAUCUAUUAUU





STMN2_

CTTT
1059
GAAATTGGAATTAATT
3065
GAAAUUGGAAUUAAUU


intron1



TCAAAATCTATTAT

UCAAAAUCUAUUAU





STMN2_

ATT
1060
TCTTTGAAATTGGAAT
3066
UCUUUGAAAUUGGAAU


intron1

A

TAATTTCAAAATCT

UAAUUUCAAAAUCU





STMN2_

ATT
1061
ATTATCTTTGAAATTG
3067
AUUAUCUUUGAAAUUG


intron1

A

GAATTAATTTCAAA

GAAUUAAUUUCAAA





STMN2_

TTT
1062
ATGAATCAGGAAAAA
3068
AUGAAUCAGGAAAAAA


intron1

A

AGCACTCGCCCTGAT

GCACUCGCCCUGAU





STMN2_

GTT
1063
AATGAATCAGGAAAA
3069
AAUGAAUCAGGAAAAA


intron1

T

AAGCACTCGCCCTGA

AGCACUCGCCCUGA





STMN2_

ATT
1064
TTTAATGAATCAGGA
3070
UUUAAUGAAUCAGGAA


intron1

G

AAAAAGCACTCGCCC

AAAAGCACUCGCCC





STMN2_

CTT
1065
CAATCATGCTGAATAC
3071
CAAUCAUGCUGAAUAC


intron1

A

ATAATTGTTTAATG

AUAAUUGUUUAAUG





STMN2_

ATT
1066
TATGCACCTCTTACAA
3072
UAUGCACCUCUUACAA


intron1

A

TCATGCTGAATACA

UCAUGCUGAAUACA





STMN2_

ATT
1067
GAAAAGATAATGGGG
3073
GAAAAGAUAAUGGGGA


intron1

A

AATATTATATGCACC

AUAUUAUAUGCACC





STMN2_

CTT
1068
ATTAGAAAAGATAAT
3074
AUUAGAAAAGAUAAUG


intron1

C

GGGGAATATTATATG

GGGAAUAUUAUAUG





STMN2_

ATT
1069
AGAAGGTGCCCACTTC
3075
AGAAGGUGCCCACUUC


intron1

C

ATTAGAAAAGATAA

AUUAGAAAAGAUAA





STMN2_

CTT
1070
TATATCCATTCAGAAG
3076
UAUAUCCAUUCAGAAG


intron1

A

GTGCCCACTTCATT

GUGCCCACUUCAUU





STMN2_

GTT
1071
CTTATATATCCATTCA
3077
CUUAUAUAUCCAUUCA


intron1

A

GAAGGTGCCCACTT

GAAGGUGCCCACUU





STMN2_

TTTC
1072
TAGTTACTTATATATC
3078
UAGUUACUUAUAUAUC


intron1



CATTCAGAAGGTGC

CAUUCAGAAGGUGC





STMN2_

ATT
1073
CTAGTTACTTATATAT
3079
CUAGUUACUUAUAUAU


intron1

T

CCATTCAGAAGGTG

CCAUUCAGAAGGUG





STMN2_

TTTC
1074
ATTTCTAGTTACTTAT
3080
AUUUCUAGUUACUUAU


intron1



ATATCCATTCAGAA

AUAUCCAUUCAGAA





STMN2_

TTTT
1075
CATTTCTAGTTACTTA
3081
CAUUUCUAGUUACUUA


intron1



TATATCCATTCAGA

UAUAUCCAUUCAGA





STMN2_

CTTT
1076
TCATTTCTAGTTACTT
3082
UCAUUUCUAGUUACUU


intron1



ATATATCCATTCAG

AUAUAUCCAUUCAG





STMN2_

ATT
1077
TGACCAAATCCTCAGC
3083
UGACCAAAUCCUCAGC


intron1

C

TTTTCATTTCTAGT

UUUUCAUUUCUAGU





STMN2_

TTT
1078
TCCTGAAATTCTGACC
3084
UCCUGAAAUUCUGACC


intron1

A

AAATCCTCAGCTTT

AAAUCCUCAGCUUU





STMN2_

TTTT
1079
ATCCTGAAATTCTGAC
3085
AUCCUGAAAUUCUGAC


intron1



CAAATCCTCAGCTT

CAAAUCCUCAGCUU





STMN2_

GTT
1080
TATCCTGAAATTCTGA
3086
UAUCCUGAAAUUCUGA


intron1

T

CCAAATCCTCAGCT

CCAAAUCCUCAGCU





STMN2_

TTTC
1081
agttttatcctgaaat
3087
AGUUUUAUCCUGAAAU


intron1



TCTGACCAAATCCT

UCUGACCAAAUCCU





STMN2_

CTTT
1082
CAGTTTTATCCTGAAA
3088
CAGUUUUAUCCUGAAA


intron1



TTCTGACCAAATCC

UUCUGACCAAAUCC





STMN2_

ATT
1083
CAAAATCTATTATTTT
3089
CAAAAUCUAUUAUUUU


intron1

T

AATACTGCAGAAGT

AAUACUGCAGAAGU





STMN2_

TTTC
1084
AAAATCTATTATTTTA
3090
AAAAUCUAUUAUUUUA


intron1



ATACTGCAGAAGTA

AUACUGCAGAAGUA





STMN2_

ATT
1085
TTTTAATACTGCAGAA
3091
UUUUAAUACUGCAGAA


intron1

A

GTAGTGTTTTTTTC

GUAGUGUUUUUUUC





STMN2_

ATT
1086
TAATACTGCAGAAGT
3092
UAAUACUGCAGAAGUA


intron1

T

AGTGTTTTTTTCATG

GUGUUUUUUUCAUG





STMN2_

GTT
1087
CAGGGGAAAAAACTT
3093
CAGGGGAAAAAACUUA


intron1

T

aaaattttgtgcata

AAAUUUUGUGCAUA





STMN2_

GTT
1088
GAAGAACAGTTTCAG
3094
GAAGAACAGUUUCAGG


intron1

G

GGGAAAAAACTTAAA

GGAAAAAACUUAAA





STMN2_

ATT
1089
AGGCTGTATCAAGAA
3095
AGGCUGUAUCAAGAAU


intron1

G

TCAGCAGTTGGAAGA

CAGCAGUUGGAAGA





STMN2_

TTTC
1090
ACGATCCATGTATCTG
3096
ACGAUCCAUGUAUCUG


intron1



TGTAGGATTGAGGC

UGUAGGAUUGAGGC





STMN2_

ATT
1091
CACGATCCATGTATCT
3097
CACGAUCCAUGUAUCU


intron1

T

GTGTAGGATTGAGG

GUGUAGGAUUGAGG





STMN2_

TTT
1092
GATGGCGGCTACCATT
3098
GAUGGCGGCUACCAUU


intron1

G

TCACGATCCATGTA

UCACGAUCCAUGUA





STMN2_

ATT
1093
GGATGGCGGCTACCA
3099
GGAUGGCGGCUACCAU


intron1

T

TTTCACGATCCATGT

UUCACGAUCCAUGU





STMN2_

TTT
1094
TTTGGATGGCGGCTAC
3100
UUUGGAUGGCGGCUAC


intron1

A

CATTTCACGATCCA

CAUUUCACGAUCCA





STMN2_

TTTT
1095
ATTTGGATGGCGGCTA
3101
AUUUGGAUGGCGGCUA


intron1



CCATTTCACGATCC

CCAUUUCACGAUCC





STMN2_

TTTT
1096
TATTTGGATGGCGGCT
3102
UAUUUGGAUGGCGGCU


intron1



ACCATTTCACGATC

ACCAUUUCACGAUC





STMN2_

ATT
1097
TTATTTGGATGGCGGC
3103
UUAUUUGGAUGGCGGC


intron1

T

TACCATTTCACGAT

UACCAUUUCACGAU





STMN2_

TTT
1098
GGGTGGGATTTTTATT
3104
GGGUGGGAUUUUUAUU


intron1

G

TGGATGGCGGCTAC

UGGAUGGCGGCUAC





STMN2_

ATT
1099
GGGGTGGGATTTTTAT
3105
GGGGUGGGAUUUUUAU


intron1

T

TTGGATGGCGGCTA

UUGGAUGGCGGCUA





STMN2_

GTT
1100
CAGGACTGCATACAG
3106
CAGGACUGCAUACAGC


intron1

C

CTCAACTGCCCCTCC

UCAACUGCCCCUCC





STMN2_

TTT
1101
TCATATTTGGGGTGGG
3107
UCAUAUUUGGGGUGGG


intron1

G

ATTTTTATTTGGAT

AUUUUUAUUUGGAU





STMN2_

CTT
1102
CGTTTGTCATATTTGG
3108
CGUUUGUCAUAUUUGG


intron1

G

GGTGGGATTTTTAT

GGUGGGAUUUUUAU





STMN2_

ATT
1103
TGGCCAGAAAGGATG
3109
UGGCCAGAAAGGAUGC


intron1

A

CTTGCGTTTGTCATA

UUGCGUUUGUCAUA





STMN2_

GTT
1104
AATTATGGCCAGAAA
3110
AAUUAUGGCCAGAAAG


intron1

A

GGATGCTTGCGTTTG

GAUGCUUGCGUUUG





STMN2_

TTT
1105
CAAATGCAGTTAAATT
3111
CAAAUGCAGUUAAAUU


intron1

G

ATGGCCAGAAAGGA

AUGGCCAGAAAGGA





STMN2_

ATT
1106
GCAAATGCAGTTAAA
3112
GCAAAUGCAGUUAAAU


intron1

T

TTATGGCCAGAAAGG

UAUGGCCAGAAAGG





STMN2_

TTTC
1107
ATGATTTGCAAATGCA
3113
AUGAUUUGCAAAUGCA


intron1



GTTAAATTATGGCC

GUUAAAUUAUGGCC





STMN2_

TTTT
1108
CATGATTTGCAAATGC
3114
CAUGAUUUGCAAAUGC


intron1



AGTTAAATTATGGC

AGUUAAAUUAUGGC





STMN2_

TTTT
1109
TCATGATTTGCAAATG
3115
UCAUGAUUUGCAAAUG


intron1



CAGTTAAATTATGG

CAGUUAAAUUAUGG





STMN2_

TTTT
1110
TTCATGATTTGCAAAT
3116
UUCAUGAUUUGCAAAU


intron1



GCAGTTAAATTATG

GCAGUUAAAUUAUG





STMN2_

TTTT
1111
TTTCATGATTTGCAAA
3117
UUUCAUGAUUUGCAAA


intron1



TGCAGTTAAATTAT

UGCAGUUAAAUUAU





STMN2_

GTT
1112
TTTTCATGATTTGCAA
3118
UUUUCAUGAUUUGCAA


intron1

T

ATGCAGTTAAATTA

AUGCAGUUAAAUUA





STMN2_

TTT
1113
ATACTGCAGAAGTAG
3119
AUACUGCAGAAGUAGU


intron1

A

TGTTTTTTTCATGAT

GUUUUUUUCAUGAU





STMN2_

TTTT
1114
AATACTGCAGAAGTA
3120
AAUACUGCAGAAGUAG


intron1



GTGTTTTTTTCATGA

UGUUUUUUUCAUGA





STMN2_

GTT
1115
GTCATATTTGGGGTGG
3121
GUCAUAUUUGGGGUGG


intron1

T

GATTTTTATTTGGA

GAUUUUUAUUUGGA





STMN2_

ATT
1116
CTCTTCCCCGCCAGTC
3122
CUCUUCCCCGCCAGUC


intron1

C

TCGGAGCCTGAGGT

UCGGAGCCUGAGGU





STMN2_

CTT
1117
CCCGCCAGTCTCGGAG
3123
CCCGCCAGUCUCGGAG


intron1

C

CCTGAGGTCTCCCC

CCUGAGGUCUCCCC





STMN2_

CTTT
1118
CGGCAGCTTTCCCTGT
3124
CGGCAGCUUUCCCUGU


intron1



CTCCGCATCCTGCA

CUCCGCAUCCUGCA





STMN2_

TTTC
1119
CAAAATGTCCCTTAAG
3125
CAAAAUGUCCCUUAAG


intron1



CCCATTTAAGGCAA

CCCAUUUAAGGCAA





STMN2_

CTTT
1120
CCAAAATGTCCCTTAA
3126
CCAAAAUGUCCCUUAA


intron1



GCCCATTTAAGGCA

GCCCAUUUAAGGCA





STMN2_

GTT
1121
TAAAGCACTTTCCAAA
3127
UAAAGCACUUUCCAAA


intron1

A

ATGTCCCTTAAGCC

AUGUCCCUUAAGCC





STMN2_

CTT
1122
AACTAGAGAAGAAAT
3128
AACUAGAGAAGAAAUA


intron1

A

AAAAAAAAAAAAGGT

AAAAAAAAAAAGGU





STMN2_

CTT
1123
TTAAACTAGAGAAGA
3129
UUAAACUAGAGAAGAA


intron1

C

AATAAAAAAAAAAAA

AUAAAAAAAAAAAA





STMN2_

TTTC
1124
TTCTTAAACTAGAGAA
3130
UUCUUAAACUAGAGAA


intron1



GAAATAAAAAAAAA

GAAAUAAAAAAAAA





STMN2_

TTTT
1125
CTTCTTAAACTAGAGA
3131
CUUCUUAAACUAGAGA


intron1



AGAAATAAAAAAAA

AGAAAUAAAAAAAA





STMN2_

ATT
1126
TCTTCTTAAACTAGAG
3132
UCUUCUUAAACUAGAG


intron1

T

AAGAAATAAAAAAA

AAGAAAUAAAAAAA





STMN2_

TTTC
1127
CTATTTTCTTCTTAAA
3133
CUAUUUUCUUCUUAAA


intron1



CTAGAGAAGAAATA

CUAGAGAAGAAAUA





STMN2_

CTTT
1128
CCTATTTTCTTCTTAA
3134
CCUAUUUUCUUCUUAA


intron1



ACTAGAGAAGAAAT

ACUAGAGAAGAAAU





STMN2_

TTT
1129
CCCCTTTCCTATTTTCT
3135
CCCCUUUCCUAUUUUC


intron1

A

TCTTAAACTAGAG

UUCUUAAACUAGAG





STMN2_

CTTT
1130
ACCCCTTTCCTATTTT
3136
ACCCCUUUCCUAUUUU


intron1



CTTCTTAAACTAGA

CUUCUUAAACUAGA





STMN2_

CTT
1131
CCTTTACCCCTTTCCT
3137
CCUUUACCCCUUUCCU


intron1

C

ATTTTCTTCTTAAA

AUUUUCUUCUUAAA





STMN2_

TTTC
1132
TCCCACCTTCCCTTTA
3138
UCCCACCUUCCCUUUA


intron1



CCCCTTTCCTATTT

CCCCUUUCCUAUUU





STMN2_

CTTT
1133
CTCCCACCTTCCCTTT
3139
CUCCCACCUUCCCUUU


intron1



ACCCCTTTCCTATT

ACCCCUUUCCUAUU





STMN2_

TTTC
1134
CTTTCTCCCACCTTCC
3140
CUUUCUCCCACCUUCC


intron1



CTTTACCCCTTTCC

CUUUACCCCUUUCC





STMN2_

TTTT
1135
CCTTTCTCCCACCTTC
3141
CCUUUCUCCCACCUUC


intron1



CCTTTACCCCTTTC

CCUUUACCCCUUUC





STMN2_

TTTT
1136
TCCTTTCTCCCACCTT
3143
UCCUUUCUCCCACCUU


intron1



CCCTTTACCCCTTT

CCCUUUACCCCUUU





STMN2_

CTTT
1137
TTCCTTTCTCCCACCTT
3142
UUCCUUUCUCCCACCU


intron1



CCCTTTACCCCTT

UCCCUUUACCCCUU





STMN2_

TTTC
1138
TTTTTCCTTTCTCCCAC
3144
UUUUUCCUUUCUCCCA


intron1



CTTCCCTTTACCC

CCUUCCCUUUACCC





STMN2_

TTTT
1139
CTTTTTCCTTTCTCCCA
3145
CUUUUUCCUUUCUCCC


intron1



CCTTCCCTTTACC

ACCUUCCCUUUACC





STMN2_

ATT
1140
TCTTTTTCCTTTCTCCC
3146
UCUUUUUCCUUUCUCC


intron1

T

ACCTTCCCTTTAC

CACCUUCCCUUUAC





STMN2_

TTT
1141
CAATTTTCTTTTTCCTT
3147
CAAUUUUCUUUUUCCU


intron1

G

TCTCCCACCTTCC

UUCUCCCACCUUCC





STMN2_

CTTT
1142
GCAATTTTCTTTTTCC
3148
GCAAUUUUCUUUUUCC


intron1



TTTCTCCCACCTTC

UUUCUCCCACCUUC





STMN2_

TTT
1143
ACTTTGCAATTTTCTT
3149
ACUUUGCAAUUUUCUU


intron1

G

TTTCCTTTCTCCCA

UUUCCUUUCUCCCA





STMN2_

CTTT
1144
GACTTTGCAATTTTCT
3150
GACUUUGCAAUUUUCU


intron1



TTTTCCTTTCTCCC

UUUUCCUUUCUCCC





STMN2_

TTTC
1145
AAACAGCGGGATGGG
3151
AAACAGCGGGAUGGGA


intron1



ACCGCTTTGACTTTG

CCGCUUUGACUUUG





STMN2_

CTT
1146
AGCCCATTTAAGGCA
3152
AGCCCAUUUAAGGCAA


intron1

A

AACAGTTAAGGTAGC

ACAGUUAAGGUAGC





STMN2_

ATT
1147
AAGGCAAACAGTTAA
3153
AAGGCAAACAGUUAAG


intron1

T

GGTAGCTTCCTCCCC

GUAGCUUCCUCCCC





STMN2_

TTT
1148
AGGCAAACAGTTAAG
3154
AGGCAAACAGUUAAGG


intron1

A

GTAGCTTCCTCCCCT

UAGCUUCCUCCCCU





STMN2_

GTT
1149
AGGTAGCTTCCTCCCC
3155
AGGUAGCUUCCUCCCC


intron1

A

TCACGATTGAGTCC

UCACGAUUGAGUCC





STMN2_

CTT
1150
TAGAGCTCAAGAGAG
3156
UAGAGCUCAAGAGAGG


intron1

C

GAGGTGAGAGGTGGG

AGGUGAGAGGUGGG





STMN2_

TTT
1151
TAAAATATCTCTGAAT
3157
UAAAAUAUCUCUGAAU


intron1

A

GCTTCTAGAGCTCA

GCUUCUAGAGCUCA





STMN2_

CTTT
1152
ATAAAATATCTCTGAA
3158
AUAAAAUAUCUCUGAA


intron1



TGCTTCTAGAGCTC

UGCUUCUAGAGCUC





STMN2_

TTTC
1153
TTTATAAAATATCTCT
3159
UUUAUAAAAUAUCUCU


intron1



GAATGCTTCTAGAG

GAAUGCUUCUAGAG





STMN2_

TTTT
1154
CTTTATAAAATATCTC
3160
CUUUAUAAAAUAUCUC


intron1



TGAATGCTTCTAGA

UGAAUGCUUCUAGA





STMN2_

TTTT
1155
TCTTTATAAAATATCT
3161
UCUUUAUAAAAUAUCU


intron1



CTGAATGCTTCTAG

CUGAAUGCUUCUAG





STMN2_

CTTT
1156
TTCTTTATAAAATATC
3162
UUCUUUAUAAAAUAUC


intron1



TCTGAATGCTTCTA

UCUGAAUGCUUCUA





STMN2_

ATT
1157
ACATCTTTTTCTTTAT
3163
ACAUCUUUUUCUUUAU


intron1

A

AAAATATCTCTGAA

AAAAUAUCUCUGAA





STMN2_

GTT
1158
CCATTAACATCTTTTT
3164
CCAUUAACAUCUUUUU


intron1

A

CTTTATAAAATATC

CUUUAUAAAAUAUC





STMN2_

CTT
1159
CTGGTCCTGTGTTACC
3165
CUGGUCCUGUGUUACC


intron1

C

ATTAACATCTTTTT

AUUAACAUCUUUUU





STMN2_

CTT
1160
TCTGCCCTCCCACCTC
3166
UCUGCCCUCCCACCUCC


intron1

C

CCCCAGAACTGCCC

CCCAGAACUGCCC





STMN2_

TTTC
1161
CATAGACCTCTTCTCT
3167
CAUAGACCUCUUCUCU


intron1



GCCCTCCCACCTCC

GCCCUCCCACCUCC





STMN2_

ATT
1162
CCATAGACCTCTTCTC
3168
CCAUAGACCUCUUCUC


intron1

T

TGCCCTCCCACCTC

UGCCCUCCCACCUC





STMN2_

CTTT
1163
CAAACAGCGGGATGG
3169
CAAACAGCGGGAUGGG


intron1



GACCGCTTTGACTTT

ACCGCUUUGACUUU





STMN2_

TTT
1164
GATTTCCATAGACCTC
3170
GAUUUCCAUAGACCUC


intron1

A

TTCTCTGCCCTCCC

UUCUCUGCCCUCCC





STMN2_

CTT
1165
GCTTTAGATTTCCATA
3171
GCUUUAGAUUUCCAUA


intron1

C

GACCTCTTCTCTGC

GACCUCUUCUCUGC





STMN2_

ATT
1166
TTCGCTTTAGATTTCC
3172
UUCGCUUUAGAUUUCC


intron1

C

ATAGACCTCTTCTC

AUAGACCUCUUCUC





STMN2_

TTT
1167
AAAGAAATTCTTCGCT
3173
AAAGAAAUUCUUCGCU


intron1

A

TTAGATTTCCATAG

UUAGAUUUCCAUAG





STMN2_

TTTT
1168
AAAAGAAATTCTTCG
3174
AAAAGAAAUUCUUCGC


intron1



CTTTAGATTTCCATA

UUUAGAUUUCCAUA





STMN2_

CTTT
1169
TAAAAGAAATTCTTCG
3175
UAAAAGAAAUUCUUCG


intron1



CTTTAGATTTCCAT

CUUUAGAUUUCCAU





STMN2_

CTT
1170
TACCTTTTAAAAGAAA
3176
UACCUUUUAAAAGAAA


intron1

C

TTCTTCGCTTTAGA

UUCUUCGCUUUAGA





STMN2_

CTT
1171
CCCGCTTCTACCTTTT
3177
CCCGCUUCUACCUUUU


intron1

A

AAAAGAAATTCTTC

AAAAGAAAUUCUUC





STMN2_

ATT
1172
TCTACCCATAGGAGG
3178
UCUACCCAUAGGAGGG


intron1

C

GCAACTTACCCGCTT

CAACUUACCCGCUU





STMN2_

TTT
1173
AATATGGAAACAGAA
3179
AAUAUGGAAACAGAAU


intron1

A

TAAATTCTCTACCCA

AAAUUCUCUACCCA





STMN2_

TTTT
1174
AAATATGGAAACAGA
3180
AAAUAUGGAAACAGAA


intron1



ATAAATTCTCTACCC

UAAAUUCUCUACCC





STMN2_

ATT
1175
TAAATATGGAAACAG
3181
UAAAUAUGGAAACAGA


intron1

T

AATAAATTCTCTACC

AUAAAUUCUCUACC





STMN2_

ATT
1176
AGTCCTAATTTTAAAT
3182
AGUCCUAAUUUUAAAU


intron1

G

ATGGAAACAGAATA

AUGGAAACAGAAUA





STMN2_

CTT
1177
CTCCCCTCACGATTGA
3183
CUCCCCUCACGAUUGA


intron1

C

GTCCTAATTTTAAA

GUCCUAAUUUUAAA





STMN2_

CTTT
1178
AGATTTCCATAGACCT
3184
AGAUUUCCAUAGACCU


intron1



CTTCTCTGCCCTCC

CUUCUCUGCCCUCC





STMN2_

TTTC
1179
TTTCAGTTTTATCCTG
3185
UUUCAGUUUUAUCCUG


intron1



AAATTCTGACCAAA

AAAUUCUGACCAAA





STMN2_

GTT
1180
TCTCCATCCCCTCCCC
3186
UCUCCAUCCCCUCCCCC


intron1

C

CCGTCTCCACCCAT

CGUCUCCACCCAU





STMN2_

TTTC
1181
TTCGACGAGACAATA
3187
UUCGACGAGACAAUAC


intron1



CCGTAAAATGTGCCC

CGUAAAAUGUGCCC





STMN2_

TTT
1182
TATACGATTTCATGTC
3188
UAUACGAUUUCAUGUC


intron1

A

ATCTCTATTATTAT

AUCUCUAUUAUUAU





STMN2_

CTTT
1183
ATATACGATTTCATGT
3189
AUAUACGAUUUCAUGU


intron1



CATCTCTATTATTA

CAUCUCUAUUAUUA





STMN2_

TTT
1184
CTTTATATACGATTTC
3190
CUUUAUAUACGAUUUC


intron1

G

ATGTCATCTCTATT

AUGUCAUCUCUAUU





STMN2_

TTTT
1185
GCTTTATATACGATTT
3191
GCUUUAUAUACGAUUU


intron1



CATGTCATCTCTAT

CAUGUCAUCUCUAU





STMN2_

CTTT
1186
TGCTTTATATACGATT
3192
UGCUUUAUAUACGAUU


intron1



TCATGTCATCTCTA

UCAUGUCAUCUCUA





STMN2_

TTT
1187
ACCTCTTTTGCTTTAT
3193
ACCUCUUUUGCUUUAU


intron1

G

ATACGATTTCATGT

AUACGAUUUCAUGU





STMN2_

CTTT
1188
GACCTCTTTTGCTTTA
3194
GACCUCUUUUGCUUUA


intron1



TATACGATTTCATG

UAUACGAUUUCAUG





STMN2_

CTT
1189
AGACTTTGACCTCTTT
3195
AGACUUUGACCUCUUU


intron1

A

TGCTTTATATACGA

UGCUUUAUAUACGA





STMN2_

CTT
1190
ACTTAAGACTTTGACC
3196
ACUUAAGACUUUGACC


intron1

A

TCTTTTGCTTTATA

UCUUUUGCUUUAUA





STMN2_

TTTC
1191
GCGTGGCTTAACTTAA
3197
GCGUGGCUUAACUUAA


intron1



GACTTTGACCTCTT

GACUUUGACCUCUU





STMN2_

ATT
1192
CGCGTGGCTTAACTTA
3198
CGCGUGGCUUAACUUA


intron1

T

AGACTTTGACCTCT

AGACUUUGACCUCU





STMN2_

TTT
1193
GCACTGTCTGACCCAC
3199
GCACUGUCUGACCCAC


intron1

G

AAAACGGAAATTTC

AAAACGGAAAUUUC





STMN2_

ATT
1194
GGCACTGTCTGACCCA
3200
GGCACUGUCUGACCCA


intron1

T

CAAAACGGAAATTT

CAAAACGGAAAUUU





STMN2_

ATT
1195
CCGATATTTGGCACTG
3201
CCGAUAUUUGGCACUG


intron1

G

TCTGACCCACAAAA

UCUGACCCACAAAA





STMN2_

CTT
1196
TGAAATTGCCGATATT
3202
UGAAAUUGCCGAUAUU


intron1

A

TGGCACTGTCTGAC

UGGCACUGUCUGAC





STMN2_

CTT
1197
TCTCTCTGAGCTTATG
3203
UCUCUCUGAGCUUAUG


intron1

G

AAATTGCCGATATT

AAAUUGCCGAUAUU





STMN2_

TTTC
1198
CGGTCATCCTGTGTCT
3204
CGGUCAUCCUGUGUCU


intron1



CCACTGTCTTGTCT

CCACUGUCUUGUCU





STMN2_

TTTT
1199
CCGGTCATCCTGTGTC
3205
CCGGUCAUCCUGUGUC


intron1



TCCACTGTCTTGTC

UCCACUGUCUUGUC





STMN2_

CTTT
1200
TCCGGTCATCCTGTGT
3206
UCCGGUCAUCCUGUGU


intron1



CTCCACTGTCTTGT

CUCCACUGUCUUGU





STMN2_

ATT
1201
CGGATGAAGGCCCTG
3207
CGGAUGAAGGCCCUGA


intron1

G

AATCCAGAATCTTTT

AUCCAGAAUCUUUU





STMN2_

TTTC
1202
ACCCCGGGGCCACTG
3208
ACCCCGGGGCCACUGA


intron1



AGCGCCAGAACCGTG

GCGCCAGAACCGUG





STMN2_

TTTT
1203
CACCCCGGGGCCACT
3209
CACCCCGGGGCCACUG


intron1



GAGCGCCAGAACCGT

AGCGCCAGAACCGU





STMN2_

CTTT
1204
TCACCCCGGGGCCACT
3210
UCACCCCGGGGCCACU


intron1



GAGCGCCAGAACCG

GAGCGCCAGAACCG





STMN2_

CTT
1205
CAGCTGCCACAGGAC
3211
CAGCUGCCACAGGACC


intron1

C

CCCAGGCCCCACCCT

CCAGGCCCCACCCU





STMN2_

TTTC
1206
CCTGTCTCCGCATCCT
3212
CCUGUCUCCGCAUCCU


intron1



GCAACCAAGTCCCG

GCAACCAAGUCCCG





STMN2_

CTTT
1207
CCCTGTCTCCGCATCC
3213
CCCUGUCUCCGCAUCC


intron1



TGCAACCAAGTCCC

UGCAACCAAGUCCC





STMN2_

TTTC
1208
GGCAGCTTTCCCTGTC
3214
GGCAGCUUUCCCUGUC


intron1



TCCGCATCCTGCAA

UCCGCAUCCUGCAA





STMN2_

ATT
1209
CATGTCATCTCTATTA
3215
CAUGUCAUCUCUAUUA


intron1

T

TTATACATACACAT

UUAUACAUACACAU





STMN2_

TTTC
1210
ATGTCATCTCTATTAT
3216
AUGUCAUCUCUAUUAU


intron1



TATACATACACATG

UAUACAUACACAUG





STMN2_

ATT
1211
TTATACATACACATGT
3217
UUAUACAUACACAUGU


intron1

A

CTAGGTTCTAGAAG

CUAGGUUCUAGAAG





STMN2_

ATT
1212
TACATACACATGTCTA
3218
UACAUACACAUGUCUA


intron1

A

GGTTCTAGAAGCTT

GGUUCUAGAAGCUU





STMN2_

GTT
1213
CTTCGACGAGACAAT
3219
CUUCGACGAGACAAUA


intron1

T

ACCGTAAAATGTGCC

CCGUAAAAUGUGCC





STMN2_

CTT
1214
CCTCCCTGCACCGCAC
3220
CCUCCCUGCACCGCACC


intron1

A

CCCAGGACTAGCGG

CCAGGACUAGCGG





STMN2_

CTT
1215
CCCTAAAACAAAGGA
3221
CCCUAAAACAAAGGAG


intron1

G

GCGGAGGTCCTACCC

CGGAGGUCCUACCC





STMN2_

CTT
1216
CCCTCCCTTGCCCTAA
3222
CCCUCCCUUGCCCUAA


intron1

C

AACAAAGGAGCGGA

AACAAAGGAGCGGA





STMN2_

CTT
1217
CTCTCTCCTTCCCCTC
3223
CUCUCUCCUUCCCCUCC


intron1

C

CCTTGCCCTAAAAC

CUUGCCCUAAAAC





STMN2_

CTT
1218
CCCGCCCCTGCAGCTG
3224
CCCGCCCCUGCAGCUGC


intron1

C

CCCACCCGCGCCCT

CCACCCGCGCCCU





STMN2_

CTT
1219
GAAGCCGCTGTCCCTC
3225
GAAGCCGCUGUCCCUC


intron1

C

CACCCCTCCCTGCC

CACCCCUCCCUGCC





STMN2_

ATT
1220
TGCGCCCAGCGCTGCA
3226
UGCGCCCAGCGCUGCA


intron1

G

GGTGCCTCCCCCCG

GGUGCCUCCCCCCG





STMN2_

GTT
1221
CGCACTGGGTGGGGC
3227
CGCACUGGGUGGGGCU


intron1

C

TGTCCGCATTGTGCG

GUCCGCAUUGUGCG





STMN2_

TTTC
1222
GAATGAAGATGCAGC
3228
GAAUGAAGAUGCAGCA


intron1



ACCGGGCGGGGGGGC

CCGGGCGGGGGGGC





STMN2_

CTTT
1223
CGAATGAAGATGCAG
3229
CGAAUGAAGAUGCAGC


intron1



CACCGGGCGGGGGGG

ACCGGGCGGGGGGG





STMN2_

GTT
1224
GGCTCCTGGGTGTCAC
3230
GGCUCCUGGGUGUCAC


intron1

G

GCTGCGCTCCCCAC

GCUGCGCUCCCCAC





STMN2_

CTT
1225
GAAGCCGCGGCGGGG
3231
GAAGCCGCGGCGGGGA


intron1

G

AGTCGGGAGCGGGGA

GUCGGGAGCGGGGA





STMN2_

CTT
1226
GACGAGACAATACCG
3232
GACGAGACAAUACCGU


intron1

C

TAAAATGTGCCCAGT

AAAAUGUGCCCAGU





STMN2_

CTT
1227
AAAGCAGAACAATGA
3233
AAAGCAGAACAAUGAG


intron1

A

GGCCAGCGTGGGGAG

GCCAGCGUGGGGAG





STMN2_

TTTT
1228
CCCATCTCTCTTAAAA
3234
CCCAUCUCUCUUAAAA


intron1



GCAGAACAATGAGG

GCAGAACAAUGAGG





STMN2_

CTTT
1229
TCCCATCTCTCTTAAA
3235
UCCCAUCUCUCUUAAA


intron1



AGCAGAACAATGAG

AGCAGAACAAUGAG





STMN2_

GTT
1230
ACCCACTTTTCCCATC
3236
ACCCACUUUUCCCAUC


intron1

A

TCTCTTAAAAGCAG

UCUCUUAAAAGCAG





STMN2_

CTT
1231
CGAAAAGAAAAATGT
3237
CGAAAAGAAAAAUGUU


intron1

C

TAACCCACTTTTCCC

AACCCACUUUUCCC





STMN2_

TTT
1232
CTTCCGAAAAGAAAA
3238
CUUCCGAAAAGAAAAA


intron1

G

ATGTTAACCCACTTT

UGUUAACCCACUUU





STMN2_

ATT
1233
GCTTCCGAAAAGAAA
3239
GCUUCCGAAAAGAAAA


intron1

T

AATGTTAACCCACTT

AUGUUAACCCACUU





STMN2_

TTT
1234
TCTGTGTCTATGTCTA
3240
UCUGUGUCUAUGUCUA


intron1

A

AACACTCTATGTAA

AACACUCUAUGUAA





STMN2_

CTTT
1235
ATCTGTGTCTATGTCT
3241
AUCUGUGUCUAUGUCU


intron1



AAACACTCTATGTA

AAACACUCUAUGUA





STMN2_

CTT
1236
AAAGAACCCTTTATCT
3242
AAAGAACCCUUUAUCU


intron1

C

GTGTCTATGTCTAA

GUGUCUAUGUCUAA





STMN2_

TTTC
1237
CCGCAAACGATCAAA
3243
CCGCAAACGAUCAAAG


intron1



GGTCTTCAAAGAACC

GUCUUCAAAGAACC





STMN2_

TTTT
1238
CCCGCAAACGATCAA
3244
CCCGCAAACGAUCAAA


intron1



AGGTCTTCAAAGAAC

GGUCUUCAAAGAAC





STMN2_

CTTT
1239
TCCCGCAAACGATCA
3245
UCCCGCAAACGAUCAA


intron1



AAGGTCTTCAAAGAA

AGGUCUUCAAAGAA





STMN2_

GTT
1240
TAGAAGCTTTTCCCGC
3246
UAGAAGCUUUUCCCGC


intron1

C

AAACGATCAAAGGT

AAACGAUCAAAGGU





STMN2_

TTTC
1241
CCATCTCTCTTAAAAG
3247
CCAUCUCUCUUAAAAG


intron1



CAGAACAATGAGGC

CAGAACAAUGAGGC





STMN2_

ATT
1242
TGTAAAGATTACCATA
3248
UGUAAAGAUUACCAUA


intron1

T

GATTTAAAAATGTT

GAUUUAAAAAUGUU





STMN2_

ATT
1243
CTTTCAGTTTTATCCT
3249
CUUUCAGUUUUAUCCU


intron1

T

GAAATTCTGACCAA

GAAAUUCUGACCAA





STMN2_

ATT
1244
ATTGATAAACTACTGC
3250
AUUGAUAAACUACUGC


intron1

A

CATTTCTTTCAGTT

CAUUUCUUUCAGUU





STMN2_

TTTC
1245
TACTATTTATCCACTA
3251
UACUAUUUAUCCACUA


intron1



CAAAATCTCAGAAG

CAAAAUCUCAGAAG





STMN2_

TTTT
1246
CTACTATTTATCCACT
3252
CUACUAUUUAUCCACU


intron1



ACAAAATCTCAGAA

ACAAAAUCUCAGAA





STMN2_

TTTT
1247
TCTACTATTTATCCAC
3253
UCUACUAUUUAUCCAC


intron1



TACAAAATCTCAGA

UACAAAAUCUCAGA





STMN2_

ATT
1248
TTCTACTATTTATCCA
3254
UUCUACUAUUUAUCCA


intron1

T

CTACAAAATCTCAG

CUACAAAAUCUCAG





STMN2_

ATT
1249
CTACTGACATTTTTCT
3255
CUACUGACAUUUUUCU


intron1

A

ACTATTTATCCACT

ACUAUUUAUCCACU





STMN2_

TTT
1250
CTATTACTACTGACAT
3256
CUAUUACUACUGACAU


intron1

G

TTTTCTACTATTTA

UUUUCUACUAUUUA





STMN2_

CTTT
1251
GCTATTACTACTGACA
3257
GCUAUUACUACUGACA


intron1



TTTTTCTACTATTT

UUUUUCUACUAUUU





STMN2_

ATT
1252
GGCTGCTAAATAACTT
3258
GGCUGCUAAAUAACUU


intron1

C

TGCTATTACTACTG

UGCUAUUACUACUG





STMN2_

ATT
1253
AAATATTCGGCTGCTA
3259
AAAUAUUCGGCUGCUA


intron1

A

AATAACTTTGCTAT

AAUAACUUUGCUAU





STMN2_

TTT
1254
AGCATTAAAATATTCG
3260
AGCAUUAAAAUAUUCG


intron1

A

GCTGCTAAATAACT

GCUGCUAAAUAACU





STMN2_

TTTT
1255
AAGCATTAAAATATTC
3261
AAGCAUUAAAAUAUUC


intron1



GGCTGCTAAATAAC

GGCUGCUAAAUAAC





STMN2_

TTTT
1256
TAAGCATTAAAATATT
3262
UAAGCAUUAAAAUAUU


intron1



CGGCTGCTAAATAA

CGGCUGCUAAAUAA





STMN2_

ATT
1257
TTAAGCATTAAAATAT
3263
UUAAGCAUUAAAAUAU


intron1

T

TCGGCTGCTAAATA

UCGGCUGCUAAAUA





STMN2_

TTT
1258
TTTTTAAGCATTAAAA
3264
UUUUUAAGCAUUAAAA


intron1

A

TATTCGGCTGCTAA

UAUUCGGCUGCUAA





STMN2_

CTTT
1259
ATTTTTAAGCATTAAA
3265
AUUUUUAAGCAUUAAA


intron1



ATATTCGGCTGCTA

AUAUUCGGCUGCUA





STMN2_

ATT
1260
CTTTATTTTTAAGCAT
3266
CUUUAUUUUUAAGCAU


intron1

C

TAAAATATTCGGCT

UAAAAUAUUCGGCU





STMN2_

TTT
1261
TTCCTTTATTTTTAAG
3267
UUCCUUUAUUUUUAAG


intron1

A

CATTAAAATATTCG

CAUUAAAAUAUUCG





STMN2_

ATT
1262
ATTCCTTTATTTTTAA
3268
AUUCCUUUAUUUUUAA


intron1

T

GCATTAAAATATTC

GCAUUAAAAUAUUC





STMN2_

TTT
1263
ATTTATTCCTTTATTTT
3269
AUUUAUUCCUUUAUUU


intron1

A

TAAGCATTAAAAT

UUAAGCAUUAAAAU





STMN2_

CTTT
1264
AATTTATTCCTTTATT
3270
AAUUUAUUCCUUUAUU


intron1



TTTAAGCATTAAAA

UUUAAGCAUUAAAA





STMN2_

TTTC
1265
TTTAATTTATTCCTTT
3271
UUUAAUUUAUUCCUUU


intron1



ATTTTTAAGCATTA

AUUUUUAAGCAUUA





STMN2_

TTTT
1266
CTTTAATTTATTCCTTT
3272
CUUUAAUUUAUUCCUU


intron1



ATTTTTAAGGATT

UAUUUUUAAGCAUU





STMN2_

ATT
1267
TCTTTAATTTATTCCTT
3273
UCUUUAAUUUAUUCCU


intron1

T

TATTTTTAAGCAT

UUAUUUUUAAGCAU





STMN2_

ATT
1268
CAATCGATGAAGAAG
3274
CAAUCGAUGAAGAAGU


intron1

T

TAAACAATGATTTTC

AAACAAUGAUUUUC





STMN2_

ATT
1269
AGATGTGCTCTGAAC
3275
AGAUGUGCUCUGAACA


intron1

C

AGGGGGCACATTTCA

GGGGGCACAUUUCA





STMN2_

GTT
1270
TCTGCAGGTGGAGAC
3276
UCUGCAGGUGGAGACU


intron1

C

TCTGATATTCAGATG

CUGAUAUUCAGAUG





STMN2_

TTT
1271
CTCGCTAAGCTGCATG
3277
CUCGCUAAGCUGCAUG


intron1

A

TTCTCTGCAGGTGG

UUCUCUGCAGGUGG





STMN2_

ATT
1272
ATCCACTACAAAATCT
3278
AUCCACUACAAAAUCU


intron1

T

CAGAAGTAACATAA

CAGAAGUAACAUAA





STMN2_

TTTT
1273
ACTCGCTAAGCTGCAT
3279
ACUCGCUAAGCUGCAU


intron1



GTTCTCTGCAGGTG

GUUCUCUGCAGGUG





STMN2_

TTT
1274
TCCACTACAAAATCTC
3280
UCCACUACAAAAUCUC


intron1

A

AGAAGTAACATAAA

AGAAGUAACAUAAA





STMN2_

ATT
1275
ACCAGGGCGTGTATCT
3281
ACCAGGGCGUGUAUCU


intron1

A

ACTTTCAGATTATG

ACUUUCAGAUUAUG





STMN2_

ATT
1276
CCCTCTAGTGTGGTGA
3282
CCCUCUAGUGUGGUGA


intron1

G

AAAGTTAATGCAGA

AAAGUUAAUGCAGA





STMN2_

TTT
1277
GAGAACATGATTGCC
3283
GAGAACAUGAUUGCCC


intron1

A

CTCTAGTGTGGTGAA

UCUAGUGUGGUGAA





STMN2_

TTTT
1278
AGAGAACATGATTGC
3284
AGAGAACAUGAUUGCC


intron1



CCTCTAGTGTGGTGA

CUCUAGUGUGGUGA





STMN2_

TTTT
1279
TAGAGAACATGATTG
3285
UAGAGAACAUGAUUGC


intron1



CCCTCTAGTGTGGTG

CCUCUAGUGUGGUG





STMN2_

TTTT
1280
TTAGAGAACATGATT
3286
UUAGAGAACAUGAUUG


intron1



GCCCTCTAGTGTGGT

CCCUCUAGUGUGGU





STMN2_

CTTT
1281
TTTAGAGAACATGATT
3287
UUUAGAGAACAUGAUU


intron1



GCCCTCTAGTGTGG

GCCCUCUAGUGUGG





STMN2_

TTT
1282
CATCAATCATCTGCTT
3288
CAUCAAUCAUCUGCUU


intron1

A

TTTTAGAGAACATG

UUUUAGAGAACAUG





STMN2_

GTT
1283
ACATCAATCATCTGCT
3289
ACAUCAAUCAUCUGCU


intron1

T

TTTTTAGAGAACAT

UUUUUAGAGAACAU





STMN2_

TTT
1284
GAACTAGGTTTACATC
3290
GAACUAGGUUUACAUC


intron1

G

AATCATCTGCTTTT

AAUCAUCUGCUUUU





STMN2_

ATT
1285
GGAACTAGGTTTACAT
3291
GGAACUAGGUUUACAU


intron1

T

CAATCATCTGCTTT

CAAUCAUCUGCUUU





STMN2_

GTT
1286
ATATTTGGAACTAGGT
3292
AUAUUUGGAACUAGGU


intron1

A

TTACATCAATCATC

UUACAUCAAUCAUC





STMN2_

ATT
1287
AACAGTTAATATTTGG
3293
AACAGUUAAUAUUUGG


intron1

A

AACTAGGTTTACAT

AACUAGGUUUACAU





STMN2_

TTT
1288
TTAAACAGTTAATATT
3294
UUAAACAGUUAAUAUU


intron1

A

TGGAACTAGGTTTA

UGGAACUAGGUUUA





STMN2_

TTTT
1289
ATTAAACAGTTAATAT
3295
AUUAAACAGUUAAUAU


intron1



TTGGAACTAGGTTT

UUGGAACUAGGUUU





STMN2_

ATT
1290
TATTAAACAGTTAATA
3296
UAUUAAACAGUUAAUA


intron1

T

TTTGGAACTAGGTT

UUUGGAACUAGGUU





STMN2_

GTT
1291
CTGGTAAAAGAAAAG
3297
CUGGUAAAAGAAAAGA


intron1

C

ATTTTATTAAACAGT

UUUUAUUAAACAGU





STMN2_

CTT
1292
AATGTTCCTGGTAAAA
3298
AAUGUUCCUGGUAAAA


intron1

G

GAAAAGATTTTATT

GAAAAGAUUUUAUU





STMN2_

ATT
1293
AATAAACACTTGAAT
3299
AAUAAACACUUGAAUG


intron1

G

GTTCCTGGTAAAAGA

UUCCUGGUAAAAGA





STMN2_

CTT
1294
TTGAATAAACACTTGA
3300
UUGAAUAAACACUUGA


intron1

A

ATGTTCCTGGTAAA

AUGUUCCUGGUAAA





STMN2_

GTT
1295
ATCCACTAGGGTAAA
3301
AUCCACUAGGGUAAAG


intron1

C

GCATGGCATCAGCTT

CAUGGCAUCAGCUU





STMN2_

ATT
1296
TACAAGCTCTGTTCAT
3302
UACAAGCUCUGUUCAU


intron1

G

CCACTAGGGTAAAG

CCACUAGGGUAAAG





STMN2_

CTT
1297
AAAATTGTACAAGCT
3303
AAAAUUGUACAAGCUC


intron1

G

CTGTTCATCCACTAG

UGUUCAUCCACUAG





STMN2_

TTTC
1298
ATCCTGTCTCCTTGAA
3304
AUCCUGUCUCCUUGAA


intron1



AATTGTACAAGCTC

AAUUGUACAAGCUC





STMN2_

ATT
1299
CATCCTGTCTCCTTGA
3305
CAUCCUGUCUCCUUGA


intron1

T

AAATTGTACAAGCT

AAAUUGUACAAGCU





STMN2_

ATT
1300
TGACCACTCATTTCAT
3306
UGACCACUCAUUUCAU


intron1

A

CCTGTCTCCTTGAA

CCUGUCUCCUUGAA





STMN2_

TTTC
1301
AGATTATGACCACTCA
3307
AGAUUAUGACCACUCA


intron1



TTTCATCCTGTCTC

UUUCAUCCUGUCUC





STMN2_

CTTT
1302
CAGATTATGACCACTC
3308
CAGAUUAUGACCACUC


intron1



ATTTCATCCTGTCT

AUUUCAUCCUGUCU





STMN2_

ATT
1303
TAATAACAATGTAAT
3309
UAAUAACAAUGUAAUA


intron1

A

AAAACTGAGAAGTAA

AAACUGAGAAGUAA





STMN2_

GTT
1304
TACTCGCTAAGCTGCA
3310
UACUCGCUAAGCUGCA


intron1

T

TGTTCTCTGCAGGT

UGUUCUCUGCAGGU





STMN2_

TTT
1305
GTACACCTCCTCAGTA
3311
GUACACCUCCUCAGUA


intron1

G

TCACATACCTGCCT

UCACAUACCUGCCU





STMN2_

TTTT
1306
GGTACACCTCCTCAGT
3312
GGUACACCUCCUCAGU


intron1



ATCACATACCTGCC

AUCACAUACCUGCC





STMN2_

ATT
1307
CATAAAATGTAATCA
3313
CAUAAAAUGUAAUCAA


intron1

A

AAAAATAATTCTATC

AAAAUAAUUCUAUC





STMN2_

ATT
1308
GAATTACATAAAATG
3314
GAAUUACAUAAAAUGU


intron1

A

TAATCAAAAAATAAT

AAUCAAAAAAUAAU





STMN2_

TTT
1309
TAGCTGGATTAGAATT
3315
UAGCUGGAUUAGAAUU


intron1

A

ACATAAAATGTAAT

ACAUAAAAUGUAAU





STMN2_

TTTT
1310
ATAGCTGGATTAGAA
3316
AUAGCUGGAUUAGAAU


intron1



TTACATAAAATGTAA

UACAUAAAAUGUAA





STMN2_

ATT
1311
TATAGCTGGATTAGA
3317
UAUAGCUGGAUUAGAA


intron1

T

ATTACATAAAATGTA

UUACAUAAAAUGUA





STMN2_

ATT
1312
AATATTTTATAGCTGG
3318
AAUAUUUUAUAGCUGG


intron1

A

ATTAGAATTACATA

AUUAGAAUUACAUA





STMN2_

TTT
1313
AGGAACACAGTAATA
3319
AGGAACACAGUAAUAU


intron1

G

TGACACTATTAAATA

GACACUAUUAAAUA





STMN2_

GTT
1314
GAGGAACACAGTAAT
3320
GAGGAACACAGUAAUA


intron1

T

ATGACACTATTAAAT

UGACACUAUUAAAU





STMN2_

ATT
1315
ATATGCACATCAAAG
3321
AUAUGCACAUCAAAGU


intron1

C

TTTGAGGAACACAGT

UUGAGGAACACAGU





STMN2_

TTT
1316
ATGAAAATCAAAGGT
3322
AUGAAAAUCAAAGGUA


intron1

A

AATTCATATGCACAT

AUUCAUAUGCACAU





STMN2_

TTTT
1317
AATGAAAATCAAAGG
3323
AAUGAAAAUCAAAGGU


intron1



TAATTCATATGCACA

AAUUCAUAUGCACA





STMN2_

ATT
1318
TAATGAAAATCAAAG
3324
UAAUGAAAAUCAAAGG


intron1

T

GTAATTCATATGCAC

UAAUUCAUAUGCAC





STMN2_

TTT
1319
CATTTTAATGAAAATC
3325
CAUUUUAAUGAAAAUC


intron1

G

AAAGGTAATTCATA

AAAGGUAAUUCAUA





STMN2_

ATT
1320
GCATTTTAATGAAAAT
3326
GCAUUUUAAUGAAAAU


intron1

T

CAAAGGTAATTCAT

CAAAGGUAAUUCAU





STMN2_

ATT
1321
AATCAGAATTTGCATT
3327
AAUCAGAAUUUGCAUU


intron1

G

TTAATGAAAATCAA

UUAAUGAAAAUCAA





STMN2_

GTT
1322
GGAAGACAGAATGTC
3328
GGAAGACAGAAUGUCU


intron1

C

TGCCTCAAGCCAGAT

GCCUCAAGCCAGAU





STMN2_

CTT
1323
TTCGGAAGACAGAAT
3329
UUCGGAAGACAGAAUG


intron1

G

GTCTGCCTCAAGCCA

UCUGCCUCAAGCCA





STMN2_

TTT
1324
GTGGTCAGAATCAGC
3330
GUGGUCAGAAUCAGCA


intron1

A

ATCATCTGGGAGCTT

UCAUCUGGGAGCUU





STMN2_

GTT
1325
AGTGGTCAGAATCAG
3331
AGUGGUCAGAAUCAGC


intron1

T

CATCATCTGGGAGCT

AUCAUCUGGGAGCU





STMN2_

GTT
1326
ATATCCCTAAAACTGA
3332
AUAUCCCUAAAACUGA


intron1

A

TGTGTTTAGTGGTC

UGUGUUUAGUGGUC





STMN2_

ATT
1327
CAAGTTAATATCCCTA
3333
CAAGUUAAUAUCCCUA


intron1

A

AAACTGATGTGTTT

AAACUGAUGUGUUU





STMN2_

CTT
1328
CCAGGAGGGATACCT
3334
CCAGGAGGGAUACCUG


intron1

A

GTATATTACAAGTTA

UAUAUUACAAGUUA





STMN2_

GTT
1329
AGACATAATACCAGA
3335
AGACAUAAUACCAGAG


intron1

A

GCTTACCAGGAGGGA

CUUACCAGGAGGGA





STMN2_

TTT
1330
AAAATGTTAAGACAT
3336
AAAAUGUUAAGACAUA


intron1

A

AATACCAGAGCTTAC

AUACCAGAGCUUAC





STMN2_

ATT
1331
AAAAATGTTAAGACA
3337
AAAAAUGUUAAGACAU


intron1

T

TAATACCAGAGCTTA

AAUACCAGAGCUUA





STMN2_

ATT
1332
CCATAGATTTAAAAAT
3338
CCAUAGAUUUAAAAAU


intron1

A

GTTAAGACATAATA

GUUAAGACAUAAUA





STMN2_

TTT
1333
TAAAGATTACCATAG
3339
UAAAGAUUACCAUAGA


intron1

G

ATTTAAAAATGTTAA

UUUAAAAAUGUUAA





STMN2_

ATT
1334
TATCAATGCATATTTA
3340
UAUCAAUGCAUAUUUA


intron1

C

AAAAATCCACTTTT

AAAAAUCCACUUUU





STMN2_

ATT
1335
AAAAAATCCACTTTTG
3341
AAAAAAUCCACUUUUG


intron1

T

ATGATACCCAAAAT

AUGAUACCCAAAAU





STMN2_

TTT
1336
AAAAATCCACTTTTGA
3342
AAAAAUCCACUUUUGA


intron1

A

TGATACCCAAAATT

UGAUACCCAAAAUU





STMN2_

CTTT
1337
TGATGATACCCAAAA
3343
UGAUGAUACCCAAAAU


intron1



TTAGTTTATACTTAT

UAGUUUAUACUUAU





STMN2_

TTTT
1338
TGGTACACCTCCTCAG
3344
UGGUACACCUCCUCAG


intron1



TATCACATACCTGC

UAUCACAUACCUGC





STMN2_

GTT
1339
TTGGTACACCTCCTCA
3345
UUGGUACACCUCCUCA


intron1

T

GTATCACATACCTG

GUAUCACAUACCUG





STMN2_

CTT
1340
GAAGATGGGAAAAAT
3346
GAAGAUGGGAAAAAUA


intron1

A

AACAGCAGTCAGTTT

ACAGCAGUCAGUUU





STMN2_

TTT
1341
AATGGAAAAGAAAGA
3347
AAUGGAAAAGAAAGAC


intron1

A

CAGACTTAGAAGATG

AGACUUAGAAGAUG





STMN2_

CTTT
1342
AAATGGAAAAGAAAG
3348
AAAUGGAAAAGAAAGA


intron1



ACAGACTTAGAAGAT

CAGACUUAGAAGAU





STMN2_

TTT
1343
AAAAGGTATCTTTAA
3349
AAAAGGUAUCUUUAAA


intron1

A

ATGGAAAAGAAAGAC

UGGAAAAGAAAGAC





STMN2_

ATT
1344
AAAAAGGTATCTTTA
3350
AAAAAGGUAUCUUUAA


intron1

T

AATGGAAAAGAAAGA

AUGGAAAAGAAAGA





STMN2_

ATT
1345
GATTTAAAAAGGTAT
3351
GAUUUAAAAAGGUAUC


intron1

A

CTTTAAATGGAAAAG

UUUAAAUGGAAAAG





STMN2_

ATT
1346
GATTAGATTTAAAAA
3352
GAUUAGAUUUAAAAAG


intron1

G

GGTATCTTTAAATGG

GUAUCUUUAAAUGG





STMN2_

ATT
1347
AAATCACATTGGATTA
3353
AAAUCACAUUGGAUUA


intron1

G

GATTTAAAAAGGTA

GAUUUAAAAAGGUA





STMN2_

GTT
1348
AAATCTGATAAAACT
3354
AAAUCUGAUAAAACUA


intron1

G

AGATTGAAATCACAT

GAUUGAAAUCACAU





STMN2_

ATT
1349
TTGAAATCTGATAAA
3355
UUGAAAUCUGAUAAAA


intron1

G

ACTAGATTGAAATCA

CUAGAUUGAAAUCA





STMN2_

TTTC
1350
TAATAAACAGAAAAC
3356
UAAUAAACAGAAAACC


intron1



CACTACAAGGAGATG

ACUACAAGGAGAUG





STMN2_

GTT
1351
ATGCAGACACCGAGG
3357
AUGCAGACACCGAGGU


intron1

A

TTTTCCAATGGACAG

UUUCCAAUGGACAG





STMN2_

TTTT
1352
CTAATAAACAGAAAA
3358
CUAAUAAACAGAAAAC


intron1



CCACTACAAGGAGAT

CACUACAAGGAGAU





STMN2_

ATT
1353
ACATCGATTTTCTAAT
3359
ACAUCGAUUUUCUAAU


intron1

A

AAACAGAAAACCAC

AAACAGAAAACCAC





STMN2_

GTT
1354
AAATTAACATCGATTT
3360
AAAUUAACAUCGAUUU


intron1

A

TCTAATAAACAGAA

UCUAAUAAACAGAA





STMN2_

CTT
1355
GTTAAAATTAACATCG
3361
GUUAAAAUUAACAUCG





intron1

C

ATTTTCTAATAAAC

AUUUUCUAAUAAAC


STMN2_

CTT
1356
CTTCGTTAAAATTAAC
3362
CUUCGUUAAAAUUAAC





intron1

A

ATCGATTTTCTAAT

AUCGAUUUUCUAAU


STMN2_

CTT
1357
TTACTTCGTTAAAATT
3363
UUACUUCGUUAAAAUU


intron1

C

AACATCGATTTTCT

AACAUCGAUUUUCU





STMN2_

TTTC
1358
TTCTTACTTCGTTAAA
3364
UUCUUACUUCGUUAAA


intron1



ATTAACATCGATTT

AUUAACAUCGAUUU





STMN2_

ATT
1359
CTTCTTACTTCGTTAA
3365
CUUCUUACUUCGUUAA


intron1

T

AATTAACATCGATT

AAUUAACAUCGAUU





STMN2_

CTT
1360
TATATTTCTTCTTACTT
3366
UAUAUUUCUUCUUACU


intron1

A

CGTTAAAATTAAC

UCGUUAAAAUUAAC





STMN2_

TTT
1361
TACTTATATATTTCTT
3367
UACUUAUAUAUUUCUU





intron1

A

CTTACTTCGTTAAA

CUUACUUCGUUAAA


STMN2_

GTT
1362
ATACTTATATATTTCT
3368
AUACUUAUAUAUUUCU


intron1

T

TCTTACTTCGTTAA

UCUUACUUCGUUAA





STMN2_

ATT
1363
GTTTATACTTATATAT
3369
GUUUAUACUUAUAUAU


intron1

A

TTCTTCTTACTTCG

UUCUUCUUACUUCG





STMN2_

TTT
1364
ATGATACCCAAAATT
3370
AUGAUACCCAAAAUUA


intron1

G

AGTTTATACTTATAT

GUUUAUACUUAUAU





STMN2_

TTTT
1365
GATGATACCCAAAAT
3371
GAUGAUACCCAAAAUU


intron1



TAGTTTATACTTATA

AGUUUAUACUUAUA





STMN2_

ATT
1366
TCTAATAAACAGAAA
3372
UCUAAUAAACAGAAAA


intron1

T

ACCACTACAAGGAGA

CCACUACAAGGAGA





STMN2_

GTT
1367
TCCAATGGACAGAAC
3373
UCCAAUGGACAGAACC


intron1

T

CAGTCTAGGTTCTGA

AGUCUAGGUUCUGA





STMN2_

TTTT
1368
CCAATGGACAGAACC
3374
CCAAUGGACAGAACCA


intron1



AGTCTAGGTTCTGAA

GUCUAGGUUCUGAA





STMN2_

TTTC
1369
CAATGGACAGAACCA
3375
CAAUGGACAGAACCAG


intron1



GTCTAGGTTCTGAAA

UCUAGGUUCUGAAA





STMN2_

TTTT
1370
AGAATAGAATAATTT
3376
AGAAUAGAAUAAUUUA


intron1



ACTACAAATCTGTAA

CUACAAAUCUGUAA





STMN2_

CTTT
1371
TAGAATAGAATAATTT
3377
UAGAAUAGAAUAAUUU


intron1



ACTACAAATCTGTA

ACUACAAAUCUGUA





STMN2_

TTTC
1372
TCTTTTAGAATAGAAT
3378
UCUUUUAGAAUAGAAU


intron1



AATTTACTACAAAT

AAUUUACUACAAAU





STMN2_

ATT
1373
CTCTTTTAGAATAGAA
3379
CUCUUUUAGAAUAGAA


intron1

T

TAATTTACTACAAA

UAAUUUACUACAAA





STMN2_

ATT
1374
ATGAGGTAATAGCTG
3380
AUGAGGUAAUAGCUGU


intron1

A

TAACAATAAAAACAC

AACAAUAAAAACAC





STMN2_

TTT
1375
CTAAAAATATTAATG
3381
CUAAAAAUAUUAAUGA


intron1

G

AGGTAATAGCTGTAA

GGUAAUAGCUGUAA





STMN2_

GTT
1376
GCTAAAAATATTAAT
3382
GCUAAAAAUAUUAAUG


intron1

T

GAGGTAATAGCTGTA

AGGUAAUAGCUGUA





STMN2_

TTTC
1377
AATGCAACAAATAAA
3383
AAUGCAACAAAUAAAA


intron1



AGTTTGCTAAAAATA

GUUUGCUAAAAAUA





STMN2_

CTTT
1378
CAATGCAACAAATAA
3384
CAAUGCAACAAAUAAA


intron1



AAGTTTGCTAAAAAT

AGUUUGCUAAAAAU





STMN2_

ATT
1379
AAACTGCTTTCAATGC
3385
AAACUGCUUUCAAUGC


intron1

A

AACAAATAAAAGTT

AACAAAUAAAAGUU





STMN2_

TTT
1380
AAAAATAAAAACCCA
3386
AAAAAUAAAAACCCAA


intron1

G

AAGTAATTAAAACTG

AGUAAUUAAAACUG





STMN2_

ATT
1381
GAAAAATAAAAACCC
3387
GAAAAAUAAAAACCCA


intron1

T

AAAGTAATTAAAACT

AAGUAAUUAAAACU





STMN2_

ATT
1382
GTAATTTGAAAAATA
3388
GUAAUUUGAAAAAUAA


intron1

A

AAAACCCAAAGTAAT

AAACCCAAAGUAAU





STMN2_

ATT
1383
CACCATCTATCCATTA
3389
CACCAUCUAUCCAUUA


intron1

C

GTAATTTGAAAAAT

GUAAUUUGAAAAAU





STMN2_

CTT
1384
TTCCACCATCTATCCA
3390
UUCCACCAUCUAUCCA


intron1

A

TTAGTAATTTGAAA

UUAGUAAUUUGAAA





STMN2_

ATT
1385
AATGCTTATTCCACCA
3391
AAUGCUUAUUCCACCA


intron1

A

TCTATCCATTAGTA

UCUAUCCAUUAGUA





STMN2_

ATT
1386
TGCCAAATGATTAAAT
3392
UGCCAAAUGAUUAAAU


intron1

G

GCTTATTCCACCAT

GCUUAUUCCACCAU





STMN2_

TTT
1387
ATGGAAGTCATATTGT
3393
AUGGAAGUCAUAUUGU


intron1

G

GCCAAATGATTAAA

GCCAAAUGAUUAAA





STMN2_

ATT
1388
GATGGAAGTCATATT
3394
GAUGGAAGUCAUAUUG


intron1

T

GTGCCAAATGATTAA

UGCCAAAUGAUUAA





STMN2_

TTT
1389
ATCACTGAGAATGAG
3395
AUCACUGAGAAUGAGC


intron1

A

CTATTTGATGGAAGT

UAUUUGAUGGAAGU





STMN2_

TTTT
1390
AATCACTGAGAATGA
3396
AAUCACUGAGAAUGAG


intron1



GCTATTTGATGGAAG

CUAUUUGAUGGAAG





STMN2_

TTTT
1391
TAATCACTGAGAATG
3397
UAAUCACUGAGAAUGA


intron1



AGCTATTTGATGGAA

GCUAUUUGAUGGAA





STMN2_

TTTT
1392
TTAATCACTGAGAATG
3398
UUAAUCACUGAGAAUG


intron1



AGCTATTTGATGGA

AGCUAUUUGAUGGA





STMN2_

ATT
1393
TTTAATCACTGAGAAT
3399
UUUAAUCACUGAGAAU


intron1

T

GAGCTATTTGATGG

GAGCUAUUUGAUGG





STMN2_

CTT
1394
TAGCATTTTTTAATCA
3400
UAGCAUUUUUUAAUCA


intron1

G

CTGAGAATGAGCTA

CUGAGAAUGAGCUA





STMN2_

ATT
1395
TAGCCTCTTGTAGCAT
3401
UAGCCUCUUGUAGCAU


intron1

G

TTTTTAATCACTGA

UUUUUAAUCACUGA





STMN2_

TTTC
1396
CTGAATCTGAGTAAAT
3402
CUGAAUCUGAGUAAAU


intron1



TGTAGCCTCTTGTA

UGUAGCCUCUUGUA





STMN2_

TTT
1397
GAATAGAATAATTTA
3403
GAAUAGAAUAAUUUAC


intron1

A

CTACAAATCTGTAAG

UACAAAUCUGUAAG





STMN2_

ATT
1398
ACTACAAATCTGTAA
3404
ACUACAAAUCUGUAAG


intron1

T

GTCACATTATTGTAA

UCACAUUAUUGUAA





STMN2_

TTT
1399
CTACAAATCTGTAAGT
3405
CUACAAAUCUGUAAGU


intron1

A

CACATTATTGTAAA

CACAUUAUUGUAAA





STMN2_

ATT
1400
TTGTAAAAAAAAACC
3406
UUGUAAAAAAAAACCA


intron1

A

ATTGTGAATTTTGAC

UUGUGAAUUUUGAC





STMN2_

CTT
1401
CTCACCTGGTATAAAC
3407
CUCACCUGGUAUAAAC


intron1

A

TAAATACATGAGAT

UAAAUACAUGAGAU





STMN2_

ATT
1402
CAGGCTCAGCTTACTC
3408
CAGGCUCAGCUUACUC


intron1

G

ACCTGGTATAAACT

ACCUGGUAUAAACU





STMN2_

TTT
1403
TTGCAGGCTCAGCTTA
3409
UUGCAGGCUCAGCUUA


intron1

A

CTCACCTGGTATAA

CUCACCUGGUAUAA





STMN2_

GTT
1404
ATTGCAGGCTCAGCTT
3410
AUUGCAGGCUCAGCUU


intron1

T

ACTCACCTGGTATA

ACUCACCUGGUAUA





STMN2_

GTT
1405
CACTGGGACAGAGAG
3411
CACUGGGACAGAGAGU


intron1

A

TGTTTATTGCAGGCT

GUUUAUUGCAGGCU





STMN2_

ATT
1406
TAGCTACCTGCGACGT
3412
UAGCUACCUGCGACGU


intron1

C

GTTACACTGGGACA

GUUACACUGGGACA





STMN2_

TTT
1407
TCCTATCATTCTAGCT
3413
UCCUAUCAUUCUAGCU


intron1

A

ACCTGCGACGTGTT

ACCUGCGACGUGUU





STMN2_

ATT
1408
ATCCTATCATTCTAGC
3414
AUCCUAUCAUUCUAGC


intron1

T

TACCTGCGACGTGT

UACCUGCGACGUGU





STMN2_

ATT
1409
ATTTATCCTATCATTC
3415
AUUUAUCCUAUCAUUC


intron1

A

TAGCTACCTGCGAC

UAGCUACCUGCGAC





STMN2_

TTT
1410
ACGTGCATAGACAAA
3416
ACGUGCAUAGACAAAC


intron1

A

CACCACAAGGTCTAT

ACCACAAGGUCUAU





STMN2_

TTTT
1411
AACGTGCATAGACAA
3417
AACGUGCAUAGACAAA


intron1



ACACCACAAGGTCTA

CACCACAAGGUCUA





STMN2_

ATT
1412
TAACGTGCATAGACA
3418
UAACGUGCAUAGACAA


intron1

T

AACACCACAAGGTCT

ACACCACAAGGUCU





STMN2_

TTTC
1413
TCTCAGAGAATTTTAA
3419
UCUCAGAGAAUUUUAA


intron1



CGTGCATAGACAAA

CGUGCAUAGACAAA





STMN2_

ATT
1414
CCTGAATCTGAGTAA
3420
CCUGAAUCUGAGUAAA


intron1

T

ATTGTAGCCTCTTGT

UUGUAGCCUCUUGU





STMN2_

CTTT
1415
CTCTCAGAGAATTTTA
3421
CUCUCAGAGAAUUUUA


intron1



ACGTGCATAGACAA

ACGUGCAUAGACAA





STMN2_

TTTT
1416
AAAATATACTTTCTCT
3422
AAAAUAUACUUUCUCU


intron1



CAGAGAATTTTAAC

CAGAGAAUUUUAAC





STMN2_

ATT
1417
TAAAATATACTTTCTC
3423
UAAAAUAUACUUUCUC


intron1

T

TCAGAGAATTTTAA

UCAGAGAAUUUUAA





STMN2_

ATT
1418
TCATTTTAAAATATAC
3424
UCAUUUUAAAAUAUAC


intron1

A

TTTCTCTCAGAGAA

UUUCUCUCAGAGAA





STMN2_

CTT
1419
ATTATCATTTTAAAAT
3425
AUUAUCAUUUUAAAAU


intron1

A

ATACTTTCTCTCAG

AUACUUUCUCUCAG





STMN2_

TTT
1420
ATAGCACAAATGTCC
3426
AUAGCACAAAUGUCCA


intron1

A

AATCTTAATTATCAT

AUCUUAAUUAUCAU





STMN2_

TTTT
1421
AATAGCACAAATGTC
3427
AAUAGCACAAAUGUCC


intron1



CAATCTTAATTATCA

AAUCUUAAUUAUCA





STMN2_

ATT
1422
TAATAGCACAAATGT
3428
UAAUAGCACAAAUGUC


intron1

T

CCAATCTTAATTATC

CAAUCUUAAUUAUC





STMN2_

GTT
1423
TAGATTTTAATAGCAC
3429
UAGAUUUUAAUAGCAC


intron1

G

AAATGTCCAATCTT

AAAUGUCCAAUCUU





STMN2_

TTT
1424
ACTAAAGTTGTAGATT
3430
ACUAAAGUUGUAGAUU


intron1

G

TTAATAGCACAAAT

UUAAUAGCACAAAU





STMN2_

TTTT
1425
GACTAAAGTTGTAGA
3431
GACUAAAGUUGUAGAU


intron1



TTTTAATAGCACAAA

UUUAAUAGCACAAA





STMN2_

ATT
1426
TGACTAAAGTTGTAG
3432
UGACUAAAGUUGUAGA


intron1

T

ATTTTAATAGCACAA

UUUUAAUAGCACAA





STMN2_

ATT
1427
TGAATTTTGACTAAAG
3433
UGAAUUUUGACUAAAG


intron1

G

TTGTAGATTTTAAT

UUGUAGAUUUUAAU





STMN2_

ATT
1428
TAAAAAAAAACCATT
3434
UAAAAAAAAACCAUUG


intron1

G

GTGAATTTTGACTAA

UGAAUUUUGACUAA





STMN2_

TTT
1429
AAATATACTTTCTCTC
3435
AAAUAUACUUUCUCUC


intron1

A

AGAGAATTTTAACG

AGAGAAUUUUAACG





STMN2_

ATT
1430
ATAAACTACTGCCATT
3436
AUAAACUACUGCCAUU


intron1

G

TCTTTCAGTTTTAT

UCUUUCAGUUUUAU





STMN2_

CTT
1431
TGGCACTCTGAAAGG
3437
UGGCACUCUGAAAGGA


intron1

A

ACATTTCCTGAATCT

CAUUUCCUGAAUCU





STMN2_

TTT
1432
TTATATGAATCAGCCT
3438
UUAUAUGAAUCAGCCU


intron1

A

TATGGCACTCTGAA

UAUGGCACUCUGAA





STMN2_

CTTT
1433
TTTCAGCCTCCTGTGA
3439
UUUCAGCCUCCUGUGA


intron1



GCAATGAGCTACCA

GCAAUGAGCUACCA





STMN2_

CTT
1434
CTCCTGCTCGGAGGCC
3440
CUCCUGCUCGGAGGCC


intron1

C

AGCTTTTTTCAGCC

AGCUUUUUUCAGCC





STMN2_

TTT
1435
TGCTCTGAGCTTCCTC
3441
UGCUCUGAGCUUCCUC


intron1

G

CTGCTCGGAGGCCA

CUGCUCGGAGGCCA





STMN2_

GTT
1436
GTGCTCTGAGCTTCCT
3442
GUGCUCUGAGCUUCCU


intron1

T

CCTGCTCGGAGGCC

CCUGCUCGGAGGCC





STMN2_

GTT
1437
GCTATCAGCAGCTCCC
3443
GCUAUCAGCAGCUCCC


intron1

C

AGTGGCCACGCCCA

AGUGGCCACGCCCA





STMN2_

CTT
1438
CCACGACCAAAAAAG
3444
CCACGACCAAAAAAGA


intron1

C

AAACTGGTGTGAGCT

AACUGGUGUGAGCU





STMN2_

TTTC
1439
TTCCCACGACCAAAA
3445
UUCCCACGACCAAAAA


intron1



AAGAAACTGGTGTGA

AGAAACUGGUGUGA





STMN2_

TTTT
1440
CTTCCCACGACCAAAA
3446
CUUCCCACGACCAAAA


intron1



AAGAAACTGGTGTG

AAGAAACUGGUGUG





STMN2_

TTTT
1441
TCTTCCCACGACCAAA
3447
UCUUCCCACGACCAAA


intron1



AAAGAAACTGGTGT

AAAGAAACUGGUGU





STMN2_

GTT
1442
TTCTTCCCACGACCAA
3448
UUCUUCCCACGACCAA


intron1

T

AAAAGAAACTGGTG

AAAAGAAACUGGUG





STMN2_

CTT
1443
TGACAACAGGATAAT
3449
UGACAACAGGAUAAUA


intron1

G

ATGTGTTTTTCTTCC

UGUGUUUUUCUUCC





STMN2_

TTTC
1444
ATATAAGGTCACAGA
3450
AUAUAAGGUCACAGAU


intron1



TCTTGTGACAACAGG

CUUGUGACAACAGG





STMN2_

TTTT
1445
CATATAAGGTCACAG
3451
CAUAUAAGGUCACAGA


intron1



ATCTTGTGACAACAG

UCUUGUGACAACAG





STMN2_

TTTT
1446
TCATATAAGGTCACA
3452
UCAUAUAAGGUCACAG


intron1



GATCTTGTGACAACA

AUCUUGUGACAACA





STMN2_

TTTT
1447
TTCATATAAGGTCACA
3453
UUCAUAUAAGGUCACA


intron1



GATCTTGTGACAAC

GAUCUUGUGACAAC





STMN2_

ATT
1448
TTTCATATAAGGTCAC
3454
UUUCAUAUAAGGUCAC


intron1

T

AGATCTTGTGACAA

AGAUCUUGUGACAA





STMN2_

ATT
1449
TAGCATTTTTTCATAT
3455
UAGCAUUUUUUCAUAU


intron1

C

AAGGTCACAGATCT

AAGGUCACAGAUCU





STMN2_

TTT
1450
ATGAAAAAATTCTAG
3456
AUGAAAAAAUUCUAGC


intron1

A

CATTTTTTCATATAA

AUUUUUUCAUAUAA





STMN2_

TTTT
1451
AATGAAAAAATTCTA
3457
AAUGAAAAAAUUCUAG


intron1



GCATTTTTTCATATA

CAUUUUUUCAUAUA





STMN2_

TTTT
1452
TAATGAAAAAATTCT
3458
UAAUGAAAAAAUUCUA


intron1



AGCATTTTTTCATAT

GCAUUUUUUCAUAU





STMN2_

TTTT
1453
TTAATGAAAAAATTCT
3459
UUAAUGAAAAAAUUCU


intron1



AGCATTTTTTCATA

AGCAUUUUUUCAUA





STMN2_

CTTT
1454
TTTAATGAAAAAATTC
3460
UUUAAUGAAAAAAUUC


intron1



TAGCATTTTTTCAT

UAGCAUUUUUUCAU





STMN2_

TTTC
1455
TTTTTTAATGAAAAAA
3461
UUUUUUAAUGAAAAAA


intron1



TTCTAGCATTTTTT

UUCUAGCAUUUUUU





STMN2_

TTTT
1456
CTTTTTTAATGAAAAA
3462
CUUUUUUAAUGAAAAA


intron1



ATTCTAGCATTTTT

AUUCUAGCAUUUUU





STMN2_

ATT
1457
TCTTTTTTAATGAAAA
3463
UCUUUUUUAAUGAAAA


intron1

T

AATTCTAGCATTTT

AAUUCUAGCAUUUU





STMN2_

GTT
1458
AGTATTTTCTTTTTTA
3464
AGUAUUUUCUUUUUUA


intron1

C

ATGAAAAAATTCTA

AUGAAAAAAUUCUA





STMN2_

GTT
1459
TGAAAACATCTGGGT
3465
UGAAAACAUCUGGGUC


intron1

C

CACTGGCTAGTTCAG

ACUGGCUAGUUCAG





STMN2_

TTTT
1460
TTCAGCCTCCTGTGAG
3466
UUCAGCCUCCUGUGAG


intron1



CAATGAGCTACCAA

CAAUGAGCUACCAA





STMN2_

TTTT
1461
TCAGCCTCCTGTGAGC
3467
UCAGCCUCCUGUGAGC


intron1



AATGAGCTACCAAG

AAUGAGCUACCAAG





STMN2_

TTTT
1462
CAGCCTCCTGTGAGCA
3468
CAGCCUCCUGUGAGCA


intron1



ATGAGCTACCAAGG

AUGAGCUACCAAGG





STMN2_

TTTC
1463
AGCCTCCTGTGAGCAA
3469
AGCCUCCUGUGAGCAA


intron1



TGAGCTACCAAGGT

UGAGCUACCAAGGU





STMN2_

TTTT
1464
ATTATATGAATCAGCC
3470
AUUAUAUGAAUCAGCC


intron1



TTATGGCACTCTGA

UUAUGGCACUCUGA





STMN2_

ATT
1465
TATTATATGAATCAGC
3471
UAUUAUAUGAAUCAGC


intron1

T

CTTATGGCACTCTG

CUUAUGGGACUCUG





STMN2_

ATT
1466
TAGGGAAGAAAACTA
3472
UAGGGAAGAAAACUAU


intron1

A

TTTTATTATATGAAT

UUUAUUAUAUGAAU





STMN2_

CTT
1467
AATTATAGGGAAGAA
3473
AAUUAUAGGGAAGAAA


intron1

A

AACTATTTTATTATA

ACUAUUUUAUUAUA





STMN2_

TTT
1468
ATCTTAAATTATAGGG
3474
AUCUUAAAUUAUAGGG


intron1

G

AAGAAAACTATTTT

AAGAAAACUAUUUU





STMN2_

ATT
1469
GATCTTAAATTATAGG
3475
GAUCUUAAAUUAUAGG


intron1

T

GAAGAAAACTATTT

GAAGAAAACUAUUU





STMN2_

ATT
1470
ACAGAACTAAGTAAC
3476
ACAGAACUAAGUAACU


intron1

C

TATTTGATCTTAAAT

AUUUGAUCUUAAAU





STMN2_

TTT
1471
ATAGCTACTGCTAGGT
3477
AUAGCUACUGCUAGGU


intron1

G

ATTCACAGAACTAA

AUUCACAGAACUAA





STMN2_

GTT
1472
GATAGCTACTGCTAG
3478
GAUAGCUACUGCUAGG


intron1

T

GTATTCACAGAACTA

UAUUCACAGAACUA





STMN2_

ATT
1473
TGTTTGATAGCTACTG
3479
UGUUUGAUAGCUACUG


intron1

C

CTAGGTATTCACAG

CUAGGUAUUCACAG





STMN2_

TTT
1474
AAATTCTGTTTGATAG
3480
AAAUUCUGUUUGAUAG


intron1

A

CTACTGCTAGGTAT

CUACUGCUAGGUAU





STMN2_

CTTT
1475
AAAATTCTGTTTGATA
3481
AAAAUUCUGUUUGAUA


intron1



GCTACTGCTAGGTA

GCUACUGCUAGGUA





STMN2_

TTT
1476
ACTTTAAAATTCTGTT
3482
ACUUUAAAAUUCUGUU


intron1

A

TGATAGCTACTGCT

UGAUAGCUACUGCU





STMN2_

ATT
1477
TATGAATCAGCCTTAT
3483
UAUGAAUCAGCCUUAU


intron1

A

GGCACTCTGAAAGG

GGCACUCUGAAAGG





STMN2_

ATT
1478
AACTTTAAAATTCTGT
3484
AACUUUAAAAUUCUGU


intron1

T

TTGATAGCTACTGC

UUGAUAGCUACUGC





STMN2_

GTT
1479
GTTGTACAGATTTAAC
3485
GUUGUACAGAUUUAAC


intron1

A

TTTAAAATTCTGTT

UUUAAAAUUCUGUU





STMN2_

ATT
1480
TTAGTTGTACAGATTT
3486
UUAGUUGUACAGAUUU


intron1

G

AACTTTAAAATTCT

AACUUUAAAAUUCU





STMN2_

CTT
1481
ATTGTTAGTTGTACAG
3487
AUUGUUAGUUGUACAG


intron1

C

ATTTAACTTTAAAA

AUUUAACUUUAAAA





STMN2_

ATT
1482
ATCCTCCACTTCATTG
3488
AUCCUCCACUUCAUUG


intron1

C

TTAGTTGTACAGAT

UUAGUUGUACAGAU





STMN2_

ATT
1483
AATATGTATCGATTCA
3489
AAUAUGUAUCGAUUCA


intron1

C

TCCTCCACTTCATT

UCCUCCACUUCAUU





STMN2_

CTT
1484
CATTCAATATGTATCG
3490
CAUUCAAUAUGUAUCG


intron1

C

ATTCATCCTCCACT

AUUCAUCCUCCACU





STMN2_

TTT
1485
TCAATGACAAAGTCTT
3491
UCAAUGACAAAGUCUU


intron1

A

CCATTCAATATGTA

CCAUUCAAUAUGUA





STMN2_

ATT
1486
ATCAATGACAAAGTC
3492
AUCAAUGACAAAGUCU


intron1

T

TTCCATTCAATATGT

UCCAUUCAAUAUGU





STMN2_

TTTC
1487
CTAAAGATGGCCTGA
3493
CUAAAGAUGGCCUGAA


intron1



ATTTATCAATGACAA

UUUAUCAAUGACAA





STMN2_

TTTT
1488
CCTAAAGATGGCCTG
3494
CCUAAAGAUGGCCUGA


intron1



AATTTATCAATGACA

AUUUAUCAAUGACA





STMN2_

ATT
1489
TCCTAAAGATGGCCTG
3495
UCCUAAAGAUGGCCUG


intron1

T

AATTTATCAATGAC

AAUUUAUCAAUGAC





STMN2_

ATT
1490
ATAAATCCGGAATTTT
3496
AUAAAUCCGGAAUUUU


intron1

G

CCTAAAGATGGCCT

CCUAAAGAUGGCCU





STMN2_

GTT
1491
AAGTAAAAAATAATG
3497
AAGUAAAAAAUAAUGG


intron1

G

GTGATTGATAAATCC

UGAUUGAUAAAUCC





STMN2_

GTT
1492
TACAGATTTAACTTTA
3498
UACAGAUUUAACUUUA


intron1

G

AAATTCTGTTTGAT

AAAUUCUGUUUGAU





STMN2_
+
GTT
1493
CTCACCCTTGGTGGAT
3499
CUCACCCUUGGUGGAU


intron1

C

TTAGTCTTTTGCAG

UUAGUCUUUUGCAG





STMN2_

TTTC
1494
AATCGATGAAGAAGT
3500
AAUCGAUGAAGAAGUA


intron1



AAACAATGATTTTCT

AACAAUGAUUUUCU





STMN2_
+
GTT
1495
TGAAGCCTGTGCCAG
3501
UGAAGCCUGUGCCAGG


intron1

C

GTATTATGAGAACAA

UAUUAUGAGAACAA





STMN2_
+
GTT
1496
CTTAGTTCTGTGAATA
3502
CUUAGUUCUGUGAAUA


intron1

A

CCTAGCAGTAGCTA

CCUAGCAGUAGCUA





STMN2_
+
TTT
1497
AGATCAAATAGTTACT
3503
AGAUCAAAUAGUUACU


intron1

A

TAGTTCTGTGAATA

UAGUUCUGUGAAUA





STMN2_
+
ATT
1498
AAGATCAAATAGTTA
3504
AAGAUCAAAUAGUUAC


intron1

T

CTTAGTTCTGTGAAT

UUAGUUCUGUGAAU





STMN2_
+
CTT
1499
CCTATAATTTAAGATC
3505
CCUAUAAUUUAAGAUC


intron1

C

AAATAGTTACTTAG

AAAUAGUUACUUAG





STMN2_
+
TTTC
1500
TTCCCTATAATTTAAG
3506
UUCCCUAUAAUUUAAG


intron1



ATCAAATAGTTACT

AUCAAAUAGUUACU





STMN2_
+
TTTT
1501
CTTCCCTATAATTTAA
3507
CUUCCCUAUAAUUUAA


intron1



GATCAAATAGTTAC

GAUCAAAUAGUUAC





STMN2_
+
GTT
1502
TCTTCCCTATAATTTA
3508
UCUUCCCUAUAAUUUA


intron1

T

AGATCAAATAGTTA

AGAUCAAAUAGUUA





STMN2_
+
ATT
1503
ATATAATAAAATAGTT
3509
AUAUAAUAAAAUAGUU


intron1

C

TTCTTCCCTATAAT

UUCUUCCCUAUAAU





STMN2_
+
TTTC
1504
AGAGTGCCATAAGGC
3510
AGAGUGCCAUAAGGCU


intron1



TGATTCATATAATAA

GAUUCAUAUAAUAA





STMN2_
+
CTTT
1505
CAGAGTGCCATAAGG
3511
CAGAGUGCCAUAAGGC


intron1



CTGATTCATATAATA

UGAUUCAUAUAAUA





STMN2_
+
ATT
1506
AGGAAATGTCCTTTCA
3512
AGGAAAUGUCCUUUCA


intron1

C

GAGTGCCATAAGGC

GAGUGCCAUAAGGC





STMN2_
+
TTT
1507
CTCAGATTCAGGAAA
3513
CUCAGAUUCAGGAAAU


intron1

A

TGTCCTTTCAGAGTG

GUCCUUUCAGAGUG





STMN2_
+
ATT
1508
ACTCAGATTCAGGAA
3514
ACUCAGAUUCAGGAAA


intron1

T

ATGTCCTTTCAGAGT

UGUCCUUUCAGAGU





STMN2_
+
ATT
1509
AAAAATGCTACAAGA
3515
AAAAAUGCUACAAGAG


intron1

A

GGCTACAATTTACTC

GCUACAAUUUACUC





STMN2_
+
ATT
1510
TCAGTGATTAAAAAA
3516
UCAGUGAUUAAAAAAU


intron1

C

TGCTACAAGAGGCTA

GCUACAAGAGGCUA





STMN2_
+
CTT
1511
CATCAAATAGCTCATT
3517
CAUCAAAUAGCUCAUU


intron1

C

CTCAGTGATTAAAA

CUCAGUGAUUAAAA





STMN2_
+
TTT
1512
GCACAATATGACTTCC
3518
GCACAAUAUGACUUCC


intron1

G

ATCAAATAGCTCAT

AUCAAAUAGCUCAU





STMN2_
+
ATT
1513
GGCACAATATGACTTC
3519
GGCACAAUAUGACUUC


intron1

T

CATCAAATAGCTCA

CAUCAAAUAGCUCA





STMN2_
+
TTT
1514
ATCATTTGGCACAATA
3520
AUCAUUUGGCACAAUA


intron1

A

TGACTTCCATCAAA

UGACUUCCAUCAAA





STMN2_
+
ATT
1515
AATCATTTGGCACAAT
3521
AAUCAUUUGGCACAAU


intron1

T

ATGACTTCCATCAA

AUGACUUCCAUCAA





STMN2_
+
ATT
1516
CTAATGGATAGATGG
3522
CUAAUGGAUAGAUGGU


intron1

A

TGGAATAAGCATTTA

GGAAUAAGCAUUUA





STMN2_
+
TTTC
1517
AAATTACTAATGGAT
3523
AAAUUACUAAUGGAUA


intron1



AGATGGTGGAATAAG

GAUGGUGGAAUAAG





STMN2_
+
TTTT
1518
CAAATTACTAATGGAT
3524
CAAAUUACUAAUGGAU


intron1



AGATGGTGGAATAA

AGAUGGUGGAAUAA





STMN2_
+
TTTT
1519
TCAAATTACTAATGGA
3525
UCAAAUUACUAAUGGA


intron1



TAGATGGTGGAATA

UAGAUGGUGGAAUA





STMN2_
+
ATT
1520
TTCAAATTACTAATGG
3526
UUCAAAUUACUAAUGG


intron1

T

ATAGATGGTGGAAT

AUAGAUGGUGGAAU





STMN2_
+
TTT
1521
TTTTTCAAATTACTAA
3527
UUUUUCAAAUUACUAA


intron1

A

TGGATAGATGGTGG

UGGAUAGAUGGUGG





STMN2_
+
TTTT
1522
ATTTTTCAAATTACTA
3528
AUUUUUCAAAUUACUA


intron1



ATGGATAGATGGTG

AUGGAUAGAUGGUG





STMN2_
+
CTT
1523
GTTCTGTGAATACCTA
3529
GUUCUGUGAAUACCUA


intron1

A

GCAGTAGCTATCAA

GCAGUAGCUAUCAA





STMN2_
+
TTTT
1524
TATTTTTCAAATTACT
3530
UAUUUUUCAAAUUACU


intron1



AATGGATAGATGGT

AAUGGAUAGAUGGU





STMN2_
+
GTT
1525
TGTGAATACCTAGCA
3531
UGUGAAUACCUAGCAG


intron1

C

GTAGCTATCAAACAG

UAGCUAUCAAACAG





STMN2_
+
TTTT
1526
AAAGTTAAATCTGTAC
3532
AAAGUUAAAUCUGUAC


intron1



AACTAACAATGAAG

AACUAACAAUGAAG





STMN2_
+
TTTT
1527
GGTCGTGGGAAGAAA
3533
GGUCGUGGGAAGAAAA


intron1



AACACATATTATCCT

ACACAUAUUAUCCU





STMN2_
+
TTTT
1528
TGGTCGTGGGAAGAA
3534
UGGUCGUGGGAAGAAA


intron1



AAACACATATTATCC

AACACAUAUUAUCC





STMN2_
+
TTTT
1529
TTGGTCGTGGGAAGA
3535
UUGGUCGUGGGAAGAA


intron1



AAAACACATATTATC

AAACACAUAUUAUC





STMN2_
+
CTTT
1530
TTTGGTCGTGGGAAG
3536
UUUGGUCGUGGGAAGA


intron1



AAAAACACATATTAT

AAAACACAUAUUAU





STMN2_
+
TTTC
1531
TTTTTTGGTCGTGGGA
3537
UUUUUUGGUCGUGGGA


intron1



AGAAAAACACATAT

AGAAAAACACAUAU





STMN2_
+
GTT
1532
CTTTTTTGGTCGTGGG
3538
CUUUUUUGGUCGUGGG


intron1

T

AAGAAAAACACATA

AAGAAAAACACAUA





STMN2_
+
ATT
1533
CTCACAGGAGGCTGA
3539
CUCACAGGAGGCUGAA


intron1

G

AAAAAGCTGGCCTCC

AAAAGCUGGCCUCC





STMN2_
+
CTT
1534
GTAGCTCATTGCTCAC
3540
GUAGCUCAUUGCUCAC


intron1

G

AGGAGGCTGAAAAA

AGGAGGCUGAAAAA





STMN2_
+
CTT
1535
AACTGAGTGTGACTG
3541
AACUGAGUGUGACUGA


intron1

C

ATCACATGCTCAGGC

UCACAUGCUCAGGC





STMN2_
+
TTT
1536
CTTCAACTGAGTGTGA
3542
CUUCAACUGAGUGUGA


intron1

A

CTGATCACATGCTC

CUGAUCACAUGCUC





STMN2_
+
TTTT
1537
ACTTCAACTGAGTGTG
3543
ACUUCAACUGAGUGUG


intron1



ACTGATCACATGCT

ACUGAUCACAUGCU





STMN2_
+
TTTT
1538
TACTTCAACTGAGTGT
3544
UACUUCAACUGAGUGU


intron1



GACTGATCACATGC

GACUGAUCACAUGC





STMN2_
+
TTTT
1539
TTACTTCAACTGAGTG
3545
UUACUUCAACUGAGUG


intron1



TGACTGATCACATG

UGACUGAUCACAUG





STMN2_
+
ATT
1540
TTTACTTCAACTGAGT
3546
UUUACUUCAACUGAGU


intron1

T

GTGACTGATCACAT

GUGACUGAUCACAU





STMN2_
+
ATT
1541
TTTTTTACTTCAACTG
3547
UUUUUUACUUCAACUG


intron1

A

AGTGTGACTGATCA

AGUGUGACUGAUCA





STMN2_
+
TTT
1542
TCAATCACCATTATTT
3548
UCAAUCACCAUUAUUU


intron1

A

TTTACTTCAACTGA

UUUACUUCAACUGA





STMN2_
+
ATT
1543
ATCAATCACCATTATT
3549
AUCAAUCACCAUUAUU


intron1

T

TTTTACTTCAACTG

UUUUACUUCAACUG





STMN2_
+
ATT
1544
CGGATTTATCAATCAC
3550
CGGAUUUAUCAAUCAC


intron1

C

CATTATTTTTTACT

CAUUAUUUUUUACU





STMN2_
+
TTT
1545
GGAAAATTCCGGATTT
3551
GGAAAAUUCCGGAUUU


intron1

A

ATCAATCACCATTA

AUCAAUCACCAUUA





STMN2_
+
CTTT
1546
AGGAAAATTCCGGAT
3552
AGGAAAAUUCCGGAUU


intron1



TTATCAATCACCATT

UAUCAAUCACCAUU





STMN2_
+
ATT
1547
AGGCCATCTTTAGGA
3553
AGGCCAUCUUUAGGAA


intron1

C

AAATTCCGGATTTAT

AAUUCCGGAUUUAU





STMN2_
+
ATT
1548
ATAAATTCAGGCCATC
3554
AUAAAUUCAGGCCAUC


intron1

G

TTTAGGAAAATTCC

UUUAGGAAAAUUCC





STMN2_
+
TTT
1549
TCATTGATAAATTCAG
3555
UCAUUGAUAAAUUCAG


intron1

G

GCCATCTTTAGGAA

GCCAUCUUUAGGAA





STMN2_
+
CTTT
1550
GTCATTGATAAATTCA
3556
GUCAUUGAUAAAUUCA


intron1



GGCCATCTTTAGGA

GGCCAUCUUUAGGA





STMN2_
+
ATT
1551
AATGGAAGACTTTGTC
3557
AAUGGAAGACUUUGUC


intron1

G

ATTGATAAATTCAG

AUUGAUAAAUUCAG





STMN2_
+
GTT
1552
AATCTGTACAACTAAC
3558
AAUCUGUACAACUAAC


intron1

A

AATGAAGTGGAGGA

AAUGAAGUGGAGGA





STMN2_
+
TTT
1553
AAGTTAAATCTGTACA
3559
AAGUUAAAUCUGUACA


intron1

A

ACTAACAATGAAGT

ACUAACAAUGAAGU





STMN2_
+
ATT
1554
TAAAGTTAAATCTGTA
3560
UAAAGUUAAAUCUGUA


intron1

T

CAACTAACAATGAA

CAACUAACAAUGAA





STMN2_
+
GTT
1555
TTATTTTTCAAATTAC
3561
UUAUUUUUCAAAUUAC


intron1

T

TAATGGATAGATGG

UAAUGGAUAGAUGG





STMN2_
+
TTT
1556
GGTTTTTATTTTTCAA
3562
GGUUUUUAUUUUUCAA


intron1

G

ATTACTAATGGATA

AUUACUAAUGGAUA





STMN2_
+
CTTT
1557
GGGTTTTTATTTTTCA
3563
GGGUUUUUAUUUUUCA


intron1



AATTACTAATGGAT

AAUUACUAAUGGAU





STMN2_
+
TTTT
1558
TTACAATAATGTGACT
3564
UUACAAUAAUGUGACU


intron1



TACAGATTTGTAGT

UACAGAUUUGUAGU





STMN2_
+
TTTT
1559
TTTACAATAATGTGAC
3565
UUUACAAUAAUGUGAC


intron1



TTACAGATTTGTAG

UUACAGAUUUGUAG





STMN2_
+
TTTT
1560
TTTTACAATAATGTGA
3566
UUUUACAAUAAUGUGA


intron1



CTTACAGATTTGTA

CUUACAGAUUUGUA





STMN2_
+
TTTT
1561
TTTTTACAATAATGTG
3567
UUUUUACAAUAAUGUG


intron1



ACTTACAGATTTGT

ACUUACAGAUUUGU





STMN2_
+
GTT
1562
TTTTTTACAATAATGT
3568
UUUUUUACAAUAAUGU


intron1

T

GACTTACAGATTTG

GACUUACAGAUUUG





STMN2_
+
ATT
1563
ACAATGGTTTTTTTTT
3569
ACAAUGGUUUUUUUUU


intron1

C

ACAATAATGTGACT

ACAAUAAUGUGACU





STMN2_
+
TTT
1564
GTCAAAATTCACAAT
3570
GUCAAAAUUCACAAUG


intron1

A

GGTTTTTTTTTACAA

GUUUUUUUUUACAA





STMN2_
+
CTTT
1565
AGTCAAAATTCACAA
3571
AGUCAAAAUUCACAAU


intron1



TGGTTTTTTTTTACA

GGUUUUUUUUUACA





STMN2_
+
ATT
1566
AAATCTACAACTTTAG
3572
AAAUCUACAACUUUAG


intron1

A

TCAAAATTCACAAT

UCAAAAUUCACAAU





STMN2_
+
TTT
1567
TGCTATTAAAATCTAC
3573
UGCUAUUAAAAUCUAC


intron1

G

AACTTTAGTCAAAA

AACUUUAGUCAAAA





STMN2_
+
ATT
1568
GTGCTATTAAAATCTA
3574
GUGCUAUUAAAAUCUA


intron1

T

CAACTTTAGTCAAA

CAACUUUAGUCAAA





STMN2_
+
ATT
1569
GACATTTGTGCTATTA
3575
GACAUUUGUGCUAUUA


intron1

G

AAATCTACAACTTT

AAAUCUACAACUUU





STMN2_
+
ATT
1570
AGATTGGACATTTGTG
3576
AGAUUGGACAUUUGUG


intron1

A

CTATTAAAATCTAC

CUAUUAAAAUCUAC





STMN2_
+
TTT
1571
AAATGATAATTAAGA
3577
AAAUGAUAAUUAAGAU


intron1

A

TTGGACATTTGTGCT

UGGACAUUUGUGCU





STMN2_
+
TTTT
1572
AAAATGATAATTAAG
3578
AAAAUGAUAAUUAAGA


intron1



ATTGGACATTTGTGC

UUGGACAUUUGUGC





STMN2_
+
ATT
1573
TAAAATGATAATTAA
3579
UAAAAUGAUAAUUAAG


intron1

T

GATTGGACATTTGTG

AUUGGACAUUUGUG





STMN2_
+
ATT
1574
TCTGAGAGAAAGTAT
3580
UCUGAGAGAAAGUAUA


intron1

C

ATTTTAAAATGATAA

UUUUAAAAUGAUAA





STMN2_
+
GTT
1575
AAATTCTCTGAGAGA
3581
AAAUUCUCUGAGAGAA


intron1

A

AAGTATATTTTAAAA

AGUAUAUUUUAAAA





STMN2_
+
TTT
1576
TCTATGCACGTTAAAA
3582
UCUAUGCACGUUAAAA


intron1

G

TTCTCTGAGAGAAA

UUCUCUGAGAGAAA





STMN2_
+
GTT
1577
GTCTATGCACGTTAAA
3583
GUCUAUGCACGUUAAA


intron1

T

ATTCTCTGAGAGAA

AUUCUCUGAGAGAA





STMN2_
+
CTT
1578
TGGTGTTTGTCTATGC
3584
UGGUGUUUGUCUAUGC


intron1

G

ACGTTAAAATTCTC

ACGUUAAAAUUCUC





STMN2_
+
ATT
1579
ATAGACCTTGTGGTGT
3585
AUAGACCUUGUGGUGU


intron1

A

TTGTCTATGCACGT

UUGUCUAUGCACGU





STMN2_
+
TTT
1580
TACCAGGTGAGTAAG
3586
UACCAGGUGAGUAAGC


intron1

A

CTGAGCCTGCAATAA

UGAGCCUGCAAUAA





STMN2_
+
GTT
1581
ATACCAGGTGAGTAA
3587
AUACCAGGUGAGUAAG


intron1

T

GCTGAGCCTGCAATA

CUGAGCCUGCAAUA





STMN2_
+
TTT
1582
GTTTATACCAGGTGAG
3588
GUUUAUACCAGGUGAG


intron1

A

TAAGCTGAGCCTGC

UAAGCUGAGCCUGC





STMN2_
+
ATT
1583
AGTTTATACCAGGTGA
3589
AGUUUAUACCAGGUGA


intron1

T

GTAAGCTGAGCCTG

GUAAGCUGAGCCUG





STMN2_
+
ATT
1584
ATCTCATGTATTTAGT
3590
AUCUCAUGUAUUUAGU


intron1

A

TTATACCAGGTGAG

UUAUACCAGGUGAG





STMN2_
+
TTTT
1585
TACAATAATGTGACTT
3591
UACAAUAAUGUGACUU


intron1



ACAGATTTGTAGTA

ACAGAUUUGUAGUA





STMN2_
+
TTTT
1586
ACAATAATGTGACTTA
3592
ACAAUAAUGUGACUUA


intron1



CAGATTTGTAGTAA

CAGAUUUGUAGUAA





STMN2_
+
TTT
1587
CAATAATGTGACTTAC
3593
CAAUAAUGUGACUUAC


intron1

A

AGATTTGTAGTAAA

AGAUUUGUAGUAAA





STMN2_
+
CTT
1588
CAGATTTGTAGTAAAT
3594
CAGAUUUGUAGUAAAU


intron1

A

TATTCTATTCTAAA

UAUUCUAUUCUAAA





STMN2_
+
ATT
1589
CTTTGGGTTTTTATTTT
3595
CUUUGGGUUUUUAUUU


intron1

A

TCAAATTACTAAT

UUCAAAUUACUAAU





STMN2_
+
TTT
1590
ATTACTTTGGGTTTTT
3596
AUUACUUUGGGUUUUU


intron1

A

ATTTTTGAAATTAG

AUUUUUCAAAUUAC





STMN2_
+
TTTT
1591
AATTACTTTGGGTTTT
3597
AAUUACUUUGGGUUUU


intron1



TATTTTTCAAATTA

UAUUUUUCAAAUUA





STMN2_
+
GTT
1592
TAATTACTTTGGGTTT
3598
UAAUUACUUUGGGUUU


intron1

T

TTATTTTTCAAATT

UUAUUUUUCAAAUU





STMN2_
+
ATT
1593
AAAGCAGTTTTAATTA
3599
AAAGCAGUUUUAAUUA


intron1

G

CTTTGGGTTTTTAT

CUUUGGGUUUUUAU





STMN2_
+
GTT
1594
CATTGAAAGCAGTTTT
3600
CAUUGAAAGCAGUUUU


intron1

G

AATTACTTTGGGTT

AAUUACUUUGGGUU





STMN2_
+
TTT
1595
TTGCATTGAAAGCAGT
3601
UUGCAUUGAAAGCAGU


intron1

G

TTTAATTACTTTGG

UUUAAUUACUUUGG





STMN2_
+
ATT
1596
GTTGCATTGAAAGCA
3602
GUUGCAUUGAAAGCAG


intron1

T

GTTTTAATTACTTTG

UUUUAAUUACUUUG





STMN2_
+
TTT
1597
TTTGTTGCATTGAAAG
3603
UUUGUUGCAUUGAAAG


intron1

A

CAGTTTTAATTACT

CAGUUUUAAUUACU





STMN2_
+
TTTT
1598
ATTTGTTGCATTGAAA
3604
AUUUGUUGCAUUGAAA


intron1



GCAGTTTTAATTAC

GCAGUUUUAAUUAC





STMN2_
+
CTTT
1599
TATTTGTTGCATTGAA
3605
UAUUUGUUGCAUUGAA


intron1



AGCAGTTTTAATTA

AGCAGUUUUAAUUA





STMN2_
+
TTT
1600
GCAAACTTTTATTTGT
3606
GCAAACUUUUAUUUGU


intron1

A

TGCATTGAAAGCAG

UGCAUUGAAAGCAG





STMN2_
+
TTTT
1601
AGCAAACTTTTATTTG
3607
AGCAAACUUUUAUUUG


intron1



TTGCATTGAAAGCA

UUGCAUUGAAAGCA





STMN2_
+
TTT
1602
GTCGTGGGAAGAAAA
3608
GUCGUGGGAAGAAAAA


intron1

G

ACACATATTATCCTG

CACAUAUUAUCCUG





STMN2_
+
TTTT
1603
TAGCAAACTTTTATTT
3609
UAGCAAACUUUUAUUU


intron1



GTTGCATTGAAAGC

GUUGCAUUGAAAGC





STMN2_
+
ATT
1604
ATATTTTTAGCAAACT
3610
AUAUUUUUAGCAAACU


intron1

A

TTTATTTGTTGCAT

UUUAUUUGUUGCAU





STMN2_
+
ATT
1605
CCTCATTAATATTTTT
3611
CCUCAUUAAUAUUUUU


intron1

A

AGCAAACTTTTATT

AGCAAACUUUUAUU





STMN2_
+
GTT
1606
CAGCTATTACCTCATT
3612
CAGCUAUUACCUCAUU


intron1

A

AATATTTTTAGCAA

AAUAUUUUUAGCAA





STMN2_
+
ATT
1607
TTACAGCTATTACCTC
3613
UUACAGCUAUUACCUC


intron1

G

ATTAATATTTTTAG

AUUAAUAUUUUUAG





STMN2_
+
TTT
1608
TTGTTACAGCTATTAC
3614
UUGUUACAGCUAUUAC


intron1

A

CTCATTAATATTTT

CUCAUUAAUAUUUU





STMN2_
+
TTTT
1609
ATTGTTACAGCTATTA
3615
AUUGUUACAGCUAUUA


intron1



CCTCATTAATATTT

CCUCAUUAAUAUUU





STMN2_
+
TTTT
1610
TATTGTTACAGCTATT
3616
UAUUGUUACAGCUAUU


intron1



ACCTCATTAATATT

ACCUCAUUAAUAUU





STMN2_
+
GTT
1611
TTATTGTTACAGCTAT
3617
UUAUUGUUACAGCUAU


intron1

T

TACCTCATTAATAT

UACCUCAUUAAUAU





STMN2_
+
ATT
1612
TAAAAGAGAAATGAG
3618
UAAAAGAGAAAUGAGU


intron1

C

TGTTTTTATTGTTAC

GUUUUUAUUGUUAC





STMN2_
+
ATT
1613
TATTCTAAAAGAGAA
3619
UAUUCUAAAAGAGAAA


intron1

C

ATGAGTGTTTTTATT

UGAGUGUUUUUAUU





STMN2_
+
ATT
1614
TTCTATTCTAAAAGAG
3620
UUCUAUUCUAAAAGAG


intron1

A

AAATGAGTGTTTTT

AAAUGAGUGUUUUU





STMN2_
+
TTT
1615
TAGTAAATTATTCTAT
3621
UAGUAAAUUAUUCUAU


intron1

G

TCTAAAAGAGAAAT

UCUAAAAGAGAAAU





STMN2_
+
ATT
1616
GTAGTAAATTATTCTA
3622
GUAGUAAAUUAUUCUA


intron1

T

TTCTAAAAGAGAAA

UUCUAAAAGAGAAA





STMN2_
+
ATT
1617
TTAGCAAACTTTTATT
3623
UUAGCAAACUUUUAUU


intron1

T

TGTTGCATTGAAAG

UGUUGCAUUGAAAG





STMN2_
+
ATT
1618
TCCTGTTGTCACAAGA
3624
UCCUGUUGUCACAAGA


intron1

A

TCTGTGACCTTATA

UCUGUGACCUUAUA





STMN2_
+
GTT
1619
TCACAAGATCTGTGAC
3625
UCACAAGAUCUGUGAC


intron1

G

CTTATATGAAAAAA

CUUAUAUGAAAAAA





STMN2_
+
CTT
1620
TATGAAAAAATGCTA
3626
UAUGAAAAAAUGCUAG


intron1

A

GAATTTTTTCATTAA

AAUUUUUUCAUUAA





STMN2_
+
TTTT
1621
AAATCTAATCCAATGT
3627
AAAUCUAAUCCAAUGU


intron1



GATTTCAATCTAGT

GAUUUCAAUCUAGU





STMN2_
+
TTTT
1622
TAAATCTAATCCAATG
3628
UAAAUCUAAUCCAAUG


intron1



TGATTTCAATCTAG

UGAUUUCAAUCUAG





STMN2_
+
CTTT
1623
TTAAATCTAATCCAAT
3629
UUAAAUCUAAUCCAAU


intron1



GTGATTTCAATCTA

GUGAUUUCAAUCUA





STMN2_
+
TTT
1624
AAGATACCTTTTTAAA
3630
AAGAUACCUUUUUAAA


intron1

A

TCTAATCCAATGTG

UCUAAUCCAAUGUG





STMN2_
+
ATT
1625
AAAGATACCTTTTTAA
3631
AAAGAUACCUUUUUAA


intron1

T

ATCTAATCCAATGT

AUCUAAUCCAAUGU





STMN2_
+
TTTC
1626
CATTTAAAGATACCTT
3632
CAUUUAAAGAUACCUU


intron1



TTTAAATCTAATCC

UUUAAAUCUAAUCC





STMN2_
+
TTTT
1627
CCATTTAAAGATACCT
3633
CCAUUUAAAGAUACCU


intron1



TTTTAAATCTAATC

UUUUAAAUCUAAUC





STMN2_
+
CTTT
1628
TCCATTTAAAGATACC
3634
UCCAUUUAAAGAUACC


intron1



TTTTTAAATCTAAT

UUUUUAAAUCUAAU





STMN2_
+
TTTC
1629
TTTTCCATTTAAAGAT
3635
UUUUCCAUUUAAAGAU


intron1



ACCTTTTTAAATCT

ACCUUUUUAAAUCU





STMN2_
+
CTTT
1630
CTTTTCCATTTAAAGA
3636
CUUUUCCAUUUAAAGA


intron1



TACCTTTTTAAATC

UACCUUUUUAAAUC





STMN2_
+
CTT
1631
TAAGTCTGTCTTTCTT
3637
UAAGUCUGUCUUUCUU


intron1

c

TTCCATTTAAAGAT

UUCCAUUUAAAGAU





STMN2_
+
TTTC
1632
CCATCTTCTAAGTCTG
3638
CCAUCUUCUAAGUCUG


intron1



TCTTTCTTTTCCAT

UCUUUCUUUUCCAU





STMN2_
+
TTTT
1633
CCCATCTTCTAAGTCT
3639
CCCAUCUUCUAAGUCU


intron1



GTCTTTCTTTTCCA

GUCUUUCUUUUCCA





STMN2_
+
TTTT
1634
TCCCATCTTCTAAGTC
3640
UCCCAUCUUCUAAGUC


intron1



TGTCTTTCTTTTCC

UGUCUUUCUUUUCC





STMN2_
+
ATT
1635
TTCCCATCTTCTAAGT
3641
UUCCCAUCUUCUAAGU


intron1

T

CTGTCTTTCTTTTC

CUGUCUUUCUUUUC





STMN2_
+
GTT
1636
TTTTTCCCATCTTCTA
3642
UUUUUCCCAUCUUCUA


intron1

A

AGTCTGTCTTTCTT

AGUCUGUCUUUCUU





STMN2_
+
CTT
1637
GCGAGTAAAACAGGC
3643
GCGAGUAAAACAGGCA


intron1

A

AGGTATGTGATACTG

GGUAUGUGAUACUG





STMN2_
+
GTT
1638
AGAGCACATCTGAAT
3644
AGAGCACAUCUGAAUA


intron1

C

ATCAGAGTCTCCACC

UCAGAGUCUCCACC





STMN2_
+
ATT
1639
AAATGTGCCCCCTGTT
3645
AAAUGUGCCCCCUGUU


intron1

G

CAGAGCACATCTGA

CAGAGCACAUCUGA





STMN2_
+
CTT
1640
ATCGATTGAAATGTGC
3646
AUCGAUUGAAAUGUGC


intron1

C

CCCCTGTTCAGAGC

CCCCUGUUCAGAGC





STMN2_
+
CTT
1641
TTCATCGATTGAAATG
3647
UUCAUCGAUUGAAAUG


intron1

C

TGCCCCCTGTTCAG

UGCCCCCUGUUCAG





STMN2_
+
TTT
1642
CTTCTTCATCGATTGA
3648
CUUCUUCAUCGAUUGA


intron1

A

AATGTGCCCCCTGT

AAUGUGCCCCCUGU





STMN2_
+
GTT
1643
ACTTCTTCATCGATTG
3649
ACUUCUUCAUCGAUUG


intron1

T

AAATGTGCCCCCTG

AAAUGUGCCCCCUG





STMN2_
+
ATT
1644
TTTACTTCTTCATCGA
3650
UUUACUUCUUCAUCGA


intron1

G

TTGAAATGTGCCCC

UUGAAAUGUGCCCC





STMN2_
+
ATT
1645
AAGAAAATCATTGTTT
3651
AAGAAAAUCAUUGUUU


intron1

A

ACTTCTTCATCGAT

ACUUCUUCAUCGAU





STMN2_
+
CTT
1646
AAAATAAAGGAATAA
3652
AAAAUAAAGGAAUAAA


intron1

A

ATTAAAGAAAATCAT

UUAAAGAAAAUCAU





STMN2_
+
TTT
1647
ATGCTTAAAAATAAA
3653
AUGCUUAAAAAUAAAG


intron1

A

GGAATAAATTAAAGA

GAAUAAAUUAAAGA





STMN2_
+
TTT
1648
AATCTAATCCAATGTG
3654
AAUCUAAUCCAAUGUG


intron1

A

ATTTCAATCTAGTT

AUUUCAAUCUAGUU





STMN2_
+
ATT
1649
CAATCTAGTTTTATCA
3655
CAAUCUAGUUUUAUCA


intron1

T

GATTTCAACAATTA

GAUUUCAACAAUUA





STMN2_
+
TTTC
1650
AATCTAGTTTTATCAG
3656
AAUCUAGUUUUAUCAG


intron1



ATTTCAACAATTAT

AUUUCAACAAUUAU





STMN2_
+
GTT
1651
TATCAGATTTCAACAA
3657
UAUCAGAUUUCAACAA


intron1

T

TTATTGAGCATCTC

UUAUUGAGCAUCUC





STMN2_
+
ATT
1652
TTTGATTACATTTTAT
3658
UUUGAUUACAUUUUAU


intron1

T

GTAATTCTAATCCA

GUAAUUCUAAUCCA





STMN2_
+
ATT
1653
TTTTTTGATTACATTTT
3659
UUUUUUGAUUACAUUU


intron1

A

ATGTAATTCTAAT

UAUGUAAUUCUAAU





STMN2_
+
ATT
1654
ATAGAATTATTTTTTG
3660
AUAGAAUUAUUUUUUG


intron1

G

ATTACATTTTATGT

AUUACAUUUUAUGU





STMN2_
+
TTT
1655
AATATGCATTGATAG
3661
AAUAUGCAUUGAUAGA


intron1

A

AATTATTTTTTGATT

AUUAUUUUUUGAUU





STMN2_
+
TTTT
1656
AAATATGCATTGATA
3662
AAAUAUGCAUUGAUAG


intron1



GAATTATTTTTTGAT

AAUUAUUUUUUGAU





STMN2_
+
TTTT
1657
TAAATATGCATTGATA
3663
UAAAUAUGCAUUGAUA


intron1



GAATTATTTTTTGA

GAAUUAUUUUUUGA





STMN2_
+
TTTT
1658
TTAAATATGCATTGAT
3664
UUAAAUAUGCAUUGAU


intron1



AGAATTATTTTTTG

AGAAUUAUUUUUUG





STMN2_
+
ATT
1659
TTTAAATATGCATTGA
3665
UUUAAAUAUGCAUUGA


intron1

T

TAGAATTATTTTTT

UAGAAUUAUUUUUU





STMN2_
+
TTT
1660
GGTATCATCAAAAGT
3666
GGUAUCAUCAAAAGUG


intron1

G

GGATTTTTTAAATAT

GAUUUUUUAAAUAU





STMN2_
+
TTTT
1661
GGGTATCATCAAAAG
3667
GGGUAUCAUCAAAAGU


intron1



TGGATTTTTTAAATA

GGAUUUUUUAAAUA





STMN2_
+
ATT
1662
TGGGTATCATCAAAA
3668
UGGGUAUCAUCAAAAG


intron1

T

GTGGATTTTTTAAAT

UGGAUUUUUUAAAU





STMN2_
+
TTT
1663
ACGAAGTAAGAAGAA
3669
ACGAAGUAAGAAGAAA


intron1

A

ATATATAAGTATAAA

UAUAUAAGUAUAAA





STMN2_
+
TTTT
1664
AACGAAGTAAGAAGA
3670
AACGAAGUAAGAAGAA


intron1



AATATATAAGTATAA

AUAUAUAAGUAUAA





STMN2_
+
TTTT
1665
AATGCTTAAAAATAA
3671
AAUGCUUAAAAAUAAA


intron1



AGGAATAAATTAAAG

GGAAUAAAUUAAAG





STMN2_
+
ATT
1666
TAACGAAGTAAGAAG
3672
UAACGAAGUAAGAAGA


intron1

T

AAATATATAAGTATA

AAUAUAUAAGUAUA





STMN2_
+
ATT
1667
GAAAATCGATGTTAA
3673
GAAAAUCGAUGUUAAU


intron1

A

TTTTAACGAAGTAAG

UUUAACGAAGUAAG





STMN2_
+
TTT
1668
TTAGAAAATCGATGTT
3674
UUAGAAAAUCGAUGUU


intron1

A

AATTTTAACGAAGT

AAUUUUAACGAAGU





STMN2_
+
GTT
1669
ATTAGAAAATCGATG
3675
AUUAGAAAAUCGAUGU


intron1

T

TTAATTTTAACGAAG

UAAUUUUAACGAAG





STMN2_
+
TTTC
1670
TGTTTATTAGAAAATC
3676
UGUUUAUUAGAAAAUC


intron1



GATGTTAATTTTAA

GAUGUUAAUUUUAA





STMN2_
+
TTTT
1671
CTGTTTATTAGAAAAT
3677
CUGUUUAUUAGAAAAU


intron1



CGATGTTAATTTTA

CGAUGUUAAUUUUA





STMN2_
+
GTT
1672
TCTGTTTATTAGAAAA
3678
UCUGUUUAUUAGAAAA


intron1

T

TCGATGTTAATTTT

UCGAUGUUAAUUUU





STMN2_
+
CTT
1673
TAGTGGTTTTCTGTTT
3679
UAGUGGUUUUCUGUUU


intron1

G

ATTAGAAAATCGAT

AUUAGAAAAUCGAU





STMN2_
+
ATT
1674
AGCATCTCCTTGTAGT
3680
AGCAUCUCCUUGUAGU


intron1

G

GGTTTTCTGTTTAT

GGUUUUCUGUUUAU





STMN2_
+
ATT
1675
TTGAGCATCTCCTTGT
3681
UUGAGCAUCUCCUUGU


intron1

A

AGTGGTTTTCTGTT

AGUGGUUUUCUGUU





STMN2_
+
TTTC
1676
AACAATTATTGAGCAT
3682
AACAAUUAUUGAGCAU


intron1



CTCCTTGTAGTGGT

CUCCUUGUAGUGGU





STMN2_
+
ATT
1677
CAACAATTATTGAGC
3683
CAACAAUUAUUGAGCA


intron1

T

ATCTCCTTGTAGTGG

UCUCCUUGUAGUGG





STMN2_
+
TTT
1678
TCAGATTTCAACAATT
3684
UCAGAUUUCAACAAUU


intron1

A

ATTGAGCATCTCCT

AUUGAGCAUCUCCU





STMN2_
+
TTTT
1679
ATCAGATTTCAACAAT
3685
AUCAGAUUUCAACAAU


intron1



TATTGAGCATCTCC

UAUUGAGCAUCUCC





STMN2_
+
GTT
1680
ATTTTAACGAAGTAA
3686
AUUUUAACGAAGUAAG


intron1

A

GAAGAAATATATAAG

AAGAAAUAUAUAAG





STMN2_
+
TTT
1681
TCAATTAATCTCATGT
3687
UCAAUUAAUCUCAUGU


intron1

A

ATTTAGTTTATACC

AUUUAGUUUAUACC





STMN2_
+
ATT
1682
TAATGCTTAAAAATA
3688
UAAUGCUUAAAAAUAA


intron1

T

AAGGAATAAATTAAA

AGGAAUAAAUUAAA





STMN2_
+
ATT
1683
AGCAGCCGAATATTTT
3689
AGCAGCCGAAUAUUUU


intron1

T

AATGCTTAAAAATA

AAUGCUUAAAAAUA





STMN2_
+
TTT
1684
CCAGGAACATTCAAG
3690
CCAGGAACAUUCAAGU


intron1

A

TGTTTATTCAATAAG

GUUUAUUCAAUAAG





STMN2_
+
TTTT
1685
ACCAGGAACATTCAA
3691
ACCAGGAACAUUCAAG


intron1



GTGTTTATTCAATAA

UGUUUAUUCAAUAA





STMN2_
+
CTTT
1686
TACCAGGAACATTCA
3692
UACCAGGAACAUUCAA


intron1



AGTGTTTATTCAATA

GUGUUUAUUCAAUA





STMN2_
+
TTTC
1687
TTTTACCAGGAACATT
3693
UUUUACCAGGAACAUU


intron1



CAAGTGTTTATTCA

CAAGUGUUUAUUCA





STMN2_
+
TTTT
1688
CTTTTACCAGGAACAT
3694
CUUUUACCAGGAACAU


intron1



TCAAGTGTTTATTC

UCAAGUGUUUAUUC





STMN2_
+
CTTT
1689
TCTTTTACCAGGAACA
3695
UCUUUUACCAGGAACA


intron1



TTCAAGTGTTTATT

UUCAAGUGUUUAUU





STMN2_
+
TTT
1690
ATAAAATCTTTTCTTT
3696
AUAAAAUCUUUUCUUU


intron1

A

TACCAGGAACATTC

UACCAGGAACAUUC





STMN2_
+
GTT
1691
AATAAAATCTTTTCTT
3697
AAUAAAAUCUUUUCUU


intron1

T

TTACCAGGAACATT

UUACCAGGAACAUU





STMN2_
+
ATT
1692
ACTGTTTAATAAAATC
3698
ACUGUUUAAUAAAAUC


intron1

A

TTTTCTTTTACCAG

UUUUCUUUUACCAG





STMN2_
+
GTT
1693
CAAATATTAACTGTTT
3699
CAAAUAUUAACUGUUU


intron1

C

AATAAAATCTTTTC

AAUAAAAUCUUUUC





STMN2_
+
ATT
1694
ATGTAAACCTAGTTCC
3700
AUGUAAACCUAGUUCC


intron1

G

AAATATTAACTGTT

AAAUAUUAACUGUU





STMN2_
+
GTT
1695
TCTAAAAAAGCAGAT
3701
UCUAAAAAAGCAGAUG


intron1

C

GATTGATGTAAACCT

AUUGAUGUAAACCU





STMN2_
+
TTTC
1696
ACCACACTAGAGGGC
3702
ACCACACUAGAGGGCA


intron1



AATCATGTTCTCTAA

AUCAUGUUCUCUAA





STMN2_
+
TTTT
1697
CACCACACTAGAGGG
3703
CACCACACUAGAGGGC


intron1



CAATCATGTTCTCTA

AAUCAUGUUCUCUA





STMN2_
+
CTTT
1698
TCACCACACTAGAGG
3704
UCACCACACUAGAGGG


intron1



GCAATCATGTTCTCT

CAAUCAUGUUCUCU





STMN2_
+
ATT
1699
ACTTTTCACCACACTA
3705
ACUUUUCACCACACUA


intron1

A

GAGGGCAATCATGT

GAGGGCAAUCAUGU





STMN2_
+
ATT
1700
GAAAACCTCGGTGTCT
3706
GAAAACCUCGGUGUCU


intron1

G

GCATTAACTTTTCA

GCAUUAACUUUUCA





STMN2_
+
GTT
1701
TGTCCATTGGAAAACC
3707
UGUCCAUUGGAAAACC


intron1

C

TCGGTGTCTGCATT

UCGGUGUCUGCAUU





STMN2_
+
TTTC
1702
AGAACCTAGACTGGT
3708
AGAACCUAGACUGGUU


intron1



TCTGTCCATTGGAAA

CUGUCCAUUGGAAA





STMN2_
+
TTTT
1703
CAGAACCTAGACTGG
3709
CAGAACCUAGACUGGU


intron1



TTCTGTCCATTGGAA

UCUGUCCAUUGGAA





STMN2_
+
GTT
1704
TCAGAACCTAGACTG
3710
UCAGAACCUAGACUGG


intron1

T

GTTCTGTCCATTGGA

UUCUGUCCAUUGGA





STMN2_
+
ATT
1705
AAAAAGAAAATACTG
3711
AAAAAGAAAAUACUGA


intron1

A

AACTAGCCAGTGACC

ACUAGCCAGUGACC





STMN2_
+
TTTC
1706
ATTAAAAAAGAAAAT
3712
AUUAAAAAAGAAAAUA


intron1



ACTGAACTAGCCAGT

CUGAACUAGCCAGU





STMN2_
+
TTTT
1707
CATTAAAAAAGAAAA
3713
CAUUAAAAAAGAAAAU


intron1



TACTGAACTAGCCAG

ACUGAACUAGCCAG





STMN2_
+
TTTT
1708
TCATTAAAAAAGAAA
3714
UCAUUAAAAAAGAAAA


intron1



ATACTGAACTAGCCA

UACUGAACUAGCCA





STMN2_
+
TTTT
1709
TTCATTAAAAAAGAA
3715
UUCAUUAAAAAAGAAA


intron1



AATACTGAACTAGCC

AUACUGAACUAGCC





STMN2_
+
ATT
1710
TTTCATTAAAAAAGA
3716
UUUCAUUAAAAAAGAA


intron1

T

AAATACTGAACTAGC

AAUACUGAACUAGC





STMN2_
+
ATT
1711
AAGTGTTTATTCAATA
3717
AAGUGUUUAUUCAAUA


intron1

C

AGCTGATGCCATGC

AGCUGAUGCCAUGC





STMN2_
+
GTT
1712
ATTCAATAAGCTGATG
3718
AUUCAAUAAGCUGAUG


intron1

T

CCATGCTTTACCCT

CCAUGCUUUACCCU





STMN2_
+
TTT
1713
TTCAATAAGCTGATGC
3719
UUCAAUAAGCUGAUGC


intron1

A

CATGCTTTACCCTA

CAUGCUUUACCCUA





STMN2_
+
ATT
1714
AATAAGCTGATGCCA
3720
AAUAAGCUGAUGCCAU


intron1

C

TGCTTTACCCTAGTG

GCUUUACCCUAGUG





STMN2_
+
GTT
1715
TTTAGCAGCCGAATAT
3721
UUUAGCAGCCGAAUAU


intron1

A

TTTAATGCTTAAAA

UUUAAUGCUUAAAA





STMN2_
+
TTT
1716
TAGTGGATAAATAGT
3722
UAGUGGAUAAAUAGUA


intron1

G

AGAAAAATGTCAGTA

GAAAAAUGUCAGUA





STMN2_
+
TTTT
1717
GTAGTGGATAAATAG
3723
GUAGUGGAUAAAUAGU


intron1



TAGAAAAATGTCAGT

AGAAAAAUGUCAGU





STMN2_
+
ATT
1718
TGTAGTGGATAAATA
3724
UGUAGUGGAUAAAUAG


intron1

T

GTAGAAAAATGTCAG

UAGAAAAAUGUCAG





STMN2_
+
CTT
1719
TGAGATTTTGTAGTGG
3725
UGAGAUUUUGUAGUGG


intron1

C

ATAAATAGTAGAAA

AUAAAUAGUAGAAA





STMN2_
+
GTT
1720
CTTCTGAGATTTTGTA
3726
CUUCUGAGAUUUUGUA


intron1

A

GTGGATAAATAGTA

GUGGAUAAAUAGUA





STMN2_
+
TTT
1721
TGTTACTTCTGAGATT
3727
UGUUACUUCUGAGAUU


intron1

A

TTGTAGTGGATAAA

UUGUAGUGGAUAAA





STMN2_
+
ATT
1722
ATGTTACTTCTGAGAT
3728
AUGUUACUUCUGAGAU


intron1

T

TTTGTAGTGGATAA

UUUGUAGUGGAUAA





STMN2_
+
ATT
1723
TAATACCATTTATGTT
3729
UAAUACCAUUUAUGUU


intron1

A

ACTTCTGAGATTTT

ACUUCUGAGAUUUU





STMN2_
+
GTT
1724
TTATAATACCATTTAT
3730
UUAUAAUACCAUUUAU


intron1

A

GTTACTTCTGAGAT

GUUACUUCUGAGAU





STMN2_
+
ATT
1725
TTATTATAATACCATT
3731
UUAUUAUAAUACCAUU


intron1

G

TATGTTACTTCTGA

UAUGUUACUUCUGA





STMN2_
+
ATT
1726
CATTGTTATTATAATA
3732
CAUUGUUAUUAUAAUA


intron1

A

CCATTTATGTTACT

CCAUUUAUGUUACU





STMN2_
+
TTT
1727
TTACATTGTTATTATA
3733
UUACAUUGUUAUUAUA


intron1

A

ATACCATTTATGTT

AUACCAUUUAUGUU





STMN2_
+
TTT
1728
GCAGCCGAATATTTTA
3734
GCAGCCGAAUAUUUUA


intron1

A

ATGCTTAAAAATAA

AUGCUUAAAAAUAA





STMN2_
+
TTTT
1729
ATTACATTGTTATTAT
3735
AUUACAUUGUUAUUAU


intron1



AATACCATTTATGT

AAUACCAUUUAUGU





STMN2_
+
CTT
1730
TCAGTTTTATTACATT
3736
UCAGUUUUAUUACAUU


intron1

C

GTTATTATAATACC

GUUAUUAUAAUACC





STMN2_
+
TTT
1731
CTTCTCAGTTTTATTA
3737
CUUCUCAGUUUUAUUA


intron1

A

CATTGTTATTATAA

CAUUGUUAUUAUAA





STMN2_
+
TTTT
1732
ACTTCTCAGTTTTATT
3738
ACUUCUCAGUUUUAUU


intron1



ACATTGTTATTATA

ACAUUGUUAUUAUA





STMN2_
+
GTT
1733
TACTTCTCAGTTTTAT
3739
UACUUCUCAGUUUUAU


intron1

T

TACATTGTTATTAT

UACAUUGUUAUUAU





STMN2_
+
ATT
1734
CCTGATGGTTTTACTT
3740
CCUGAUGGUUUUACUU


intron1

C

CTCAGTTTTATTAC

CUCAGUUUUAUUAC





STMN2_
+
ATT
1735
TTCCCTGATGGTTTTA
3741
UUCCCUGAUGGUUUUA


intron1

A

CTTCTCAGTTTTAT

CUUCUCAGUUUUAU





STMN2_
+
GTT
1736
ATTATTCCCTGATGGT
3742
AUUAUUCCCUGAUGGU


intron1

A

TTTACTTCTCAGTT

UUUACUUCUCAGUU





STMN2_
+
TTTC
1737
AAGGAGACAGGATGA
3743
AAGGAGACAGGAUGAA


intron1



AATGAGTGGTCATAA

AUGAGUGGUCAUAA





STMN2_
+
TTTT
1738
CAAGGAGACAGGATG
3744
CAAGGAGACAGGAUGA


intron1



AAATGAGTGGTCATA

AAUGAGUGGUCAUA





STMN2_
+
ATT
1739
TCAAGGAGACAGGAT
3745
UCAAGGAGACAGGAUG


intron1

T

GAAATGAGTGGTCAT

AAAUGAGUGGUCAU





STMN2_
+
CTT
1740
TACAATTTTCAAGGAG
3746
UACAAUUUUCAAGGAG


intron1

G

ACAGGATGAAATGA

ACAGGAUGAAAUGA





STMN2_
+
TTT
1741
CCCTAGTGGATGAAC
3747
CCCUAGUGGAUGAACA


intron1

A

AGAGCTTGTACAATT

GAGCUUGUACAAUU





STMN2_
+
CTTT
1742
ACCCTAGTGGATGAA
3748
ACCCUAGUGGAUGAAC


intron1



CAGAGCTTGTACAAT

AGAGCUUGUACAAU





STMN2_
+
GTT
1743
TATTACATTGTTATTA
3749
UAUUACAUUGUUAUUA


intron1

T

TAATACCATTTATG

UAAUACCAUUUAUG





STMN2_
+
TTTT
1744
TTGATTACATTTTATG
3750
UUGAUUACAUUUUAUG


intron1



TAATTCTAATCCAG

UAAUUCUAAUCCAG





STMN2_
+
GTT
1745
ATCAATTAATCTCATG
3751
AUCAAUUAAUCUCAUG


intron1

T

TATTTAGTTTATAC

UAUUUAGUUUAUAC





STMN2_
+
ATT
1746
CAGGATAAAACTGAA
3752
CAGGAUAAAACUGAAA


intron1

T

AGAAATGGCAGTAGT

GAAAUGGCAGUAGU





STMN2_
+
GTT
1747
GCGGGAAAAGCTTCT
3753
GCGGGAAAAGCUUCUA


intron1

T

AGAACCTAGACATGT

GAACCUAGACAUGU





STMN2_
+
TTT
1748
ATCGTTTGCGGGAAA
3754
AUCGUUUGCGGGAAAA


intron1

G

AGCTTCTAGAACCTA

GCUUCUAGAACCUA





STMN2_
+
CTTT
1749
GATCGTTTGCGGGAA
3755
GAUCGUUUGCGGGAAA


intron1



AAGCTTCTAGAACCT

AGCUUCUAGAACCU





STMN2_
+
TTT
1750
AAGACCTTTGATCGTT
3756
AAGACCUUUGAUCGUU


intron1

G

TGCGGGAAAAGCTT

UGCGGGAAAAGCUU





STMN2_
+
CTTT
1751
GAAGACCTTTGATCGT
3757
GAAGACCUUUGAUCGU


intron1



TTGCGGGAAAAGCT

UUGCGGGAAAAGCU





STMN2_
+
GTT
1752
TTTGAAGACCTTTGAT
3758
UUUGAAGACCUUUGAU


intron1

C

CGTTTGCGGGAAAA

CGUUUGCGGGAAAA





STMN2_
+
TTT
1753
GACATAGACACAGAT
3759
GACAUAGACACAGAUA


intron1

A

AAAGGGTTCTTTGAA

AAGGGUUCUUUGAA





STMN2_
+
GTT
1754
AGACATAGACACAGA
3760
AGACAUAGACACAGAU


intron1

T

TAAAGGGTTCTTTGA

AAAGGGUUCUUUGA





STMN2_
+
ATT
1755
CATAGAGTGTTTAGAC
3761
CAUAGAGUGUUUAGAC


intron1

A

ATAGACACAGATAA

AUAGACACAGAUAA





STMN2_
+
TTTC
1756
GGAAGCAAATTACAT
3762
GGAAGCAAAUUACAUA


intron1



AGAGTGTTTAGACAT

GAGUGUUUAGACAU





STMN2_
+
TTTT
1757
CGGAAGCAAATTACA
3763
CGGAAGCAAAUUACAU


intron1



TAGAGTGTTTAGACA

AGAGUGUUUAGACA





STMN2_
+
CTTT
1758
TCGGAAGCAAATTAC
3764
UCGGAAGCAAAUUACA


intron1



ATAGAGTGTTTAGAC

UAGAGUGUUUAGAC





STMN2_
+
TTTC
1759
TTTTCGGAAGCAAATT
3765
UUUUCGGAAGCAAAUU


intron1



ACATAGAGTGTTTA

ACAUAGAGUGUUUA





STMN2_
+
TTTT
1760
CTTTTCGGAAGCAAAT
3766
CUUUUCGGAAGCAAAU


intron1



TACATAGAGTGTTT

UACAUAGAGUGUUU





STMN2_
+
TTTT
1761
TCTTTTCGGAAGCAAA
3767
UCUUUUCGGAAGCAAA


intron1



TTACATAGAGTGTT

UUACAUAGAGUGUU





STMN2_
+
ATT
1762
TTCTTTTCGGAAGCAA
3768
UUCUUUUCGGAAGCAA


intron1

T

ATTACATAGAGTGT

AUUACAUAGAGUGU





STMN2_
+
GTT
1763
ACATTTTTCTTTTCGG
3769
ACAUUUUUCUUUUCGG


intron1

A

AAGCAAATTACATA

AAGCAAAUUACAUA





STMN2_
+
TTT
1764
AGAGAGATGGGAAAA
3770
AGAGAGAUGGGAAAAG


intron1

A

GTGGGTTAACATTTT

UGGGUUAACAUUUU





STMN2_
+
TTTT
1765
AAGAGAGATGGGAAA
3771
AAGAGAGAUGGGAAAA


intron1



AGTGGGTTAACATTT

GUGGGUUAACAUUU





STMN2_
+
CTTT
1766
TAAGAGAGATGGGAA
3772
UAAGAGAGAUGGGAAA


intron1



AAGTGGGTTAACATT

AGUGGGUUAACAUU





STMN2_
+
GTT
1767
TGCTTTTAAGAGAGAT
3773
UGCUUUUAAGAGAGAU


intron1

C

GGGAAAAGTGGGTT

GGGAAAAGUGGGUU





STMN2_
+
ATT
1768
TTCTGCTTTTAAGAGA
3774
UUCUGCUUUUAAGAGA


intron1

G

GATGGGAAAAGTGG

GAUGGGAAAAGUGG





STMN2_
+
CTT
1769
CAAGAGAGACCTGAC
3775
CAAGAGAGACCUGACC


intron1

C

CACTGACCCCGCCCT

ACUGACCCCGCCCU





STMN2_
+
ATT
1770
GAAAGGGGGTCGGGT
3776
GAAAGGGGGUCGGGUG


intron1

C

GGGGAGCGCAGCGTG

GGGAGCGCAGCGUG





STMN2_
+
CTT
1771
ATTCGAAAGGGGGTC
3777
AUUCGAAAGGGGGUCG


intron1

C

GGGTGGGGAGCGCAG

GGUGGGGAGCGCAG





STMN2_
+
TTT
1772
TGTGCGGACCAGCGG
3778
UGUGCGGACCAGCGGU


intron1

G

TCCCGGGGGGAGGCA

CCCGGGGGGAGGCA





STMN2_
+
CTTT
1773
GTGTGCGGACCAGCG
3779
GUGUGCGGACCAGCGG


intron1



GTCCCGGGGGGAGGC

UCCCGGGGGGAGGC





STMN2_
+
TTT
1774
CGGGAAAAGCTTCTA
3780
CGGGAAAAGCUUCUAG


intron1

G

GAACCTAGACATGTG

AACCUAGACAUGUG





STMN2_
+
TTTC
1775
TTTGTGTGCGGACCAG
3781
UUUGUGUGCGGACCAG


intron1



CGGTCCCGGGGGGA

CGGUCCCGGGGGGA





STMN2_
+
CTT
1776
TAGAACCTAGACATG
3782
UAGAACCUAGACAUGU


intron1

C

TGTATGTATAATAAT

GUAUGUAUAAUAAU





STMN2_
+
GTT
1777
AGCCACGCGAAATTTC
3783
AGCCACGCGAAAUUUC


intron1

A

CGTTTTGTGGGTCA

CGUUUUGUGGGUCA





STMN2_
+
CTTT
1778
TTTTCCCCCAGCCCAA
3784
UUUUCCCCCAGCCCAA


intron1



GCCCCCCGCCCACC

GCCCCCCGCCCACC





STMN2_
+
CTT
1779
TCGCCCACCCACGGTC
3785
UCGCCCACCCACGGUCC


intron1

C

CGCGGAGCTCGGGG

GCGGAGCUCGGGG





STMN2_
+
ATT
1780
AGGGAGGGCTGTCTC
3786
AGGGAGGGCUGUCUCU


intron1

C

TTCTCGCCCACCCAC

UCUCGCCCACCCAC





STMN2_
+
CTT
1781
CCAGGGATTCAGGGA
3787
CCAGGGAUUCAGGGAG


intron1

C

GGGCTGTCTCTTCTC

GGCUGUCUCUUCUC





STMN2_
+
CTT
1782
ATGTGCGCAGACCCCC
3788
AUGUGCGCAGACCCCC


intron1

G

GGCGTGGCTCTCAG

GGCGUGGCUCUCAG





STMN2_
+
TTTC
1783
AGCCCCGCAGTCCAC
3789
AGCCCCGCAGUCCACA


intron1



AACGGCCCGAGCACC

ACGGCCCGAGCACC





STMN2_
+
TTTT
1784
CAGCCCCGCAGTCCAC
3790
CAGCCCCGCAGUCCAC


intron1



AACGGCCCGAGCAC

AACGGCCCGAGCAC





STMN2_
+
TTTT
1785
TCAGCCCCGCAGTCCA
3791
UCAGCCCCGCAGUCCA


intron1



CAACGGCCCGAGCA

CAACGGCCCGAGCA





STMN2_
+
TTTT
1786
TTCAGCCCCGCAGTCC
3792
UUCAGCCCCGCAGUCC


intron1



ACAACGGCCCGAGC

ACAACGGCCCGAGC





STMN2_
+
CTTT
1787
TTTCAGCCCCGCAGTC
3793
UUUCAGCCCCGCAGUC


intron1



CACAACGGCCCGAG

CACAACGGCCCGAG





STMN2_
+
GTT
1788
AGCTGTATGCAGTCCT
3794
AGCUGUAUGCAGUCCU


intron1

G

GGAACCTCTTTTTT

GGAACCUCUUUUUU





STMN2_
+
GTT
1789
CAGGATGCGGAGACA
3795
CAGGAUGCGGAGACAG


intron1

G

GGGAAAGCTGCCGAA

GGAAAGCUGCCGAA





STMN2_
+
CTT
1790
GTTGCAGGATGCGGA
3796
GUUGCAGGAUGCGGAG


intron1

G

GACAGGGAAAGCTGC

ACAGGGAAAGCUGC





STMN2_
+
GTT
1791
TGGCGCTCAGTGGCCC
3797
UGGCGCUCAGUGGCCC


intron1

C

CGGGGTGAAAAGGC

CGGGGUGAAAAGGC





STMN2_
+
CTT
1792
AGTGCCCACGGTTCTG
3798
AGUGCCCACGGUUCUG


intron1

G

GCGCTCAGTGGCCC

GCGCUCAGUGGCCC





STMN2_
+
CTT
1793
TGCCTTGAGTGCCCAC
3799
UGCCUUGAGUGCCCAC


intron1

G

GGTTCTGGCGCTCA

GGUUCUGGCGCUCA





STMN2_
+
ATT
1794
GTCTTGTGCCTTGAGT
3800
GUCUUGUGCCUUGAGU


intron1

G

GCCCACGGTTCTGG

GCCCACGGUUCUGG





STMN2_
+
CTT
1795
ATCCGCAATTGGTCTT
3801
AUCCGCAAUUGGUCUU


intron1

C

GTGCCTTGAGTGCC

GUGCCUUGAGUGCC





STMN2_
+
ATT
1796
AGGGCCTTCATCCGCA
3802
AGGGCCUUCAUCCGCA


intron1

C

ATTGGTCTTGTGCC

AUUGGUCUUGUGCC





STMN2_
+
ATT
1797
TGGATTCAGGGCCTTC
3803
UGGAUUCAGGGCCUUC


intron1

C

ATCCGCAATTGGTC

AUCCGCAAUUGGUC





STMN2_
+
TTTC
1798
ATAAGCTCAGAGAGA
3804
AUAAGCUCAGAGAGAC


intron1



CAAGACAGTGGAGAC

AAGACAGUGGAGAC





STMN2_
+
ATT
1799
CATAAGCTCAGAGAG
3805
CAUAAGCUCAGAGAGA


intron1

T

ACAAGACAGTGGAGA

CAAGACAGUGGAGA





STMN2_
+
TTT
1800
TGGGTCAGACAGTGC
3806
UGGGUCAGACAGUGCC


intron1

G

CAAATATCGGCAATT

AAAUAUCGGCAAUU





STMN2_
+
TTTT
1801
GTGGGTCAGACAGTG
3807
GUGGGUCAGACAGUGC


intron1



CCAAATATCGGCAAT

CAAAUAUCGGCAAU





STMN2_
+
GTT
1802
TGTGGGTCAGACAGT
3808
UGUGGGUCAGACAGUG


intron1

T

GCCAAATATCGGCAA

CCAAAUAUCGGCAA





STMN2_
+
TTTC
1803
CGTTTTGTGGGTCAGA
3809
CGUUUUGUGGGUCAGA


intron1



CAGTGCCAAATATC

CAGUGCCAAAUAUC





STMN2_
+
ATT
1804
CCGTTTTGTGGGTCAG
3810
CCGUUUUGUGGGUCAG


intron1

T

ACAGTGCCAAATAT

ACAGUGCCAAAUAU





STMN2_
+
CTT
1805
AGTTAAGCCACGCGA
3811
AGUUAAGCCACGCGAA


intron1

A

AATTTCCGTTTTGTG

AUUUCCGUUUUGUG





STMN2_
+
GTT
1806
CTTTGTGTGCGGACCA
3812
CUUUGUGUGCGGACCA


intron1

T

GCGGTCCCGGGGGG

GCGGUCCCGGGGGG





STMN2_
+
CTT
1807
GAAGGCGCTGGGGTG
3813
GAAGGCGCUGGGGUGG


intron1

C

GGGTTTCTTTGTGTG

GGUUUCUUUGUGUG





STMN2_
+
TTT
1808
GGGCAAGGGAGGGGA
3814
GGGCAAGGGAGGGGAA


intron1

A

AGGAGAGAGGAAGTC

GGAGAGAGGAAGUC





STMN2_
+
CTT
1809
AGGGACATTTTGGAA
3815
AGGGACAUUUUGGAAA


intron1

A

AGTGCTTTATAACGA

GUGCUUUAUAACGA





STMN2_
+
CTT
1810
AATGGGCTTAAGGGA
3816
AAUGGGCUUAAGGGAC


intron1

A

CATTTTGGAAAGTGC

AUUUUGGAAAGUGC





STMN2_
+
TTT
1811
CCTTAAATGGGCTTAA
3817
CCUUAAAUGGGCUUAA


intron1

G

GGGACATTTTGGAA

GGGACAUUUUGGAA





STMN2_
+
GTT
1812
GCCTTAAATGGGCTTA
3818
GCCUUAAAUGGGCUUA


intron1

T

AGGGACATTTTGGA

AGGGACAUUUUGGA





STMN2_
+
CTT
1813
ACTGTTTGCCTTAAAT
3819
ACUGUUUGCCUUAAAU


intron1

A

GGGCTTAAGGGACA

GGGCUUAAGGGACA





STMN2_
+
ATT
1814
GGACTCAATCGTGAG
3820
GGACUCAAUCGUGAGG


intron1

A

GGGAGGAAGCTACCT

GGAGGAAGCUACCU





STMN2_
+
TTT
1815
AAATTAGGACTCAAT
3821
AAAUUAGGACUCAAUC


intron1

A

CGTGAGGGGAGGAAG

GUGAGGGGAGGAAG





STMN2_
+
ATT
1816
AAAATTAGGACTCAA
3822
AAAAUUAGGACUCAAU


intron1

T

TCGTGAGGGGAGGAA

CGUGAGGGGAGGAA





STMN2_
+
TTTC
1817
CATATTTAAAATTAGG
3823
CAUAUUUAAAAUUAGG


intron1



ACTCAATCGTGAGG

ACUCAAUCGUGAGG





STMN2_
+
GTT
1818
CCATATTTAAAATTAG
3824
CCAUAUUUAAAAUUAG


intron1

T

GACTCAATCGTGAG

GACUCAAUCGUGAG





STMN2_
+
ATT
1819
TGTTTCCATATTTAAA
3825
UGUUUCCAUAUUUAAA


intron1

C

ATTAGGACTCAATC

AUUAGGACUCAAUC





STMN2_
+
TTT
1820
TTCTGTTTCCATATTT
3826
UUCUGUUUCCAUAUUU


intron1

A

AAAATTAGGACTCA

AAAAUUAGGACUCA





STMN2_
+
ATT
1821
ATTCTGTTTCCATATT
3827
AUUCUGUUUCCAUAUU


intron1

T

TAAAATTAGGACTC

UAAAAUUAGGACUC





STMN2_
+
GTT
1822
CCCTCCTATGGGTAGA
3828
CCCUCCUAUGGGUAGA


intron1

G

GAATTTATTCTGTT

GAAUUUAUUCUGUU





STMN2_
+
TTT
1823
AAAGGTAGAAGCGGG
3829
AAAGGUAGAAGCGGGU


intron1

A

TAAGTTGCCCTCCTA

AAGUUGCCCUCCUA





STMN2_
+
TTTT
1824
AAAAGGTAGAAGCGG
3830
AAAAGGUAGAAGCGGG


intron1



GTAAGTTGCCCTCCT

UAAGUUGCCCUCCU





STMN2_
+
CTTT
1825
TAAAAGGTAGAAGCG
3831
UAAAAGGUAGAAGCGG


intron1



GGTAAGTTGCCCTCC

GUAAGUUGCCCUCC





STMN2_
+
TTTC
1826
TTTTAAAAGGTAGAA
3832
UUUUAAAAGGUAGAAG


intron1



GCGGGTAAGTTGCCC

CGGGUAAGUUGCCC





STMN2_
+
ATT
1827
CTTTTAAAAGGTAGA
3833
CUUUUAAAAGGUAGAA


intron1

T

AGCGGGTAAGTTGCC

GCGGGUAAGUUGCC





STMN2_
+
GTT
1828
TGGGGGAGGTGGGAG
3834
UGGGGGAGGUGGGAGG


intron1

C

GGCAGAGAAGAGGTC

GCAGAGAAGAGGUC





STMN2_
+
GTT
1829
ATGGTAACACAGGAC
3835
AUGGUAACACAGGACC


intron1

A

CAGGAAGGACAGGGC

AGGAAGGACAGGGC





STMN2_
+
TTT
1830
TAAAGAAAAAGATGT
3836
UAAAGAAAAAGAUGUU


intron1

A

TAATGGTAACACAGG

AAUGGUAACACAGG





STMN2_
+
TTTT
1831
ATAAAGAAAAAGATG
3837
AUAAAGAAAAAGAUGU


intron1



TTAATGGTAACACAG

UAAUGGUAACACAG





STMN2_
+
ATT
1832
TATAAAGAAAAAGAT
3838
UAUAAAGAAAAAGAUG


intron1

T

GTTAATGGTAACACA

UUAAUGGUAACACA





STMN2_
+
ATT
1833
AGAGATATTTTATAAA
3839
AGAGAUAUUUUAUAAA


intron1

C

GAAAAAGATGTTAA

GAAAAAGAUGUUAA





STMN2_
+
CTT
1834
AGCTCTAGAAGCATTC
3840
AGCUCUAGAAGCAUUC


intron1

G

AGAGATATTTTATA

AGAGAUAUUUUAUA





STMN2_
+
ATT
1835
TGAGAACAAAAATAA
3841
UGAGAACAAAAAUAAA


intron1

A

AAATGTTCCTCACCC

AAUGUUCCUCACCC





STMN2_
+
ATT
1836
TGGAAAGTGCTTTATA
3842
UGGAAAGUGCUUUAUA


intron1

T

ACGACCTTTTTTTT

ACGACCUUUUUUUU





STMN2_
+
TTTT
1837
GGAAAGTGCTTTATA
3843
GGAAAGUGCUUUAUAA


intron1



ACGACCTTTTTTTTT

CGACCUUUUUUUUU





STMN2_
+
TTT
1838
GAAAGTGCTTTATAAC
3844
GAAAGUGCUUUAUAAC


intron1

G

GACCTTTTTTTTTT

GACCUUUUUUUUUU





STMN2_
+
CTTT
1839
ATAACGACCTTTTTTT
3845
AUAACGACCUUUUUUU


intron1



TTTTTATTTCTTCT

UUUUUAUUUCUUCU





STMN2_
+
TTTT
1840
AGGGCAAGGGAGGGG
3846
AGGGCAAGGGAGGGGA


intron1



AAGGAGAGAGGAAGT

AGGAGAGAGGAAGU





STMN2_
+
GTT
1841
TAGGGCAAGGGAGGG
3847
UAGGGCAAGGGAGGGG


intron1

T

GAAGGAGAGAGGAAG

AAGGAGAGAGGAAG





STMN2_
+
TTT
1842
TTTTAGGGCAAGGGA
3848
UUUUAGGGCAAGGGAG


intron1

G

GGGGAAGGAGAGAGG

GGGAAGGAGAGAGG





STMN2_
+
CTTT
1843
GTTTTAGGGCAAGGG
3849
GUUUUAGGGCAAGGGA


intron1



AGGGGAAGGAGAGAG

GGGGAAGGAGAGAG





STMN2_
+
ATT
1844
TCTCGTCGAAGAAACC
3850
UCUCGUCGAAGAAACC


intron1

G

GCTAGTCCTGGGGT

GCUAGUCCUGGGGU





STMN2_
+
TTT
1845
CGGTATTGTCTCGTCG
3851
CGGUAUUGUCUCGUCG


intron1

A

AAGAAACCGCTAGT

AAGAAACCGCUAGU





STMN2_
+
TTTT
1846
ACGGTATTGTCTCGTC
3852
ACGGUAUUGUCUCGUC


intron1



GAAGAAACCGCTAG

GAAGAAACCGCUAG





STMN2_
+
ATT
1847
TACGGTATTGTCTCGT
3853
UACGGUAUUGUCUCGU


intron1

T

CGAAGAAACCGCTA

CGAAGAAACCGCUA





STMN2_
+
TTT
1848
AAAGATGGGTGGAGA
3854
AAAGAUGGGUGGAGAC


intron1

G

CGGGGGGAGGGGATG

GGGGGGAGGGGAUG





STMN2_
+
GTT
1849
GAAAGATGGGTGGAG
3855
GAAAGAUGGGUGGAGA


intron1

T

ACGGGGGGAGGGGAT

CGGGGGGAGGGGAU





STMN2_
+
ATT
1850
CAAAGTCAAAGCGGT
3856
CAAAGUCAAAGCGGUC


intron1

G

CCCATCCCGCTGTTT

CCAUCCCGCUGUUU





STMN2_
+
TTT
1851
AGAAGAAAATAGGAA
3857
AGAAGAAAAUAGGAAA


intron1

A

AGGGGTAAAGGGAAG

GGGGUAAAGGGAAG





STMN2_
+
GTT
1852
AAGAAGAAAATAGGA
3858
AAGAAGAAAAUAGGAA


intron1

T

AAGGGGTAAAGGGAA

AGGGGUAAAGGGAA





STMN2_
+
TTTT
1853
TTTCCCCCAGCCCAAG
3859
UUUCCCCCAGCCCAAG


intron1



CCCCCCGCCCACCC

CCCCCCGCCCACCC





STMN2_
+
CTT
1854
TCTAGTTTAAGAAGA
3860
UCUAGUUUAAGAAGAA


intron1

C

AAATAGGAAAGGGGT

AAUAGGAAAGGGGU





STMN2_
+
ATT
1855
CTTCTCTAGTTTAAGA
3861
CUUCUCUAGUUUAAGA


intron1

T

AGAAAATAGGAAAG

AGAAAAUAGGAAAG





STMN2_
+
TTT
1856
TTTCTTCTCTAGTTTA
3862
UUUCUUCUCUAGUUUA


intron1

A

AGAAGAAAATAGGA

AGAAGAAAAUAGGA





STMN2_
+
TTTT
1857
ATTTCTTCTCTAGTTT
3863
AUUUCUUCUCUAGUUU


intron1



AAGAAGAAAATAGG

AAGAAGAAAAUAGG





STMN2_
+
TTTT
1858
TATTTCTTCTCTAGTTT
3864
UAUUUCUUCUCUAGUU


intron1



AAGAAGAAAATAG

UAAGAAGAAAAUAG





STMN2_
+
TTTT
1859
TTATTTCTTCTCTAGTT
3865
UUAUUUCUUCUCUAGU


intron1



TAAGAAGAAAATA

UUAAGAAGAAAAUA





STMN2_
+
TTTT
1860
TTTATTTCTTCTCTAGT
3866
UUUAUUUCUUCUCUAG


intron1



TTAAGAAGAAAAT

UUUAAGAAGAAAAU





STMN2_
+
TTTT
1861
TTTTATTTCTTCTCTAG
3867
UUUUAUUUCUUCUCUA


intron1



TTTAAGAAGAAAA

GUUUAAGAAGAAAA





STMN2_
+
TTTT
1862
TTTTTATTTCTTCTCTA
3868
UUUUUAUUUCUUCUCU


intron1



GTTTAAGAAGAAA

AGUUUAAGAAGAAA





STMN2_
+
TTTT
1863
TTTTTTATTTCTTCTCT
3869
UUUUUUAUUUCUUCUC


intron1



AGTTTAAGAAGAA

UAGUUUAAGAAGAA





STMN2_
+
TTTT
1864
TTTTTTTATTTCTTCTC
3870
UUUUUUUAUUUCUUCU


intron1



TAGTTTAAGAAGA

CUAGUUUAAGAAGA





STMN2_
+
TTTT
1865
TTTTTTTTATTTCTTCT
3871
UUUUUUUUAUUUCUUC


intron1



CTAGTTTAAGAAG

UCUAGUUUAAGAAG





STMN2_
+
CTTT
1866
TTTTTTTTTATTTCTTC
3872
UUUUUUUUUAUUUCUU


intron1



TCTAGTTTAAGAA

CUCUAGUUUAAGAA





STMN2_
+
TTT
1867
TAACGACCTTTTTTTT
3873
UAACGACCUUUUUUUU


intron1

A

TTTTATTTCTTCTC

UUUUAUUUCUUCUC





STMN2_
+
TTTC
1868
TTCTCTAGTTTAAGAA
3874
UUCUCUAGUUUAAGAA


intron1



GAAAATAGGAAAGG

GAAAAUAGGAAAGG





STMN2_
+
TTTT
1869
TTCCCCCAGCCCAAGC
3875
UUCCCCCAGCCCAAGCC


intron1



CCCCCGCCCACCCT

CCCCGCCCACCCU





STMN2_
+
TTTT
1870
TCCCCCAGCCCAAGCC
3876
UCCCCCAGCCCAAGCCC


intron1



CCCCGCCCACCCTC

CCCGCCCACCCUC





STMN2_
+
TTTT
1871
CCCCCAGCCCAAGCCC
3877
CCCCCAGCCCAAGCCCC


intron1



CCCGCCCACCCTCT

CCGCCCACCCUCU





STMN2_
+
TTTC
1872
TGGCCATAATTTAACT
3878
UGGCCAUAAUUUAACU


intron1



GCATTTGCAAATCA

GCAUUUGCAAAUCA





STMN2_
+
CTTT
1873
CTGGCCATAATTTAAC
3879
CUGGCCAUAAUUUAAC


intron1



TGCATTTGCAAATC

UGCAUUUGCAAAUC





STMN2_
+
CTT
1874
ATACAGCCTCAATCCT
3880
AUACAGCCUCAAUCCU


intron1

G

ACACAGATACATGG

ACACAGAUACAUGG





STMN2_
+
ATT
1875
TTGATACAGCCTCAAT
3881
UUGAUACAGCCUCAAU


intron1

C

CCTACACAGATACA

CCUACACAGAUACA





STMN2_
+
CTT
1876
CAACTGCTGATTCTTG
3882
CAACUGCUGAUUCUUG


intron1

C

ATACAGCCTCAATC

AUACAGCCUCAAUC





STMN2_
+
GTT
1877
TTCCAACTGCTGATTC
3883
UUCCAACUGCUGAUUC


intron1

C

TTGATACAGCCTCA

UUGAUACAGCCUCA





STMN2_
+
TTTC
1878
CCCTGAAACTGTTCTT
3884
CCCUGAAACUGUUCUU


intron1



CCAACTGCTGATTC

CCAACUGCUGAUUC





STMN2_
+
TTTT
1879
CCCCTGAAACTGTTCT
3885
CCCCUGAAACUGUUCU


intron1



TCCAACTGCTGATT

UCCAACUGCUGAUU





STMN2_
+
TTTT
1880
TCCCCTGAAACTGTTC
3886
UCCCCUGAAACUGUUC


intron1



TTCCAACTGCTGAT

UUCCAACUGCUGAU





STMN2_
+
TTTT
1881
TTCCCCTGAAACTGTT
3887
UUCCCCUGAAACUGUU


intron1



CTTCCAACTGCTGA

CUUCCAACUGCUGA





STMN2_
+
GTT
1882
TTTCCCCTGAAACTGT
3888
UUUCCCCUGAAACUGU


intron1

T

TCTTCCAACTGCTG

UCUUCCAACUGCUG





STMN2_
+
TTT
1883
AGTTTTTTCCCCTGAA
3889
AGUUUUUUCCCCUGAA


intron1

A

ACTGTTCTTCCAAC

ACUGUUCUUCCAAC





STMN2_
+
TTTT
1884
AAGTTTTTTCCCCTGA
3890
AAGUUUUUUCCCCUGA


intron1



AACTGTTCTTCCAA

AACUGUUCUUCCAA





STMN2_
+
ATT
1885
TAAGTTTTTTCCCCTG
3891
UAAGUUUUUUCCCCUG


intron1

T

AAACTGTTCTTCCA

AAACUGUUCUUCCA





STMN2_
+
TTT
1886
TGCACAAAATTTTAAG
3892
UGCACAAAAUUUUAAG


intron1

A

TTTTTTCCCCTGAA

UUUUUUCCCCUGAA





STMN2_
+
GTT
1887
ATGCACAAAATTTTAA
3893
AUGCACAAAAUUUUAA


intron1

T

GTTTTTTCCCCTGA

GUUUUUUCCCCUGA





STMN2_
+
GTT
1888
TATCTATAAATATATA
3894
UAUCUAUAAAUAUAUA


intron1

A

AATATAGTTTATGC

AAUAUAGUUUAUGC





STMN2_
+
CTT
1889
AACATAAGGTTATATC
3895
AACAUAAGGUUAUAUC


intron1

C

TATAAATATATAAA

UAUAAAUAUAUAAA





STMN2_
+
ATT
1890
AGATGATCTTCAACAT
3896
AGAUGAUCUUCAACAU


intron1

G

AAGGTTATATCTAT

AAGGUUAUAUCUAU





STMN2_
+
TTT
1891
TGGCTGCAATGGGTG
3897
UGGCUGCAAUGGGUGA


intron1

G

AGAATACACATATAT

GAAUACACAUAUAU





STMN2_
+
GTT
1892
GTGGCTGCAATGGGT
3898
GUGGCUGCAAUGGGUG


intron1

T

GAGAATACACATATA

AGAAUACACAUAUA





STMN2_
+
ATT
1893
TTTGTGGCTGCAATGG
3899
UUUGUGGCUGCAAUGG


intron1

G

GTGAGAATACACAT

GUGAGAAUACACAU





STMN2_
+
ATT
1894
TCTGCAAAGAATTGTT
3900
UCUGCAAAGAAUUGUU


intron1

C

TGTGGCTGCAATGG

UGUGGCUGCAAUGG





STMN2_
+
ATT
1895
CTGGAAAATTCTCTGC
3901
CUGGAAAAUUCUCUGC


intron1

G

AAAGAATTGTTTGT

AAAGAAUUGUUUGU





STMN2_
+
TTT
1896
TGTGCCAACGATTGCT
3902
UGUGCCAACGAUUGCU


intron1

G

GGAAAATTCTCTGC

GGAAAAUUCUCUGC





STMN2_
+
GTT
1897
GTGTGCCAACGATTGC
3903
GUGUGCCAACGAUUGC


intron1

T

TGGAAAATTCTCTG

UGGAAAAUUCUCUG





STMN2_
+
CTT
1898
CTAAGAGCAGGGTTT
3904
CUAAGAGCAGGGUUUG


intron1

G

GTGTGCCAACGATTG

UGUGCCAACGAUUG





STMN2_
+
ATT
1899
AACTGCATTTGCAAAT
3905
AACUGCAUUUGCAAAU


intron1

T

CATGAAAAAAACAC

CAUGAAAAAAACAC





STMN2_
+
ATT
1900
GCAAATCATGAAAAA
3906
GCAAAUCAUGAAAAAA


intron1

T

AACACTACTTCTGCA

ACACUACUUCUGCA





STMN2_
+
TTT
1901
CAAATCATGAAAAAA
3907
CAAAUCAUGAAAAAAA


intron1

G

ACACTACTTCTGCAG

CACUACUUCUGCAG





STMN2_
+
CTT
1902
TGCAGTATTAAAATA
3908
UGCAGUAUUAAAAUAA


intron1

C

ATAGATTTTGAAATT

UAGAUUUUGAAAUU





STMN2_
+
TTT
1903
GTCAGAATTTCAGGAT
3909
GUCAGAAUUUCAGGAU


intron1

G

AAAACTGAAAGAAA

AAAACUGAAAGAAA





STMN2_
+
ATT
1904
GGTCAGAATTTCAGG
3910
GGUCAGAAUUUCAGGA


intron1

T

ATAAAACTGAAAGAA

UAAAACUGAAAGAA





STMN2_
+
CTT
1905
TGAATGGATATATAA
3911
UGAAUGGAUAUAUAAG


intron1

C

GTAACTAGAAATGAA

UAACUAGAAAUGAA





STMN2_
+
TTTC
1906
TAATGAAGTGGGCAC
3912
UAAUGAAGUGGGCACC


intron1



CTTCTGAATGGATAT

UUCUGAAUGGAUAU





STMN2_
+
TTTT
1907
CTAATGAAGTGGGCA
3913
CUAAUGAAGUGGGCAC


intron1



CCTTCTGAATGGATA

CUUCUGAAUGGAUA





STMN2_
+
CTTT
1908
TCTAATGAAGTGGGC
3914
UCUAAUGAAGUGGGCA


intron1



ACCTTCTGAATGGAT

CCUUCUGAAUGGAU





STMN2_
+
ATT
1909
TCTTTTCTAATGAAGT
3915
UCUUUUCUAAUGAAGU


intron1

A

GGGCACCTTCTGAA

GGGCACCUUCUGAA





STMN2_
+
ATT
1910
CCCATTATCTTTTCTA
3916
CCCAUUAUCUUUUCUA


intron1

C

ATGAAGTGGGCACC

AUGAAGUGGGCACC





STMN2_
+
ATT
1911
TAAGAGGTGCATATA
3917
UAAGAGGUGCAUAUAA


intron1

G

ATATTCCCCATTATC

UAUUCCCCAUUAUC





STMN2_
+
ATT
1912
AGCATGATTGTAAGA
3918
AGCAUGAUUGUAAGAG


intron1

C

GGTGCATATAATATT

GUGCAUAUAAUAUU





STMN2_
+
ATT
1913
TGTATTCAGCATGATT
3919
UGUAUUCAGCAUGAUU


intron1

A

GTAAGAGGTGCATA

GUAAGAGGUGCAUA





STMN2_
+
ATT
1914
AACAATTATGTATTCA
3920
AACAAUUAUGUAUUCA


intron1

A

GCATGATTGTAAGA

GCAUGAUUGUAAGA





STMN2_
+
ATT
1915
ATTAAACAATTATGTA
3921
AUUAAACAAUUAUGUA


intron1

C

TTCAGCATGATTGT

UUCAGCAUGAUUGU





STMN2_
+
GTT
1916
ATGTGGCTAAGATAC
3922
AUGUGGCUAAGAUACA


intron1

C

ATGTGCAAGTGCTTG

UGUGCAAGUGCUUG





STMN2_
+
TTTC
1917
CTGATTCATTAAACAA
3923
CUGAUUCAUUAAACAA


intron1



TTATGTATTCAGCA

UUAUGUAUUCAGCA





STMN2_
+
TTTT
1918
TCCTGATTCATTAAAC
3924
UCCUGAUUCAUUAAAC


intron1



AATTATGTATTCAG

AAUUAUGUAUUCAG





STMN2_
+
TTTT
1919
TTCCTGATTCATTAAA
3925
UUCCUGAUUCAUUAAA


intron1



CAATTATGTATTCA

CAAUUAUGUAUUCA





STMN2_
+
CTTT
1920
TTTCCTGATTCATTAA
3926
UUUCCUGAUUCAUUAA


intron1



ACAATTATGTATTC

ACAAUUAUGUAUUC





STMN2_
+
ATT
1921
TCAGGGCGAGTGCTTT
3927
UCAGGGCGAGUGCUUU


intron1

A

TTTCCTGATTCATT

UUUCCUGAUUCAUU





STMN2_
+
ATT
1922
ATTATCAGGGCGAGT
3928
AUUAUCAGGGCGAGUG


intron1

A

GCTTTTTTCCTGATT

CUUUUUUCCUGAUU





STMN2_
+
TTTC
1923
AAAGATAATTAATTAT
3929
AAAGAUAAUUAAUUAU


intron1



CAGGGCGAGTGCTT

CAGGGCGAGUGCUU





STMN2_
+
ATT
1924
CAAAGATAATTAATT
3930
CAAAGAUAAUUAAUUA


intron1

T

ATCAGGGCGAGTGCT

UCAGGGCGAGUGCU





STMN2_
+
ATT
1925
CAATTTCAAAGATAAT
3931
CAAUUUCAAAGAUAAU


intron1

C

TAATTATCAGGGCG

UAAUUAUCAGGGCG





STMN2_
+
ATT
1926
ATTCCAATTTCAAAGA
3932
AUUCCAAUUUCAAAGA


intron1

A

TAATTAATTATCAG

UAAUUAAUUAUCAG





STMN2_
+
TTT
1927
AAATTAATTCCAATTT
3933
AAAUUAAUUCCAAUUU


intron1

G

CAAAGATAATTAAT

CAAAGAUAAUUAAU





STMN2_
+
TTTT
1928
GAAATTAATTCCAATT
3934
GAAAUUAAUUCCAAUU


intron1



TCAAAGATAATTAA

UCAAAGAUAAUUAA





STMN2_
+
ATT
1929
TGAAATTAATTCCAAT
3935
UGAAAUUAAUUCCAAU


intron1

T

TTCAAAGATAATTA

UUCAAAGAUAAUUA





STMN2_
+
ATT
1930
AAATAATAGATTTTGA
3936
AAAUAAUAGAUUUUGA


intron1

A

AATTAATTCCAATT

AAUUAAUUCCAAUU





STMN2_
+
TTTT
1931
CCTGATTCATTAAACA
3937
CCUGAUUCAUUAAACA


intron1



ATTATGTATTCAGC

AUUAUGUAUUCAGC





STMN2_
+
TTTC
1932
AGGATAAAACTGAAA
3938
AGGAUAAAACUGAAAG


intron1



GAAATGGCAGTAGTT

AAAUGGCAGUAGUU





STMN2_
+
ATT
1933
TGTATGTTCATGTGGC
3939
UGUAUGUUCAUGUGGC


intron1

A

TAAGATACATGTGC

UAAGAUACAUGUGC





STMN2_
+
TTT
1934
CTTCCTGCCAGGATTA
3940
CUUCCUGCCAGGAUUA


intron1

G

TGTATGTTCATGTG

UGUAUGUUCAUGUG





STMN2_
+
TTT
1935
ATGATTCAGTAGCCTT
3941
AUGAUUCAGUAGCCUU


intron1

A

GTTTGTTCTCATTT

GUUUGUUCUCAUUU





STMN2_
+
ATT
1936
AATGATTCAGTAGCCT
3942
AAUGAUUCAGUAGCCU


intron1

T

TGTTTGTTCTCATT

UGUUUGUUCUCAUU





STMN2_
+
ATT
1937
TTTAATGATTCAGTAG
3943
UUUAAUGAUUCAGUAG


intron1

A

CCTTGTTTGTTCTC

CCUUGUUUGUUCUC





STMN2_
+
GTT
1938
TTATTTAATGATTCAG
3944
UUAUUUAAUGAUUCAG


intron1

A

TAGCCTTGTTTGTT

UAGCCUUGUUUGUU





STMN2_
+
GTT
1939
TTATTATTTAATGATT
3945
UUAUUAUUUAAUGAUU


intron1

G

CAGTAGCCTTGTTT

CAGUAGCCUUGUUU





STMN2_
+
TTTC
1940
AAATCGTTGTTATTAT
3946
AAAUCGUUGUUAUUAU


intron1



TTAATGATTCAGTA

UUAAUGAUUCAGUA





STMN2_
+
ATT
1941
CAAATCGTTGTTATTA
3947
CAAAUCGUUGUUAUUA


intron1

T

TTTAATGATTCAGT

UUUAAUGAUUCAGU





STMN2_
+
ATT
1942
TCATTTCAAATCGTTG
3948
UCAUUUCAAAUCGUUG


intron1

A

TTATTATTTAATGA

UUAUUAUUUAAUGA





STMN2_
+
ATT
1943
TTATCATTTCAAATCG
3949
UUAUCAUUUCAAAUCG


intron1

A

TTGTTATTATTTAA

UUGUUAUUAUUUAA





STMN2_
+
TTTC
1944
CGCTGCAGGCTAGTG
3950
CGCUGCAGGCUAGUGG


intron1



GCTGCAAACTCATCG

CUGCAAACUCAUCG





STMN2_
+
GTT
1945
CCGCTGCAGGCTAGTG
3951
CCGCUGCAGGCUAGUG


intron1

T

GCTGCAAACTCATC

GCUGCAAACUCAUC





STMN2_
+
TTTC
1946
TGCACCCCTCAGAAA
3952
UGCACCCCUCAGAAAG


intron1



GGTTTCCGCTGCAGG

GUUUCCGCUGCAGG





STMN2_
+
CTTT
1947
CTGCACCCCTCAGAAA
3953
CUGCACCCCUCAGAAA


intron1



GGTTTCCGCTGCAG

GGUUUCCGCUGCAG





STMN2_
+
GTT
1948
TGAGAATGGGTGGTG
3954
UGAGAAUGGGUGGUGG


intron1

C

GGGGCGATCTCGCCT

GGGCGAUCUCGCCU





STMN2_
+
GTT
1949
ACTCGCACGTCCAGA
3955
ACUCGCACGUCCAGAA


intron1

C

AAGGTTCTGAGAATG

AGGUUCUGAGAAUG





STMN2_
+
ATT
1950
GCAGTTCACTCGCACG
3956
GCAGUUCACUCGCACG


intron1

C

TCCAGAAAGGTTCT

UCCAGAAAGGUUCU





STMN2_
+
TTTC
1951
CACAATTCGCAGTTCA
3957
CACAAUUCGCAGUUCA


intron1



CTCGCACGTCCAGA

CUCGCACGUCCAGA





STMN2_
+
CTTT
1952
CCACAATTCGCAGTTC
3958
CCACAAUUCGCAGUUC


intron1



ACTCGCACGTCCAG

ACUCGCACGUCCAG





STMN2_
+
TTTC
1953
TGCGCAGTGTCCTGAG
3959
UGCGCAGUGUCCUGAG


intron1



CTACCCCCGCTTTC

CUACCCCCGCUUUC





STMN2_
+
GTT
1954
CTGCGCAGTGTCCTGA
3960
CUGCGCAGUGUCCUGA


intron1

T

GCTACCCCCGCTTT

GCUACCCCCGCUUU





STMN2_
+
GTT
1955
GGCGCTCGCCCCCGCG
3961
GGCGCUCGCCCCCGCG


intron1

G

GTGCAGCCGGGGAG

GUGCAGCCGGGGAG





STMN2_
+
CTT
1956
TCTAAGGGAGACCCTC
3962
UCUAAGGGAGACCCUC


intron1

C

GCTCCTCCAGCGGG

GCUCCUCCAGCGGG





STMN2_
+
TTTC
1957
CAGAATGGAGACCCC
3963
CAGAAUGGAGACCCCG


intron1



GCGAGGGGCTTCTCT

CGAGGGGCUUCUCU





STMN2_
+
TTTT
1958
CCAGAATGGAGACCC
3964
CCAGAAUGGAGACCCC


intron1



CGCGAGGGGCTTCTC

GCGAGGGGCUUCUC





STMN2_
+
ATT
1959
TCCAGAATGGAGACC
3965
UCCAGAAUGGAGACCC


intron1

T

CCGCGAGGGGCTTCT

CGCGAGGGGCUUCU





STMN2_
+
GTT
1960
TCTATGATTTTCCAGA
3966
UCUAUGAUUUUCCAGA


intron1

C

ATGGAGACCCCGCG

AUGGAGACCCCGCG





STMN2_
+
TTTC
1961
CCCCAGCCCAAGCCCC
3967
CCCCAGCCCAAGCCCCC


intron1



CCGCCCACCCTCTG

CGCCCACCCUCUG





STMN2_
+
ATT
1962
AGTAGCCTTGTTTGTT
3968
AGUAGCCUUGUUUGUU


intron1

C

CTCATTTGTTCAAA

CUCAUUUGUUCAAA





STMN2_
+
CTT
1963
TTTGTTCTCATTTGTTC
3969
UUUGUUCUCAUUUGUU


intron1

G

AAAAGGGACGTGG

CAAAAGGGACGUGG





STMN2_
+
GTT
1964
GTTCTCATTTGTTCAA
3970
GUUCUCAUUUGUUCAA


intron1

T

AAGGGACGTGGATT

AAGGGACGUGGAUU





STMN2_
+
TTT
1965
TTCTCATTTGTTCAAA
3971
UUCUCAUUUGUUCAAA


intron1

G

AGGGACGTGGATTG

AGGGACGUGGAUUG





STMN2_
+
TTTT
1966
GCTTCCTGCCAGGATT
3972
GCUUCCUGCCAGGAUU


intron1



ATGTATGTTCATGT

AUGUAUGUUCAUGU





STMN2_
+
TTTT
1967
TGCTTCCTGCCAGGAT
3973
UGCUUCCUGCCAGGAU


intron1



TATGTATGTTCATG

UAUGUAUGUUCAUG





STMN2_
+
ATT
1968
TTGCTTCCTGCCAGGA
3974
UUGCUUCCUGCCAGGA


intron1

T

TTATGTATGTTCAT

UUAUGUAUGUUCAU





STMN2_
+
GTT
1969
TAAAGCAAATATATTT
3975
UAAAGCAAAUAUAUUU


intron1

A

TTGCTTCCTGCCAG

UUGCUUCCUGCCAG





STMN2_
+
TTT
1970
AGTTATAAAGCAAAT
3976
AGUUAUAAAGCAAAUA


intron1

A

ATATTTTTGCTTCCT

UAUUUUUGCUUCCU





STMN2_
+
TTTT
1971
AAGTTATAAAGCAAA
3977
AAGUUAUAAAGCAAAU


intron1



TATATTTTTGCTTCC

AUAUUUUUGCUUCC





STMN2_
+
ATT
1972
TAAGTTATAAAGCAA
3978
UAAGUUAUAAAGCAAA


intron1

T

ATATATTTTTGCTTC

UAUAUUUUUGCUUC





STMN2_
+
GTT
1973
ATTTTAAGTTATAAAG
3979
AUUUUAAGUUAUAAAG


intron1

C

CAAATATATTTTTG

CAAAUAUAUUUUUG





STMN2_
+
GTT
1974
TTCATTTTAAGTTATA
3980
UUCAUUUUAAGUUAUA


intron1

G

AAGCAAATATATTT

AAGCAAAUAUAUUU





STMN2_
+
TTT
1975
TCTCCAGTTGTTCATT
3981
UCUCCAGUUGUUCAUU


intron1

G

TTAAGTTATAAAGC

UUAAGUUAUAAAGC





STMN2_
+
ATT
1976
GTCTCCAGTTGTTCAT
3982
GUCUCCAGUUGUUCAU


intron1

T

TTTAAGTTATAAAG

UUUAAGUUAUAAAG





STMN2_
+
TTTC
1977
CCCCACAAAAAGGTA
3983
CCCCACAAAAAGGUAA


intron1



AATTTGTCTCCAGTT

AUUUGUCUCCAGUU





STMN2_
+
CTTT
1978
CCCCCACAAAAAGGT
3984
CCCCCACAAAAAGGUA


intron1



AAATTTGTCTCCAGT

AAUUUGUCUCCAGU





STMN2_
+
CTT
1979
CTGCCAGGATTATGTA
3985
CUGCCAGGAUUAUGUA


intron1

C

TGTTCATGTGGCTA

UGUUCAUGUGGCUA





STMN2_
+
ATT
1980
CCCTCATCCCTTTCCC
3986
CCCUCAUCCCUUUCCCC


intron1

G

CCACAAAAAGGTAA

CACAAAAAGGUAA





STMN2_
+
TTT
1981
CTTCCTCCTAATTGCC
3987
CUUCCUCCUAAUUGCC


intron1

G

CTCATCCCTTTCCC

CUCAUCCCUUUCCC





STMN2_
+
CTTT
1982
GCTTCCTCCTAATTGC
3988
GCUUCCUCCUAAUUGC


intron1



CCTCATCCCTTTCC

CCUCAUCCCUUUCC





STMN2_
+
GTT
1983
GCTTTGCTTCCTCCTA
3989
GCUUUGCUUCCUCCUA


intron1

C

ATTGCCCTCATCCC

AUUGCCCUCAUCCC





STMN2_
+
GTT
1984
CGTTCGCTTTGCTTCC
3990
CGUUCGCUUUGCUUCC


intron1

G

TCCTAATTGCCCTC

UCCUAAUUGCCCUC





STMN2_
+
CTT
1985
TTGCGTTCGCTTTGCT
3991
UUGCGUUCGCUUUGCU


intron1

G

TCCTCCTAATTGCC

UCCUCCUAAUUGCC





STMN2_
+
ATT
1986
ACCCTTGTTGCGTTCG
3992
ACCCUUGUUGCGUUCG


intron1

A

CTTTGCTTCCTCCT

CUUUGCUUCCUCCU





STMN2_
+
GTT
1987
AGGATTAACCCTTGTT
3993
AGGAUUAACCCUUGUU


intron1

A

GCGTTCGCTTTGCT

GCGUUCGCUUUGCU





STMN2_
+
CTT
1988
GTTAAGGATTAACCCT
3994
GUUAAGGAUUAACCCU


intron1

G

TGTTGCGTTCGCTT

UGUUGCGUUCGCUU





STMN2_
+
ATT
1989
CTCTTGGTTAAGGATT
3995
CUCUUGGUUAAGGAUU


intron1

G

AACCCTTGTTGCGT

AACCCUUGUUGCGU





STMN2_
+
GTT
1990
AAAAGGGACGTGGAT
3996
AAAAGGGACGUGGAUU


intron1

C

TGCTCTTGGTTAAGG

GCUCUUGGUUAAGG





STMN2_
+
TTT
1991
TTCAAAAGGGACGTG
3997
UUCAAAAGGGACGUGG


intron1

G

GATTGCTCTTGGTTA

AUUGCUCUUGGUUA





STMN2_
+
ATT
1992
GTTCAAAAGGGACGT
3998
GUUCAAAAGGGACGUG


intron1

T

GGATTGCTCTTGGTT

GAUUGCUCUUGGUU





STMN2_
+
GTT
1993
TCATTTGTTCAAAAGG
3999
UCAUUUGUUCAAAAGG


intron1

C

GACGTGGATTGCTC

GACGUGGAUUGCUC





STMN2_
+
CTT
1994
CTCCTAATTGCCCTCA
4000
CUCCUAAUUGCCCUCA


intron1

C

TCCCTTTCCCCCAC

UCCCUUUCCCCCAC





STMN2_
+
TTTT
1995
TGATTACATTTTATGT
4001
UGAUUACAUUUUAUGU


intron1



AATTCTAATCCAGC

AAUUCUAAUCCAGC





STMN2_
+
TTT
1996
ACTGCATTTGCAAATC
4002
ACUGCAUUUGCAAAUC


intron1

A

ATGAAAAAAACACT

AUGAAAAAAACACU





STMN2_
+
TTT
1997
ATTACATTTTATGTAA
4003
AUUACAUUUUAUGUAA


intron1

G

TTCTAATCCAGCTA

UUCUAAUCCAGCUA





STMN2_
+
GTT
1998
GCACATTAACCATTAG
4004
GCACAUUAACCAUUAG


intron1

C

TACAAGTACCCAAT

UACAAGUACCCAAU





STMN2_
+
GTT
1999
GAGTTCGCACATTAAC
4005
GAGUUCGCACAUUAAC


intron1

G

CATTAGTACAAGTA

CAUUAGUACAAGUA





STMN2_
+
TTT
2000
GATGTTGGAGTTCGCA
4006
GAUGUUGGAGUUCGCA


intron1

G

CATTAACCATTAGT

CAUUAACCAUUAGU





STMN2_
+
TTTT
2001
GGATGTTGGAGTTCGC
4007
GGAUGUUGGAGUUCGC


intron1



ACATTAACCATTAG

ACAUUAACCAUUAG





STMN2_
+
ATT
2002
TGGATGTTGGAGTTCG
4008
UGGAUGUUGGAGUUCG


intron1

T

CACATTAACCATTA

CACAUUAACCAUUA





STMN2_
+
ATT
2003
TATTTTGGATGTTGGA
4009
UAUUUUGGAUGUUGGA


intron1

G

GTTCGCACATTAAC

GUUCGCACAUUAAC





STMN2_
+
CTT
2004
TGGAATAATTGTATTT
4010
UGGAAUAAUUGUAUUU


intron1

C

TGGATGTTGGAGTT

UGGAUGUUGGAGUU





STMN2_
+
ATT
2005
TTCTGGAATAATTGTA
4011
UUCUGGAAUAAUUGUA


intron1

C

TTTTGGATGTTGGA

UUUUGGAUGUUGGA





STMN2_
+
GTT
2006
TTCTTCTGGAATAATT
4012
UUCUUCUGGAAUAAUU


intron1

A

GTATTTTGGATGTT

GUAUUUUGGAUGUU





STMN2_
+
TTT
2007
GCAGTTATTCTTCTGG
4013
GCAGUUAUUCUUCUGG


intron1

A

AATAATTGTATTTT

AAUAAUUGUAUUUU





STMN2_
+
ATT
2008
AGCAGTTATTCTTCTG
4014
AGCAGUUAUUCUUCUG


intron1

T

GAATAATTGTATTT

GAAUAAUUGUAUUU





STMN2_
+
ATT
2009
TAAAGCAACGCCTGC
4015
UAAAGCAACGCCUGCA


intron1

G

AAGAGTGCCCATTTA

AGAGUGCCCAUUUA





STMN2_
+
TTT
2010
CAAAGATTGTAAAGC
4016
CAAAGAUUGUAAAGCA


intron1

A

AACGCCTGCAAGAGT

ACGCCUGCAAGAGU





STMN2_
+
TTTT
2011
ACAAAGATTGTAAAG
4017
ACAAAGAUUGUAAAGC


intron1



CAACGCCTGCAAGAG

AACGCCUGCAAGAG





STMN2_
+
TTTT
2012
TACAAAGATTGTAAA
4018
UACAAAGAUUGUAAAG


intron1



GCAACGCCTGCAAGA

CAACGCCUGCAAGA





STMN2_
+
TTTT
2013
TTACAAAGATTGTAA
4019
UUACAAAGAUUGUAAA


intron1



AGCAACGCCTGCAAG

GCAACGCCUGCAAG





STMN2_
+
TTTT
2014
TTTACAAAGATTGTAA
4020
UUUACAAAGAUUGUAA


intron1



AGCAACGCCTGCAA

AGCAACGCCUGCAA





STMN2_
+
TTTT
2015
TTTTACAAAGATTGTA
4021
UUUUACAAAGAUUGUA


intron1



AAGCAACGCCTGCA

AAGCAACGCCUGCA





STMN2_
+
TTTT
2016
TTTTTACAAAGATTGT
4022
UUUUUACAAAGAUUGU


intron1



AAAGCAACGCCTGC

AAAGCAACGCCUGC





STMN2_
+
TTTT
2017
TTTTTTACAAAGATTG
4023
UUUUUUACAAAGAUUG


intron1



TAAAGCAACGCCTG

UAAAGCAACGCCUG





STMN2_
+
TTTT
2018
TTTTTTTACAAAGATT
4024
UUUUUUUACAAAGAUU


intron1



GTAAAGCAACGCCT

GUAAAGCAACGCCU





STMN2_
+
TTTT
2019
TTTTTTTTACAAAGAT
4025
UUUUUUUUACAAAGAU


intron1



TGTAAAGCAACGCC

UGUAAAGCAACGCC





STMN2_
+
TTTT
2020
TTTTTTTTTACAAAGA
4026
UUUUUUUUUACAAAGA


intron1



TTGTAAAGCAACGC

UUGUAAAGCAACGC





STMN2_
+
ATT
2021
TTTTTTTTTTAGAAAG
4027
UUUUUUUUUUACAAAG


intron1

T

ATTGTAAAGCAACG

AUUGUAAAGCAACG





STMN2_
+
ATT
2022
CCTAGGACTGAATGA
4028
CCUAGGACUGAAUGAU


intron1

G

TTTTTTTTTTTTTAC

UUUUUUUUUUUUAC





STMN2_
+
TTT
2023
TAGGGCAAAAATATT
4029
UAGGGCAAAAAUAUUG


intron1

A

GCCTAGGACTGAATG

CCUAGGACUGAAUG





STMN2_
+
TTTT
2024
ATAGGGCAAAAATAT
4030
AUAGGGCAAAAAUAUU


intron1



TGCCTAGGACTGAAT

GCCUAGGACUGAAU





STMN2_
+
ATT
2025
ACCATTAGTACAAGT
4031
ACCAUUAGUACAAGUA


intron1

A

ACCCAATATAACAAT

CCCAAUAUAACAAU





STMN2_
+
TTTT
2026
TATAGGGCAAAAATA
4032
UAUAGGGCAAAAAUAU


intron1



TTGCCTAGGACTGAA

UGCCUAGGACUGAA





STMN2_
+
ATT
2027
GTACAAGTACCCAAT
4033
GUACAAGUACCCAAUA


intron1

A

ATAACAATAGATCAT

UAACAAUAGAUCAU





STMN2_
+
TTTT
2028
AGTTGTATGTCTTTAT
4034
AGUUGUAUGUCUUUAU


intron1



ATCAGGATAAAGAG

AUCAGGAUAAAGAG





STMN2_
+
TTTC
2029
CTTATGAAATGCAGCC
4035
CUUAUGAAAUGCAGCC


intron1



ATAAAGTTTAACTT

AUAAAGUUUAACUU





STMN2_
+
TTTT
2030
CCTTATGAAATGCAGC
4036
CCUUAUGAAAUGCAGC


intron1



CATAAAGTTTAACT

CAUAAAGUUUAACU





STMN2_
+
TTTT
2031
TCCTTATGAAATGCAG
4037
UCCUUAUGAAAUGCAG


intron1



CCATAAAGTTTAAC

CCAUAAAGUUUAAC





STMN2_
+
TTTT
2032
TTCCTTATGAAATGCA
4038
UUCCUUAUGAAAUGCA


intron1



GCCATAAAGTTTAA

GCCAUAAAGUUUAA





STMN2_
+
TTTT
2033
TTTCCTTATGAAATGC
4039
UUUCCUUAUGAAAUGC


intron1



AGCCATAAAGTTTA

AGCCAUAAAGUUUA





STMN2_
+
TTTT
2034
TTTTCCTTATGAAATG
4040
UUUUCCUUAUGAAAUG


intron1



CAGCCATAAAGTTT

CAGCCAUAAAGUUU





STMN2_
+
GTT
2035
TTTTTCCTTATGAAAT
4041
UUUUUCCUUAUGAAAU


intron1

T

GCAGCCATAAAGTT

GCAGCCAUAAAGUU





STMN2_
+
TTT
2036
GAAGTTTTTTTTCCTT
4042
GAAGUUUUUUUUCCUU


intron1

G

ATGAAATGCAGCCA

AUGAAAUGCAGCCA





STMN2_
+
CTTT
2037
GGAAGTTTTTTTTCCT
4043
GGAAGUUUUUUUUCCU


intron1



TATGAAATGCAGCC

UAUGAAAUGCAGCC





STMN2_
+
ATT
2038
TACTCTGTCTTTGGAA
4044
UACUCUGUCUUUGGAA


intron1

C

GTTTTTTTTCCTTA

GUUUUUUUUCCUUA





STMN2_
+
ATT
2039
GCATTCTACTCTGTCT
4045
GCAUUCUACUCUGUCU


intron1

A

TTGGAAGTTTTTTT

UUGGAAGUUUUUUU





STMN2_
+
TTT
2040
TTAGCATTCTACTCTG
4046
UUAGCAUUCUACUCUG


intron1

A

TCTTTGGAAGTTTT

UCUUUGGAAGUUUU





STMN2_
+
TTTT
2041
ATTAGCATTCTACTCT
4047
AUUAGCAUUCUACUCU


intron1



GTCTTTGGAAGTTT

GUCUUUGGAAGUUU





STMN2_
+
TTTT
2042
TATTAGCATTCTACTC
4048
UAUUAGCAUUCUACUC


intron1



TGTCTTTGGAAGTT

UGUCUUUGGAAGUU





STMN2_
+
ATT
2043
TTATTAGCATTCTACT
4049
UUAUUAGCAUUCUACU


intron1

T

CTGTCTTTGGAAGT

CUGUCUUUGGAAGU





STMN2_
+
ATT
2044
AATTTTTATTAGCATT
4050
AAUUUUUAUUAGCAUU


intron1

A

CTACTCTGTCTTTG

CUACUCUGUCUUUG





STMN2_
+
GTT
2045
AAGTGTAAATTAAATT
4051
AAGUGUAAAUUAAAUU


intron1

A

TTTATTAGCATTCT

UUUAUUAGCAUUCU





STMN2_
+
TTT
2046
CAAGAGAGCATGTTA
4052
CAAGAGAGCAUGUUAA


intron1

A

AAGTGTAAATTAAAT

AGUGUAAAUUAAAU





STMN2_
+
TTTT
2047
ACAAGAGAGCATGTT
4053
ACAAGAGAGCAUGUUA


intron1



AAAGTGTAAATTAAA

AAGUGUAAAUUAAA





STMN2_
+
CTTT
2048
TACAAGAGAGCATGT
4054
UACAAGAGAGCAUGUU


intron1



TAAAGTGTAAATTAA

AAAGUGUAAAUUAA





STMN2_
+
TTT
2049
TCTAAACCTAGTCCCA
4055
UCUAAACCUAGUCCCA


intron1

A

CAAATACTTTTACA

CAAAUACUUUUACA





STMN2_
+
ATT
2050
ATCTAAACCTAGTCCC
4056
AUCUAAACCUAGUCCC


intron1

T

ACAAATACTTTTAC

ACAAAUACUUUUAC





STMN2_
+
ATT
2051
AGTGAAATTTATCTAA
4057
AGUGAAAUUUAUCUAA


intron1

G

ACCTAGTCCCACAA

ACCUAGUCCCACAA





STMN2_
+
TTT
2052
TATCAGGATAAAGAG
4058
UAUCAGGAUAAAGAGA


intron1

A

AATTGAGTGAAATTT

AUUGAGUGAAAUUU





STMN2_
+
CTTT
2053
ATATCAGGATAAAGA
4059
AUAUCAGGAUAAAGAG


intron1



GAATTGAGTGAAATT

AAUUGAGUGAAAUU





STMN2_
+
GTT
2054
TATGTCTTTATATCAG
4060
UAUGUCUUUAUAUCAG


intron1

G

GATAAAGAGAATTG

GAUAAAGAGAAUUG





STMN2_
+
TTT
2055
GTTGTATGTCTTTATA
4061
GUUGUAUGUCUUUAUA


intron1

A

TCAGGATAAAGAGA

UCAGGAUAAAGAGA





STMN2_
+
CTTT
2056
TAGTTGTATGTCTTTA
4062
UAGUUGUAUGUCUUUA


intron1



TATCAGGATAAAGA

UAUCAGGAUAAAGA





STMN2_
+
ATT
2057
TTATAGGGCAAAAAT
4063
UUAUAGGGCAAAAAUA


intron1

T

ATTGCCTAGGACTGA

UUGCCUAGGACUGA





STMN2_
+
TTT
2058
TTTTTATAGGGCAAAA
4064
UUUUUAUAGGGCAAAA


intron1

A

ATATTGCCTAGGAC

AUAUUGCCUAGGAC





STMN2_
+
ATT
2059
ATTTTTATAGGGCAAA
4065
AUUUUUAUAGGGCAAA


intron1

T

AATATTGCCTAGGA

AAUAUUGCCUAGGA





STMN2_
+
TTTC
2060
AGCCATCATTTTGCTG
4066
AGCCAUCAUUUUGCUG


intron1



GTCATGTGGAAATA

GUCAUGUGGAAAUA





STMN2_
+
ATT
2061
CAGCCATCATTTTGCT
4067
CAGCCAUCAUUUUGCU


intron1

T

GGTCATGTGGAAAT

GGUCAUGUGGAAAU





STMN2_
+
ATT
2062
ATGCATTTCAGCCATC
4068
AUGCAUUUCAGCCAUC


intron1

A

ATTTTGCTGGTCAT

AUUUUGCUGGUCAU





STMN2_
+
GTT
2063
ATTAATGCATTTCAGC
4069
AUUAAUGCAUUUCAGC


intron1

A

CATCATTTTGCTGG

CAUCAUUUUGCUGG





STMN2_
+
TTT
2064
TATGAGTGTAAAGGTT
4070
UAUGAGUGUAAAGGUU


intron1

A

AATTAATGCATTTC

AAUUAAUGCAUUUC





STMN2_
+
TTTT
2065
ATATGAGTGTAAAGG
4071
AUAUGAGUGUAAAGGU


intron1



TTAATTAATGCATTT

UAAUUAAUGCAUUU





STMN2_
+
CTTT
2066
TATATGAGTGTAAAG
4072
UAUAUGAGUGUAAAGG


intron1



GTTAATTAATGCATT

UUAAUUAAUGCAUU





STMN2_
+
GTT
2067
TCACAAAACACTTTTA
4073
UCACAAAACACUUUUA


intron1

C

TATGAGTGTAAAGG

UAUGAGUGUAAAGG





STMN2_
+
TTT
2068
TTCTCACAAAACACTT
4074
UUCUCACAAAACACUU


intron1

G

TTATATGAGTGTAA

UUAUAUGAGUGUAA





STMN2_
+
ATT
2069
GTTCTCACAAAACACT
4075
GUUCUCACAAAACACU


intron1

T

TTTATATGAGTGTA

UUUAUAUGAGUGUA





STMN2_
+
TTT
2070
TGTACATTTGTTCTCA
4076
UGUACAUUUGUUCUCA


intron1

G

CAAAACACTTTTAT

CAAAACACUUUUAU





STMN2_
+
ATT
2071
GTGTACATTTGTTCTC
4077
GUGUACAUUUGUUCUC


intron1

T

ACAAAACACTTTTA

ACAAAACACUUUUA





STMN2_
+
ATT
2072
AAGATAACATTTGTGT
4078
AAGAUAACAUUUGUGU


intron1

A

ACATTTGTTCTCAC

ACAUUUGUUCUCAC





STMN2_
+
ATT
2073
GTCATGATTAAAGAT
4079
GUCAUGAUUAAAGAUA


intron1

A

AACATTTGTGTACAT

ACAUUUGUGUACAU





STMN2_
+
TTT
2074
TTAGTCATGATTAAAG
4080
UUAGUCAUGAUUAAAG


intron1

A

ATAACATTTGTGTA

AUAACAUUUGUGUA





STMN2_
+
TTTT
2075
ATTAGTCATGATTAAA
4081
AUUAGUCAUGAUUAAA


intron1



GATAACATTTGTGT

GAUAACAUUUGUGU





STMN2_
+
TTTT
2076
TATTAGTCATGATTAA
4082
UAUUAGUCAUGAUUAA


intron1



AGATAACATTTGTG

AGAUAACAUUUGUG





STMN2_
+
ATT
2077
TTATTAGTCATGATTA
4083
UUAUUAGUCAUGAUUA


intron1

T

AAGATAACATTTGT

AAGAUAACAUUUGU





STMN2_
+
TTT
2078
TAATATCCATTTTTAT
4084
UAAUAUCCAUUUUUAU


intron1

A

TAGTCATGATTAAA

UAGUCAUGAUUAAA





STMN2_
+
GTT
2079
ATAATATCCATTTTTA
4085
AUAAUAUCCAUUUUUA


intron1

T

TTAGTCATGATTAA

UUAGUCAUGAUUAA





STMN2_
+
CTT
2080
TGTTTATAATATCCAT
4086
UGUUUAUAAUAUCCAU


intron1

G

TTTTATTAGTCATG

UUUUAUUAGUCAUG





STMN2_
+
TTT
2081
CAGTAGTAAAGCTTGT
4087
CAGUAGUAAAGCUUGU


intron1

G

GTTTATAATATCCA

GUUUAUAAUAUCCA





STMN2_
+
ATT
2082
GCAGTAGTAAAGCTT
4088
GCAGUAGUAAAGCUUG


intron1

T

GTGTTTATAATATCC

UGUUUAUAAUAUCC





STMN2_
+
TTT
2083
TCAAGGAGACATTTG
4089
UCAAGGAGACAUUUGC


intron1

G

CAGTAGTAAAGCTTG

AGUAGUAAAGCUUG





STMN2_
+
ATT
2084
GTCAAGGAGACATTT
4090
GUCAAGGAGACAUUUG


intron1

T

GCAGTAGTAAAGCTT

CAGUAGUAAAGCUU





STMN2_
+
TTT
2085
ATAAAGGAATCAGGC
4091
AUAAAGGAAUCAGGCC


intron1

A

CCTGTCATTTGTCAA

CUGUCAUUUGUCAA





STMN2_
+
TTTT
2086
AATAAAGGAATCAGG
4092
AAUAAAGGAAUCAGGC


intron1



CCCTGTCATTTGTCA

CCUGUCAUUUGUCA





STMN2_
+
ATT
2087
TGCTGGTCATGTGGAA
4093
UGCUGGUCAUGUGGAA


intron1

T

ATATAGCTTCTTTA

AUAUAGCUUCUUUA





STMN2_
+
TTTT
2088
GCTGGTCATGTGGAA
4094
GCUGGUCAUGUGGAAA


intron1



ATATAGCTTCTTTAG

UAUAGCUUCUUUAG





STMN2_
+
TTT
2089
CTGGTCATGTGGAAAT
4095
CUGGUCAUGUGGAAAU


intron1

G

ATAGCTTCTTTAGG

AUAGCUUCUUUAGG





STMN2_
+
CTT
2090
TTTAGGAATTGTACTT
4096
UUUAGGAAUUGUACUU


intron1

C

AGAGTAGGAGCCAC

AGAGUAGGAGCCAC





STMN2_
+
TTT
2091
AAATAATTTATTTTTA
4097
AAAUAAUUUAUUUUUA


intron1

A

TAGGGCAAAAATAT

UAGGGCAAAAAUAU





STMN2_
+
ATT
2092
AAAATAATTTATTTTT
4098
AAAAUAAUUUAUUUUU


intron1

T

ATAGGGCAAAAATA

AUAGGGCAAAAAUA





STMN2_
+
GTT
2093
TCATAGAGCACATTTA
4099
UCAUAGAGCACAUUUA


intron1

C

AAATAATTTATTTT

AAAUAAUUUAUUUU





STMN2_
+
ATT
2094
CAGTTCTCATAGAGCA
4100
CAGUUCUCAUAGAGCA


intron1

A

CATTTAAAATAATT

CAUUUAAAAUAAUU





STMN2_
+
TTT
2095
TGGCAAGAAATAGAT
4101
UGGCAAGAAAUAGAUA


intron1

A

AATTACAGTTCTCAT

AUUACAGUUCUCAU





STMN2_
+
TTTT
2096
ATGGCAAGAAATAGA
4102
AUGGCAAGAAAUAGAU


intron1



TAATTACAGTTCTCA

AAUUACAGUUCUCA





STMN2_
+
ATT
2097
TATGGCAAGAAATAG
4103
UAUGGCAAGAAAUAGA


intron1

T

ATAATTACAGTTCTC

UAAUUACAGUUCUC





STMN2_
+
TTT
2098
TTTTATGGCAAGAAAT
4104
UUUUAUGGCAAGAAAU


intron1

A

AGATAATTACAGTT

AGAUAAUUACAGUU





STMN2_
+
ATT
2099
ATTTTATGGCAAGAA
4105
AUUUUAUGGCAAGAAA


intron1

T

ATAGATAATTACAGT

UAGAUAAUUACAGU





STMN2_
+
TTTC
2100
AAAATTTATTTTATGG
4106
AAAAUUUAUUUUAUGG


intron1



CAAGAAATAGATAA

CAAGAAAUAGAUAA





STMN2_
+
GTT
2101
CAAAATTTATTTTATG
4107
CAAAAUUUAUUUUAUG


intron1

T

GCAAGAAATAGATA

GCAAGAAAUAGAUA





STMN2_
+
GTT
2102
TGGGTTTCAAAATTTA
4108
UGGGUUUCAAAAUUUA


intron1

A

TTTTATGGCAAGAA

UUUUAUGGCAAGAA





STMN2_
+
TTT
2103
ATACTCTGGAAAGTTA
4109
AUACUCUGGAAAGUUA


intron1

A

TGGGTTTCAAAATT

UGGGUUUCAAAAUU





STMN2_
+
CTT
2104
TGAAATGCAGCCATA
4110
UGAAAUGCAGCCAUAA


intron1

A

AAGTTTAACTTCCAT

AGUUUAACUUCCAU





STMN2_
+
ATT
2105
AATACTCTGGAAAGTT
4111
AAUACUCUGGAAAGUU


intron1

T

ATGGGTTTCAAAAT

AUGGGUUUCAAAAU





STMN2_
+
GTT
2106
TTGACCTCCAGAGTAA
4112
UUGACCUCCAGAGUAA


intron1

G

AATATTTAATACTC

AAUAUUUAAUACUC





STMN2_
+
CTT
2107
TTGTTGACCTCCAGAG
4113
UUGUUGACCUCCAGAG


intron1

G

TAAAATATTTAATA

UAAAAUAUUUAAUA





STMN2_
+
GTT
2108
TCACTTGTTGTTGACC
4114
UCACUUGUUGUUGACC


intron1

C

TCCAGAGTAAAATA

UCCAGAGUAAAAUA





STMN2_
+
TTT
2109
TTCTCACTTGTTGTTG
4115
UUCUCACUUGUUGUUG


intron1

G

ACCTCCAGAGTAAA

ACCUCCAGAGUAAA





STMN2_
+
GTT
2110
GTTCTCACTTGTTGTT
4116
GUUCUCACUUGUUGUU


intron1

T

GACCTCCAGAGTAA

GACCUCCAGAGUAA





STMN2_
+
TTT
2111
AGTTTGTTCTCACTTG
4117
AGUUUGUUCUCACUUG


intron1

A

TTGTTGACCTCCAG

UUGUUGACCUCCAG





STMN2_
+
TTTT
2112
AAGTTTGTTCTCACTT
4118
AAGUUUGUUCUCACUU


intron1



GTTGTTGACCTCCA

GUUGUUGACCUCCA





STMN2_
+
ATT
2113
TAAGTTTGTTCTCACT
4119
UAAGUUUGUUCUCACU


intron1

T

TGTTGTTGACCTCC

UGUUGUUGACCUCC





STMN2_
+
ATT
2114
TACTATAAAACCATA
4120
UACUAUAAAACCAUAA


intron1

A

ACAAAAATATTTTAA

CAAAAAUAUUUUAA





STMN2_
+
CTT
2115
GAGTAGGAGCCACAT
4121
GAGUAGGAGCCACAUA


intron1

A

ATTATACTATAAAAC

UUAUACUAUAAAAC





STMN2_
+
ATT
2116
TACTTAGAGTAGGAG
4122
UACUUAGAGUAGGAGC


intron1

G

CCACATATTATACTA

CACAUAUUAUACUA





STMN2_
+
TTT
2117
GGAATTGTACTTAGA
4123
GGAAUUGUACUUAGAG


intron1

A

GTAGGAGCCACATAT

UAGGAGCCACAUAU





STMN2_
+
CTTT
2118
AGGAATTGTACTTAG
4124
AGGAAUUGUACUUAGA


intron1



AGTAGGAGCCACATA

GUAGGAGCCACAUA





STMN2_
+
GTT
2119
ACCTCCAGAGTAAAA
4125
ACCUCCAGAGUAAAAU


intron1

G

TATTTAATACTCTGG

AUUUAAUACUCUGG





STMN2_
+
GTT
2120
AACTTCCATTAACAAA
4126
AACUUCCAUUAACAAA


intron1

T

GCTGCTCACAGTAA

GCUGCUCACAGUAA





STMN2_
+
TTT
2121
ACTTCCATTAACAAAG
4127
ACUUCCAUUAACAAAG


intron1

A

CTGCTCACAGTAAA

CUGCUCACAGUAAA





STMN2_
+
CTT
2122
CATTAACAAAGCTGCT
4128
CAUUAACAAAGCUGCU


intron1

C

CACAGTAAACCTAT

CACAGUAAACCUAU





STMN2_
+
ATT
2123
AAAGATTGGTAAATTT
4129
AAAGAUUGGUAAAUUU


intron1

T

AAGCTCAAATAATT

AAGCUCAAAUAAUU





STMN2_
+
CTT
2124
TTTAAAGATTGGTAAA
4130
UUUAAAGAUUGGUAAA


intron1

A

TTTAAGCTCAAATA

UUUAAGCUCAAAUA





STMN2_
+
GTT
2125
TCTTATTTAAAGATTG
4131
UCUUAUUUAAAGAUUG


intron1

G

GTAAATTTAAGCTC

GUAAAUUUAAGCUC





STMN2_
+
CTT
2126
ATATAATCCCTCTGAG
4132
AUAUAAUCCCUCUGAG


intron1

C

ATGGGCATACTATA

AUGGGCAUACUAUA





STMN2_
+
TTT
2127
AATCTTCATATAATCC
4133
AAUCUUCAUAUAAUCC


intron1

G

CTCTGAGATGGGCA

CUCUGAGAUGGGCA





STMN2_
+
TTTT
2128
GAATCTTCATATAATC
4134
GAAUCUUCAUAUAAUC


intron1



CCTCTGAGATGGGC

CCUCUGAGAUGGGC





STMN2_
+
CTTT
2129
TGAATCTTCATATAAT
4135
UGAAUCUUCAUAUAAU


intron1



CCCTCTGAGATGGG

CCCUCUGAGAUGGG





STMN2_
+
CTT
2130
ATCCTTTTGAATCTTC
4136
AUCCUUUUGAAUCUUC


intron1

C

ATATAATCCCTCTG

AUAUAAUCCCUCUG





STMN2_
+
ATT
2131
ACCTGCTTCATCCTTT
4137
ACCUGCUUCAUCCUUU


intron1

C

TGAATCTTCATATA

UGAAUCUUCAUAUA





STMN2_
+
TTT
2132
GAAAACATTCACCTGC
4138
GAAAACAUUCACCUGC


intron1

A

TTCATCCTTTTGAA

UUCAUCCUUUUGAA





STMN2_
+
TTTT
2133
AGAAAACATTCACCT
4139
AGAAAACAUUCACCUG


intron1



GCTTCATCCTTTTGA

CUUCAUCCUUUUGA





STMN2_
+
TTTT
2134
TAGAAAACATTCACCT
4140
UAGAAAACAUUCACCU


intron1



GCTTCATCCTTTTG

GCUUCAUCCUUUUG





STMN2_
+
ATT
2135
TTAGAAAACATTCACC
4141
UUAGAAAACAUUCACC


intron1

T

TGCTTCATCCTTTT

UGCUUCAUCCUUUU





STMN2_
+
CTT
2136
TCATTTTTAGAAAACA
4142
UCAUUUUUAGAAAACA


intron1

G

TTCACCTGCTTCAT

UUCACCUGCUUCAU





STMN2_
+
ATT
2137
AATCGCATGATCTATC
4143
AAUCGCAUGAUCUAUC


intron1

A

TATATGGGACCTTG

UAUAUGGGACCUUG





STMN2_
+
GTT
2138
AAAAGAAAAATTAAA
4144
AAAAGAAAAAUUAAAU


intron1

C

TCGCATGATCTATCT

CGCAUGAUCUAUCU





STMN2_
+
TTT
2139
AAAGGAGCAGGCAAG
4145
AAAGGAGCAGGCAAGC


intron1

A

CATAGAAGACTAAAA

AUAGAAGACUAAAA





STMN2_
+
TTTT
2140
AAAAGGAGCAGGCAA
4146
AAAAGGAGCAGGCAAG


intron1



GCATAGAAGACTAAA

CAUAGAAGACUAAA





STMN2_
+
TTTT
2141
TAAAAGGAGCAGGCA
4147
UAAAAGGAGCAGGCAA


intron1



AGCATAGAAGACTAA

GCAUAGAAGACUAA





STMN2_
+
TTTT
2142
TTAAAAGGAGCAGGC
4148
UUAAAAGGAGCAGGCA


intron1



AAGCATAGAAGACTA

AGCAUAGAAGACUA





STMN2_
+
GTT
2143
TTTAAAAGGAGCAGG
4149
UUUAAAAGGAGCAGGC


intron1

T

CAAGCATAGAAGACT

AAGCAUAGAAGACU





STMN2_
+
CTT
2144
TATAGTTTTTTAAAAG
4150
UAUAGUUUUUUAAAAG


intron1

A

GAGCAGGCAAGCAT

GAGCAGGCAAGCAU





STMN2_
+
TTTC
2145
TTATATAGTTTTTTAA
4151
UUAUAUAGUUUUUUAA


intron1



AAGGAGCAGGCAAG

AAGGAGCAGGCAAG





STMN2_
+
TTTT
2146
CTTATATAGTTTTTTA
4152
CUUAUAUAGUUUUUUA


intron1



AAAGGAGCAGGCAA

AAAGGAGCAGGCAA





STMN2_
+
TTTT
2147
TCTTATATAGTTTTTT
4153
UCUUAUAUAGUUUUUU


intron1



AAAAGGAGCAGGCA

AAAAGGAGCAGGCA





STMN2_
+
TTTT
2148
TTCTTATATAGTTTTTT
4154
UUCUUAUAUAGUUUUU


intron1



AAAAGGAGCAGGC

UAAAAGGAGCAGGC





STMN2_
+
TTTT
2149
TTTCTTATATAGTTTTT
4155
UUUCUUAUAUAGUUUU


intron1



TAAAAGGAGCAGG

UUAAAAGGAGCAGG





STMN2_
+
TTT
2150
AAGATTGGTAAATTTA
4156
AAGAUUGGUAAAUUUA


intron1

A

AGCTCAAATAATTT

AGCUCAAAUAAUUU





STMN2_
+
ATT
2151
GTAAATTTAAGCTCAA
4157
GUAAAUUUAAGCUCAA


intron1

G

ATAATTTATTCAGT

AUAAUUUAUUCAGU





STMN2_
+
ATT
2152
AAGCTCAAATAATTTA
4158
AAGCUCAAAUAAUUUA


intron1

T

TTCAGTGGCAAGCC

UUCAGUGGCAAGCC





STMN2_
+
TTT
2153
AGCTCAAATAATTTAT
4159
AGCUCAAAUAAUUUAU


intron1

A

TCAGTGGCAAGCCT

UCAGUGGCAAGCCU





STMN2_
+
TTT
2154
TTCTGAAGCCTGTGCC
4160
UUCUGAAGCCUGUGCC


intron1

G

AGGTATTATGAGAA

AGGUAUUAUGAGAA





STMN2_
+
TTTT
2155
GATTACATTTTATGTA
4161
GAUUACAUUUUAUGUA


intron1



ATTCTAATCCAGCT

AUUCUAAUCCAGCU





STMN2_
+
CTTT
2156
GTTCTGAAGCCTGTGC
4162
GUUCUGAAGCCUGUGC


intron1



CAGGTATTATGAGA

CAGGUAUUAUGAGA





STMN2_
+
ATT
2157
GAGCACCAACTTTGTT
4163
GAGCACCAACUUUGUU


intron1

G

CTGAAGCCTGTGCC

CUGAAGCCUGUGCC





STMN2_
+
ATT
2158
ATAGTCAGTGTCACTA
4164
AUAGUCAGUGUCACUA


intron1

G

ACTAAAGTAAAATA

ACUAAAGUAAAAUA





STMN2_
+
TTT
2159
AAGTCATTGATAGTCA
4165
AAGUCAUUGAUAGUCA


intron1

A

GTGTCACTAACTAA

GUGUCACUAACUAA





STMN2_
+
GTT
2160
AAAGTCATTGATAGTC
4166
AAAGUCAUUGAUAGUC


intron1

T

AGTGTCACTAACTA

AGUGUCACUAACUA





STMN2_
+
CTT
2161
AGTTTAAAGTCATTGA
4167
AGUUUAAAGUCAUUGA


intron1

C

TAGTCAGTGTCACT

UAGUCAGUGUCACU





STMN2_
+
TTT
2162
TCTTCAGTTTAAAGTC
4168
UCUUCAGUUUAAAGUC


intron1

G

ATTGATAGTCAGTG

AUUGAUAGUCAGUG





STMN2_
+
ATT
2163
GTCTTCAGTTTAAAGT
4169
GUCUUCAGUUUAAAGU


intron1

T

CATTGATAGTCAGT

CAUUGAUAGUCAGU





STMN2_
+
TTT
2164
GCACTCCCTCCACTGT
4170
GCACUCCCUCCACUGU


intron1

A

CCTGTAATAAAACA

CCUGUAAUAAAACA





STMN2_
+
GTT
2165
AGCACTCCCTCCACTG
4171
AGCACUCCCUCCACUG


intron1

T

TCCTGTAATAAAAC

UCCUGUAAUAAAAC





STMN2_
+
ATT
2166
ATGCAAAATAAGGTT
4172
AUGCAAAAUAAGGUUU


intron1

C

TAGCACTCCCTCCAC

AGCACUCCCUCCAC





STMN2_
+
ATT
2167
TTTTCTTATATAGTTTT
4173
UUUUCUUAUAUAGUUU


intron1

T

TTAAAAGGAGCAG

UUUAAAAGGAGCAG





STMN2_
+
TTTC
2168
ATACATATATACACAT
4174
AUACAUAUAUACACAU


intron1



TCATGCAAAATAAG

UCAUGCAAAAUAAG





STMN2_
+
GTT
2169
TATATCATGTATGTGC
4175
UAUAUCAUGUAUGUGC


intron1

A

CTATTTCATACATA

CUAUUUCAUACAUA





STMN2_
+
TTT
2170
TATGTAATATATAAAT
4176
UAUGUAAUAUAUAAAU


intron1

A

ATGTTATATATCAT

AUGUUAUAUAUCAU





STMN2_
+
ATT
2171
ATATGTAATATATAAA
4177
AUAUGUAAUAUAUAAA


intron1

T

TATGTTATATATCA

UAUGUUAUAUAUCA





STMN2_
+
TTT
2172
CCTATCAAAATATTTA
4178
CCUAUCAAAAUAUUUA


intron1

A

TATGTAATATATAA

UAUGUAAUAUAUAA





STMN2_
+
ATT
2173
ACCTATCAAAATATTT
4179
ACCUAUCAAAAUAUUU


intron1

T

ATATGTAATATATA

AUAUGUAAUAUAUA





STMN2_
+
ATT
2174
TTTACCTATCAAAATA
4180
UUUACCUAUCAAAAUA


intron1

A

TTTATATGTAATAT

UUUAUAUGUAAUAU





STMN2_
+
GTT
2175
TGTATATTATTTACCT
4181
UGUAUAUUAUUUACCU


intron1

G

ATCAAAATATTTAT

AUCAAAAUAUUUAU





STMN2_
+
ATT
2176
CATATAATAAAGTTGT
4182
CAUAUAAUAAAGUUGU


intron1

A

GTATATTATTTACC

GUAUAUUAUUUACC





STMN2_
+
ATT
2177
TAACATATAATATATA
4183
UAACAUAUAAUAUAUA


intron1

A

TATTACATATAATA

UAUUACAUAUAAUA





STMN2_
+
ATT
2178
TATATATATTATAACA
4184
UAUAUAUAUUAUAACA


intron1

A

TATAATATATATAT

UAUAAUAUAUAUAU





STMN2_
+
ATT
2179
AGTGGCAAGCCTCAG
4185
AGUGGCAAGCCUCAGA


intron1

C

AGGCAGACTCGGAAC

GGCAGACUCGGAAC





STMN2_
+
TTT
2180
TTCAGTGGCAAGCCTC
4186
UUCAGUGGCAAGCCUC


intron1

A

AGAGGCAGACTCGG

AGAGGCAGACUCGG





STMN2_
+
ATT
2181
ATTCAGTGGCAAGCCT
4187
AUUCAGUGGCAAGCCU


intron1

T

CAGAGGCAGACTCG

CAGAGGCAGACUCG





STMN2_
+
ATT
2182
CATACATATATACACA
4188
CAUACAUAUAUACACA


intron1

T

TTCATGCAAAATAA

UUCAUGCAAAAUAA





STMN2_
+
CTTT
2183
TAATAAAGGAATCAG
4189
UAAUAAAGGAAUCAGG


intron1



GCCCTGTCATTTGTC

CCCUGUCAUUUGUC





STMN2_
+
TTTC
2184
TGATGATTTTTTTCTT
4190
UGAUGAUUUUUUUCUU


intron1



ATATAGTTTTTTAA

AUAUAGUUUUUUAA





STMN2_
+
ATT
2185
TATTTCTGATGATTTT
4191
UAUUUCUGAUGAUUUU


intron1

A

TTTCTTATATAGTT

UUUCUUAUAUAGUU





STMN2_
+
CTTT
2186
TTATTTCCAACAAAAA
4192
UUAUUUCCAACAAAAA


intron1



TATCTATTGTTATT

UAUCUAUUGUUAUU





STMN2_
+
GTT
2187
CTTTTTATTTCCAACA
4193
CUUUUUAUUUCCAACA


intron1

A

AAAATATCTATTGT

AAAAUAUCUAUUGU





STMN2_
+
ATT
2188
ATGCAGAGTTACTTTT
4194
AUGCAGAGUUACUUUU


intron1

A

TATTTCCAACAAAA

UAUUUCCAACAAAA





STMN2_
+
TTT
2189
TTAATGCAGAGTTACT
4195
UUAAUGCAGAGUUACU


intron1

A

TTTTATTTCCAACA

UUUUAUUUCCAACA





STMN2_
+
TTTT
2190
ATTAATGCAGAGTTAC
4196
AUUAAUGCAGAGUUAC


intron1



TTTTTATTTCCAAC

UUUUUAUUUCCAAC





STMN2_
+
TTTT
2191
TATTAATGCAGAGTTA
4197
UAUUAAUGCAGAGUUA


intron1



CTTTTTATTTCCAA

CUUUUUAUUUCCAA





STMN2_
+
ATT
2192
TTATTAATGCAGAGTT
4198
UUAUUAAUGCAGAGUU


intron1

T

ACTTTTTATTTCCA

ACUUUUUAUUUCCA





STMN2_
+
ATT
2193
TTTTTATTAATGCAGA
4199
UUUUUAUUAAUGCAGA


intron1

A

GTTACTTTTTATTT

GUUACUUUUUAUUU





STMN2_
+
CTT
2194
AGAACATAATTATTTT
4200
AGAACAUAAUUAUUUU


intron1

C

TATTAATGCAGAGT

UAUUAAUGCAGAGU





STMN2_
+
ATT
2195
CAGCCTCCCTGGGAAC
4201
CAGCCUCCCUGGGAAC


intron1

G

TCTGCTTCAGAACA

UCUGCUUCAGAACA





STMN2_
+
CTT
2196
TTGCAGCCTCCCTGGG
4202
UUGCAGCCUCCCUGGG


intron1

A

AACTCTGCTTCAGA

AACUCUGCUUCAGA





STMN2_
+
TTT
2197
GGATAGACTTATTGCA
4203
GGAUAGACUUAUUGCA


intron1

A

GCCTCCCTGGGAAC

GCCUCCCUGGGAAC





STMN2_
+
TTTT
2198
AGGATAGACTTATTGC
4204
AGGAUAGACUUAUUGC


intron1



AGCCTCCCTGGGAA

AGCCUCCCUGGGAA





STMN2_
+
CTTT
2199
TAGGATAGACTTATTG
4205
UAGGAUAGACUUAUUG


intron1



CAGCCTCCCTGGGA

CAGCCUCCCUGGGA





STMN2_
+
ATT
2200
ATCATCTCAGGCACTT
4206
AUCAUCUCAGGCACUU


intron1

A

TTAGGATAGACTTA

UUAGGAUAGACUUA





STMN2_
+
ATT
2201
CCAGACTCTCGGGAA
4207
CCAGACUCUCGGGAAG


intron1

T

GAACATTAATCATCT

AACAUUAAUCAUCU





STMN2_
+
GTT
2202
TCATTTCCAGACTCTC
4208
UCAUUUCCAGACUCUC


intron1

A

GGGAAGAACATTAA

GGGAAGAACAUUAA





STMN2_
+
GTT
2203
CAAAACTGAGACCAG
4209
CAAAACUGAGACCAGA


intron1

A

AAAATCCCATCAAGA

AAAUCCCAUCAAGA





STMN2_
+
ATT
2204
ACTGTTACAAAACTG
4210
ACUGUUACAAAACUGA


intron1

G

AGACCAGAAAATCCC

GACCAGAAAAUCCC





STMN2_
+
CTT
2205
TAATATATTGACTGTT
4211
UAAUAUAUUGACUGUU


intron1

A

ACAAAACTGAGACC

ACAAAACUGAGACC





STMN2_
+
CTT
2206
CTAGTGAGGAGCAAC
4212
CUAGUGAGGAGCAACC


intron1

C

CTAACTCACACGAAA

UAACUCACACGAAA





STMN2_
+
TTT
2207
GGCTTCCTAGTGAGG
4213
GGCUUCCUAGUGAGGA


intron1

G

AGCAACCTAACTCAC

GCAACCUAACUCAC





STMN2_
+
GTT
2208
GGGCTTCCTAGTGAG
4214
GGGCUUCCUAGUGAGG


intron1

T

GAGCAACCTAACTCA

AGCAACCUAACUCA





STMN2_
+
TTTC
2209
CCAGTTTGGGCTTCCT
4215
CCAGUUUGGGCUUCCU


intron1



AGTGAGGAGCAACC

AGUGAGGAGCAACC





STMN2_
+
GTT
2210
CCCAGTTTGGGCTTCC
4216
CCCAGUUUGGGCUUCC


intron1

T

TAGTGAGGAGCAAC

UAGUGAGGAGCAAC





STMN2_
+
ATT
2211
TAATAATAGTTTCCCA
4217
UAAUAAUAGUUUCCCA


intron1

A

GTTTGGGCTTCCTA

GUUUGGGCUUCCUA





STMN2_
+
ATT
2212
ACAAAGCTGCTCACA
4218
ACAAAGCUGCUCACAG


intron1

A

GTAAACCTATTATAA

UAAACCUAUUAUAA





STMN2_
+
TTTT
2213
TATTTCCAACAAAAAT
4219
UAUUUCCAACAAAAAU


intron1



ATCTATTGTTATTA

AUCUAUUGUUAUUA





STMN2_
+
TTTT
2214
ATTTCCAACAAAAAT
4220
AUUUCCAACAAAAAUA


intron1



ATCTATTGTTATTAT

UCUAUUGUUAUUAU





STMN2_
+
TTT
2215
TTTCCAACAAAAATAT
4221
UUUCCAACAAAAAUAU


intron1

A

CTATTGTTATTATT

CUAUUGUUAUUAUU





STMN2_
+
ATT
2216
CCAACAAAAATATCT
4222
CCAACAAAAAUAUCUA


intron1

T

ATTGTTATTATTTAA

UUGUUAUUAUUUAA





STMN2_
+
TTT
2217
TTATATTTCTGATGAT
4223
UUAUAUUUCUGAUGAU


intron1

A

TTTTTTCTTATATA

UUUUUUCUUAUAUA





STMN2_
+
TTTT
2218
ATTATATTTCTGATGA
4224
AUUAUAUUUCUGAUGA


intron1



TTTTTTTCTTATAT

UUUUUUUCUUAUAU





STMN2_
+
TTTT
2219
TATTATATTTCTGATG
4225
UAUUAUAUUUCUGAUG


intron1



ATTTTTTTCTTATA

AUUUUUUUCUUAUA





STMN2_
+
CTTT
2220
TTATTATATTTCTGAT
4226
UUAUUAUAUUUCUGAU


intron1



GATTTTTTTCTTAT

GAUUUUUUUCUUAU





STMN2_
+
ATT
2221
TCTTTTTATTATATTTC
4227
UCUUUUUAUUAUAUUU


intron1

A

TGATGATTTTTTT

CUGAUGAUUUUUUU





STMN2_
+
TTT
2222
AAAATTATCTTTTTAT
4228
AAAAUUAUCUUUUUAU


intron1

A

TATATTTCTGATGA

UAUAUUUCUGAUGA





STMN2_
+
CTTT
2223
AAAAATTATCTTTTTA
4229
AAAAAUUAUCUUUUUA


intron1



TTATATTTCTGATG

UUAUAUUUCUGAUG





STMN2_
+
CTT
2224
TCACTTTAAAAATTAT
4230
UCACUUUAAAAAUUAU


intron1

G

CTTTTTATTATATT

CUUUUUAUUAUAUU





STMN2_
+
ATT
2225
CATGATCCTGCACTCT
4231
CAUGAUCCUGCACUCU


intron1

A

TGTCACTTTAAAAA

UGUCACUUUAAAAA





STMN2_
+
TTT
2226
ATGACATATTACATGA
4232
AUGACAUAUUACAUGA


intron1

A

TCCTGCACTCTTGT

UCCUGCACUCUUGU





STMN2_
+
TTTT
2227
AATGACATATTACATG
4233
AAUGACAUAUUACAUG


intron1



ATCCTGCACTCTTG

AUCCUGCACUCUUG





STMN2_
+
CTTT
2228
TAATGACATATTACAT
4234
UAAUGACAUAUUACAU


intron1



GATCCTGCACTCTT

GAUCCUGCACUCUU





STMN2_
+
GTT
2229
TAGTCTTTTAATGACA
4235
UAGUCUUUUAAUGACA


intron1

C

TATTACATGATCCT

UAUUACAUGAUCCU





STMN2_
+
ATT
2230
CTGATGATTTTTTTCT
4236
CUGAUGAUUUUUUUCU


intron1

T

TATATAGTTTTTTA

UAUAUAGUUUUUUA





STMN2_
+
GTT
2231
TTCTAGTCTTTTAATG
4237
UUCUAGUCUUUUAAUG


intron1

G

ACATATTACATGAT

ACAUAUUACAUGAU





STMN2_
+
ATT
2232
AAACACATGAAAAAT
4238
AAACACAUGAAAAAUU


intron1

C

TACCAAAGTTGTTCT

ACCAAAGUUGUUCU





STMN2_
+
CTT
2233
TCATAATAAATATTCA
4239
UCAUAAUAAAUAUUCA


intron1

C

AACACATGAAAAAT

AACACAUGAAAAAU





STMN2_
+
ATT
2234
GCACCCTTCTCATAAT
4240
GCACCCUUCUCAUAAU


intron1

A

AAATATTCAAACAC

AAAUAUUCAAACAC





STMN2_
+
ATT
2235
CAATTAGCACCCTTCT
4241
CAAUUAGCACCCUUCU


intron1

C

CATAATAAATATTC

CAUAAUAAAUAUUC





STMN2_
+
TTT
2236
TCTGAGAAATTCCAAT
4242
UCUGAGAAAUUCCAAU


intron1

A

TAGCACCCTTCTCA

UAGCACCCUUCUCA





STMN2_
+
CTTT
2237
ATCTGAGAAATTCCA
4243
AUCUGAGAAAUUCCAA


intron1



ATTAGCACCCTTCTC

UUAGCACCCUUCUC





STMN2_
+
CTT
2238
CAGCTTTATCTGAGAA
4244
CAGCUUUAUCUGAGAA


intron1

A

ATTCCAATTAGCAC

AUUCCAAUUAGCAC





STMN2_
+
TTT
2239
AGTCTTACAGCTTTAT
4245
AGUCUUACAGCUUUAU


intron1

A

CTGAGAAATTCCAA

CUGAGAAAUUCCAA





STMN2_
+
ATT
2240
AAGTCTTACAGCTTTA
4246
AAGUCUUACAGCUUUA


intron1

T

TCTGAGAAATTCCA

UCUGAGAAAUUCCA





STMN2_
+
ATT
2241
TTTAAGTCTTACAGCT
4247
UUUAAGUCUUACAGCU


intron1

A

TTATCTGAGAAATT

UUAUCUGAGAAAUU





STMN2_
+
GTT
2242
TTATTTAAGTCTTACA
4248
UUAUUUAAGUCUUACA


intron1

A

GCTTTATCTGAGAA

GCUUUAUCUGAGAA





STMN2_
+
ATT
2243
TTATTATTTAAGTCTT
4249
UUAUUAUUUAAGUCUU


intron1

G

ACAGCTTTATCTGA

ACAGCUUUAUCUGA





STMN2_
+
TTTC
2244
CAACAAAAATATCTA
4250
CAACAAAAAUAUCUAU


intron1



TTGTTATTATTTAAG

UGUUAUUAUUUAAG





STMN2_
+
ATT
2245
CCAAAGTTGTTCTAGT
4251
CCAAAGUUGUUCUAGU


intron1

A

CTTTTAATGACATA

CUUUUAAUGACAUA





STMN2_
+
ATT
2246
TCTTTTAATAAAGGAA
4252
UCUUUUAAUAAAGGAA


intron1

A

TCAGGCCCTGTCAT

UCAGGCCCUGUCAU





STMN2_
+
TTTC
2247
CAGACTCTCGGGAAG
4253
CAGACUCUCGGGAAGA


intron1



AACATTAATCATCTC

ACAUUAAUCAUCUC





STMN2_
+
TTTT
2248
AATTATCTTTTAATAA
4254
AAUUAUCUUUUAAUAA


intron1



AGGAATCAGGCCCT

AGGAAUCAGGCCCU





STMN2_
+
CTT
2249
ATTATTCAATTCTAAC
4255
AUUAUUCAAUUCUAAC


intron1

C

TTTCTAAGGAAGTC

UUUCUAAGGAAGUC





STMN2_
+
CTT
2250
TCTAAGCCAATAAAG
4256
UCUAAGCCAAUAAAGG


intron1

A

GATCTTCATTATTCA

AUCUUCAUUAUUCA





STMN2_
+
CTT
2251
TGCTTATCTAAGCCAA
4257
UGCUUAUCUAAGCCAA


intron1

C

TAAAGGATCTTCAT

UAAAGGAUCUUCAU





STMN2_
+
TTTC
2252
TTCTGCTTATCTAAGC
4258
UUCUGCUUAUCUAAGC


intron1



CAATAAAGGATCTT

CAAUAAAGGAUCUU





STMN2_
+
TTTT
2253
CTTCTGCTTATCTAAG
4259
CUUCUGCUUAUCUAAG


intron1



CCAATAAAGGATCT

CCAAUAAAGGAUCU





STMN2_
+
GTT
2254
TCTTCTGCTTATCTAA
4260
UCUUCUGCUUAUCUAA


intron1

T

GCCAATAAAGGATC

GCCAAUAAAGGAUC





STMN2_
+
TTT
2255
AAAAGAGTGTTTTCTT
4261
AAAAGAGUGUUUUCUU


intron1

G

CTGCTTATCTAAGC

CUGCUUAUCUAAGC





STMN2_
+
ATT
2256
GAAAAGAGTGTTTTCT
4262
GAAAAGAGUGUUUUCU


intron1

T

TCTGCTTATCTAAG

UCUGCUUAUCUAAG





STMN2_
+
ATT
2257
AGTATGACTGTATATT
4263
AGUAUGACUGUAUAUU


intron1

G

TGAAAAGAGTGTTT

UGAAAAGAGUGUUU





STMN2_
+
TTT
2258
TTGAGTATGACTGTAT
4264
UUGAGUAUGACUGUAU


intron1

A

ATTTGAAAAGAGTG

AUUUGAAAAGAGUG





STMN2_
+
ATT
2259
ATTGAGTATGACTGTA
4265
AUUGAGUAUGACUGUA


intron1

T

TATTTGAAAAGAGT

UAUUUGAAAAGAGU





STMN2_
+
CTT
2260
AGAATTTATTGAGTAT
4266
AGAAUUUAUUGAGUAU


intron1

A

GACTGTATATTTGA

GACUGUAUAUUUGA





STMN2_
+
ATT
2261
TTAAGAATTTATTGAG
4267
UUAAGAAUUUAUUGAG


intron1

C

TATGACTGTATATT

UAUGACUGUAUAUU





STMN2_
+
CTT
2262
CTGAATACCATGTGA
4268
CUGAAUACCAUGUGAG


intron1

C

GAAAATTCTTAAGAA

AAAAUUCUUAAGAA





STMN2_
+
TTTC
2263
TTCCTGAATACCATGT
4269
UUCCUGAAUACCAUGU


intron1



GAGAAAATTCTTAA

GAGAAAAUUCUUAA





STMN2_
+
ATT
2264
CTTCCTGAATACCATG
4270
CUUCCUGAAUACCAUG


intron1

T

TGAGAAAATTCTTA

UGAGAAAAUUCUUA





STMN2_
+
ATT
2265
TAAGAGTATTTCTTCC
4271
UAAGAGUAUUUCUUCC


intron1

C

TGAATACCATGTGA

UGAAUACCAUGUGA





STMN2_
+
ATT
2266
TTCTAAGAGTATTTCT
4272
UUCUAAGAGUAUUUCU


intron1

A

TCCTGAATACCATG

UCCUGAAUACCAUG





STMN2_
+
TTT
2267
CCAAATTATTCTAAGA
4273
CCAAAUUAUUCUAAGA


intron1

A

GTATTTCTTCCTGA

GUAUUUCUUCCUGA





STMN2_
+
ATT
2268
ACCAAATTATTCTAAG
4274
ACCAAAUUAUUCUAAG


intron1

T

AGTATTTCTTCCTG

AGUAUUUCUUCCUG





STMN2_
+
ATT
2269
TTTACCAAATTATTCT
4275
UUUACCAAAUUAUUCU


intron1

A

AAGAGTATTTCTTC

AAGAGUAUUUCUUC





STMN2_
+
TTT
2270
TTATTTACCAAATTAT
4276
UUAUUUACCAAAUUAU


intron1

A

TCTAAGAGTATTTC

UCUAAGAGUAUUUC





STMN2_
+
ATT
2271
ATTATTTACCAAATTA
4277
AUUAUUUACCAAAUUA


intron1

T

TTCTAAGAGTATTT

UUCUAAGAGUAUUU





STMN2_
+
CTT
2272
TATTTATTATTTACCA
4278
UAUUUAUUAUUUACCA


intron1

A

AATTATTCTAAGAG

AAUUAUUCUAAGAG





STMN2_
+
ATT
2273
CTGTCTCAATATATCT
4279
CUGUCUCAAUAUAUCU


intron1

G

TATATTTATTATTT

UAUAUUUAUUAUUU





STMN2_
+
ATT
2274
AAACAAAAGATTGCT
4280
AAACAAAAGAUUGCUG


intron1

A

GTCTCAATATATCTT

UCUCAAUAUAUCUU





STMN2_
+
TTT
2275
TGAATAGCAATACTG
4281
UGAAUAGCAAUACUGA


intron1

A

AAGAAATTAAAACAA

AGAAAUUAAAACAA





STMN2_
+
ATT
2276
TTCAATTCTAACTTTC
4282
UUCAAUUCUAACUUUC


intron1

A

TAAGGAAGTCAACC

UAAGGAAGUCAACC





STMN2_
+
ATT
2277
AATTCTAACTTTCTAA
4283
AAUUCUAACUUUCUAA


intron1

C

GGAAGTCAACCTAC

GGAAGUCAACCUAC





STMN2_
+
ATT
2278
TAACTTTCTAAGGAAG
4284
UAACUUUCUAAGGAAG


intron1

C

TCAACCTACAGATC

UCAACCUACAGAUC





STMN2_
+
CTTT
2279
CTAAGGAAGTCAACC
4285
CUAAGGAAGUCAACCU


intron1



TACAGATCAGAAAGA

ACAGAUCAGAAAGA





STMN2_
+
TTT
2280
CAATTTCTTGTACATT
4286
CAAUUUCUUGUACAUU


intron1

G

GAAGGAAAGGAAGA

GAAGGAAAGGAAGA





STMN2_
+
TTTT
2281
GCAATTTCTTGTACAT
4287
GCAAUUUCUUGUACAU


intron1



TGAAGGAAAGGAAG

UGAAGGAAAGGAAG





STMN2_
+
TTTT
2282
TGCAATTTCTTGTACA
4288
UGCAAUUUCUUGUACA


intron1



TTGAAGGAAAGGAA

UUGAAGGAAAGGAA





STMN2_
+
ATT
2283
TTGCAATTTCTTGTAC
4289
UUGCAAUUUCUUGUAC


intron1

T

ATTGAAGGAAAGGA

AUUGAAGGAAAGGA





STMN2_
+
TTTC
2284
CATTTTTGCAATTTCT
4290
CAUUUUUGCAAUUUCU


intron1



TGTACATTGAAGGA

UGUACAUUGAAGGA





STMN2_
+
CTTT
2285
CCATTTTTGCAATTTC
4291
CCAUUUUUGCAAUUUC


intron1



TTGTACATTGAAGG

UUGUACAUUGAAGG





STMN2_
+
TTTC
2286
AGGGTCTCTCAGAAG
4292
AGGGUCUCUCAGAAGC


intron1



CTGGGAAACTTTCCA

UGGGAAACUUUCCA





STMN2_
+
ATT
2287
CAGGGTCTCTCAGAA
4293
CAGGGUCUCUCAGAAG


intron1

T

GCTGGGAAACTTTCC

CUGGGAAACUUUCC





STMN2_
+
GTT
2288
ATTTCAGGGTCTCTCA
4294
AUUUCAGGGUCUCUCA


intron1

C

GAAGCTGGGAAACT

GAAGCUGGGAAACU





STMN2_
+
GTT
2289
ACAGTTCATTTCAGGG
4295
ACAGUUCAUUUCAGGG


intron1

A

TCTCTCAGAAGCTG

UCUCUCAGAAGCUG





STMN2_
+
GTT
2290
TTAACAGTTCATTTCA
4296
UUAACAGUUCAUUUCA


intron1

G

GGGTCTCTCAGAAG

GGGUCUCUCAGAAG





STMN2_
+
GTT
2291
TTGTTAACAGTTCATT
4297
UUGUUAACAGUUCAUU


intron1

G

TCAGGGTCTCTCAG

UCAGGGUCUCUCAG





STMN2_
+
ATT
2292
AGTTGTTGTTAACAGT
4298
AGUUGUUGUUAACAGU


intron1

C

TCATTTCAGGGTCT

UCAUUUCAGGGUCU





STMN2_
+
ATT
2293
ATGAATAGCAATACT
4299
AUGAAUAGCAAUACUG


intron1

T

GAAGAAATTAAAACA

AAGAAAUUAAAACA





STMN2_
+
GTT
2294
GCCATTCAGTTGTTGT
4300
GCCAUUCAGUUGUUGU


intron1

A

TAACAGTTCATTTC

UAACAGUUCAUUUC





STMN2_
+
GTT
2295
CTCAACACAAAGTTG
4301
CUCAACACAAAGUUGG


intron1

A

GACTAAGTCTCAAAG

ACUAAGUCUCAAAG





STMN2_
+
TTT
2296
CAGAATATACTGTTAC
4302
CAGAAUAUACUGUUAC


intron1

G

TCAACACAAAGTTG

UCAACACAAAGUUG





STMN2_
+
GTT
2297
GCAGAATATACTGTTA
4303
GCAGAAUAUACUGUUA


intron1

T

CTCAACACAAAGTT

CUCAACACAAAGUU





STMN2_
+
CTT
2298
AGGGTTTGCAGAATA
4304
AGGGUUUGCAGAAUAU


intron1

C

TACTGTTACTCAACA

ACUGUUACUCAACA





STMN2_
+
TTTC
2299
CCAAATAGGGCACTA
4305
CCAAAUAGGGCACUAA


intron1



AAAACATGATCCCAA

AAACAUGAUCCCAA





STMN2_
+
ATT
2300
CCCAAATAGGGCACT
4306
CCCAAAUAGGGCACUA


intron1

T

AAAAACATGATCCCA

AAAACAUGAUCCCA





STMN2_
+
ATT
2301
AAAAATATAACATTTC
4307
AAAAAUAUAACAUUUC


intron1

A

CCAAATAGGGCACT

CCAAAUAGGGCACU





STMN2_
+
ATT
2302
TGCTGCAAAAATGAT
4308
UGCUGCAAAAAUGAUA


intron1

A

ACAATACACGAAATA

CAAUACACGAAAUA





STMN2_
+
TTTC
2303
TGGAAATATTATGCTG
4309
UGGAAAUAUUAUGCUG


intron1



CAAAAATGATACAA

CAAAAAUGAUACAA





STMN2_
+
CTTT
2304
CTGGAAATATTATGCT
4310
CUGGAAAUAUUAUGCU


intron1



GCAAAAATGATACA

GCAAAAAUGAUACA





STMN2_
+
ATT
2305
CCACCTTTCTGGAAAT
4311
CCACCUUUCUGGAAAU


intron1

A

ATTATGCTGCAAAA

AUUAUGCUGCAAAA





STMN2_
+
CTT
2306
AAGGAATAGCATCAA
4312
AAGGAAUAGCAUCAAA


intron1

C

AGACATAGTCAGGTC

GACAUAGUCAGGUC





STMN2_
+
TTTC
2307
TAAGGAAGTCAACCT
4313
UAAGGAAGUCAACCUA


intron1



ACAGATCAGAAAGAG

CAGAUCAGAAAGAG





STMN2_
+
GTT
2308
GACTAAGTCTCAAAG
4314
GACUAAGUCUCAAAGU


intron1

G

TTAGCCATTCAGTTG

UAGCCAUUCAGUUG





STMN2_
+
ATT
2309
CTTGTACATTGAAGGA
4315
CUUGUACAUUGAAGGA


intron1

T

AAGGAAGACACACT

AAGGAAGACACACU





STMN2_
+
CTT
2310
CTATCATTTATGAATA
4316
CUAUCAUUUAUGAAUA


intron1

A

GCAATACTGAAGAA

GCAAUACUGAAGAA





STMN2_
+
CTT
2311
TGGCACAGTTGACAA
4317
UGGCACAGUUGACAAG


intron1

G

GGATGATAAATCAAT

GAUGAUAAAUCAAU





STMN2_
+
TTTT
2312
AGGGATATTAACTTGT
4318
AGGGAUAUUAACUUGU


intron1



AATATACAGGTATC

AAUAUACAGGUAUC





STMN2_
+
GTT
2313
TAGGGATATTAACTTG
4319
UAGGGAUAUUAACUUG


intron1

T

TAATATACAGGTAT

UAAUAUACAGGUAU





STMN2_
+
ATT
2314
TGACCACTAAACACAT
4320
UGACCACUAAACACAU


intron1

C

CAGTTTTAGGGATA

CAGUUUUAGGGAUA





STMN2_
+
CTT
2315
CGAACAAGCTCCCAG
4321
CGAACAAGCUCCCAGA


intron1

C

ATGATGCTGATTCTG

UGAUGCUGAUUCUG





STMN2_
+
ATT
2316
TGTCTTCCGAACAAGC
4322
UGUCUUCCGAACAAGC


intron1

C

TCCCAGATGATGCT

UCCCAGAUGAUGCU





STMN2_
+
CTT
2317
AGGCAGACATTCTGTC
4323
AGGCAGACAUUCUGUC


intron1

G

TTCCGAACAAGCTC

UUCCGAACAAGCUC





STMN2_
+
ATT
2318
AATACATCTGGCTTGA
4324
AAUACAUCUGGCUUGA


intron1

C

GGCAGACATTCTGT

GGCAGACAUUCUGU





STMN2_
+
ATT
2319
TGATTCAATACATCTG
4325
UGAUUCAAUACAUCUG


intron1

C

GCTTGAGGCAGACA

GCUUGAGGCAGACA





STMN2_
+
ATT
2320
AAATGCAAATTCTGAT
4326
AAAUGCAAAUUCUGAU


intron1

A

TCAATACATCTGGC

UCAAUACAUCUGGC





STMN2_
+
TTTC
2321
ATTAAAATGCAAATTC
4327
AUUAAAAUGCAAAUUC


intron1



TGATTCAATACATC

UGAUUCAAUACAUC





STMN2_
+
TTTT
2322
CATTAAAATGCAAATT
4328
CAUUAAAAUGCAAAUU


intron1



CTGATTCAATACAT

CUGAUUCAAUACAU





STMN2_
+
ATT
2323
TCATTAAAATGCAAAT
4329
UCAUUAAAAUGCAAAU


intron1

T

TCTGATTCAATACA

UCUGAUUCAAUACA





STMN2_
+
TTT
2324
ATTTTCATTAAAATGC
4330
AUUUUCAUUAAAAUGC


intron1

G

AAATTCTGATTCAA

AAAUUCUGAUUCAA





STMN2_
+
CTTT
2325
GATTTTCATTAAAATG
4331
GAUUUUCAUUAAAAUG


intron1



CAAATTCTGATTCA

CAAAUUCUGAUUCA





STMN2_
+
ATT
2326
CCTTTGATTTTCATTA
4332
CCUUUGAUUUUCAUUA


intron1

A

AAATGCAAATTCTG

AAAUGCAAAUUCUG





STMN2_
+
TTT
2327
ATGTGCATATGAATTA
4333
AUGUGCAUAUGAAUUA


intron1

G

CCTTTGATTTTCAT

CCUUUGAUUUUCAU





STMN2_
+
CTTT
2328
GATGTGCATATGAATT
4334
GAUGUGCAUAUGAAUU


intron1



ACCTTTGATTTTCA

ACCUUUGAUUUUCA





STMN2_
+
GTT
2329
CTCAAACTTTGATGTG
4335
CUCAAACUUUGAUGUG


intron1

C

CATATGAATTACCT

CAUAUGAAUUACCU





STMN2_
+
ATT
2330
CTGTGTTCCTCAAACT
4336
CUGUGUUCCUCAAACU


intron1

A

TTGATGTGCATATG

UUGAUGUGCAUAUG





STMN2_
+
TTT
2331
ATAGTGTCATATTACT
4337
AUAGUGUCAUAUUACU


intron1

A

GTGTTCCTCAAACT

GUGUUCCUCAAACU





STMN2_
+
ATT
2332
AATAGTGTCATATTAC
4338
AAUAGUGUCAUAUUAC


intron1

T

TGTGTTCCTCAAAC

UGUGUUCCUCAAAC





STMN2_
+
ATT
2333
TAATCCAGCTATAAA
4339
UAAUCCAGCUAUAAAA


intron1

C

ATATTTAATAGTGTC

UAUUUAAUAGUGUC





STMN2_
+
TTT
2334
TGTAATTCTAATCCAG
4340
UGUAAUUCUAAUCCAG


intron1

A

CTATAAAATATTTA

CUAUAAAAUAUUUA





STMN2_
+
TTTT
2335
ATGTAATTCTAATCCA
4341
AUGUAAUUCUAAUCCA


intron1



GCTATAAAATATTT

GCUAUAAAAUAUUU





STMN2_
+
TTT
2336
ATTATCTTTTAATAAA
4342
AUUAUCUUUUAAUAAA


intron1

A

GGAATCAGGCCCTG

GGAAUCAGGCCCUG





STMN2_
+
ATT
2337
TATGTAATTCTAATCC
4343
UAUGUAAUUCUAAUCC


intron1

T

AGCTATAAAATATT

AGCUAUAAAAUAUU





STMN2_
+
ATT
2338
CATTTTATGTAATTCT
4344
CAUUUUAUGUAAUUCU


intron1

A

AATCCAGCTATAAA

AAUCCAGCUAUAAA





STMN2_
+
TTT
2339
GGGATATTAACTTGTA
4345
GGGAUAUUAACUUGUA


intron1

A

ATATACAGGTATCC

AUAUACAGGUAUCC





STMN2_
+
ATT
2340
ACTTGTAATATACAGG
4346
ACUUGUAAUAUACAGG


intron1

A

TATCCCTCCTGGTA

UAUCCCUCCUGGUA





STMN2_
+
CTT
2341
TAATATACAGGTATCC
4347
UAAUAUACAGGUAUCC


intron1

G

CTCCTGGTAAGCTC

CUCCUGGUAAGCUC





STMN2_
+
ATT
2342
TGTCTTAACATTTTTA
4348
UGUCUUAACAUUUUUA


intron1

A

AATCTATGGTAATC

AAUCUAUGGUAAUC





STMN2_
+
TTT
2343
GCTCTCTGTGTGAGCA
4349
GCUCUCUGUGUGAGCA


intron1

G

TGTGTGCGTGTGTG

UGUGUGCGUGUGUG





STMN2_
+
ATT
2344
GGCTCTCTGTGTGAGC
4350
GGCUCUCUGUGUGAGC


intron1

T

ATGTGTGCGTGTGT

AUGUGUGCGUGUGU





STMN2_
+
ATT
2345
CAGGACTCGGCAGAA
4351
CAGGACUCGGCAGAAG


intron1

G

GACCTTCGAGAGAAA

ACCUUCGAGAGAAA





STMN2_
+
ATT
2346
ATATTGCAGGACTCG
4352
AUAUUGCAGGACUCGG


intron1

C

GCAGAAGACCTTCGA

CAGAAGACCUUCGA





STMN2_
+
ATT
2347
TATTCATATTGCAGGA
4353
UAUUCAUAUUGCAGGA


intron1

A

CTCGGCAGAAGACC

CUCGGCAGAAGACC





STMN2_
+
TTT
2348
AAATTATATTCATATT
4354
AAAUUAUAUUCAUAUU


intron1

A

GCAGGACTCGGCAG

GCAGGACUCGGCAG





STMN2_
+
TTTT
2349
AAAATTATATTCATAT
4355
AAAAUUAUAUUCAUAU


intron1



TGCAGGACTCGGCA

UGCAGGACUCGGCA





STMN2_
+
TTTT
2350
TAAAATTATATTCATA
4356
UAAAAUUAUAUUCAUA


intron1



TTGCAGGACTCGGC

UUGCAGGACUCGGC





STMN2_
+
ATT
2351
TTAAAATTATATTCAT
4357
UUAAAAUUAUAUUCAU


intron1

T

ATTGCAGGACTCGG

AUUGCAGGACUCGG





STMN2_
+
ATT
2352
GATTTTTAAAATTATA
4358
GAUUUUUAAAAUUAUA


intron1

G

TTCATATTGCAGGA

UUCAUAUUGCAGGA





STMN2_
+
CTT
2353
ATTGGATTTTTAAAAT
4359
AUUGGAUUUUUAAAAU


intron1

A

TATATTCATATTGC

UAUAUUCAUAUUGC





STMN2_
+
GTT
2354
TGCCCCATCACTCTCT
4360
UGCCCCAUCACUCUCU


intron1

C

CTTAATTGGATTTT

CUUAAUUGGAUUUU





STMN2_
+
ATT
2355
TGTGTTCTGCCCCATC
4361
UGUGUUCUGCCCCAUC


intron1

A

ACTCTCTCTTAATT

ACUCUCUCUUAAUU





STMN2_
+
GTT
2356
ACAAGGATGATAAAT
4362
ACAAGGAUGAUAAAUC


intron1

G

CAATAATGCAAGCTT

AAUAAUGCAAGCUU





STMN2_
+
ATT
2357
CTCTGGGAATTATGTG
4363
CUCUGGGAAUUAUGUG


intron1

A

TTCTGCCCCATCAC

UUCUGCCCCAUCAC





STMN2_
+
TTTT
2358
ATTACTCTGGGAATTA
4364
AUUACUCUGGGAAUUA


intron1



TGTGTTCTGCCCCA

UGUGUUCUGCCCCA





STMN2_
+
ATT
2359
TATTACTCTGGGAATT
4365
UAUUACUCUGGGAAUU


intron1

T

ATGTGTTCTGCCCC

AUGUGUUCUGCCCC





STMN2_
+
CTT
2360
CGAACTCATATACCTG
4366
CGAACUCAUAUACCUG


intron1

C

GGGATTTTATTACT

GGGAUUUUAUUACU





STMN2_
+
TTT
2361
CTTCCGAACTCATATA
4367
CUUCCGAACUCAUAUA


intron1

A

CCTGGGGATTTTAT

CCUGGGGAUUUUAU





STMN2_
+
TTTT
2362
ACTTCCGAACTCATAT
4368
ACUUCCGAACUCAUAU


intron1



ACCTGGGGATTTTA

ACCUGGGGAUUUUA





STMN2_
+
ATT
2363
TACTTCCGAACTCATA
4369
UACUUCCGAACUCAUA


intron1

T

TACCTGGGGATTTT

UACCUGGGGAUUUU





STMN2_
+
TTT
2364
CAAAATATTTTACTTC
4370
CAAAAUAUUUUACUUC


intron1

A

CGAACTCATATACC

CGAACUCAUAUACC





STMN2_
+
CTTT
2365
ACAAAATATTTTACTT
4371
ACAAAAUAUUUUACUU


intron1



CCGAACTCATATAC

CCGAACUCAUAUAC





STMN2_
+
TTT
2366
AATCTATGGTAATCTT
4372
AAUCUAUGGUAAUCUU


intron1

A

TACAAAATATTTTA

UACAAAAUAUUUUA





STMN2_
+
TTTT
2367
AAATCTATGGTAATCT
4373
AAAUCUAUGGUAAUCU


intron1



TTACAAAATATTTT

UUACAAAAUAUUUU





STMN2_
+
TTTT
2368
TAAATCTATGGTAATC
4374
UAAAUCUAUGGUAAUC


intron1



TTTACAAAATATTT

UUUACAAAAUAUUU





STMN2_
+
ATT
2369
TTAAATCTATGGTAAT
4375
UUAAAUCUAUGGUAAU


intron1

T

CTTTACAAAATATT

CUUUACAAAAUAUU





STMN2_
+
CTT
2370
ACATTTTTAAATCTAT
4376
ACAUUUUUAAAUCUAU


intron1

A

GGTAATCTTTACAA

GGUAAUCUUUACAA





STMN2_
+
TTT
2371
TTACTCTGGGAATTAT
4377
UUACUCUGGGAAUUAU


intron1

A

GTGTTCTGCCCCAT

GUGUUCUGCCCCAU





STMN2_
+
TTTC
2372
TTGTACATTGAAGGA
4378
UUGUACAUUGAAGGAA


intron1



AAGGAAGACACACTT

AGGAAGACACACUU





STMN2_
+
CTT
2373
GAGAGAAAGGTAGAA
4379
GAGAGAAAGGUAGAAA


intron1

C

AATAAGAATTTGGCT

AUAAGAAUUUGGCU





STMN2_
+
ATT
2374
AAGGAAAGGAAGACA
4380
AAGGAAAGGAAGACAC


intron1

G

CACTTAAGACAGCAT

ACUUAAGACAGCAU





STMN2_
+
CTT
2375
ATCTCCTCAGTCCCAT
4381
AUCUCCUCAGUCCCAU


intron1

A

CATGGTTAGCACAT

CAUGGUUAGCACAU





STMN2_
+
ATT
2376
ACTTAATCTCCTCAGT
4382
ACUUAAUCUCCUCAGU


intron1

G

CCCATCATGGTTAG

CCCAUCAUGGUUAG





STMN2_
+
GTT
2377
CAGAAATAACATTGA
4383
CAGAAAUAACAUUGAC


intron1

c

CTTAATCTCCTCAGT

UUAAUCUCCUCAGU





STMN2_
+
TTTC
2378
TGGTGGGAACACACT
4384
UGGUGGGAACACACUC


intron1



CTGATGACCAGTTCC

UGAUGACCAGUUCC





STMN2_
+
ATT
2379
CTGGTGGGAACACAC
4385
CUGGUGGGAACACACU


intron1

T

TCTGATGACCAGTTC

CUGAUGACCAGUUC





STMN2_
+
GTT
2380
TGCAGGCTCAGCACA
4386
UGCAGGCUCAGCACAG


intron1

C

GCATCGATTTCTGGT

CAUCGAUUUCUGGU





STMN2_
+
GTT
2381
TAACGTATGAGACAC
4387
UAACGUAUGAGACACA


intron1

G

ATGGCGTTCTGCAGG

UGGCGUUCUGCAGG





STMN2_
+
TTT
2382
GGAGAAAGAGAGCTA
4388
GGAGAAAGAGAGCUAU


intron1

G

TGAGGCCGTGTGGGT

GAGGCCGUGUGGGU





STMN2_
+
CTTT
2383
GGGAGAAAGAGAGCT
4389
GGGAGAAAGAGAGCUA


intron1



ATGAGGCCGTGTGGG

UGAGGCCGUGUGGG





STMN2_
+
TTT
2384
GGCTTTGGGAGAAAG
4390
GGCUUUGGGAGAAAGA


intron1

A

AGAGCTATGAGGCCG

GAGCUAUGAGGCCG





STMN2_
+
ATT
2385
AGGCTTTGGGAGAAA
4391
AGGCUUUGGGAGAAAG


intron1

T

GAGAGCTATGAGGCC

AGAGCUAUGAGGCC





STMN2_
+
ATT
2386
CCATGATTTAGGCTTT
4392
CCAUGAUUUAGGCUUU


intron1

G

GGGAGAAAGAGAGC

GGGAGAAAGAGAGC





STMN2_
+
ATT
2387
AAATAATTGCCATGAT
4393
AAAUAAUUGCCAUGAU


intron1

C

TTAGGCTTTGGGAG

UUAGGCUUUGGGAG





STMN2_
+
CTT
2388
TTCAAATAATTGCCAT
4394
UUCAAAUAAUUGCCAU


intron1

A

GATTTAGGCTTTGG

GAUUUAGGCUUUGG





STMN2_
+
CTT
2389
CCTGGGGCTTATTCAA
4395
CCUGGGGCUUAUUCAA


intron1

A

ATAATTGCCATGAT

AUAAUUGCCAUGAU





STMN2_
+
TTT
2390
ATAGCTTACCTGGGGC
4396
AUAGCUUACCUGGGGC


intron1

A

TTATTCAAATAATT

UUAUUCAAAUAAUU





STMN2_
+
TTTT
2391
AATAGCTTACCTGGG
4397
AAUAGCUUACCUGGGG


intron1



GCTTATTCAAATAAT

CUUAUUCAAAUAAU





STMN2_
+
GTT
2392
TAATAGCTTACCTGGG
4398
UAAUAGCUUACCUGGG


intron1

T

GCTTATTCAAATAA

GCUUAUUCAAAUAA





STMN2_
+
ATT
2393
ATGCCTAGTTTTAATA
4399
AUGCCUAGUUUUAAUA


intron1

G

GCTTACCTGGGGCT

GCUUACCUGGGGCU





STMN2_
+
CTT
2394
CAAATTGATGCCTAGT
4400
CAAAUUGAUGCCUAGU


intron1

C

TTTAATAGCTTACC

UUUAAUAGCUUACC





STMN2_
+
CTT
2395
AAGAGAAAATACTTC
4401
AAGAGAAAAUACUUCC


intron1

G

CAAATTGATGCCTAG

AAAUUGAUGCCUAG





STMN2_
+
TTTC
2396
TGATCACAGACTCACC
4402
UGAUCACAGACUCACC


intron1



TTGAAGAGAAAATA

UUGAAGAGAAAAUA





STMN2_
+
CTTT
2397
CTGATCACAGACTCAC
4403
CUGAUCACAGACUCAC


intron1



CTTGAAGAGAAAAT

CUUGAAGAGAAAAU





STMN2_
+
CTT
2398
TCCTTTCTGATCACAG
4404
UCCUUUCUGAUCACAG


intron1

C

ACTCACCTTGAAGA

ACUCACCUUGAAGA





STMN2_
+
TTT
2399
AACAGACCAGAGATG
4405
AACAGACCAGAGAUGG


intron1

A

GTCTTCTCCTTTCTG

UCUUCUCCUUUCUG





STMN2_
+
ATT
2400
AAACAGACCAGAGAT
4406
AAACAGACCAGAGAUG


intron1

T

GGTCTTCTCCTTTCT

GUCUUCUCCUUUCU





STMN2_
+
TTT
2401
TTTAAACAGACCAGA
4407
UUUAAACAGACCAGAG


intron1

A

GATGGTCTTCTCCTT

AUGGUCUUCUCCUU





STMN2_
+
GTT
2402
GCACATTTCAAAATGC
4408
GCACAUUUCAAAAUGC


intron1

A

CTCCTTAACTACTT

CUCCUUAACUACUU





STMN2_
+
TTTT
2403
TAATTATCTTTTAATA
4409
UAAUUAUCUUUUAAUA


intron1



AAGGAATCAGGCCC

AAGGAAUCAGGCCC





STMN2_
+
TTTC
2404
AAAATGCCTCCTTAAC
4410
AAAAUGCCUCCUUAAC


intron1



TACTTCCATAGGCC

UACUUCCAUAGGCC





STMN2_
+
CTT
2405
ACTACTTCCATAGGCC
4411
ACUACUUCCAUAGGCC


intron1

A

AGAGATATTTAGTT

AGAGAUAUUUAGUU





STMN2_
+
ATT
2406
TTAATTATCTTTTAAT
4412
UUAAUUAUCUUUUAAU


intron1

T

AAAGGAATCAGGCC

AAAGGAAUCAGGCC





STMN2_
+
CTT
2407
TGAAACATTTTTAATT
4413
UGAAACAUUUUUAAUU


intron1

G

ATCTTTTAATAAAG

AUCUUUUAAUAAAG





STMN2_
+
CTT
2408
TACATTGAAGGAAAG
4414
UACAUUGAAGGAAAGG


intron1

G

GAAGACACACTTAAG

AAGACACACUUAAG





STMN2_
+
TTT
2409
AATCCCTTGTGAAACA
4415
AAUCCCUUGUGAAACA


intron1

G

TTTTTAATTATCTT

UUUUUAAUUAUCUU





STMN2_
+
TTTT
2410
GAATCCCTTGTGAAAC
4416
GAAUCCCUUGUGAAAC


intron1



ATTTTTAATTATGT

AUUUUUAAUUAUCU





STMN2_
+
GTT
2411
TGAATCCCTTGTGAAA
4417
UGAAUCCCUUGUGAAA


intron1

T

CATTTTTAATTATC

CAUUUUUAAUUAUC





STMN2_
+
ATT
2412
CCATCAAAGCAGGCA
4418
CCAUCAAAGCAGGCAG


intron1

A

GGCAGGCAGGAGAGA

GCAGGCAGGAGAGA





STMN2_
+
CTT
2413
ATATTACCATCAAAGC
4419
AUAUUACCAUCAAAGC


intron1

C

AGGCAGGCAGGCAG

AGGCAGGCAGGCAG





STMN2_
+
ATT
2414
TCTTCATATTACCATC
4420
UCUUCAUAUUACCAUC


intron1

C

AAAGCAGGCAGGCA

AAAGCAGGCAGGCA





STMN2_
+
TTTC
2415
AAGATTCTCTTCATAT
4421
AAGAUUCUCUUCAUAU


intron1



TACCATCAAAGCAG

UACCAUCAAAGCAG





STMN2_
+
ATT
2416
CAAGATTCTCTTCATA
4422
CAAGAUUCUCUUCAUA


intron1

T

TTACCATCAAAGCA

UUACCAUCAAAGCA





STMN2_
+
GTT
2417
TTTCAAGATTCTCTTC
4423
UUUCAAGAUUCUCUUC


intron1

A

ATATTACCATCAAA

AUAUUACCAUCAAA





STMN2_
+
ATT
2418
GATGTTATTTCAAGAT
4424
GAUGUUAUUUCAAGAU


intron1

A

TCTCTTCATATTAC

UCUCUUCAUAUUAC





STMN2_
+
TTTT
2419
ATTTAAACAGACCAG
4425
AUUUAAACAGACCAGA


intron1



AGATGGTCTTCTCCT

GAUGGUCUUCUCCU





STMN2_
+
TTT
2420
ATATAACTATTAGATG
4426
AUAUAACUAUUAGAUG


intron1

A

TTATTTCAAGATTC

UUAUUUCAAGAUUC





STMN2_
+
ATT
2421
ACATTTAATATAACTA
4427
ACAUUUAAUAUAACUA


intron1

C

TTAGATGTTATTTC

UUAGAUGUUAUUUC





STMN2_
+
TTT
2422
CACATTCACATTTAAT
4428
CACAUUCACAUUUAAU


intron1

A

ATAACTATTAGATG

AUAACUAUUAGAUG





STMN2_
+
ATT
2423
ACACATTCACATTTAA
4429
ACACAUUCACAUUUAA


intron1

T

TATAACTATTAGAT

UAUAACUAUUAGAU





STMN2_
+
GTT
2424
AATAAAATAAATTTA
4430
AAUAAAAUAAAUUUAC


intron1

G

CACATTCACATTTAA

ACAUUCACAUUUAA





STMN2_
+
TTT
2425
TTGAATAAAATAAATT
4431
UUGAAUAAAAUAAAUU


intron1

G

TACACATTCACATT

UACACAUUCACAUU





STMN2_
+
TTTT
2426
GTTGAATAAAATAAA
4432
GUUGAAUAAAAUAAAU


intron1



TTTACACATTCACAT

UUACACAUUCACAU





STMN2_
+
ATT
2427
TGTTGAATAAAATAA
4433
UGUUGAAUAAAAUAAA


intron1

T

ATTTACACATTCACA

UUUACACAUUCACA





STMN2_
+
TTT
2428
ACATTTTGTTGAATAA
4434
ACAUUUUGUUGAAUAA


intron1

A

AATAAATTTACACA

AAUAAAUUUACACA





STMN2_
+
TTTT
2429
AACATTTTGTTGAATA
4435
AACAUUUUGUUGAAUA


intron1



AAATAAATTTACAC

AAAUAAAUUUACAC





STMN2_
+
GTT
2430
TAACATTTTGTTGAAT
4436
UAACAUUUUGUUGAAU


intron1

T

AAAATAAATTTACA

AAAAUAAAUUUACA





STMN2_
+
TTT
2431
GTTTTAACATTTTGTT
4437
GUUUUAACAUUUUGUU


intron1

A

GAATAAAATAAATT

GAAUAAAAUAAAUU





STMN2_
+
ATT
2432
AGTTTTAACATTTTGT
4438
AGUUUUAACAUUUUGU


intron1

T

TGAATAAAATAAAT

UGAAUAAAAUAAAU





STMN2_
+
CTT
2433
CATAGGCCAGAGATA
4439
CAUAGGCCAGAGAUAU


intron1

C

TTTAGTTTTAACATT

UUAGUUUUAACAUU





STMN2_
+
ATT
2434
AATATAACTATTAGAT
4440
AAUAUAACUAUUAGAU


intron1

T

GTTATTTCAAGATT

GUUAUUUCAAGAUU





STMN2_
+
ATT
2435
TATTTAAACAGACCA
4441
UAUUUAAACAGACCAG


intron1

T

GAGATGGTCTTCTCC

AGAUGGUCUUCUCC





STMN2_
+
ATT
2436
CAAAATGCCTCCTTAA
4442
CAAAAUGCCUCCUUAA


intron1

T

CTACTTCCATAGGC

CUACUUCCAUAGGC





STMN2_
+
GTT
2437
GAGGTGAGCTCCCATT
4443
GAGGUGAGCUCCCAUU


intron1

A

GCAGAGGTCACACC

GCAGAGGUCACACC





STMN2_
+
TTTC
2438
TGGTGTATTCATAAAT
4444
UGGUGUAUUCAUAAAU


intron1



TCCAGATTCTCTAT

UCCAGAUUCUCUAU





STMN2_
+
TTTT
2439
CTGGTGTATTCATAAA
4445
CUGGUGUAUUCAUAAA


intron1



TTCCAGATTCTCTA

UUCCAGAUUCUCUA





STMN2_
+
TTTT
2440
TCTGGTGTATTCATAA
4446
UCUGGUGUAUUCAUAA


intron1



ATTCCAGATTCTCT

AUUCCAGAUUCUCU





STMN2_
+
GTT
2441
TTCTGGTGTATTCATA
4447
UUCUGGUGUAUUCAUA


intron1

T

AATTCCAGATTCTC

AAUUCCAGAUUCUC





STMN2_
+
TTTC
2442
AACTGTTTTTCTGGTG
4448
AACUGUUUUUCUGGUG


intron1



TATTCATAAATTCC

UAUUCAUAAAUUCC





STMN2_
+
CTTT
2443
CAACTGTTTTTCTGGT
4449
CAACUGUUUUUCUGGU


intron1



GTATTCATAAATTC

GUAUUCAUAAAUUC





STMN2_
+
TTTC
2444
TTTCAACTGTTTTTCT
4450
UUUCAACUGUUUUUCU


intron1



GGTGTATTCATAAA

GGUGUAUUCAUAAA





STMN2_
+
CTTT
2445
CTTTCAACTGTTTTTC
4451
CUUUCAACUGUUUUUC


intron1



TGGTGTATTCATAA

UGGUGUAUUCAUAA





STMN2_
+
TTTC
2446
CCGCAATGGTGCTTTC
4452
CCGCAAUGGUGCUUUC


intron1



TTTCAACTGTTTTT

UUUCAACUGUUUUU





STMN2_
+
TTTT
2447
CCCGCAATGGTGCTTT
4453
CCCGCAAUGGUGCUUU


intron1



CTTTCAACTGTTTT

CUUUCAACUGUUUU





STMN2_
+
ATT
2448
TCCCGCAATGGTGCTT
4454
UCCCGCAAUGGUGCUU


intron1

T

TCTTTCAACTGTTT

UCUUUCAACUGUUU





STMN2_
+
TTT
2449
CTCAAACATTTTCCCG
4455
CUCAAACAUUUUCCCG


intron1

A

CAATGGTGCTTTCT

CAAUGGUGCUUUCU





STMN2_
+
TTTC
2450
TTTACTCAAACATTTT
4456
UUUACUCAAACAUUUU


intron1



CCCGCAATGGTGCT

CCCGCAAUGGUGCU





STMN2_
+
ATT
2451
ATAAATTCCAGATTCT
4457
AUAAAUUCCAGAUUCU


intron1

C

CTATGGGAAGTAAC

CUAUGGGAAGUAAC





STMN2_
+
ATT
2452
CTTTACTCAAACATTT
4458
CUUUACUCAAACAUUU


intron1

T

TCCCGCAATGGTGC

UCCCGCAAUGGUGC





STMN2_
+
CTT
2453
AGGGCCTCGAGCCAA
4459
AGGGCCUCGAGCCAAU


intron1

G

TAAGTCTTCCTATTT

AAGUCUUCCUAUUU





STMN2_
+
TTT
2454
GAGATGACAAAAATC
4460
GAGAUGACAAAAAUCU


intron1

G

TAAACTTGAGGGCCT

AAACUUGAGGGCCU





STMN2_
+
ATT
2455
GGAGATGACAAAAAT
4461
GGAGAUGACAAAAAUC


intron1

T

CTAAACTTGAGGGCC

UAAACUUGAGGGCC





STMN2_
+
ATT
2456
TGGCAGTCGGGCAGG
4462
UGGCAGUCGGGCAGGG


intron1

C

GCTCTCTGTATAACC

CUCUCUGUAUAACC





STMN2_
+
TTT
2457
ATTCTGGCAGTCGGGC
4463
AUUCUGGCAGUCGGGC


intron1

A

AGGGCTCTCTGTAT

AGGGCUCUCUGUAU





STMN2_
+
GTT
2458
AATTCTGGCAGTCGG
4464
AAUUCUGGCAGUCGGG


intron1

T

GCAGGGCTCTCTGTA

CAGGGCUCUCUGUA





STMN2_
+
TTT
2459
AATGTTTAATTCTGGC
4465
AAUGUUUAAUUCUGGC


intron1

A

AGTCGGGCAGGGCT

AGUCGGGCAGGGCU





STMN2_
+
TTTT
2460
AAATGTTTAATTCTGG
4466
AAAUGUUUAAUUCUGG


intron1



CAGTCGGGCAGGGC

CAGUCGGGCAGGGC





STMN2_
+
GTT
2461
TAAATGTTTAATTCTG
4467
UAAAUGUUUAAUUCUG


intron1

T

GCAGTCGGGCAGGG

GCAGUCGGGCAGGG





STMN2_
+
ATT
2462
CAGAGGTCACACCTGT
4468
CAGAGGUCACACCUGU


intron1

G

GATATCACCATTTT

GAUAUCACCAUUUU





STMN2_
+
ATT
2463
ATGTTTTAAATGTTTA
4469
AUGUUUUAAAUGUUUA


intron1

C

ATTCTGGCAGTCGG

AUUCUGGCAGUCGG





STMN2_
+
ATT
2464
CAAAAGTAATTCATGT
4470
CAAAAGUAAUUCAUGU


intron1

A

TTTAAATGTTTAAT

UUUAAAUGUUUAAU





STMN2_
+
CTT
2465
AGACAGCATTACAAA
4471
AGACAGCAUUACAAAA


intron1

A

AGTAATTCATGTTTT

GUAAUUCAUGUUUU





STMN2_
+
CTT
2466
CTATTTCTTTACTCAA
4472
CUAUUUCUUUACUCAA


intron1

c

ACATTTTCCCGCAA

ACAUUUUCCCGCAA





STMN2_
+
ATT
2467
CAGATTCTCTATGGGA
4473
CAGAUUCUCUAUGGGA


intron1

C

AGTAACTTTTATTG

AGUAACUUUUAUUG





STMN2_
+
CTTT
2468
ACTCAAACATTTTCCC
4474
ACUCAAACAUUUUCCC


intron1



GCAATGGTGCTTTC

GCAAUGGUGCUUUC





STMN2_
+
CTT
2469
CTCAAGGTCACACAGT
4475
CUCAAGGUCACACAGU


intron1

A

TAGTCAGATCCAGA

UAGUCAGAUCCAGA





STMN2_
+
ATT
2470
TCTATGGGAAGTAACT
4476
UCUAUGGGAAGUAACU


intron1

C

TTTATTGATTGATT

UUUAUUGAUUGAUU





STMN2_
+
TTTC
2471
ACCGATTGCTGCTAGT
4477
ACCGAUUGCUGCUAGU


intron1



CTCATATCTGTTCC

CUCAUAUCUGUUCC





STMN2_
+
CTTT
2472
CACCGATTGCTGCTAG
4478
CACCGAUUGCUGCUAG


intron1



TCTCATATCTGTTC

UCUCAUAUCUGUUC





STMN2_
+
CTT
2473
GGAATCCATCTTTCAC
4479
GGAAUCCAUCUUUCAC


intron1

C

CGATTGCTGCTAGT

CGAUUGCUGCUAGU





STMN2_
+
TTT
2474
GGCCCAGGCCATCTG
4480
GGCCCAGGCCAUCUGG


intron1

G

GCTTCGGAATCCATC

CUUCGGAAUCCAUC





STMN2_
+
ATT
2475
GGGCCCAGGCCATCT
4481
GGGCCCAGGCCAUCUG


intron1

T

GGCTTCGGAATCCAT

GCUUCGGAAUCCAU





STMN2_
+
GTT
2476
GTCAGATCCAGAATTT
4482
GUCAGAUCCAGAAUUU


intron1

A

GGGCCCAGGCCATC

GGGCCCAGGCCAUC





STMN2_
+
GTT
2477
AAGTATCTTACTCAAG
4483
AAGUAUCUUACUCAAG


intron1

G

GTCACACAGTTAGT

GUCACACAGUUAGU





STMN2_
+
ATT
2478
CAGATATGGAAACTG
4484
CAGAUAUGGAAACUGA


intron1

A

AGGCACAGAAAGTTG

GGCACAGAAAGUUG





STMN2_
+
GTT
2479
TATTACAGATATGGA
4485
UAUUACAGAUAUGGAA


intron1

C

AACTGAGGCACAGAA

ACUGAGGCACAGAA





STMN2_
+
ATT
2480
CTGCTAGTCTCATATC
4486
CUGCUAGUCUCAUAUC


intron1

G

TGTTCCATGTTAGA

UGUUCCAUGUUAGA





STMN2_
+
GTT
2481
ATCACTTAATAATCCT
4487
AUCACUUAAUAAUCCU


intron1

A

AAGTAGGTTCTATT

AAGUAGGUUCUAUU





STMN2_
+
GTT
2482
CATGTTAGAGGTGAG
4488
CAUGUUAGAGGUGAGC


intron1

C

CTCCCATTGCAGAGG

UCCCAUUGCAGAGG





STMN2_
+
CTT
2483
ATAATCCTAAGTAGGT
4489
AUAAUCCUAAGUAGGU


intron1

A

TCTATTACAGATAT

UCUAUUACAGAUAU





STMN2_
+
TTTC
2484
CACATATTAACTGTGT
4490
CACAUAUUAACUGUGU


intron1



TAATCACTTAATAA

UAAUCACUUAAUAA





STMN2_
+
CTTT
2485
TATTGATTGATTTAAC
4491
UAUUGAUUGAUUUAAC


intron1



CCTTGTATAGCACA

CCUUGUAUAGCACA





STMN2_
+
TTTT
2486
ATTGATTGATTTAACC
4492
AUUGAUUGAUUUAACC


intron1



CTTGTATAGCACAT

CUUGUAUAGCACAU





STMN2_
+
TTT
2487
TTGATTGATTTAACCC
4493
UUGAUUGAUUUAACCC


intron1

A

TTGTATAGCACATA

UUGUAUAGCACAUA





STMN2_
+
ATT
2488
ATTGATTTAACCCTTG
4494
AUUGAUUUAACCCUUG


intron1

G

TATAGCACATATAA

UAUAGCACAUAUAA





STMN2_
+
ATT
2489
ATTTAACCCTTGTATA
4495
AUUUAACCCUUGUAUA


intron1

G

GCACATATAACATG

GCACAUAUAACAUG





STMN2_
+
ATT
2490
ACTGTGTTAATCACTT
4496
ACUGUGUUAAUCACUU


intron1

A

AATAATCCTAAGTA

AAUAAUCCUAAGUA





STMN2_
+
ATT
2491
AACCCTTGTATAGCAC
4497
AACCCUUGUAUAGCAC


intron1

T

ATATAACATGCAAG

AUAUAACAUGCAAG





STMN2_
+
CTT
2492
TATAGCACATATAAC
4498
UAUAGCACAUAUAACA


intron1

G

ATGCAAGGCATTGTT

UGCAAGGCAUUGUU





STMN2_
+
ATT
2493
TTCTAAGAACTTTCCA
4499
UUCUAAGAACUUUCCA


intron1

G

CATATTAACTGTGT

CAUAUUAACUGUGU





STMN2_
+
GTT
2494
TAAGAACTTTCCACAT
4500
UAAGAACUUUCCACAU


intron1

C

ATTAACTGTGTTAA

AUUAACUGUGUUAA





STMN2_
+
CTTT
2495
CCACATATTAACTGTG
4501
CCACAUAUUAACUGUG


intron1



TTAATCACTTAATA

UUAAUCACUUAAUA





STMN2_
+
TTT
2496
ACCCTTGTATAGCACA
4502
ACCCUUGUAUAGCACA


intron1

A

TATAACATGCAAGG

UAUAACAUGCAAGG





* The three 3′ nucleotides represent the 5′−TTN−3′ motif.






The present disclosure includes all combinations of the direct repeat sequences and spacer sequences listed above, consistent with the present disclosure herein.


In some embodiments, a spacer sequence described herein comprises a uracil (U). In some embodiments, a spacer sequence described herein comprises a thymine (T). In some embodiments, a spacer sequence according to Table 5A or 5B comprises a sequence comprising a thymine in one or more (e.g., all) places indicated as uracil in Table 5A or 5B.


The present disclosure includes RNA guides that comprise any and all combinations of the direct repeats and spacers described herein (e.g., as set forth in Table 5A or 5B, above).


In some embodiments, the RNA guide has at least 90% identity (e.g., at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to any one of SEQ ID NOs: 4505-4562. In some embodiments, the RNA guide has at least 95% identity (e.g., at least 95%, 96%, 97%, 98% or 99% identity to any one of SEQ ID NOs: 4505-4562. In some embodiments, the RNA guide has a sequence set forth in any one of SEQ ID NOs: 4505-4562.


In some embodiments, the RNA guide comprises the sequence of any one of SEQ ID NOs: 4508, 4512, 4559, and 4561, or the second nucleic acid encodes an RNA guide comprising any one of SEQ ID NOs: 4508, 4512, 4559, and 4561.


In some embodiments, the RNA guide comprises the sequence of any one of SEQ ID NOs: 4505, 4506, 4507, 4508, 4509, 4510, 4511, 4512, 4513, 4514, 4515, 4554, 4555, 4556, 4557, 4558, 4559, 4560, 4561, and 4562, or the second nucleic acid encodes an RNA guide comprising any one of SEQ ID NOs: 4505, 4506, 4507, 4508, 4509, 4510, 4511, 4512, 4513, 4514, 4515, 4554, 4555, 4556, 4557, 4558, 4559, 4560, 4561, and 4562.


B. Nucleic Acid Modifications


The RNA guide may include one or more covalent modifications with respect to a reference sequence, in particular the parent polyribonucleotide, which are included within the scope of this disclosure.


Exemplary modifications can include any modification to the sugar, the nucleobase, the internucleoside linkage (e.g., to a linking phosphate/to a phosphodiester linkage/to the phosphodiester backbone), and any combination thereof. Some of the exemplary modifications provided herein are described in detail below.


The RNA guide may include any useful modification, such as to the sugar, the nucleobase, or the internucleoside linkage (e.g., to a linking phosphate/to a phosphodiester linkage/to the phosphodiester backbone). One or more atoms of a pyrimidine nucleobase may be replaced or substituted with optionally substituted amino, optionally substituted thiol, optionally substituted alkyl (e.g., methyl or ethyl), or halo (e.g., chloro or fluoro). In certain embodiments, modifications (e.g., one or more modifications) are present in each of the sugar and the internucleoside linkage. Modifications may be modifications of ribonucleic acids (RNAs) to deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs) or hybrids thereof). Additional modifications are described herein.


In some embodiments, the modification may include a chemical or cellular induced modification. For example, some nonlimiting examples of intracellular RNA modifications are described by Lewis and Pan in “RNA modifications and structures cooperate to guide RNA-protein interactions” from Nat Reviews Mol Cell Biol, 2017, 18:202-210.


Different sugar modifications, nucleotide modifications, and/or internucleoside linkages (e.g., backbone structures) may exist at various positions in the sequence. One of ordinary skill in the art will appreciate that the nucleotide analogs or other modification(s) may be located at any position(s) of the sequence, such that the function of the sequence is not substantially decreased. The sequence may include from about 1% to about 100% modified nucleotides (either in relation to overall nucleotide content, or in relation to one or more types of nucleotide, i.e. any one or more of A, G, U or C) or any intervening percentage (e.g., from 1% to 20%>, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50% to 95%, from 50% to 100%, from 70% to 80%, from 70% to 90%, from 70% to 95%, from 70% to 100%, from 80% to 90%, from 80% to 95%, from 80% to 100%, from 90% to 95%, from 90% to 100%, and from 95% to 100%).


In some embodiments, sugar modifications (e.g., at the 2′ position or 4′ position) or replacement of the sugar at one or more ribonucleotides of the sequence may, as well as backbone modifications, include modification or replacement of the phosphodiester linkages. Specific examples of a sequence include, but are not limited to, sequences including modified backbones or no natural internucleoside linkages such as internucleoside modifications, including modification or replacement of the phosphodiester linkages. Sequences having modified backbones include, among others, those that do not have a phosphorus atom in the backbone. For the purposes of this application, and as sometimes referenced in the art, modified RNAs that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. In particular embodiments, a sequence will include ribonucleotides with a phosphorus atom in its internucleoside backbone.


Modified sequence backbones may include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates such as 3′-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates such as 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′. Various salts, mixed salts and free acid forms are also included. In some embodiments, the sequence may be negatively or positively charged.


The modified nucleotides, which may be incorporated into the sequence, can be modified on the internucleoside linkage (e.g., phosphate backbone). Herein, in the context of the polynucleotide backbone, the phrases “phosphate” and “phosphodiester” are used interchangeably. Backbone phosphate groups can be modified by replacing one or more of the oxygen atoms with a different substituent. Further, the modified nucleosides and nucleotides can include the wholesale replacement of an unmodified phosphate moiety with another internucleoside linkage as described herein. Examples of modified phosphate groups include, but are not limited to, phosphorothioate, phosphoroselenates, boranophosphates, boranophosphate esters, hydrogen phosphonates, phosphoramidates, phosphorodiamidates, alkyl or aryl phosphonates, and phosphotriesters. Phosphorodithioates have both non-linking oxygens replaced by sulfur. The phosphate linker can also be modified by the replacement of a linking oxygen with nitrogen (bridged phosphoramidates), sulfur (bridged phosphorothioates), and carbon (bridged methylene-phosphonates).


The α-thio substituted phosphate moiety is provided to confer stability to RNA and DNA polymers through the unnatural phosphorothioate backbone linkages. Phosphorothioate DNA and RNA have increased nuclease resistance and subsequently a longer half-life in a cellular environment.


In specific embodiments, a modified nucleoside includes an alpha-thio-nucleoside (e.g., 5′-O-(1-thiophosphate)-adenosine, 5′-O-(1-thiophosphate)-cytidine (a-thio-cytidine), 5′-O-(1-thiophosphate)-guanosine, 5′-O-(1-thiophosphate)-uridine, or 5′-O-(1-thiophosphate)-pseudouridine).


Other internucleoside linkages that may be employed according to the present disclosure, including internucleoside linkages which do not contain a phosphorous atom, are described herein.


In some embodiments, the sequence may include one or more cytotoxic nucleosides. For example, cytotoxic nucleosides may be incorporated into sequence, such as bifunctional modification. Cytotoxic nucleoside may include, but are not limited to, adenosine arabinoside, 5-azacytidine, 4′-thio-aracytidine, cyclopentenylcytosine, cladribine, clofarabine, cytarabine, cytosine arabinoside, 1-(2-C-cyano-2-deoxy-beta-D-arabino-pentofuranosyl)-cytosine, decitabine, 5-fluorouracil, fludarabine, floxuridine, gemcitabine, a combination of tegafur and uracil, tegafur ((RS)-5-fluoro-1-(tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione), troxacitabine, tezacitabine, 2′-deoxy-2′-methylidenecytidine (DMDC), and 6-mercaptopurine. Additional examples include fludarabine phosphate, N4-behenoyl-1-beta-D-arabinofuranosylcytosine, N4-octadecyl-1-beta-D-arabinofuranosylcytosine, N4-palmitoyl-1-(2-C-cyano-2-deoxy-beta-D-arabino-pentofuranosyl) cytosine, and P-4055 (cytarabine 5′-elaidic acid ester).


In some embodiments, the sequence includes one or more post-transcriptional modifications (e.g., capping, cleavage, polyadenylation, splicing, poly-A sequence, methylation, acylation, phosphorylation, methylation of lysine and arginine residues, acetylation, and nitrosylation of thiol groups and tyrosine residues, etc.). The one or more post-transcriptional modifications can be any post-transcriptional modification, such as any of the more than one hundred different nucleoside modifications that have been identified in RNA (Rozenski, J, Crain, P, and McCloskey, J. (1999). The RNA Modification Database: 1999 update. Nucl Acids Res 27: 196-197) In some embodiments, the first isolated nucleic acid comprises messenger RNA (mRNA). In some embodiments, the mRNA comprises at least one nucleoside selected from the group consisting of pyridin-4-one ribonucleoside, 5-aza-uridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluridine, 5-carboxymethyl-uridine, 1-carboxymethyl-pseudouridine, 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyluridine, 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine, 1-taurinomethyl-4-thio-uridine, 5-methyl-uridine, 1-methyl-pseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouridine, dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxyuridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, and 4-methoxy-2-thio-pseudouridine. In some embodiments, the mRNA comprises at least one nucleoside selected from the group consisting of 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine, 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, and 4-methoxy-1-methyl-pseudoisocytidine. In some embodiments, the mRNA comprises at least one nucleoside selected from the group consisting of 2-aminopurine, 2, 6-diaminopurine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine, 7-deaza-8-aza-2-aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyladenosine, N6-methyladenosine, N6-isopentenyladenosine, N6-(cis-hydroxyisopentenyl)adenosine, 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine, N6-glycinylcarbamoyladenosine, N6-threonylcarbamoyladenosine, 2-methylthio-N6-threonyl carbamoyladenosine, N6,N6-dimethyladenosine, 7-methyladenine, 2-methylthio-adenine, and 2-methoxy-adenine. In some embodiments, mRNA comprises at least one nucleoside selected from the group consisting of inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deaza-guanosine, 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine, 6-thio-7-methyl-guanosine, 7-methylinosine, 6-methoxy-guanosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, and N2,N2-dimethyl-6-thio-guanosine.


The sequence may or may not be uniformly modified along the entire length of the molecule. For example, one or more or all types of nucleotides (e.g., naturally-occurring nucleotides, purine or pyrimidine, or any one or more or all of A, G, U, C, I, pU) may or may not be uniformly modified in the sequence, or in a given predetermined sequence region thereof. In some embodiments, the sequence includes a pseudouridine. In some embodiments, the sequence includes an inosine, which may aid in the immune system characterizing the sequence as endogenous versus viral RNAs. The incorporation of inosine may also mediate improved RNA stability/reduced degradation. See for example, Yu, Z. et al. (2015) RNA editing by ADAR1 marks dsRNA as “self”. Cell Res. 25, 1283-1284, which is incorporated by reference in its entirety.


In some embodiments, one or more of the nucleotides of an RNA guide comprises a 2′-O-methyl phosphorothioate modification. In some embodiments, each of the first three nucleotides of the RNA guide comprises a 2′-O-methyl phosphorothioate modification. In some embodiments, each of the last four nucleotides of the RNA guide comprises a 2′-O-methyl phosphorothioate modification. In some embodiments, each of the first to last, second to last, and third to last nucleotides of the RNA guide comprises a 2′-O-methyl phosphorothioate modification, and wherein the last nucleotide of the RNA guide is unmodified. In some embodiments, each of the first three nucleotides of the RNA guide comprises a 2′-O-methyl phosphorothioate modification, and each of the first to last, second to last, and third to last nucleotides of the RNA guide comprises a 2′-O-methyl phosphorothioate modification.


When a gene editing system disclosed herein comprises nucleic acids encoding the Cas12i polypeptide disclosed herein, e.g., mRNA molecules, such nucleic acid molecules may contain any of the modifications disclosed herein, where applicable.


C. Cas12i Polypeptide


In some embodiments, the composition or system of the present disclosure includes a Cas12i polypeptide as described in WO/2019/178427, the relevant disclosures of which are incorporated by reference for the subject matter and purpose referenced herein.


In some embodiments, the genetic editing system of the present disclosure comprises a Cas12i2 polypeptide described herein (e.g., a polypeptide comprising SEQ ID NO: 448 and/or encoded by SEQ ID NO: 447 (or a version thereof in which T's are replaced with U's)). In some embodiments, the Cas12i2 polypeptide comprises at least one RuvC domain. In some embodiments, the genetic editing system of the present disclosure comprises a nucleic acid molecule (e.g., a DNA molecule or a polyribonucleotide molecule) encoding a Cas12i polypeptide.


A nucleic acid sequence encoding the Cas12i2 polypeptide described herein may be substantially identical to a reference nucleic acid sequence, e.g., SEQ ID NO: 447 (or a version thereof in which T's are replaced with U's). In some embodiments, the Cas12i2 polypeptide is encoded by a nucleic acid comprising a sequence having least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 99.5% sequence identity to the reference nucleic acid sequence, e.g., SEQ ID NO: 447 (or a version thereof in which T's are replaced with U's). The percent identity between two such nucleic acids can be determined manually by inspection of the two optimally aligned nucleic acid sequences or by using software programs or algorithms (e.g., BLAST, ALIGN, CLUSTAL) using standard parameters. One indication that two nucleic acid sequences are substantially identical is that the nucleic acid molecules hybridize to the complementary sequence of the other under stringent conditions of temperature and ionic strength (e.g., within a range of medium to high stringency). See, e.g., Tijssen, “Hybridization with Nucleic Acid Probes. Part I. Theory and Nucleic Acid Preparation” (Laboratory Techniques in Biochemistry and Molecular Biology, Vol 24).


In some embodiments, the Cas12i2 polypeptide is encoded by a nucleic acid sequence having at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more sequence identity, but not 100% sequence identity, to a reference nucleic acid sequence, e.g., SEQ ID NO: 447 (or a version thereof in which T's are replaced with U's).


In some embodiments, the Cas12i2 polypeptide of the present disclosure comprises a polypeptide sequence having at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 448.


In some embodiments, the present disclosure describes a Cas12i2 polypeptide having a specified degree of amino acid sequence identity to one or more reference polypeptides, e.g., at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or even at least 99%, but not 100%, sequence identity to the amino acid sequence of SEQ ID NO: 448. Homology or identity can be determined by amino acid sequence alignment, e.g., using a program such as BLAST, ALIGN, or CLUSTAL, as described herein.


Also provided is a Cas12i2 polypeptide of the present disclosure having enzymatic activity, e.g., nuclease or endonuclease activity, and comprising an amino acid sequence which differs from the amino acid sequences of SEQ ID NO: 448 by 50, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 amino acid residue(s), when aligned using any of the previously described alignment methods.


In some embodiments, the Cas12i2 polypeptide may contain one or more mutations relative to SEQ ID NO: 448, for example, at position D581, G624, F626, P868, 1926, V1030, E1035, 51046, or any combination thereof. In some instances, the one or more mutations are amino acid substitutions, for example, D581R, G624R, F626R, P868T, I926R, V1030G, E1035R, 51046G, or a combination thereof.


In some embodiments, the Cas12i2 polypeptide comprises a polypeptide having a sequence of SEQ ID NO: 449, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 452, or SEQ ID NO: 453. In some examples, the Cas12i2 polypeptide contains mutations at positions D581, D911, 1926, and V1030. Such a Cas12i2 polypeptide may contain amino acid substitutions of D581R, D911R, I926R, and V1030G (e.g., SEQ ID NO: 449). In some examples, the Cas12i2 polypeptide contains mutations at positions D581, 1926, and V1030. Such a Cas12i2 polypeptide may contain amino acid substitutions of D581R, I926R, and V1030G (e.g., SEQ ID NO: 450). In some examples, the Cas12i2 polypeptide may contain mutations at positions D581, 1926, V1030, and 51046. Such a Cas12i2 polypeptide may contain amino acid substitutions of D581R, I926R, V1030G, and 51046G (e.g., SEQ ID NO: 451). In some examples, the Cas12i2 polypeptide may contain mutations at positions D581, G624, F626, 1926, V1030, E1035, and 51046. Such a Cas12i2 polypeptide may contain amino acid substitutions of D581R, G624R, F626R, I926R, V1030G, E1035R, and 51046G (e.g., SEQ ID NO: 452). In some examples, the Cas12i2 polypeptide may contain mutations at positions D581, G624, F626, P868, 1926, V1030, E1035, and 51046. Such a Cas12i2 polypeptide may contain amino acid substitutions of D581R, G624R, F626R, P868T, I926R, V1030G, E1035R, and 51046G (e.g., SEQ ID NO: 453).


In some embodiments, the Cas12i2 polypeptide of the present disclosure comprises a polypeptide sequence having at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 449, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 452, or SEQ ID NO: 453. In some embodiments, a Cas12i2 polypeptide having at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 449, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 452, or SEQ ID NO: 453 maintains the amino acid changes (or at least 1, 2, 3 etc. of these changes) that differentiate the polypeptide from its respective parent/reference sequence.


In some embodiments, the present disclosure describes a Cas12i2 polypeptide having a specified degree of amino acid sequence identity to one or more reference polypeptides, e.g., at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or even at least 99%, but not 100%, sequence identity to the amino acid sequence of SEQ ID NO: 449, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 452, or SEQ ID NO: 453. Homology or identity can be determined by amino acid sequence alignment, e.g., using a program such as BLAST, ALIGN, or CLUSTAL, as described herein.


Also provided is a Cas12i2 polypeptide of the present disclosure having enzymatic activity, e.g., nuclease or endonuclease activity, and comprising an amino acid sequence which differs from the amino acid sequences of SEQ ID NO: 449, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 452, or SEQ ID NO: 453 by 50, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 amino acid residue(s), when aligned using any of the previously described alignment methods.


In some embodiments, the composition of the present disclosure includes a Cas12i4 polypeptide described herein (e.g., a polypeptide comprising SEQ ID NO: 482 and/or encoded by SEQ ID NO: 481 (or a version thereof in which T's are replaced with U's)). In some embodiments, the Cas12i4 polypeptide comprises at least one RuvC domain.


A nucleic acid sequence encoding the Cas12i4 polypeptide described herein may be substantially identical to a reference nucleic acid sequence, e.g., SEQ ID NO: 481 (or a version thereof in which T's are replaced with U's). In some embodiments, the Cas12i4 polypeptide is encoded by a nucleic acid comprising a sequence having least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 99.5% sequence identity to the reference nucleic acid sequence, e.g., SEQ ID NO: 481 (or a version thereof in which T's are replaced with U's). The percent identity between two such nucleic acids can be determined manually by inspection of the two optimally aligned nucleic acid sequences or by using software programs or algorithms (e.g., BLAST, ALIGN, CLUSTAL) using standard parameters. One indication that two nucleic acid sequences are substantially identical is that the nucleic acid molecules hybridize to the complementary sequence of the other under stringent conditions of temperature and ionic strength (e.g., within a range of medium to high stringency).


In some embodiments, the Cas12i4 polypeptide is encoded by a nucleic acid sequence having at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or more sequence identity, but not 100% sequence identity, to a reference nucleic acid sequence, e.g., SEQ ID NO: 481 (or a version thereof in which T's are replaced with U's).


In some embodiments, the Cas12i4 polypeptide of the present disclosure comprises a polypeptide sequence having at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 482.


In some embodiments, the present disclosure describes a Cas12i4 polypeptide having a specified degree of amino acid sequence identity to one or more reference polypeptides, e.g., at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or even at least 99%, but not 100%, sequence identity to the amino acid sequence of SEQ ID NO: 482. Homology or identity can be determined by amino acid sequence alignment, e.g., using a program such as BLAST, ALIGN, or CLUSTAL, as described herein.


Also provided is a Cas12i4 polypeptide of the present disclosure having enzymatic activity, e.g., nuclease or endonuclease activity, and comprising an amino acid sequence which differs from the amino acid sequences of SEQ ID NO: 482 by 50, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 amino acid residue(s), when aligned using any of the previously described alignment methods.


In some embodiments, the Cas12i4 polypeptide comprises a polypeptide having a sequence of SEQ ID NO: 483 or SEQ ID NO: 484.


In some embodiments, the Cas12i4 polypeptide of the present disclosure comprises a polypeptide sequence having at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 483 or SEQ ID NO: 484. In some embodiments, a Cas12i4 polypeptide having at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 483 or SEQ ID NO: 484 maintains the amino acid changes (or at least 1, 2, 3 etc. of these changes) that differentiate it from its respective parent/reference sequence.


In some embodiments, the present disclosure describes a Cas12i4 polypeptide having a specified degree of amino acid sequence identity to one or more reference polypeptides, e.g., at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or even at least 99%, but not 100%, sequence identity to the amino acid sequence of SEQ ID NO: 483 or SEQ ID NO: 484. Homology or identity can be determined by amino acid sequence alignment, e.g., using a program such as BLAST, ALIGN, or CLUSTAL, as described herein.


Also provided is a Cas12i4 polypeptide of the present disclosure having enzymatic activity, e.g., nuclease or endonuclease activity, and comprising an amino acid sequence which differs from the amino acid sequences of SEQ ID NO: 483 or SEQ ID NO: 484 by 50, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 amino acid residue(s), when aligned using any of the previously described alignment methods.


In some embodiments, the composition of the present disclosure includes a Cas12i1 polypeptide described herein (e.g., a polypeptide comprising SEQ ID NO: 4503). In some embodiments, the Cas12i1 polypeptide comprises at least one RuvC domain.


In some embodiments, the Cas12i1 polypeptide of the present disclosure comprises a polypeptide sequence having at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 4503.


In some embodiments, the present disclosure describes a Cas12i1 polypeptide having a specified degree of amino acid sequence identity to one or more reference polypeptides, e.g., at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or even at least 99%, but not 100%, sequence identity to the amino acid sequence of SEQ ID NO: 4503. Homology or identity can be determined by amino acid sequence alignment, e.g., using a program such as BLAST, ALIGN, or CLUSTAL, as described herein.


Also provided is a Cas12i1 polypeptide of the present disclosure having enzymatic activity, e.g., nuclease or endonuclease activity, and comprising an amino acid sequence which differs from the amino acid sequences of SEQ ID NO: 4503 by 50, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 amino acid residue(s), when aligned using any of the previously described alignment methods.


In some embodiments, the composition of the present disclosure includes a Cas12i3 polypeptide described herein (e.g., a polypeptide comprising SEQ ID NO: 4504). In some embodiments, the Cas12i3 polypeptide comprises at least one RuvC domain.


In some embodiments, the Cas12i3 polypeptide of the present disclosure comprises a polypeptide sequence having at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 4504.


In some embodiments, the present disclosure describes a Cas12i3 polypeptide having a specified degree of amino acid sequence identity to one or more reference polypeptides, e.g., at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or even at least 99%, but not 100%, sequence identity to the amino acid sequence of SEQ ID NO: 4504. Homology or identity can be determined by amino acid sequence alignment, e.g., using a program such as BLAST, ALIGN, or CLUSTAL, as described herein.


Also provided is a Cas12i3 polypeptide of the present disclosure having enzymatic activity, e.g., nuclease or endonuclease activity, and comprising an amino acid sequence which differs from the amino acid sequences of SEQ ID NO: 4504 by 50, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 amino acid residue(s), when aligned using any of the previously described alignment methods.


Although the changes described herein may be one or more amino acid changes, changes to the Cas12i polypeptide may also be of a substantive nature, such as fusion of polypeptides as amino- and/or carboxyl-terminal extensions. For example, the Cas12i polypeptide may contain additional peptides, e.g., one or more peptides. Examples of additional peptides may include epitope peptides for labelling, such as a polyhistidine tag (His-tag), Myc, and FLAG. In some embodiments, the Cas12i polypeptide described herein can be fused to a detectable moiety such as a fluorescent protein (e.g., green fluorescent protein (GFP) or yellow fluorescent protein (YFP)).


In some embodiments, the Cas12i polypeptide comprises at least one (e.g., two, three, four, five, six, or more) nuclear localization signal (NLS). In some embodiments, the Cas12i polypeptide comprises at least one (e.g., two, three, four, five, six, or more) nuclear export signal (NES). In some embodiments, the Cas12i polypeptide comprises at least one (e.g., two, three, four, five, six, or more) NLS and at least one (e.g., two, three, four, five, six, or more) NES.


In some embodiments, the Cas12i polypeptide described herein can be self-inactivating. See, Epstein et al., “Engineering a Self-Inactivating CRISPR System for AAV Vectors,” Mol. Ther., 24 (2016): S50, which is incorporated by reference in its entirety.


In some embodiments, the nucleotide sequence encoding the Cas12i polypeptide described herein can be codon-optimized for use in a particular host cell or organism. For example, the nucleic acid can be codon-optimized for any non-human eukaryote including mice, rats, rabbits, dogs, livestock, or non-human primates. Codon usage tables are readily available, for example, at the “Codon Usage Database” available at the world wide web site of kazusa.orjp/codon/ and these tables can be adapted in a number of ways. See Nakamura et al. Nucl. Acids Res. 28:292 (2000), which is incorporated herein by reference in its entirety. Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, PA). In some examples, the nucleic acid encoding the Cas12i polypeptides such as Cas12i2 polypeptides as disclosed herein can be an mRNA molecule, which can be codon optimized.


Exemplary Cas12i polypeptide sequences and corresponding nucleotide sequences are listed in Table 7.









TABLE 7







Cas12i and STMN2 Sequences









SEQ




ID NO:
Sequence
Description





447
ATGAGCAGCGCGATCAAAAGCTACAAGAGCGTTCTGCGTCCGAAC
Nucleotide



GAGCGTAAGAACCAACTGCTGAAAAGCACCATTCAGTGCCTGGAA
sequence



GACGGTAGCGCGTTCTTTTTCAAGATGCTGCAAGGCCTGTTTGGT
encoding



GGCATCACCCCGGAGATTGTTCGTTTCAGCACCGAACAGGAGAAA
Cas12i2



CAGCAACAGGATATCGCGCTGTGGTGCGCGGTTAACTGGTTCCGT




CCGGTGAGCCAAGACAGCCTGACCCACACCATTGCGAGCGATAAC




CTGGTGGAGAAGTTTGAGGAATACTATGGTGGCACCGCGAGCGAC




GCGATCAAACAGTACTTCAGCGCGAGCATTGGCGAAAGCTACTAT




TGGAACGACTGCCGTCAACAGTACTATGATCTGTGCCGTGAGCTG




GGTGTTGAGGTGAGCGACCTGACCCATGATCTGGAGATCCTGTGC




CGTGAAAAGTGCCTGGCGGTTGCGACCGAGAGCAACCAGAACAAC




AGCATCATTAGCGTTCTGTTTGGCACCGGCGAAAAAGAGGACCGT




AGCGTGAAACTGCGTATCACCAAGAAAATTCTGGAGGCGATCAGC




AACCTGAAAGAAATCCCGAAGAACGTTGCGCCGATTCAAGAGATC




ATTCTGAACGTGGCGAAAGCGACCAAGGAAACCTTCCGTCAGGTG




TATGCGGGTAACCTGGGTGCGCCGAGCACCCTGGAGAAATTTATC




GCGAAGGACGGCCAAAAAGAGTTCGATCTGAAGAAACTGCAGACC




GACCTGAAGAAAGTTATTCGTGGTAAAAGCAAGGAGCGTGATTGG




TGCTGCCAGGAAGAGCTGCGTAGCTACGTGGAGCAAAACACCATC




CAGTATGACCTGTGGGCGTGGGGCGAAATGTTCAACAAAGCGCAC




ACCGCGCTGAAAATCAAGAGCACCCGTAACTACAACTTTGCGAAG




CAACGTCTGGAACAGTTCAAAGAGATTCAGAGCCTGAACAACCTG




CTGGTTGTGAAGAAGCTGAACGACTTTTTCGATAGCGAATTTTTC




AGCGGCGAGGAAACCTACACCATCTGCGTTCACCATCTGGGTGGC




AAGGACCTGAGCAAACTGTATAAGGCGTGGGAGGATGATCCGGCG




GACCCGGAAAACGCGATTGTGGTTCTGTGCGACGATCTGAAAAAC




AACTTTAAGAAAGAGCCGATCCGTAACATTCTGCGTTACATCTTC




ACCATTCGTCAAGAATGCAGCGCGCAGGACATCCTGGCGGCGGCG




AAGTACAACCAACAGCTGGATCGTTATAAAAGCCAAAAGGCGAAC




CCGAGCGTTCTGGGTAACCAGGGCTTTACCTGGACCAACGCGGTG




ATCCTGCCGGAGAAGGCGCAGCGTAACGACCGTCCGAACAGCCTG




GATCTGCGTATTTGGCTGTACCTGAAACTGCGTCACCCGGACGGT




CGTTGGAAGAAACACCATATCCCGTTCTACGATACCCGTTTCTTC




CAAGAAATTTATGCGGCGGGCAACAGCCCGGTTGACACCTGCCAG




TTTCGTACCCCGCGTTTCGGTTATCACCTGCCGAAACTGACCGAT




CAGACCGCGATCCGTGTTAACAAGAAACATGTGAAAGCGGCGAAG




ACCGAGGCGCGTATTCGTCTGGCGATCCAACAGGGCACCCTGCCG




GTGAGCAACCTGAAGATCACCGAAATTAGCGCGACCATCAACAGC




AAAGGTCAAGTGCGTATTCCGGTTAAGTTTGACGTGGGTCGTCAA




AAAGGCACCCTGCAGATCGGTGACCGTTTCTGCGGCTACGATCAA




AACCAGACCGCGAGCCACGCGTATAGCCTGTGGGAAGTGGTTAAA




GAGGGTCAATACCATAAAGAGCTGGGCTGCTTTGTTCGTTTCATC




AGCAGCGGTGACATCGTGAGCATTACCGAGAACCGTGGCAACCAA




TTTGATCAGCTGAGCTATGAAGGTCTGGCGTACCCGCAATATGCG




GACTGGCGTAAGAAAGCGAGCAAGTTCGTGAGCCTGTGGCAGATC




ACCAAGAAAAACAAGAAAAAGGAAATCGTGACCGTTGAAGCGAAA




GAGAAGTTTGACGCGATCTGCAAGTACCAGCCGCGTCTGTATAAA




TTCAACAAGGAGTACGCGTATCTGCTGCGTGATATTGTTCGTGGC




AAAAGCCTGGTGGAACTGCAACAGATTCGTCAAGAGATCTTTCGT




TTCATTGAACAGGACTGCGGTGTTACCCGTCTGGGCAGCCTGAGC




CTGAGCACCCTGGAAACCGTGAAAGCGGTTAAGGGTATCATTTAC




AGCTATTTTAGCACCGCGCTGAACGCGAGCAAGAACAACCCGATC




AGCGACGAACAGCGTAAAGAGTTTGATCCGGAACTGTTCGCGCTG




CTGGAAAAGCTGGAGCTGATTCGTACCCGTAAAAAGAAACAAAAA




GTGGAACGTATCGCGAACAGCCTGATTCAGACCTGCCTGGAGAAC




AACATCAAGTTCATTCGTGGTGAAGGCGACCTGAGCACCACCAAC




AACGCGACCAAGAAAAAGGCGAACAGCCGTAGCATGGATTGGTTG




GCGCGTGGTGTTTTTAACAAAATCCGTCAACTGGCGCCGATGCAC




AACATTACCCTGTTCGGTTGCGGCAGCCTGTACACCAGCCACCAG




GACCCGCTGGTGCATCGTAACCCGGATAAAGCGATGAAGTGCCGT




TGGGCGGCGATCCCGGTTAAGGACATTGGCGATTGGGTGCTGCGT




AAGCTGAGCCAAAACCTGCGTGCGAAAAACATCGGCACCGGCGAG




TACTATCACCAAGGTGTTAAAGAGTTCCTGAGCCATTATGAACTG




CAGGACCTGGAGGAAGAGCTGCTGAAGTGGCGTAGCGATCGTAAA




AGCAACATTCCGTGCTGGGTGCTGCAGAACCGTCTGGCGGAGAAG




CTGGGCAACAAAGAAGCGGTGGTTTACATCCCGGTTCGTGGTGGC




CGTATTTATTTTGCGACCCACAAGGTGGCGACCGGTGCGGTGAGC




ATCGTTTTCGACCAAAAACAAGTGTGGGTTTGCAACGCGGATCAT




GTTGCGGCGGCGAACATCGCGCTGACCGTGAAGGGTATTGGCGAA




CAAAGCAGCGACGAAGAGAACCCGGATGGTAGCCGTATCAAACTG




CAGCTGACCAGC






448
MSSAIKSYKSVLRPNERKNQLLKSTIQCLEDGSAFFFKMLQGLFG
Cas12i2



GITPEIVRFSTEQEKQQQDIALWCAVNWFRPVSQDSLTHTIASDN
amino



LVEKFEEYYGGTASDAIKQYFSASIGESYYWNDCRQQYYDLCREL
acid



GVEVSDLTHDLEILCREKCLAVATESNQNNSIISVLFGTGEKEDR
sequence



SVKLRITKKILEAISNLKEIPKNVAPIQEIILNVAKATKETFRQV




YAGNLGAPSTLEKFIAKDGQKEFDLKKLQTDLKKVIRGKSKERDW




CCQEELRSYVEQNTIQYDLWAWGEMFNKAHTALKIKSTRNYNFAK




QRLEQFKEIQSLNNLLVVKKLNDFFDSEFFSGEETYTICVHHLGG




KDLSKLYKAWEDDPADPENAIVVLCDDLKNNFKKEPIRNILRYIF




TIRQECSAQDILAAAKYNQQLDRYKSQKANPSVLGNQGFTWTNAV




ILPEKAQRNDRPNSLDLRIWLYLKLRHPDGRWKKHHIPFYDTRFF




QEIYAAGNSPVDTCQFRTPRFGYHLPKLTDQTAIRVNKKHVKAAK




TEARIRLAIQQGTLPVSNLKITEISATINSKGQVRIPVKFDVGRQ




KGTLQIGDRFCGYDQNQTASHAYSLWEVVKEGQYHKELGCFVRFI




SSGDIVSITENRGNQFDQLSYEGLAYPQYADWRKKASKFVSLWQI




TKKNKKKEIVTVEAKEKFDAICKYQPRLYKFNKEYAYLLRDIVRG




KSLVELQQIRQEIFRFIEQDCGVTRLGSLSLSTLETVKAVKGIIY




SYFSTALNASKNNPISDEQRKEFDPELFALLEKLELIRTRKKKQK




VERIANSLIQTCLENNIKFIRGEGDLSTTNNATKKKANSRSMDWL




ARGVFNKIRQLAPMHNITLFGCGSLYTSHQDPLVHRNPDKAMKCR




WAAIPVKDIGDWVLRKLSQNLRAKNIGTGEYYHQGVKEFLSHYEL




QDLEEELLKWRSDRKSNIPCWVLQNRLAEKLGNKEAVVYIPVRGG




RIYFATHKVATGAVSIVFDQKQVWVCNADHVAAANIALTVKGIGE




QSSDEENPDGSRIKLQLTS






449
MSSAIKSYKS VLRPNERKNQ LLKSTIQCLE DGSAFFFKML
Variant



QGLFGGITPE IVRFSTEQEK QQQDIALWCA VNWFRPVSQD
Cas12i2 of



SLTHTIASDN LVEKFEEYYG GTASDAIKQY FSASIGESYY
SEQ ID NO:



WNDCRQQYYD LCRELGVEVS DLTHDLEILC REKCLAVATE
3 of



SNQNNSIISV LFGTGEKEDR SVKLRITKKI LEAISNLKEI
PCT/US2021/



PKNVAPIQEI ILNVAKATKE TFRQVYAGNL GAPSTLEKFI
025257



AKDGQKEFDL KKLQTDLKKV IRGKSKERDW CCQEELRSYV




EQNTIQYDLW AWGEMFNKAH TALKIKSTRN YNFAKQRLEQ




FKEIQSLNNL LVVKKLNDFF DSEFFSGEET YTICVHHLGG




KDLSKLYKAW EDDPADPENA IVVLCDDLKN NFKKEPIRNI




LRYIFTIRQE CSAQDILAAA KYNQQLDRYK SQKANPSVLG




NQGFTWTNAV ILPEKAQRND RPNSLDLRIW LYLKLRHPDG




RWKKHHIPFY DTRFFQEIYA AGNSPVDTCQ FRTPRFGYHL




PKLTDQTAIR VNKKHVKAAK TEARIRLAIQ QGTLPVSNLK




ITEISATINS KGQVRIPVKF RVGRQKGTLQ IGDRFCGYDQ




NQTASHAYSL WEVVKEGQYH KELGCFVRFI SSGDIVSITE




NRGNQFDQLS YEGLAYPQYA DWRKKASKFV SLWQITKKNK




KKEIVTVEAK EKFDAICKYQ PRLYKFNKEY AYLLRDIVRG




KSLVELQQIR QEIFRFIEQD CGVTRLGSLS LSTLETVKAV




KGIIYSYFST ALNASKNNPI SDEQRKEFDP ELFALLEKLE




LIRTRKKKQK VERIANSLIQ TCLENNIKFI RGEGDLSTTN




NATKKKANSR SMDWLARGVF NKIRQLAPMH NITLFGCGSL




YTSHQDPLVH RNPDKAMKCR WAAIPVKDIG RWVLRKLSQN




LRAKNRGTGE YYHQGVKEFL SHYELQDLEE ELLKWRSDRK




SNIPCWVLQN RLAEKLGNKE AVVYIPVRGG RIYFATHKVA




TGAVSIVFDQ KQVWVCNADH VAAANIALTG KGIGEQSSDE




ENPDGSRIKL QLTS






450
MSSAIKSYKS VLRPNERKNQ LLKSTIQCLE DGSAFFFKML
Variant



QGLFGGITPE IVRFSTEQEK QQQDIALWCA VNWFRPVSQD
Cas12i2 of



SLTHTIASDN LVEKFEEYYG GTASDAIKQY FSASIGESYY
SEQ ID NO:



WNDCRQQYYD LCRELGVEVS DLTHDLEILC REKCLAVATE
4 of



SNQNNSIISV LFGTGEKEDR SVKLRITKKI LEAISNLKEI
PCT/US2021/



PKNVAPIQEI ILNVAKATKE TFRQVYAGNL GAPSTLEKFI
025257



AKDGQKEFDL KKLQTDLKKV IRGKSKERDW CCQEELRSYV




EQNTIQYDLW AWGEMFNKAH TALKIKSTRN YNFAKQRLEQ




FKEIQSLNNL LVVKKLNDFF DSEFFSGEET YTICVHHLGG




KDLSKLYKAW EDDPADPENA IVVLCDDLKN NFKKEPIRNI




LRYIFTIRQE CSAQDILAAA KYNQQLDRYK SQKANPSVLG




NQGFTWTNAV ILPEKAQRND RPNSLDLRIW LYLKLRHPDG




RWKKHHIPFY DTRFFQEIYA AGNSPVDTCQ FRTPRFGYHL




PKLTDQTAIR VNKKHVKAAK TEARIRLAIQ QGTLPVSNLK




ITEISATINS KGQVRIPVKF RVGRQKGTLQ IGDRFCGYDQ




NQTASHAYSL WEVVKEGQYH KELGCFVRFI SSGDIVSITE




NRGNQFDQLS YEGLAYPQYA DWRKKASKFV SLWQITKKNK




KKEIVTVEAK EKFDAICKYQ PRLYKFNKEY AYLLRDIVRG




KSLVELQQIR QEIFRFIEQD CGVTRLGSLS LSTLETVKAV




KGIIYSYFST ALNASKNNPI SDEQRKEFDP ELFALLEKLE




LIRTRKKKQK VERIANSLIQ TCLENNIKFI RGEGDLSTTN




NATKKKANSR SMDWLARGVF NKIRQLAPMH NITLFGCGSL




YTSHQDPLVH RNPDKAMKCR WAAIPVKDIG DWVLRKLSQN




LRAKNRGTGE YYHQGVKEFL SHYELQDLEE ELLKWRSDRK




SNIPCWVLQN RLAEKLGNKE AVVYIPVRGG RIYFATHKVA




TGAVSIVFDQ KQVWVCNADH VAAANIALTG KGIGEQSSDE




ENPDGSRIKL QLTS






451
MSSAIKSYKS VLRPNERKNQ LLKSTIQCLE DGSAFFFKML
Variant 



QGLFGGITPE IVRFSTEQEK QQQDIALWCA VNWFRPVSQD
Cas12i2 of



SLTHTIASDN LVEKFEEYYG GTASDAIKQY FSASIGESYY
SEQ ID NO:



WNDCRQQYYD LCRELGVEVS DLTHDLEILC REKCLAVATE
5 of



SNQNNSIISV LFGTGEKEDR SVKLRITKKI LEAISNLKEI
PCT/US2021/



PKNVAPIQEI ILNVAKATKE TFRQVYAGNL GAPSTLEKFI
025257



AKDGQKEFDL KKLQTDLKKV IRGKSKERDW CCQEELRSYV




EQNTIQYDLW AWGEMFNKAH TALKIKSTRN YNFAKQRLEQ




FKEIQSLNNL LVVKKLNDFF DSEFFSGEET YTICVHHLGG




KDLSKLYKAW EDDPADPENA IVVLCDDLKN NFKKEPIRNI




LRYIFTIRQE CSAQDILAAA KYNQQLDRYK SQKANPSVLG




NQGFTWTNAV ILPEKAQRND RPNSLDLRIW LYLKLRHPDG




RWKKHHIPFY DTRFFQEIYA AGNSPVDTCQ FRTPRFGYHL




PKLTDQTAIR VNKKHVKAAK TEARIRLAIQ QGTLPVSNLK




ITEISATINS KGQVRIPVKF RVGRQKGTLQ IGDRFCGYDQ




NQTASHAYSL WEVVKEGQYH KELGCFVRFI SSGDIVSITE




NRGNQFDQLS YEGLAYPQYA DWRKKASKFV SLWQITKKNK




KKEIVTVEAK EKFDAICKYQ PRLYKFNKEY AYLLRDIVRG




KSLVELQQIR QEIFRFIEQD CGVTRLGSLS LSTLETVKAV




KGIIYSYFST ALNASKNNPI SDEQRKEFDP ELFALLEKLE




LIRTRKKKQK VERIANSLIQ TCLENNIKFI RGEGDLSTTN




NATKKKANSR SMDWLARGVF NKIRQLAPMH NITLFGCGSL




YTSHQDPLVH RNPDKAMKCR WAAIPVKDIG DWVLRKLSQN




LRAKNRGTGE YYHQGVKEFL SHYELQDLEE ELLKWRSDRK




SNIPCWVLQN RLAEKLGNKE AVVYIPVRGG RIYFATHKVA




TGAVSIVFDQ KQVWVCNADH VAAANIALTG KGIGEQSSDE




ENPDGGRIKL QLTS






452
MSSAIKSYKS VLRPNERKNQ LLKSTIQCLE DGSAFFFKML
Variant 



QGLFGGITPE IVRFSTEQEK QQQDIALWCA VNWFRPVSQD
Cas12i2 of



SLTHTIASDN LVEKFEEYYG GTASDAIKQY FSASIGESYY
SEQ ID NO:



WNDCRQQYYD LCRELGVEVS DLTHDLEILC REKCLAVATE
495 of



SNQNNSIISV LFGTGEKEDR SVKLRITKKI LEAISNLKEI
PCT/US2021/



PKNVAPIQEI ILNVAKATKE TFRQVYAGNL GAPSTLEKFI
025257



AKDGQKEFDL KKLQTDLKKV IRGKSKERDW CCQEELRSYV




EQNTIQYDLW AWGEMFNKAH TALKIKSTRN YNFAKQRLEQ




FKEIQSLNNL LVVKKLNDFF DSEFFSGEET YTICVHHLGG




KDLSKLYKAW EDDPADPENA IVVLCDDLKN NFKKEPIRNI




LRYIFTIRQE CSAQDILAAA KYNQQLDRYK SQKANPSVLG




NQGFTWTNAV ILPEKAQRND RPNSLDLRIW LYLKLRHPDG




RWKKHHIPFY DTRFFQEIYA AGNSPVDTCQ FRTPRFGYHL




PKLTDQTAIR VNKKHVKAAK TEARIRLAIQ QGTLPVSNLK




ITEISATINS KGQVRIPVKF RVGRQKGTLQ IGDRFCGYDQ




NQTASHAYSL WEVVKEGQYH KELRCRVRFI SSGDIVSITE




NRGNQFDQLS YEGLAYPQYA DWRKKASKFV SLWQITKKNK




KKEIVTVEAK EKFDAICKYQ PRLYKFNKEY AYLLRDIVRG




KSLVELQQIR QEIFRFIEQD CGVTRLGSLS LSTLETVKAV




KGIIYSYFST ALNASKNNPI SDEQRKEFDP ELFALLEKLE




LIRTRKKKQK VERIANSLIQ TCLENNIKFI RGEGDLSTTN




NATKKKANSR SMDWLARGVF NKIRQLAPMH NITLFGCGSL




YTSHQDPLVH RNPDKAMKCR WAAIPVKDIG DWVLRKLSQN




LRAKNRGTGE YYHQGVKEFL SHYELQDLEE ELLKWRSDRK




SNIPCWVLQN RLAEKLGNKE AVVYIPVRGG RIYFATHKVA




TGAVSIVFDQ KQVWVCNADH VAAANIALTG KGIGRQSSDE




ENPDGGRIKL QLTS






453
MSSAIKSYKS VLRPNERKNQ LLKSTIQCLE DGSAFFFKML
Variant 



QGLFGGITPE IVRFSTEQEK QQQDIALWCA VNWFRPVSQD
Cas12i2 of



SLTHTIASDN LVEKFEEYYG GTASDAIKQY FSASIGESYY
SEQ ID NO:



WNDCRQQYYD LCRELGVEVS DLTHDLEILC REKCLAVATE
496 of



SNQNNSIISV LFGTGEKEDR SVKLRITKKI LEAISNLKEI
PCT/US2021/



PKNVAPIQEI ILNVAKATKE TFRQVYAGNL GAPSTLEKFI
025257



AKDGQKEFDL KKLQTDLKKV IRGKSKERDW CCQEELRSYV




EQNTIQYDLW AWGEMFNKAH TALKIKSTRN YNFAKQRLEQ




FKEIQSLNNL LVVKKLNDFF DSEFFSGEET YTICVHHLGG




KDLSKLYKAW EDDPADPENA IVVLCDDLKN NFKKEPIRNI




LRYIFTIRQE CSAQDILAAA KYNQQLDRYK SQKANPSVLG




NQGFTWTNAV ILPEKAQRND RPNSLDLRIW LYLKLRHPDG




RWKKHHIPFY DTRFFQEIYA AGNSPVDTCQ FRTPRFGYHL




PKLTDQTAIR VNKKHVKAAK TEARIRLAIQ QGTLPVSNLK




ITEISATINS KGQVRIPVKF RVGRQKGTLQ IGDRFCGYDQ




NQTASHAYSL WEVVKEGQYH KELRCRVRFI SSGDIVSITE




NRGNQFDQLS YEGLAYPQYA DWRKKASKFV SLWQITKKNK




KKEIVTVEAK EKFDAICKYQ PRLYKFNKEY AYLLRDIVRG




KSLVELQQIR QEIFRFIEQD CGVTRLGSLS LSTLETVKAV




KGIIYSYFST ALNASKNNPI SDEQRKEFDP ELFALLEKLE




LIRTRKKKQK VERIANSLIQ TCLENNIKFI RGEGDLSTTN




NATKKKANSR SMDWLARGVF NKIRQLATMH NITLFGCGSL




YTSHQDPLVH RNPDKAMKCR WAAIPVKDIG DWVLRKLSQN




LRAKNRGTGE YYHQGVKEFL SHYELQDLEE ELLKWRSDRK




SNIPCWVLQN RLAEKLGNKE AVVYIPVRGG RIYFATHKVA




TGAVSIVFDQ KQVWVCNADH VAAANIALTG KGIGRQSSDE




ENPDGGRIKL QLTS






481
ATGGCTTCCATCTCTAGGCCATACGGCACCAAGCTGCGACCGGAC
Nucleotide



GCACGGAAGAAGGAGATGCTCGATAAGTTCTTTAATACACTGACT
sequence



AAGGGTCAGCGCGTGTTCGCAGACCTGGCCCTGTGCATCTATGGC
encoding



TCCCTGACCCTGGAGATGGCCAAGTCTCTGGAGCCAGAAAGTGAT
Cas12i4



TCAGAACTGGTGTGCGCTATTGGGTGGTTTCGGCTGGTGGACAAG




ACCATCTGGTCCAAGGATGGCATCAAGCAGGAGAATCTGGTGAAA




CAGTACGAAGCCTATTCCGGAAAGGAGGCTTCTGAAGTGGTCAAA




ACATACCTGAACAGCCCCAGCTCCGACAAGTACGTGTGGATCGAT




TGCAGGCAGAAATTCCTGAGGTTTCAGCGCGAGCTCGGCACTCGC




AACCTGTCCGAGGACTTCGAATGTATGCTCTTTGAACAGTACATT




AGACTGACCAAGGGCGAGATCGAAGGGTATGCCGCTATTTCAAAT




ATGTTCGGAAACGGCGAGAAGGAAGACCGGAGCAAGAAAAGAATG




TACGCTACACGGATGAAAGATTGGCTGGAGGCAAACGAAAATATC




ACTTGGGAGCAGTATAGAGAGGCCCTGAAGAACCAGCTGAATGCT




AAAAACCTGGAGCAGGTTGTGGCCAATTACAAGGGGAACGCTGGC




GGGGCAGACCCCTTCTTTAAGTATAGCTTCTCCAAAGAGGGAATG




GTGAGCAAGAAAGAACATGCACAGCAGCTCGACAAGTTCAAAACC




GTCCTGAAGAACAAAGCCCGGGACCTGAATTTTCCAAACAAGGAG




AAGCTGAAGCAGTACCTGGAGGCCGAAATCGGCATTCCGGTCGAC




GCTAACGTGTACTCCCAGATGTTCTCTAACGGGGTGAGTGAGGTC




CAGCCTAAGACCACACGGAATATGTCTTTTAGTAACGAGAAACTG




GATCTGCTCACTGAACTGAAGGACCTGAACAAGGGCGATGGGTTC




GAGTACGCCAGAGAAGTGCTGAACGGGTTCTTTGACTCCGAGCTC




CACACTACCGAGGATAAGTTTAATATCACCTCTAGGTACCTGGGA




GGCGACAAATCAAACCGCCTGAGCAAACTCTATAAGATCTGGAAG




AAAGAGGGTGTGGACTGCGAGGAAGGCATTCAGCAGTTCTGTGAA




GCCGTCAAAGATAAGATGGGCCAGATCCCCATTCGAAATGTGCTG




AAGTACCTGTGGCAGTTCCGGGAGACAGTCAGTGCCGAGGATTTT




GAAGCAGCCGCTAAGGCTAACCATCTGGAGGAAAAGATCAGCCGG




GTGAAAGCCCACCCAATCGTGATTAGCAATAGGTACTGGGCTTTT




GGGACTTCCGCACTGGTGGGAAACATTATGCCCGCAGACAAGAGG




CATCAGGGAGAGTATGCCGGTCAGAATTTCAAAATGTGGCTGGAG




GCTGAACTGCACTACGATGGCAAGAAAGCAAAGCACCATCTGCCT




TTTTATAACGCCCGCTTCTTTGAGGAAGTGTACTGCTATCACCCC




TCTGTCGCCGAGATCACTCCTTTCAAAACCAAGCAGTTTGGCTGT




GAAATCGGGAAGGACATTCCAGATTACGTGAGCGTCGCTCTGAAG




GACAATCCGTATAAGAAAGCAACCAAACGAATCCTGCGTGCAATC




TACAATCCCGTCGCCAACACAACTGGCGTTGATAAGACCACAAAC




TGCAGCTTCATGATCAAACGCGAGAATGACGAATATAAGCTGGTC




ATCAACCGAAAAATTTCCGTGGATCGGCCTAAGAGAATCGAAGTG




GGCAGGACAATTATGGGGTACGACCGCAATCAGACAGCTAGCGAT




ACTTATTGGATTGGCCGGCTGGTGCCACCTGGAACCCGGGGCGCA




TACCGCATCGGAGAGTGGAGCGTCCAGTATATTAAGTCCGGGCCT




GTCCTGTCTAGTACTCAGGGAGTTAACAATTCCACTACCGACCAG




CTGGTGTACAACGGCATGCCATCAAGCTCCGAGCGGTTCAAGGCC




TGGAAGAAAGCCAGAATGGCTTTTATCCGAAAACTCATTCGTCAG




CTGAATGACGAGGGACTGGAATCTAAGGGTCAGGATTATATCCCC




GAGAACCCTTCTAGTTTCGATGTGCGGGGCGAAACCCTGTACGTC




TTTAACAGTAATTATCTGAAGGCCCTGGTGAGCAAACACAGAAAG




GCCAAGAAACCTGTTGAGGGGATCCTGGACGAGATTGAAGCCTGG




ACATCTAAAGACAAGGATTCATGCAGCCTGATGCGGCTGAGCAGC




CTGAGCGATGCTTCCATGCAGGGAATCGCCAGCCTGAAGAGTCTG




ATTAACAGCTACTTCAACAAGAATGGCTGTAAAACCATCGAGGAC




AAAGAAAAGTTTAATCCCGTGCTGTATGCCAAGCTGGTTGAGGTG




GAACAGCGGAGAACAAACAAGCGGTCTGAGAAAGTGGGAAGAATC




GCAGGTAGTCTGGAGCAGCTGGCCCTGCTGAACGGGGTTGAGGTG




GTCATCGGCGAAGCTGACCTGGGGGAGGTCGAAAAAGGAAAGAGT




AAGAAACAGAATTCACGGAACATGGATTGGTGCGCAAAGCAGGTG




GCACAGCGGCTGGAGTACAAACTGGCCTTCCATGGAATCGGTTAC




TTTGGAGTGAACCCCATGTATACCAGCCACCAGGACCCTTTCGAA




CATAGGCGCGTGGCTGATCACATCGTCATGCGAGCACGTTTTGAG




GAAGTCAACGTGGAGAACATTGCCGAATGGCACGTGCGAAATTTC




TCAAACTACCTGCGTGCAGACAGCGGCACTGGGCTGTACTATAAG




CAGGCCACCATGGACTTCCTGAAACATTACGGTCTGGAGGAACAC




GCTGAGGGCCTGGAAAATAAGAAAATCAAGTTCTATGACTTTAGA




AAGATCCTGGAGGATAAAAACCTGACAAGCGTGATCATTCCAAAG




AGGGGCGGGCGCATCTACATGGCCACCAACCCAGTGACATCCGAC




TCTACCCCGATTACATACGCCGGCAAGACTTATAATAGGTGTAAC




GCTGATGAGGTGGCAGCCGCTAATATCGTTATTTCTGTGCTGGCT




CCCCGCAGTAAGAAAAACGAGGAACAGGACGATATCCCTCTGATT




ACCAAGAAAGCCGAGAGTAAGTCACCACCGAAAGACCGGAAGAGA




TCAAAAACAAGCCAGCTGCCTCAGAAA






482
MASISRPYGTKLRPDARKKEMLDKFFNTLTKGQRVFADLALCIYG
Cas12i4 



SLTLEMAKSLEPESDSELVCAIGWFRLVDKTIWSKDGIKQENLVK
amino



QYEAYSGKEASEVVKTYLNSPSSDKYVWIDCRQKFLRFQRELGTR
acid



NLSEDFECMLFEQYIRLTKGEIEGYAAISNMFGNGEKEDRSKKRM
sequence



YATRMKDWLEANENITWEQYREALKNQLNAKNLEQVVANYKGNAG




GADPFFKYSFSKEGMVSKKEHAQQLDKFKTVLKNKARDLNFPNKE




KLKQYLEAEIGIPVDANVYSQMFSNGVSEVQPKTTRNMSFSNEKL




DLLTELKDLNKGDGFEYAREVLNGFFDSELHTTEDKFNITSRYLG




GDKSNRLSKLYKIWKKEGVDCEEGIQQFCEAVKDKMGQIPIRNVL




KYLWQFRETVSAEDFEAAAKANHLEEKISRVKAHPIVISNRYWAF




GTSALVGNIMPADKRHQGEYAGQNFKMWLEAELHYDGKKAKHHLP




FYNARFFEEVYCYHPSVAEITPFKTKQFGCEIGKDIPDYVSVALK




DNPYKKATKRILRAIYNPVANTTGVDKTTNCSFMIKRENDEYKLV




INRKISVDRPKRIEVGRTIMGYDRNQTASDTYWIGRLVPPGTRGA




YRIGEWSVQYIKSGPVLSSTQGVNNSTTDQLVYNGMPSSSERFKA




WKKARMAFIRKLIRQLNDEGLESKGQDYIPENPSSFDVRGETLYV




FNSNYLKALVSKHRKAKKPVEGILDEIEAWTSKDKDSCSLMRLSS




LSDASMQGIASLKSLINSYFNKNGCKTIEDKEKFNPVLYAKLVEV




EQRRTNKRSEKVGRIAGSLEQLALLNGVEVVIGEADLGEVEKGKS




KKQNSRNMDWCAKQVAQRLEYKLAFHGIGYFGVNPMYTSHQDPFE




HRRVADHIVMRARFEEVNVENIAEWHVRNFSNYLRADSGTGLYYK




QATMDFLKHYGLEEHAEGLENKKIKFYDFRKILEDKNLTSVIIPK




RGGRIYMATNPVTSDSTPITYAGKTYNRCNADEVAAANIVISVLA




PRSKKNEEQDDIPLITKKAESKSPPKDRKRSKTSQLPQK






483
MASISRPYGT KLRPDARKKE MLDKFFNTLT KGQRVFADLA
Variant 



LCIYGSLTLE MAKSLEPESD SELVCAIGWF RLVDKTIWSK
Cas12i4 A



DGIKQENLVK QYEAYSGKEA SEVVKTYLNS PSSDKYVWID




CRQKFLRFQR ELGTRNLSED FECMLFEQYI RLTKGEIEGY




AAISNMFGNG EKEDRSKKRM YATRMKDWLE ANENITWEQY




REALKNQLNA KNLEQVVANY KGNAGGADPF FKYSFSKEGM




VSKKEHAQQL DKFKTVLKNK ARDLNFPNKE KLKQYLEAEI




GIPVDANVYS QMFSNGVSEV QPKTTRNMSF SNEKLDLLTE




LKDLNKGDGF EYAREVLNGF FDSELHTTED KFNITSRYLG




GDKSNRLSKL YKIWKKEGVD CEEGIQQFCE AVKDKMGQIP




IRNVLKYLWQ FRETVSAEDF EAAAKANHLE EKISRVKAHP




IVISNRYWAF GTSALVGNIM PADKRHQGEY AGQNFKMWLE




AELHYDGKKA KHHLPFYNAR FFEEVYCYHP SVAEITPFKT




KQFGCEIGKD IPDYVSVALK DNPYKKATKR ILRAIYNPVA




NTTGVDKTTN CSFMIKREND EYKLVINRKI SRDRPKRIEV




GRTIMGYDRN QTASDTYWIG RLVPPGTRGA YRIGEWSVQY




IKSGPVLSST QGVNNSTTDQ LVYNGMPSSS ERFKAWKKAR




MAFIRKLIRQ LNDEGLESKG QDYIPENPSS FDVRGETLYV




FNSNYLKALV SKHRKAKKPV EGILDEIEAW TSKDKDSCSL




MRLSSLSDAS MQGIASLKSL INSYFNKNGC KTIEDKEKFN




PVLYAKLVEV EQRRTNKRSE KVGRIAGSLE QLALLNGVEV




VIGEADLGEV EKGKSKKQNS RNMDWCAKQV AQRLEYKLAF




HGIGYFGVNP MYTSHQDPFE HRRVADHIVM RARFEEVNVE




NIAEWHVRNF SNYLRADSGT GLYYKQATMD FLKHYGLEEH




AEGLENKKIK FYDFRKILED KNLTSVIIPK RGGRIYMATN




PVTSDSTPIT YAGKTYNRCN ADEVAAANIV ISVLAPRSKK




NREQDDIPLI TKKAESKSPP KDRKRSKTSQ LPQK






484
MASISRPYGT KLRPDARKKE MLDKFFNTLT KGQRVFADLA
Variant 



LCIYGSLTLE MAKSLEPESD SELVCAIGWF RLVDKTIWSK
Cas12i4 B



DGIKQENLVK QYEAYSGKEA SEVVKTYLNS PSSDKYVWID




CRQKFLRFQR ELGTRNLSED FECMLFEQYI RLTKGEIEGY




AAISNMFGNG EKEDRSKKRM YATRMKDWLE ANENITWEQY




REALKNQLNA KNLEQVVANY KGNAGGADPF FKYSFSKEGM




VSKKEHAQQL DKFKTVLKNK ARDLNFPNKE KLKQYLEAEI




GIPVDANVYS QMFSNGVSEV QPKTTRNMSF SNEKLDLLTE




LKDLNKGDGF EYAREVLNGF FDSELHTTED KFNITSRYLG




GDKSNRLSKL YKIWKKEGVD CEEGIQQFCE AVKDKMGQIP




IRNVLKYLWQ FRETVSAEDF EAAAKANHLE EKISRVKAHP




IVISNRYWAF GTSALVGNIM PADKRHQGEY AGQNFKMWLR




AELHYDGKKA KHHLPFYNAR FFEEVYCYHP SVAEITPFKT




KQFGCEIGKD IPDYVSVALK DNPYKKATKR ILRAIYNPVA




NTTRVDKTTN CSFMIKREND EYKLVINRKI SRDRPKRIEV




GRTIMGYDRN QTASDTYWIG RLVPPGTRGA YRIGEWSVQY




IKSGPVLSST QGVNNSTTDQ LVYNGMPSSS ERFKAWKKAR




MAFIRKLIRQ LNDEGLESKG QDYIPENPSS FDVRGETLYV




FNSNYLKALV SKHRKAKKPV EGILDEIEAW TSKDKDSCSL




MRLSSLSDAS MQGIASLKSL INSYFNKNGC KTIEDKEKFN




PVLYAKLVEV EQRRTNKRSE KVGRIAGSLE QLALLNGVEV




VIGEADLGEV EKGKSKKQNS RNMDWCAKQV AQRLEYKLAF




HGIGYFGVNP MYTSHQDPFE HRRVADHIVM RARFEEVNVE




NIAEWHVRNF SNYLRADSGT GLYYKQATMD FLKHYGLEEH




AEGLENKKIK FYDFRKILED KNLTSVIIPK RGGRIYMATN




PVTSDSTPIT YAGKTYNRCN ADEVAAANIV ISVLAPRSKK




NREQDDIPLI TKKAESKSPP KDRKRSKTSQ LPQK






4503
MSNKEKNASETRKAYTTKMIPRSHDRMKLLGNFMDYLMDGTPIFF
Cas12i1 



ELWNQFGGGIDRDIISGTANKDKISDDLLLAVNWFKVMPINSKPQ
(SEQ ID



GVSPSNLANLFQQYSGSEPDIQAQEYFASNFDTEKHQWKDMRVEY
NO: 3 of



ERLLAELQLSRSDMHHDLKLMYKEKCIGLSLSTAHYITSVMFGTG
U.S. Pat.



AKNNRQTKHQFYSKVIQLLEESTQINSVEQLASIILKAGDCDSYR
No.



KLRIRCSRKGATPSILKIVQDYELGTNHDDEVNVPSLIANLKEKL
10,808,245)



GRFEYECEWKCMEKIKAFLASKVGPYYLGSYSAMLENALSPIKGM




TTKNCKFVLKQIDAKNDIKYENEPFGKIVEGFFDSPYFESDTNVK




WVLHPHHIGESNIKTLWEDLNAIHSKYEEDIASLSEDKKEKRIKV




YQGDVCQTINTYCEEVGKEAKTPLVQLLRYLYSRKDDIAVDKIID




GITFLSKKHKVEKQKINPVIQKYPSFNFGNNSKLLGKIISPKDKL




KHNLKCNRNQVDNYIWIEIKVLNTKTMRWEKHHYALSSTRFLEEV




YYPATSENPPDALAARFRTKTNGYEGKPALSAEQIEQIRSAPVGL




RKVKKRQMRLEAARQQNLLPRYTWGKDFNINICKRGNNFEVTLAT




KVKKKKEKNYKVVLGYDANIVRKNTYAAIEAHANGDGVIDYNDLP




VKPIESGFVTVESQVRDKSYDQLSYNGVKLLYCKPHVESRRSFLE




KYRNGTMKDNRGNNIQIDFMKDFEAIADDETSLYYFNMKYCKLLQ




SSIRNHSSQAKEYREEIFELLRDGKLSVLKLSSLSNLSFVMFKVA




KSLIGTYFGHLLKKPKNSKSDVKAPPITDEDKQKADPEMFALRLA




LEEKRLNKVKSKKEVIANKIVAKALELRDKYGPVLIKGENISDTT




KKGKKSSTNSFLMDWLARGVANKVKEMVMMHQGLEFVEVNPNFTS




HQDPFVHKNPENTFRARYSRCTPSELTEKNRKEILSFLSDKPSKR




PTNAYYNEGAMAFLATYGLKKNDVLGVSLEKFKQIMANILHQRSE




DQLLFPSRGGMFYLATYKLDADATSVNWNGKQFWVCNADLVAAYN




VGLVDIQKDFKKK






4504
MSISNNNILPYNPKLLPDDRKHKMLVDTFNQLDLIRNNLHDMIIA
Cas12i3 



LYGALKYDNIKQFASKEKPHISADALCSINWFRLVKTNERKPAIE
(SEQ ID



SNQIISKFIQYSGHTPDKYALSHITGNHEPSHKWIDCREYAINYA
NO: 14 of



RIMHLSFSQFQDLATACLNCKILILNGTLTSSWAWGANSALFGGS
U.S. Pat.



DKENFSVKAKILNSFIENLKDEMNTTKFQVVEKVCQQIGSSDAAD
No.



LFDLYRSTVKDGNRGPATGRNPKVMNLFSQDGEISSEQREDFIES
10,808,245)



FQKVMQEKNSKQIIPHLDKLKYHLVKQSGLYDIYSWAAAIKNANS




TIVASNSSNLNTILNKTEKQQTFEELRKDEKIVACSKILLSVNDT




LPEDLHYNPSTSNLGKNLDVFFDLLNENSVHTIENKEEKNKIVKE




CVNQYMEECKGLNKPPMPVLLTFISDYAHKHQAQDFLSAAKMNFI




DLKIKSIKVVPTVHGSSPYTWISNLSKKNKDGKMIRTPNSSLIGW




IIPPEEIHDQKFAGQNPIIWAVLRVYCNNKWEMHHFPFSDSRFFT




EVYAYKPNLPYLPGGENRSKRFGYRHSTNLSNESRQILLDKSKYA




KANKSVLRCMENMTHNVVFDPKTSLNIRIKTDKNNSPVLDDKGRI




TFVMQINHRILEKYNNTKIEIGDRILAYDQNQSENHTYAILQRTE




EGSHAHQFNGWYVRVLETGKVTSIVQGLSGPIDQLNYDGMPVTSH




KFNCWQADRSAFVSQFASLKISETETFDEAYQAINAQGAYTWNLF




YLRILRKALRVCHMENINQFREEILAISKNRLSPMSLGSLSQNSL




KMIRAFKSIINCYMSRMSFVDELQKKEGDLELHTIMRLTDNKLND




KRVEKINRASSFLTNKAHSMGCKMIVGESDLPVADSKTSKKQNVD




RMDWCARALSHKVEYACKLMGLAYRGIPAYMSSHQDPLVHLVESK




RSVLRPRFVVADKSDVKQHHLDNLRRMLNSKTKVGTAVYYREAVE




LMCEELGIHKTDMAKGKVSLSDFVDKFIGEKAIFPQRGGRFYMST




KRLTTGAKLICYSGSDVWLSDADEIAAINIGMFVVCDQTGAFKKK




KKEKLDDEECDILPFRPM






454
AGTCTTCTCTCTCGCTCTCTCCGCTGCTGTAGCCGGACCCTTTGC
STMN2



CTTCGCCACTGCTCAGCGTCTGCACATCCCTACAATGGCTAAAAC




AGCAATGGGTAAGGCACTGCGCCTCGTTCTCCGTCGGCTCTACCT




GGAGCCCACCTCTCACCTCCTCTCTTGAGCTCTAGAAGCATTCAG




AGATATTTTATAAAGAAAAAGATGTTAATGGTAACACAGGACCAG




GAAGGACAGGGCAGTTCTGGGGGAGGTGGGAGGGCAGAGAAGAGG




TCTATGGAAATCTAAAGCGAAGAATTTCTTTTAAAAGGTAGAAGC




GGGTAAGTTGCCCTCCTATGGGTAGAGAATTTATTCTGTTTCCAT




ATTTAAAATTAGGACTCAATCGTGAGGGGAGGAAGCTACCTTAAC




TGTTTGCCTTAAATGGGCTTAAGGGACATTTTGGAAAGTGCTTTA




TAACGACCTTTTTTTTTTTTATTTCTTCTCTAGTTTAAGAAGAAA




ATAGGAAAGGGGTAAAGGGAAGGTGGGAGAAAGGAAAAAGAAAAT




TGCAAAGTCAAAGCGGTCCCATCCCGCTGTTTGAAAGATGGGTGG




AGACGGGGGGAGGGGATGGAGAGAACTGGGCACATTTTACGGTAT




TGTCTCGTCGAAGAAACCGCTAGTCCTGGGGTGCGGTGCAGGGAG




GTAAGACGGCGGGGGACAGGGTGGGGGTAGGACCTCCGCTCCTTT




GTTTTAGGGCAAGGGAGGGGAAGGAGAGAGGAAGTCGCGGAGGGC




GTGGAGGGCGCGGGTGGGCAGCTGCAGGGGCGGGGAAGCGCGCGG




CAGGGAGGGGTGGAGGGACAGCGGCTTCGAAGGCGCTGGGGTGGG




GTTTCTTTGTGTGCGGACCAGCGGTCCCGGGGGGAGGCACCTGCA




GCGCTGGGCGCACAATGCGGACAGCCCCACCCAGTGCGGAACCGC




GCAGCCCCGCCCCCCCGCCCGGTGCTGCATCTTCATTCGAAAGGG




GGTCGGGTGGGGAGCGCAGCGTGACACCCAGGAGCCCAACCCTGC




GGGGACAGCGGCGCCACGCCCCGCGCTCCCCGCTCCCGACTCCCC




GCCGCGGCTTCCAAGAGAGACCTGACCACTGACCCCGCCCTCCCC




ACGCTGGCCTCATTGTTCTGCTTTTAAGAGAGATGGGAAAAGTGG




GTTAACATTTTTCTTTTCGGAAGCAAATTACATAGAGTGTTTAGA




CATAGACACAGATAAAGGGTTCTTTGAAGACCTTTGATCGTTTGC




GGGAAAAGCTTCTAGAACCTAGACATGTGTATGTATAATAATAGA




GATGACATGAAATCGTATATAAAGCAAAAGAGGTCAAAGTCTTAA




GTTAAGCCACGCGAAATTTCCGTTTTGTGGGTCAGACAGTGCCAA




ATATCGGCAATTTCATAAGCTCAGAGAGACAAGACAGTGGAGACA




CAGGATGACCGGAAAAGATTCTGGATTCAGGGCCTTCATCCGCAA




TTGGTCTTGTGCCTTGAGTGCCCACGGTTCTGGCGCTCAGTGGCC




CCGGGGTGAAAAGGCAGGGTGGGGCCTGGGGTCCTGTGGCAGCTG




GAAGCACGTGTCCCCCGGGACTTGGTTGCAGGATGCGGAGACAGG




GAAAGCTGCCGAAAGGACTCCATCTGCGCGGCTCCGCCCTGCCCT




ACCCTCCCCGCGGAGCCGGGGAGACCTCAGGCTCCGAGACTGGCG




GGGAAGAGGAATATGGGAGGGGCAGTTGAGCTGTATGCAGTCCTG




GAACCTCTTTTTTCAGCCCCGCAGTCCACAACGGCCCGAGCACCC




CTTGATGTGCGCAGACCCCCGGCGTGGCTCTCAGCCCCAGCACCG




AGCCCCTCCCAGCCAAGCGGGTGGCTCTGCAGAAAAGCTGGCTCG




AGCCCCGCCCGGCCACACAAAGGCGCGGCCCCACCCAGCCCGGGC




GCGAGACCGCAGAGGTGACCCCCTTCCCAGGGATTCAGGGAGGGC




TGTCTCTTCTCGCCCACCCACGGTCCGCGGAGCTCGGGGCTTTTT




TTCCCCCAGCCCAAGCCCCCCGCCCACCCTCTGTTCTCTATGATT




TTCCAGAATGGAGACCCCGCGAGGGGCTTCTCTAAGGGAGACCCT




CGCTCCTCCAGCGGGGCGCGGCTCGGCCCCACCCCTCCCAGCTGA




GGCCCAGAGCCGCCTACCGCTGGCCGGGTGGGGGCGCACGTGGCG




ACTGGGTGTGTGGAGCGCAGCCAGCCCTGCAGAGCCCCGCGCCGC




GCCCTGCGCTCCCCTCCCCGGAGTTGGGCGCTCGCCCCCGCGGTG




CAGCCGGGGAGACCGGTTTCTGCGCAGTGTCCTGAGCTACCCCCG




CTTTCCACAATTCGCAGTTCACTCGCACGTCCAGAAAGGTTCTGA




GAATGGGTGGTGGGGGCGATCTCGCCTCGCTTTCTGCACCCCTCA




GAAAGGTTTCCGCTGCAGGCTAGTGGCTGCAAACTCATCGTCATC




ATCAGTATTATTATCATTTCAAATCGTTGTTATTATTTAATGATT




CAGTAGCCTTGTTTGTTCTCATTTGTTCAAAAGGGACGTGGATTG




CTCTTGGTTAAGGATTAACCCTTGTTGCGTTCGCTTTGCTTCCTC




CTAATTGCCCTCATCCCTTTCCCCCACAAAAAGGTAAATTTGTCT




CCAGTTGTTCATTTTAAGTTATAAAGCAAATATATTTTTGCTTCC




TGCCAGGATTATGTATGTTCATGTGGCTAAGATACATGTGCAAGT




GCTTGCTAAGAGCAGGGTTTGTGTGCCAACGATTGCTGGAAAATT




CTCTGCAAAGAATTGTTTGTGGCTGCAATGGGTGAGAATACACAT




ATATAATTGAGATGATCTTCAACATAAGGTTATATCTATAAATAT




ATAAATATAGTTTATGCACAAAATTTTAAGTTTTTTCCCCTGAAA




CTGTTCTTCCAACTGCTGATTCTTGATACAGCCTCAATCCTACAC




AGATACATGGATCGTGAAATGGTAGCCGCCATCCAAATAAAAATC




CCACCCCAAATATGACAAACGCAAGCATCCTTTCTGGCCATAATT




TAACTGCATTTGCAAATCATGAAAAAAACACTACTTCTGCAGTAT




TAAAATAATAGATTTTGAAATTAATTCCAATTTCAAAGATAATTA




ATTATCAGGGCGAGTGCTTTTTTCCTGATTCATTAAACAATTATG




TATTCAGCATGATTGTAAGAGGTGCATATAATATTCCCCATTATC




TTTTCTAATGAAGTGGGCACCTTCTGAATGGATATATAAGTAACT




AGAAATGAAAAGCTGAGGATTTGGTCAGAATTTCAGGATAAAACT




GAAAGAAATGGCAGTAGTTTATCAATTAATCTCATGTATTTAGTT




TATACCAGGTGAGTAAGCTGAGCCTGCAATAAACACTCTCTGTCC




CAGTGTAACACGTCGCAGGTAGCTAGAATGATAGGATAAATTAAT




AGACCTTGTGGTGTTTGTCTATGCACGTTAAAATTCTCTGAGAGA




AAGTATATTTTAAAATGATAATTAAGATTGGACATTTGTGCTATT




AAAATCTACAACTTTAGTCAAAATTCACAATGGTTTTTTTTTACA




ATAATGTGACTTACAGATTTGTAGTAAATTATTCTATTCTAAAAG




AGAAATGAGTGTTTTTATTGTTACAGCTATTACCTCATTAATATT




TTTAGCAAACTTTTATTTGTTGCATTGAAAGCAGTTTTAATTACT




TTGGGTTTTTATTTTTCAAATTACTAATGGATAGATGGTGGAATA




AGCATTTAATCATTTGGCACAATATGACTTCCATCAAATAGCTCA




TTCTCAGTGATTAAAAAATGCTACAAGAGGCTACAATTTACTCAG




ATTCAGGAAATGTCCTTTCAGAGTGCCATAAGGCTGATTCATATA




ATAAAATAGTTTTCTTCCCTATAATTTAAGATCAAATAGTTACTT




AGTTCTGTGAATACCTAGCAGTAGCTATCAAACAGAATTTTAAAG




TTAAATCTGTACAACTAACAATGAAGTGGAGGATGAATCGATACA




TATTGAATGGAAGACTTTGTCATTGATAAATTCAGGCCATCTTTA




GGAAAATTCCGGATTTATCAATCACCATTATTTTTTACTTCAACT




GAGTGTGACTGATCACATGCTCAGGCTACCTTGGTAGCTCATTGC




TCACAGGAGGCTGAAAAAAGCTGGCCTCCGAGCAGGAGGAAGCTC




AGAGCACAAACCTAGGCCTGGGCGTGGCCACTGGGAGCTGCTGAT




AGCGAACCCCAGCTCACACCAGTTTCTTTTTTGGTCGTGGGAAGA




AAAACACATATTATCCTGTTGTCACAAGATCTGTGACCTTATATG




AAAAAATGCTAGAATTTTTTCATTAAAAAAGAAAATACTGAACTA




GCCAGTGACCCAGATGTTTTCAGAACCTAGACTGGTTCTGTCCAT




TGGAAAACCTCGGTGTCTGCATTAACTTTTCACCACACTAGAGGG




CAATCATGTTCTCTAAAAAAGCAGATGATTGATGTAAACCTAGTT




CCAAATATTAACTGTTTAATAAAATCTTTTCTTTTACCAGGAACA




TTCAAGTGTTTATTCAATAAGCTGATGCCATGCTTTACCCTAGTG




GATGAACAGAGCTTGTACAATTTTCAAGGAGACAGGATGAAATGA




GTGGTCATAATCTGAAAGTAGATACACGCCCTGGTTAATTATTCC




CTGATGGTTTTACTTCTCAGTTTTATTACATTGTTATTATAATAC




CATTTATGTTACTTCTGAGATTTTGTAGTGGATAAATAGTAGAAA




AATGTCAGTAGTAATAGCAAAGTTATTTAGCAGCCGAATATTTTA




ATGCTTAAAAATAAAGGAATAAATTAAAGAAAATCATTGTTTACT




TCTTCATCGATTGAAATGTGCCCCCTGTTCAGAGCACATCTGAAT




ATCAGAGTCTCCACCTGCAGAGAACATGCAGCTTAGCGAGTAAAA




CAGGCAGGTATGTGATACTGAGGAGGTGTACCAAAAACTGACTGC




TGTTATTTTTCCCATCTTCTAAGTCTGTCTTTCTTTTCCATTTAA




AGATACCTTTTTAAATCTAATCCAATGTGATTTCAATCTAGTTTT




ATCAGATTTCAACAATTATTGAGCATCTCCTTGTAGTGGTTTTCT




GTTTATTAGAAAATCGATGTTAATTTTAACGAAGTAAGAAGAAAT




ATATAAGTATAAACTAATTTTGGGTATCATCAAAAGTGGATTTTT




TAAATATGCATTGATAGAATTATTTTTTGATTACATTTTATGTAA




TTCTAATCCAGCTATAAAATATTTAATAGTGTCATATTACTGTGT




TCCTCAAACTTTGATGTGCATATGAATTACCTTTGATTTTCATTA




AAATGCAAATTCTGATTCAATACATCTGGCTTGAGGCAGACATTC




TGTCTTCCGAACAAGCTCCCAGATGATGCTGATTCTGACCACTAA




ACACATCAGTTTTAGGGATATTAACTTGTAATATACAGGTATCCC




TCCTGGTAAGCTCTGGTATTATGTCTTAACATTTTTAAATCTATG




GTAATCTTTACAAAATATTTTACTTCCGAACTCATATACCTGGGG




ATTTTATTACTCTGGGAATTATGTGTTCTGCCCCATCACTCTCTC




TTAATTGGATTTTTAAAATTATATTCATATTGCAGGACTCGGCAG




AAGACCTTCGAGAGAAAGGTAGAAAATAAGAATTTGGCTCTCTGT




GTGAGCATGTGTGCGTGTGTGCGAGAGAGAGAGACAGACAGCCTG




CCTAAGAAGAAATGAATGTGAATGCGGCTTGTGGCACAGTTGACA




AGGATGATAAATCAATAATGCAAGCTTACTATCATTTATGAATAG




CAATACTGAAGAAATTAAAACAAAAGATTGCTGTCTCAATATATC




TTATATTTATTATTTACCAAATTATTCTAAGAGTATTTCTTCCTG




AATACCATGTGAGAAAATTCTTAAGAATTTATTGAGTATGACTGT




ATATTTGAAAAGAGTGTTTTCTTCTGCTTATCTAAGCCAATAAAG




GATCTTCATTATTCAATTCTAACTTTCTAAGGAAGTCAACCTACA




GATCAGAAAGAGGATCTTCAAGGAATAGCATCAAAGACATAGTCA




GGTCTCCCATGCAGTGACTGGCTGACCATGCAGCCATTACCACCT




TTCTGGAAATATTATGCTGCAAAAATGATACAATACACGAAATAT




CTCAAATTAAAAAATATAACATTTCCCAAATAGGGCACTAAAAAC




ATGATCCCAAATAAAACTAGCTTCAGGGTTTGCAGAATATACTGT




TACTCAACACAAAGTTGGACTAAGTCTCAAAGTTAGCCATTCAGT




TGTTGTTAACAGTTCATTTCAGGGTCTCTCAGAAGCTGGGAAACT




TTCCATTTTTGCAATTTCTTGTACATTGAAGGAAAGGAAGACACA




CTTAAGACAGCATTACAAAAGTAATTCATGTTTTAAATGTTTAAT




TCTGGCAGTCGGGCAGGGCTCTCTGTATAACCTCATTTGGAGATG




ACAAAAATCTAAACTTGAGGGCCTCGAGCCAATAAGTCTTCCTAT




TTCTTTACTCAAACATTTTCCCGCAATGGTGCTTTCTTTCAACTG




TTTTTCTGGTGTATTCATAAATTCCAGATTCTCTATGGGAAGTAA




CTTTTATTGATTGATTTAACCCTTGTATAGCACATATAACATGCA




AGGCATTGTTCTAAGAACTTTCCACATATTAACTGTGTTAATCAC




TTAATAATCCTAAGTAGGTTCTATTACAGATATGGAAACTGAGGC




ACAGAAAGTTGAAGTATCTTACTCAAGGTCACACAGTTAGTCAGA




TCCAGAATTTGGGCCCAGGCCATCTGGCTTCGGAATCCATCTTTC




ACCGATTGCTGCTAGTCTCATATCTGTTCCATGTTAGAGGTGAGC




TCCCATTGCAGAGGTCACACCTGTGATATCACCATTTTATTTAAA




CAGACCAGAGATGGTCTTCTCCTTTCTGATCACAGACTCACCTTG




AAGAGAAAATACTTCCAAATTGATGCCTAGTTTTAATAGCTTACC




TGGGGCTTATTCAAATAATTGCCATGATTTAGGCTTTGGGAGAAA




GAGAGCTATGAGGCCGTGTGGGTTGTAACGTATGAGACACATGGC




GTTCTGCAGGCTCAGCACAGCATCGATTTCTGGTGGGAACACACT




CTGATGACCAGTTCCAGAAATAACATTGACTTAATCTCCTCAGTC




CCATCATGGTTAGCACATTTCAAAATGCCTCCTTAACTACTTCCA




TAGGCCAGAGATATTTAGTTTTAACATTTTGTTGAATAAAATAAA




TTTACACATTCACATTTAATATAACTATTAGATGTTATTTCAAGA




TTCTCTTCATATTACCATCAAAGCAGGCAGGCAGGCAGGAGAGAA




CTGTAGGAAGGTTTTGAATCCCTTGTGAAACATTTTTAATTATCT




TTTAATAAAGGAATCAGGCCCTGTCATTTGTCAAGGAGACATTTG




CAGTAGTAAAGCTTGTGTTTATAATATCCATTTTTATTAGTCATG




ATTAAAGATAACATTTGTGTACATTTGTTCTCACAAAACACTTTT




ATATGAGTGTAAAGGTTAATTAATGCATTTCAGCCATCATTTTGC




TGGTCATGTGGAAATATAGCTTCTTTAGGAATTGTACTTAGAGTA




GGAGCCACATATTATACTATAAAACCATAACAAAAATATTTTAAG




TTTGTTCTCACTTGTTGTTGACCTCCAGAGTAAAATATTTAATAC




TCTGGAAAGTTATGGGTTTCAAAATTTATTTTATGGCAAGAAATA




GATAATTACAGTTCTCATAGAGCACATTTAAAATAATTTATTTTT




ATAGGGCAAAAATATTGCCTAGGACTGAATGATTTTTTTTTTTTT




ACAAAGATTGTAAAGCAACGCCTGCAAGAGTGCCCATTTAGCAGT




TATTCTTCTGGAATAATTGTATTTTGGATGTTGGAGTTCGCACAT




TAACCATTAGTACAAGTACCCAATATAACAATAGATCATCAGGAT




AATAAATCTGTCCATCTTTTAGTTGTATGTCTTTATATCAGGATA




AAGAGAATTGAGTGAAATTTATCTAAACCTAGTCCCACAAATACT




TTTACAAGAGAGCATGTTAAAGTGTAAATTAAATTTTTATTAGCA




TTCTACTCTGTCTTTGGAAGTTTTTTTTCCTTATGAAATGCAGCC




ATAAAGTTTAACTTCCATTAACAAAGCTGCTCACAGTAAACCTAT




TATAATAATAGTTTCCCAGTTTGGGCTTCCTAGTGAGGAGCAACC




TAACTCACACGAAACAACCCCAACTTATAATATATTGACTGTTAC




AAAACTGAGACCAGAAAATCCCATCAAGATGGTACTGTTATCATT




TCCAGACTCTCGGGAAGAACATTAATCATCTCAGGCACTTTTAGG




ATAGACTTATTGCAGCCTCCCTGGGAACTCTGCTTCAGAACATAA




TTATTTTTATTAATGCAGAGTTACTTTTTATTTCCAACAAAAATA




TCTATTGTTATTATTTAAGTCTTACAGCTTTATCTGAGAAATTCC




AATTAGCACCCTTCTCATAATAAATATTCAAACACATGAAAAATT




ACCAAAGTTGTTCTAGTCTTTTAATGACATATTACATGATCCTGC




ACTCTTGTCACTTTAAAAATTATCTTTTTATTATATTTCTGATGA




TTTTTTTCTTATATAGTTTTTTAAAAGGAGCAGGCAAGCATAGAA




GACTAAAAAATGTTCAAAAGAAAAATTAAATCGCATGATCTATCT




ATATGGGACCTTGTCATTTTTAGAAAACATTCACCTGCTTCATCC




TTTTGAATCTTCATATAATCCCTCTGAGATGGGCATACTATACAA




GTTGTCTTATTTAAAGATTGGTAAATTTAAGCTCAAATAATTTAT




TCAGTGGCAAGCCTCAGAGGCAGACTCGGAACACAGGTCTAATAT




ATATTATATATATATTATAACATATAATATATATATTACATATAA




TAAAGTTGTGTATATTATTTACCTATCAAAATATTTATATGTAAT




ATATAAATATGTTATATATCATGTATGTGCCTATTTCATACATAT




ATACACATTCATGCAAAATAAGGTTTAGCACTCCCTCCACTGTCC




TGTAATAAAACATGCACAGTGAGAATAGTCATACACGAGGCATAT




TTGTCTTCAGTTTAAAGTCATTGATAGTCAGTGTCACTAACTAAA




GTAAAATAGATTGGAGCACCAACTTTGTTCTGAAGCCTGTGCCAG




GTATTATGAGAACAAAAATAAAAATGTTCCTCACCCTTGGTGGAT




TTAGTCTTTTGCAGAAAAAAAGATCCTGTACATGTCAGAAAGTTC




AATAGTAATAATGGTAATTTATAACTATAAATGGAAGTCACCATC




TCACAATTTCACCATCTTAACAATTTTGTTAAACTGCCCTACAAT




ATTACAAGATAGTACATAATGATACACTAGTAACATCAACTAGGA




AGTACCAAGATCCACCAAAAGGCTGAAAAATTTAAATATTTAATG




AGTCCATCAACCAATCTGGCCAGAGAATTCTTTAATTAAAATGCT




TCCCAAATTTTACTGAGAATCAGCAGCGTTTGAGGAGCTAGCCTC




CACCCCCAGAGGTTCTCACTCTATTAGGTCTGAAGCAGGTCCCAT




GGATTTGCATTTCTAACAAGCTCCCAGGTGGTGCTGATGAGGCTG




ATTCAGAACCACACTTGGAGTAGACCTAAAACAGCAGTGACCTGT




AGGGTCCCCAAGCAGCAGGCCAGGACAGCATGTGAGTTACGTCCT




CTGTGGAGCTCTGCAACAAGGCGTCAAGAGGTCAGAGTCTAAGTC




CCCATCAGCTCTGCCCTTCTCCACCAGTGCTGCTGGTGCTGCATG




GAAGGAAGAGCCCAGAAGGGATTCTGAGTTTCAGTCTTTACTCTT




GCTGACGCACCTTGGTCAGGTCAATTTTCCTGTTTGTTCCTCTAA




TTCAGCATCTGTAAAATAGCCATGTGAACTGCCTTGTCCATATCA




GAGGGTCTTTTTCAGACTCAAGGAAAAAAACGTGAAAGTGATTAG




TGTCTGTCAAGTAGTATATAAATGCAAGAAGTTGAGTTTTTAAAT




TGTCATTAGATATAAATACCCATGTGCATGCATTTAGAATGAGTA




AAGAGGGAACAAGGAGCGCAATCAAAAACTGCGTCATTTGCTTTT




TGAAAAATACTTTCTATGTAATGAAAAGTGAAATAAAATGTTAAT




TGAGTCCCTCTGACAACAGCATCAGACGTTTTGCAGTTCTTGTGA




TTAGAACCCACCTGGCCAGCCCTTCTTCCTCCTAAAGAAGAGCCT




TCTTCTTCTTAAATGAAGGTTGGCTCAGAAGAAGCAATTAACTCA




TTCAACGTTTTGTTACAGTCAATCCACATCCAACTTTTCCCCAAC




TCAATCTGCTTTAAGGGAAGGATGGTAAGTGGTGGCCCAAGATGG




CAACCATCAAGCTTAGAGAATCTCTAGAAGCAGGGGTGTCCCCAG




CAAGTAGACACTGAAAATATGAGAGGGCTGATAAGCCAGAGATAA




AACTCAGTACTTACTTTGCTTCTAGTCCATGTCTACCCCTTTCTT




GGCACCACCTTGACACTACCCTCTGAGTCCACCTTCCTGAGATGG




TACAAACTCTGCTTAGACAAAGCAGCCCATGTCCAAAGGTGTTAG




GGCTCAGTTTAAAGCTGCCTTCAAAAGTTAAAACAGAAGTGTAAA




GTTCTGTGCAATTAAAAATAATCAGCTTGTCTTGGAACTCAAACG




AATGTAAAATCCTATGAAAATTAAAAAGCAGTACCACAAGTTACC




CCAAAAGTCCTTAGGTCAGTAACTGTTCCTGTTACAGGTAAGAGA




GAGCATGGATTAGAGGTGGGCGTGGGTATCCAGTGGACATGGTTT




TGAACCATGCTCCACTACTACTCACTATCTGAGAATTCTTAAATT




TATTAATCATTTCTATATTATAATTTTCTCAGTTATGAAATGGGA




AAACAATACCTAAATCACATGGTTGTTAAGTAAGCAATTGATTGT




TAAGCATTTGGTCATCAAAAATATTAATCCCCTTCCCTGATTCCC




TAGATAAATGATGAAAATACTAAATAAAAATAATAAAAATTTAAA




GTGAACATCTCAATTCTTATACTTTGTTAATTTCTACATGTATTA




CAAATCTACTAGAAATTACTTGGAATTGAGGAAATGATTACTGCT




TAATAATTCTTTGTGGTAGAGGGAGAGTTGGTATCATATTTATGA




GACAGCAGCCAATATAGTATATCTCAAAGGAAAAAATCCATTCTA




CATAATGCCAGAATTTAATAGTTAAGCATTTTATCTAGGTCACAG




CACAATAAGCAAGATGGATAATTAAAATAAAAGTATATTTCTCTT




GCATATATTTCTCATTTCATGTTTCCCTATCATATTTTATATCTT




ACCTTACTTCAAATACATATATACCTTCAATAAAACTGAGCCTTC




TTGCTTACCCAGGAAGTTTCATCATTCAGTAGAAATAAAAGATGA




CTTTAGAAATATTAAAATACAAAAATCTACACTGAGGTCTTTTGA




ATGCAGGAAAAAGAATTATATCACACACACACGTACACGCACGCA




TGCATACACACACACAGAACCTCTCGTTCTTTCTTAACATCTTAT




CAATCCATCAGTTTCACTCCCACTCCGTATCACCTGACTGTGCAC




AATATCTCATTGCCACCTCCCAGTCTTCTCCCTGCCTGGCACCCT




CCTGCTCTCCTGCTTCCACTTTAAACACCCTTCCTTCAGCTAGGT




CTTTTCTTTCAGGGATCCTCCCGTTGCTTTCTTATCTGGATCAAT




TTAGCCTTCCTCTTCTCCACCCATTAGTGGATAAGCACGACAAAG




ACACTAGAGTCAAATAATACAAACAGAATATACCTTAGATGAGTA




TGGTGATGAAAAGGATATGGATACTTAGAGTTTAGCACTATTCTC




TCAGCCACTCAGGAAAGCAACGCCTTTACAATCAATAGTGTTTCA




GGTACCAATCAATAATCTGTTATTGCTATTTTTAAAATCTATAAG




GTATCAGTAAAATGTAATTACTAGAGCAACAAAGATATCTTGTGA




AATCAAATTAGTATTCATCCAGCAACTGAGTACAAAGGTTTAAGG




GAGGATAACTACCAATACCAAAACATTTTAAGCATTTTGTTTTGC




CTCCTAAATATCAAATCATGTAAATGTGTGGTACATAAATTAGGA




ATTATATTTATGACATAGCTGCAGACATATTAAGAGAAATATGTG




CTTATATTTACAAGTATAGTACAGTTCTTTTTCATATTAGATACT




GTTGATGATAATCTGCATATAAAAATGCTCAATATTTTTTCACAT




TTATAAGCCATAAAATACAGCTAATAAAATGTGTTTCTACTTTCT




CATAAACATGGAATAGTGACAAACAAGGAGCTTTATATGAAAGCA




CCATTACAATTTAAACTCTCACAAGGTCATAATATATTGCACTAA




GCAGGAGAGTTCAGCTTATTTAAAAAAAAAAATAAACTCTAATGA




GGTTCTGGAATGCAGAGCCAAAGCATAAAGATGGAAATAAAAGAA




TTGCATGTCTTCTGAACTGACTTGGTTGATGATTTTTTTAAAAAA




GGTTTTGTGTCTTCTGACTTGGTTGATGATTTTTTAAAAAAACGT




TTTGTGGTAGAACAAATAAGGTAAATGAAATTCAGTATTTAGGAT




GAAAAGTTTTTCTAATTTCAGGAACAACATTGAAGAAATATTGAA




CTAAGCAGCTTTGAAAGAATCAGATTCCATTTGTTGAAATTTTTC




TGAGAATGAATTTTTTTAAGACAGTGTACACAGTTGCAGTGTGTA




TTGGTTATGGATTGTGGCAAGCTATATTACAACTTACCCAAGAAA




TAAGGAGGCTGGGCGTGGTGGCTCACACCTGTAATCCCAGCACTT




TGGGTGGCCGAGGCGGGCGGATCACGAGGTCAGGAGATCGAGACC




ATCCTGGCTAACACGGTGAAACCCCGTCTCTACTAAAAGTACAAA




AAATTAGCCGGGTGTGGTGGCGGGTGCCTGTAGTCCCAGCTACTC




GGGAGGCTGAGGCAGGAGAATGGCGTGAATCCGGGAGGGGGAGTT




TGCAGTGAGCCGAGATTGTACCACTGCACTCCAGCCTGGGCGACA




GAGCGAGACTCCGTCTCAAAAAAAAAAAAAAAAAAAAAAAAAGAA




AGAAAGAAAGAAGGAAAAAAGTCACTTGAAAAGAATACTGGACTT




TGTGTCCAGCTTGCATAGCTGAAAAGAATAAAAACCTGTCCACTT




AAACTCATTGCAAAAAGAAGATGTCACTCCTACAAATAGCAAAGA




GTCATGAAATTATTCTATCCAGAAAAGTATACATTTCATCCCTTT




GGATAAATTTTAGAAGTGAACTATGAATACATACGGTGAGGATAG




CCAGCTAAGAAGTCAAGAAGGATTTCTCAAATTTGCTGCTCAGAA




AGATCATACTCTCCACAAAACAAATAATAGCAGGCTTTCCAAGTC




AACCTTGAATCCAGCTTTCCTTTATCTTTCCTTCTTGTGAACTTT




CACTAGTTTACTATCTAACAATGAATTTGACGATAGCCACATACC




ATCTTATAGCAATATTTGTTATCATATCCCTTGTTATTTATCATT




CACCTGCTCTGCTTGAGCCAGCTACAAGTCACATGTCCCACGCAC




TTTTTCCTGTTTGATTTTTTACAGCACTTTGAGACATGTCTCATT




ATTCCTACTTGACAGGAAAGAAGCCATGGAAAGTTGAGTGACTTG




CTCCTGATCACAAATGCTGGCCAAGGAAGAGTCGAGTTTCAAATC




TAATGATCTTTCCACTGCACTCTAGATTCCTCATTTTGAACTATT




TTTTTATTTTTTGCACTATAGACTTTTTTCCACATTTTGAACTGT




TTTTTATTTTTTGCACTATAGACTTTTCTCTTATACCCAACTATA




TTGATGACTTCTTTTAGGCTAGAAACTTGTTTCACTTACTTTCCC




TTTCTTCAGATTGCTGCAATATTGGCCAACATGTATTGGGTACTT




ACTGAGTCAAGTACTGTGATTGTGCCAAGTATCTTATAGGAGGAT




TATCATCCTCATTTTTACAGGTGAGAAAGGAAAGGAGGTAAAGTC




ACACACAGCCAACAAAAATGGTAGCACCAGGATTTGAAACAAATC




AGTCTGACCCAAGTTGACTTTGTTAACCACTGTATGCACAGTCTT




CTTAGACATAGTAAGAGCTCTAATTGTGTTTGGTGATTTGATTAT




TATGACAAAGTAAGTAAGGGAAGCAGGGAGAATTATAAGAAATAA




GGCTCCACAACACTTGGCTATAGCAAAGCCCCTTAAAACTTCAAA




AGGTCACCCAAAGAATAAAGATCAGGCTGGGAGCAGTGGCTCACG




CCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGTGGATCACCT




GAGTTCAGGAGTTCGAGACCAGCCTGGACAACATGGTGAAACCCT




GTCTCTACTAAAAATACAAAAATTAGCTGGATGTGGTGGTTGCCG




CCTGTAATCCCAGCTACTTGGGAGGCTGAGGCAGGGAGAATCGCT




TGAACCCAGGAGGTGGAGGTTGCAGTGAGCCGAGATCATGCCACT




GCACTCCAGCCTGGGCAACAAGAGCAAAAAACTCTGACTCAAAAA




AATAAATAAATCAATCAATAAAATAAAGATCAATTTGGAGAAATT




AATGCTTATTAATAAGCAATGTCTTGCACAGCACTTCAGTTTCTC




AATACATTACCTAACTCAATCCTTACAACAACACCCTATCCCCAT




TTTGTGGATAAATAAACTCATGTTCAGAAGGTTGAATAAATTATC




TAAGGTTAATAGTTCCTGACCTAGAGCTCAAATCTTCAGTTTCTA




TCATATTCTTGCCCTTACCCTGGGGTAGCTAACATTCACTCACTA




GTATTGGAGCTAAAATAAGGGAGAGAACATATAAATGAATACAAA




GGAGACATTCACCTGCCTTCTCTTTCTCCTTACATAGAGAAGGTT




GATTATCTGCTATTGTGAAGTTTGCCTTTTGAAGGATAGAAATGA




GAAGACTTTCTTAAATTTTGCCTCTACGCCAAGAAATTAGAGTGG




TACCACCAGTAGTTCCATTTTCAAACTATCACTGTAGCTAAAGCT




ATGTGGTAAGGGCCAAGGAAAAGAAGTATTCTTGCACTTCAAAAT




GCACTGAAATACCAGTCAGTAGCATAATATAAAGGAATTTAGTGG




AGAGAAGAGTTGACCTCAATCTGGCTCCAACATCTCGGCTCTTAA




CCCCTACCCTACACTTGTTCTTCATGGGGAAGCTAATTGGGCCAC




TGGAAGATTCAGCAGCTACCATTTGCAGCTGAGGGACAGCCCCTC




CCTGCTTAGCAACCAATGGATATGCATTTATGGAACACCTGCTAA




CTGCGACACACACTCCTATGTATGAGGGAAAATACAAAAAATGTT




AAAGGAGATGCCTTCCCTTGCCCTCAGGAAACTTAAGTATAGTTG




CAAAGAAATGATTAGCAGCAAACGAAACCATGGAGAAGTAAGGGC




TAAGGTCTGTGAAACAAGCCTAGAAAATAACCTTGTCCTTGAAAA




ACACAAAAAGAAAGAAAGAAAGAAAAGAAACTCCAAGGCCCTTGT




GAAGGAAACCATTAAGTTTGCTTCACTTCTGTGTTTAGGAAGACA




CAAACCCAGTCTTAATGAACCTCAAGGCCACAACTACTGGAGACA




TTTAGGAATTGTCACCACATTCTAATGTATATATCCTCTGTTTGG




CCCTTCCTATTAATATTTTGTAAAATTTTTGAAGATATGAGCAAT




GTTTAAAACCATGAATCCCCCTTTTTTTATAAGTAATATTTAGGC




TGAATAAACAAGAGAAAATAGGACATAAAGGGGAGCCAACGTGTG




CCTTCATTTATAATGTATTCCCAAGTTGTGAGTTTGGTTTATCAG




CAATTTATCATGCCAAATTCCAAGTCATATTTATCTATGCAGATC




AAACACTTGATTCTATTTTTGCCTTAATTTTTTTATTGGGTATGT




TTATGACCAAGTCATATGGTATTTTCTGTGACAGATAAAATGCAC




AGGTTATTCCAATCTGGCTCAGCCAGTCATAGCAACATGTAGTCC




TTCTCATGTCTTAAGAATGAGTATCAAGAATTCAAAGGGAGTTCC




AGATGGCATCCAAAAAGCTTACAGTTTATGCATCACTTATTCTAA




CAGTAGAAAAAGAATATTTGAAGCCAAAAATAGACCTTGCATGTA




GCATGTGGAAGAGTAGAAATTGCCCTGATAGTTAAACAATTTGAA




ATTCAAGACATTAATTTCTTTATGAAGCATTTGTCACATCATAGG




TAATATTTTATGCCTATCATATATATACTTATTATGAAATACAAA




GAAATTATTCATTCTATCTAAGACTTTGTATCCTTTACCAATATC




TCTCCATTCTCCCACCTCCACCCTAGCCCCTGGAAACCACCCTTC




TACTCTCTGCTTCTATGAGTTCTTTTTTAGTGAGATCATGCAGTA




TTTGTCTTTCTGTTCCTGTCTTATTTCACTTGACATAATGTCCTT




CAGGCTTATCCATGTTGTCACAAATGACAGAATTTCCTTCTTAAG




GCTGAATAGTATTCCATTGTGTGTATGTAGCACATTTTCTTTATT




AATTCATTTGTTGATGGATACTCATATTGATTCCATATCTTGGGT




CTTGTGAATAATGATGCAGTGAACATAGGAGTGCAGATATCTTTT




TGACATACTGATTCCACTTTGATGGGATATATACCCAGTAGTGGG




ACTGCTGGATCATCTAGTAGTTTTATTTTTTTTTATTTTTTATTT




TTTTTATTTTGAGACAGAGCCTTGCTATGTCGCCCAGGCTGGAGT




ACAGTGGTGCCATCTAGGCTCACTGCAATCTCTGCCTCCTGGGTT




CAAGCAATTTTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAG




GCACGCACCACCATGCCCGGCTAATTTTTGTATGTTTAGTAGAGA




CGGGGTTTCACCATGTCTCGAACTCCTGTCTTCAAGTGATCCGTC




CACCTCAGACTCCCAAAGTGCTGCGATTACAGGTGTGAGCCACCA




CGCCTGGCCTAGTAGTTCTGTTTTTAATTTTTTGAGGAGCCTCCA




TACTGCTTTCCATAATGGCTCTAGGAATTTACATTCCACCAGCAG




TGCACAAGGATTGCTTTTCTCCACATTCTGGCTAACCAGTCTCCT




GTCTTTTTGAGAACAGACATTTCAACACGTGTGAGATAATATCTC




ATTGTGGTTTTGATTTGCATTTCCCTGATGATTAGTGATCTTGTG




CCTTTTTTCATATAACTGCTGGACATTAATATGCCTTCCTTTGAG




AACTGTGTATACAGGAGAAAATAATCACTTCTCAGAGGAGCTTTC




ATTTCAAAATATCCGGGAAAAAAATAGAAAAAATGGAAAATTTAT




CCTAGAGTAAGTTGTCTTTTATATTTTGACCCTGTTTGTGACATA




AACTGGATGATACAAAACTGGAATGCAAAGGCTTTAGGAGGATTA




CTTACTTACTTGTATATTGCTTTAGGTTGTTTGCAGAAAATTATA




CTAATTGAAGTTCAGGCTATGATGTGATAAAATCTATGTCAGGAG




ATGAGTCTACATGCAAAGTTTGAGGAAGTGACATTTGAGTTTCAA




AACAAAAAAGCAATTTTCAATGTCATATCTAGGTTAACCCAAAAG




ATTTCTTTCACCCTATTTAGCTGCCTCTAAGATGGATGCTGAGGA




TAATTACACTGTAGAACAATAGGACGATGCTTCACACTCACCTCA




CAGGCTCTGTTATTCCCACATACTGCCAGAGATACTCCAAAATAA




AATCACTGCAACATCAGGCAGTTATAAACCTCAACGGTATTATTT




TCTATTTATATACAGTATATTTTATATTTTACAAGTATAAAATAG




AATATATTTATTCTATTCTCTTTGACACAAAGTGACCATAAGACA




TATTACTTAAGTATGACTAGCAAAGTCATGGGGCTTGTCATTCAG




GAGGAAACTCTTAACTAACTGTTCAGTTTTTGTTCACTGCACCAT




TTACATAAGCCAAACTAATGCTTCACACTGTGCAAAACAATGCAC




AGTGTTGTGAATGAATGGCTAAAATAAAACTCTAATGAGTGGGGT




TTGAAAAATGCAACTTTAGAAAACTGTTGAGAAAATGTTGCACAC




TGCGCATTTTACAAAATTTCGTTGAAGGACACTGGATATTCTTTT




TAGGATTATGGAGGGAAGCAAAATTTTGGCTCCTACATGCAGTTT




TTGTGGCCTTTGCCTGAAATAGTCATCTCCCATTAATTATTTAGA




TATCATTCATTTCCTAAGACAACATTTAGGGAGACTGCCTTAAGT




ACAATTTGTACACTACCCAGATAAGAATTCTTTTTGGTGAAACAT




CGATAAATATTACTTGGCAGTAACACCAAGTTAAAATATTTGTTT




CACAGTCGACGTTAATAACTATTATAGATAAAGTGAATTTTATAA




GACATACTCAGATCTAAAACAGCAATATGGAGCTCTTCAAATCCA




TTGAAACTTCATACCAGCCTACGGAAGTAGAGGTTTTTATGCAAA




CTCTTCAAGAAATATGCTCTGAACTTTTAATTCCTTAGATTGATA




GAGGAATTAAATCATGATATAACTAATAGGTTTGTGGTACAAATT




GCTGCTGCTTAATCTGACTCTGTGTCTTCCCAGTGTTCTATATGA




ATTAGATATTCCATTATCTAAAGACAATCAACCCCATCCCACGGT




GATAGCTCTAGGACTCCCTTTGAGTTCATTAAATCTGTATTCTCA




GTCTCCAAACTTCTGGTTAATTCAAACAGAAAAGTCAACTGGCCC




ATGAACTAAAATAAAGTCATCTGAATTTTTTTTTTATTTTGCAGT




GTGATAAAAGTCTCGCACTTTTTATTTCTGAAAGTTTCTGCTTTC




ACTGAGAGCATAATAGGCTATCCACCCTTATGCAATCTTACATAC




AAAGTCATAGTCAGGCTAAATTCAAAAACACATGTGAGATAGAAG




TCAACGTTTATTTTCTGGAGAAAAGCCACACATTACAACAAAGTG




AACAATGAAGCTGGCATCCTTATCACTGGTGACCAAAACATTTGT




GACTCTGGACATTGGCCCCACAAATGCGATAAACATTCTGCATAG




GAAGTGAGTTTTGCTAATTAAAAATGGATCCAAAATACTTTCTAC




TCTTCAGCCAAGAATTAAAAAGTAATAGGGAGGAATTGAAATCAC




TTGGGTGCTACATTGAGCCATTCTGGAGAAGCAATTCAGAGAATG




TCATGGCAGCCTCAAATTGCTGCTCAGGAGCATCCCAGCTTAGAA




GATTGCAGGAAAGGAAGAGCAAAGTCATTCTTACATGAGAACTGT




CCTTAACCAGATGAATAGACTCTCCATTTTTTACCCTGGCTTTGT




CTCATTTAAGTCCCAACCAATCTAGCTATCATTTTAGGTTTTACT




ACCTGCTAGTATTTAGGAGCTTAGGGGGATAAAAAAATCCCTCAA




TACTCAGAATTAGACTTGGTGATAAAAATCTTGACACATAAACAG




AATAAAGCGCTTTCATTACTCCTCTAAACCACAGTGTCATTTGGT




CTCTATCAAGGACTGTAAGAATTTCTTTCATCAGGGGAAAGAAAA




AAAGGACAAGAGCCTGCAAGATGTAGCGGAACTCTCATTAAACAC




AGCAGGAGCTTTAACTGGAATCCAGAGTAAGGTGAGGTACCAGGT




TACAACAATTTACTGCTTTTATTACAATTTTGATCACAAGGACTG




ATTCATGTCATCTAGTTTCTTTTCCTTGTCACTATCACTGGTGCT




AAGAATACATCAAATTGAAATTTAAGAGCCTCATATGTTTCTGTA




TAACCCAGTGATGGGTTGTACTGCTTTGACCTTCTTAAATGTCCC




TTTATTTCATTTGATATCCATTCCCATAGAAAAACTATAATGCTT




TGGTTGGTCAAAATATTAATCTTTCAAAACCTCCCTGGCTTAGAA




AACCAAATTTTTGTAGAGAGAGATGGGTAGAATCTAATTTTATTC




TAAAGCAATTAGCATTACATCATCACAGCAGAAATATCTAGAATA




TTACCTCATGTCAGTGATCTTCTGATATGTTAAAAAGGGTATTTT




AAAATCTGAGTTATTTCTTTTTCTTTTTAAAGTTACATCATTAAT




TACATACTCATCAACCAAAATATTTTATGCTCCAAATTTGAACCG




ATATAGTATGTAAGAAGTGTTCAAAATGAAATTATTTTGGTCTAT




TTTGTCTTTGAAGAAGATCACAGGGATGGACCTCCCAAAAGGATT




TTTAAATGGGATTACATATCTGACTTTTAAAAAAAATTATCTGAC




CTTGAGTTATAGTGCCCCAAAGTAAGCAAAGTTCCAAACACACAG




TATCATCAGAATTGAGTTAAAATTATCACCAGGGGCTTAATTTCT




GAAATTAAAAAGGAAATGTTATTTCCTTATGAAAAGAAAAGGAAC




CAAAAATGAACTTCAAGGTAGCTGATTTCTGTCTATGTTAAGACT




TAGGTAATGGGAGAAAGGGAAAAGGAAGGACAGAATTAGGAGAGG




AGCAGTGTTTAACAATTGCGGGTGCAAGACTCAAGTTTTTTAGAA




TCCATTAGCAGAGAACCCTATTTCTCCCATTAACTGCTGTCCTTT




TAAATCCTGGCACCAGCTCTGAGGACTGCAGGGTCCATAGCTAGT




GCCCCACTCTACCCAGTTTAAAGACACCACTGCCTGGAAATGACA




GGGGTTTTTTTCTTAAGGAAAGAGGTGCTTTCTGCCACGTATATA




TAAATTGGTAAGCTTCAAATAAAGTGCTTTTGTCCTTTCTGTCTA




TCAGAAACTGTGCAAATCGAATTGCTGTAAAACCAAGGGCAAGAG




ACATCAATCCTGCATTCTATAGCATCTGATTTTATCCTTTATCCC




CAGGCACATTTCAAAAGGAAAAAAATGAGGTTGCATTTAAATTGA




GTATTTGGGACTTGCCAGGAAAACCTCCCGCTAGACTAATATGAT




TGCAGGGAAAACAAGAGAAAGGAAAAGTGGAGAGGGAGTGTGCTA




ACAGATCCTGGGCCTCGTCAGCAGAGCCGTCCTGAGCACAAGGCC




ATGGTCAGACATCTGGTCCCGCGAATGACGTTTTCTTTATGGTCA




TTAAGAACACCAGTGTGTCGGGACACAAACAAGTATTCCTTTCAG




GGATTATGACACATTTTCTCCCAAAGTAGTATATTAATGACATTT




CCAGAGCATTCTTTACTATCTTTTATATGTGATCAGGAAGACTAA




TACATATCACTACTTCTTTTACACACAGCATTAGCCAAAACTAAA




GTGTCAAATACAATTTTGCCTAGGATGAATAAACAGAAGAAATTT




TTATGATACTGCACTATCAATTCCAAATTAAATAACAACAAAATG




ATAAGTGTTAAAATTCATATTAATGATTGTTCCCACACAAGCCGG




AAAAAATCTTTCTAAGAAGTCTTTCATGAGTTAATCCCATCTTTC




AAAGTGTTCAGTGGCTCCGAATTCAGTTACTGTTTCCTATCAGTT




CTTCTTTCATTAAGTCTCTTCCCTTTTTTTTCTCTTTGCACTATT




TCCCTTAGCCGGGTACATAATCTGCTGTGCTTTATTCATTTGTGT




CTTAAGTTTGTTTCCCGATGACATACCTTTCCAGCAACGCCATCT




GGGGAGTTTGGGCAACTGTACCACGTTAGGAGGAAACCCTTCTTC




ACAGGAGAGTGTGCCTTTGCTGCAGGGAAGGAATTAGGATTTGCT




TGGACTGTGGTTGCAGCTGGCTTTTAAGGATCTCCTTAGAATGCA




AGCAACTCATCAATGAGAATCTCTGCAATGGTTGTCACTGGGTAG




AGTCATGCTATGTGGGGTCATAGCCTTTGAAACAAATAACAGTAA




AGATAAAAATGCTATTAAAGGAATCACCACCCACAGAGGTTAACT




GGGTTTTGTCCCCAGACCACCTCGAACAAGAAAGAACATTTTTAT




CAGTCATTTTCTTAGTTTTAGCTGATAAAACAAAGTACCATAGAC




TAGGTGGCTTATAAACAACAGAAATTTATTTTTCACAGCTTTGGA




AACTGGAAGTCTGAGATCAGGCCGCCAGAATGATCAGATTCTAGT




TAGGGCCTACTTTGCTTTTGCAGACTGCCAACTTCTAGCTGCATT




TTCATGTGGCAAAAGGAGATTGAGCTAGCTCTCTGGTCTCTTCTT




ATAAGGACACTAATCCCATTCATGAAGGCTTCACCTTCATCATCT




AATTACTCTCCAAAGACCCCACCTCCAAATACTATCACATTGGGA




ATTAGATTTCAAATACAAATTTTGCGGGGACACAAATATTCAGTC




CATAATAGTAATGATTACTCATTATACATAGGGCTCTAAATGTGC




TAGCTTCTGATAGTTTTTACACTCACTTCTCTTTATTAGCTTGTC




AAGCATAATTAGGGCAGTGGCCTTACTGAAAATTATTGAATTTAG




TTTCCTAAGGACAGATATTGAGGAGTTTTTTCTTCACTAAAAATT




CACGTTCCGATACAGCTTTCATCTGTTACTACTTTGTGAGATGGA




AAATCTTTTATTTTATTTTTATGTTTGGATTGACCCTTCTTAATA




AAGTCGGCATGTAATATGCTTCATGTGTTTCTAATATGTGCTTAA




TTTTGCAAAATGTTTTGCATACCAGAATGCATTTCTCTTCCAAAA




AAGGTACCAGCCTACAAAACCTTGCTGTTACTGTTTTCAATTAGT




TCATGGAATTAAATGTATTAAATGTTTTATGCTCTGGCAGAAATT




ATGATTCTCACTTAACTCCATATAAATCTGGATCTGCCTGGGCCT




TTATAAGTGACACAATTTCATTAACTGAATAAACAAATGATACAA




AGAAATTTGGTTTAGCCTTCTAAAATTCCAAAGGCGTTCAACAAA




ATATCTCAGAATGGATGTTCCAGGACTTTTATGGCACAGGACAAC




ATGTATTGCTTATTTTAAGAAAATAAGCTAAATAGTGAGGGGATT




CTTTTAGCAGATCCTCAGGATGTGTTAGGTTGAATCATAGGCAAA




TGATATTTGATCATTGCACCTGTTAACACATTGAACCTCATCCTA




AAATTGTAGAGCTAGAAGAAAGCCTTCTGGCAGTTTTTAAATAGA




TTGATTTACTGCAATTTATCCAGAAGCTTCACCGTTGTCACTGGC




TACATGTGACTTTGGCCTCTGTGGGGCTATATCCTCATTTGTAAA




ATTGGTGGTGAGGTAGGTGGACAGTTGACTAAATAATCTCTTAGA




ATAATTCTAGTATCTGTGGATCTAAAGCATCCAGGGGTTGAATAT




GTTTCTTTCTGGCCAAGAAAAGATGCACCTGTCAATAATGCCCAA




ACTCATCTTCTGAGAATCCTCTTTCCCAAGATACCCACTCTCCCT




TGGGTTATATTATAGTAATGATCAGAAGCCCCTGCCAAGAAGAAA




CTGTTAACCTGGGAGGTCTATATTTTATTTCACAGCCATCTGTTT




ATACTTTCTCACAAGTTAGTGCACAGTATACCCATCATTTTCTAC




CATTTTCCTTAATTTATTAATTTTACTAATTGCATAATTAACAAA




AGTAAGAAGATTTTACCTCCTTATCCCCATCTGGTAGTTTGCAGA




TACTTGGCCTGATGACAACTGACAGTGATGAGATACTCACCAAGT




TTACCAGGGCAGGAGGCTTCCTAGAGAAAAAATGAGAAAATGAAA




TGGGGAAGGGGAGTGAAGGATTGAGGAGGTGACAATCTGGACTCT




TGCAACTGCATGGCAAGGTTGGCACACAAGCTGGGTTGCAACGGA




GGGAAGGAGATCCTTATCAGATGTAATCAGAGCTCAGATCGAGGG




CTTTGGTGTGTGTAGAAAGAGGGAGAGACAAAGAACTTAAAACAG




AGCTGCCATTTGACCTTGCAATCCCATTACTTGGTGTATACCCAA




AGGAGAATAAATCATTCTATTAAAAAGACACATGTGCTTGTATGT




TCATGGCAGCACTATTCACAATAGCTAAGACATGGAATCAAACTA




GGTGTCCATCTATGGCAGATTGGATAAAGAAAATGGGGTAAATAT




AAAGCATGCAATACAACATGGCCATAAGAAAAAATGAAATCATGT




CCTTTGCTGCAACATGGATGCAGTTGGGACCCATAATCCTAAGTG




AATTAACACAGGAACAGAAAACCAAATACAGCATGTTCTCACTTA




TAAGTGGGAGCTAAACACTGAGCACACATGGACATAAATATGAGA




ACAATAAACACTGTGGACTACTAGAGGGGGGAAGGAGAGAGGTTT




GTAAAACTACCTATCAGGTGCTATGCTCAATACCTGGGTGATGGG




ATTTACACCCCAAACATCAGCATCATTTAATATTCCCATGTAAAA




AGACTGCACATATACCCCTTGTATCTAAAATAAAACTTGAAATTA




AAAAAAAAAGAAAGAAAGAAAGAGGCTGGAAATAGAGGCTCACAC




CTGTAATCCCAGCACTTTGGGTGGCCAAGGTGGGTGGATTGCTTG




AGCCCGGGAATTCAAGACCAGCCTGAGAAACCTGGTGAAACTCTG




TCTGTACAAAAAATACAAAAATTATCCAGGCATGGTGGAGCGCAC




CTGTAGTCCCAGCTAATGGGGAGGCTGAGGGGGGAACATCACTTG




AGCCCAGGAGGTGGAGGTTGCAGTGAGCTGGGATCACACCACTGC




ACTACAGCCTGGGTAACAGAGCAACTCTGTCTCAAAGAGAGAGAG




GAAAGAAAAAAGAAAAGATGGACAGATAAGAAAATGCACTTGGAG




ATTAAGAGAAAGCAGCAACATAGGACCCTGGATAATGTGTTTGCT




TAATAACTATCCTGATGAGTTATCTGACTATTCCCAAATGAGTAC




GTGGCAATTCAGGCTGAACCATCAGAGTAGCCCTCCGGAATCTTA




CTTATGTACAATAGACCTGCATGCACATTTACTAGAATGAGCCTC




TCTCTCTGGTAATCATGTCTGCTTCCACTAATTCCATCTGTTTCC




TCTCTCTCCCTCCTATCCTGCTAGATCTTAATTCCTTCGACCTTC




CTTTGTTTTTCTAACTCCCTTTCTTTCTCTTGTTATTTAACCTGC




TATACTATGCAATTGATCTCCTCTGCACTAAGGAACATGCACTTC




AGAATTCTGTTGACATCTTGCATTCCTTTATATTTAGTGAAAGAA




TGCAAAGGAGTCTACCTGGCAATATTCACTCTGCAGGAGGCAATA




ATTATTATTCAAATTAAAGGAAGCAGTAAAGAGAAATTCAGAAAA




AATGAAATATACTAATCTTCAGCTTTTCATTTCAGCCTACAAGGA




AAAAATGAAGGAGCTGTCCATGCTGTCACTGATCTGCTCTTGCTT




TTACCCGGAACCTCGCAACATCAACATCTATACTTACGATGGTGA




GTAACCTAGGATAGACATACCCCTGCTAGCTAGATCATTTGGAAA




GGTTGACATATATTTGTTTCTTACAGCTCCTGATATAATTACATC




AATATTTTGTAGCTCTCACTATTGACTTGCCGTGTCTAGCTATTA




TGTCCAATTGATTACCTATTGCTGAAAACAGTTTGAATTTGGTGC




TAATAACAACACATCAATGTCTGTTAAGAAATGTGGATGGATTCT




TATTAACAGCCACATCCAGCATATCAACATCCACAATATGTCTAA




GGTCTTTCTTTGCAAATAATTTAATAGGCTAAGCCATAATTGGAG




TAGATCATAATTTGTAAGAAAATGCTTTATACTTAGAAAACTCAA




GAGAAAGAATCAACAACCATAATTGTTTTTGCTTTATTGTAGTCT




TTATAAAGTTTCTATACTTTGTATATACATGTCAACCAGCTAATG




ATAATAATAATTGGCTCAATAAATAAAACTGACTTACGACTGAGG




CCCTAGATAAAGAGGGTCTGAAAAGAAAAGCCTAAAGAATTAGCA




TGGCAATTAACATGATTGAGGTGCAACTCTTTAGGTTTGATTTAT




CCTGATTCATTTTGCTTACTTTGGCTCTGCCACAATCCACATGAT




CTTGGTCAAATAGATACTTGGATTCTCTAAGTCTCATTTAACTCT




AGCATCTTCCTCTTGGAGTTGTTGTGAGGTTTAAACGGTTTAATG




TAAGTCAAATATGCAAAACCAAGCCTAGCTCATTATATCACTCTA




CAATGATAGCTATCATTATCAACATCATCCTTACCTAATTCAGTC




AATTTAACTAAAATATTTTATACAGTTCTATGTATCCTAGATATC




CCTAAGGCATATTTTACTAACTCTCAGGCTCACAAATATTTTTCT




TTTCCATATATGTAAAGAAAGACATTAATGACAAAACAAACTGAC




CTTGTGGCAGTTAACCCCTTCTGCACCTTTAAAGCCTATTCAAGG




ACTCAAAGGCATTTACCTTCCAAAGTTATTCTATCGTAGCACAAA




AATCATAAATGCTAATTAACTGTTCCATAAGGAAATGTCCTCCAT




GTGAAAGGAATTCTGTCTCCAAACAAAACATTCATTAGAATGCAG




GGCCAATGCCTACTTTGTACAAATTCATTCGGTCAGCAAATAAAT




TAGACAGACCTTTATTATTTGCTAGATGTAGCTGTGAAGAAGGAT




CCAGCTATGTTTCTTATGAGACTAATGTCGAACTATGGGTTGTCA




CTGAGGATCCAGAGTTCCATAGGGCGTAGTCCTCACCTTCAAAGA




ATTCAGGGCTTAGTAGAAGAGTCTTACACAAATGACTAGAATGTA




GAACACAGAGTGGTTAGGACAAAGGAGCCAGGGATGGTTTTTGCT




GGGTTAGGGAATGAAAAAAGGGGAAGAAAATATGTGAAGTTATGT




GTGAGCTGATTCTTGAAATAAGCTGTTTTTATTTGCCTGCGTTCT




CTTATAATCCTTTTCCATAGGCTTCCATAATTTTTATTGAGCTGT




ATTTAAAGTTGAATAGATAATTCAACATTTCTCGTAAACTGTGCT




TCCTAAAAGAGTCCGTAGAGAATTTCAAATTTCTGCAGTCTTTAA




CTTGACCTGGTATTTCTATGTTAGATAATAACGTGACTTGTTTAT




TGCAGGCAAACATTATAACAATAAATTATTATTATTGTTTACATT




TGTAAGCACTAAGTATATGGCTTGTGCTTTGCATTCAGCATCCTT




TATCATTTAATCTTCACAACCACCTTAGAAGGAAGGTACTCTTTT




TATTTCCATCTTTTAAATGAGGAAATAAAAGCATAAAGAAGTTAA




TTAACTTACCTAGTGTCACACAGCTATTAAGAGGGGCTTACTATT




TGGATGCAAATATAGGCAGTTCTAATTCCAGAGCCTCTAATCTAA




GGCATTTAAAACCCCATCACCTTATCAAATAAGCTGTTTTTATTT




GCCCGTGTTCTCTTATAATCCTTATCCATAGGTTTCCATAATTTT




TATAAAATTGTATTTAAAATTTAAGTATAATCTTGGATGCCATCA




GGAAAATGAAAAACATTTTTACATTTGTGAAGGAAAAAGCCCACA




TCATTTCCAATATAGTTATTGAGTTAGTATTATCTAGACTATCTA




TTAGCAGCTAAGGATCTGAGGTCAAGGCCTGCCAGCCTGGCATTT




TACTTGACCACAACCTCCATGTGCACTAACCAGGCTGCTAAAAGA




ACATTAACGGGAACATAACCTGCTGGCTTGGTTGCCACAATTTTA




AAAAGACGTTAATAAATTAGAGAGCACTTAGAGGTTAGGAAATAA




TATGGTGGTAAAGATCTAGAAACAGTGTCATTCTGGGGCACTTGA




AGATGTTTAGCCTGGGGGAACAACTTGAAATGGAACATAACTGTT




TTCAAATACTTGAAAAATGGTGGTGCACCACAGAGAATGGCCTAA




TCATGGGTAGCTTCAGACTTCAAACAAGGATCAGTGGGCTAAAAC




CAGAGAGATGGAGTTTGGGACTCAAAGAATGCTCATCTGAAATTG




AGGGCTGACCAGCGAGGTTCTTTTAAAAATCATTGCATTTTACTA




AATTGTGAGTTCTGTAATTATAAATGTCCTAGCAGGTGCTAGCTG




TCATCTTTTCTATTATAAATTATACTATTTTATGTTATAATTTGT




ATTATACAGGCTTAAAACATAAGGGTCTGATAATCTGCTTATCTT




TAATACATAAGCCACTGATAGAAAATAAGTGGCTAACCATTCTTC




AGTTCTTTTTTTAATTGACAAAAATTGTATATGTTTGCGGTGTAT




GGCATATTTTGAAATATGTATACATTAGAGAATGGCTAAGTGAAG




CAAATTCACATATGCATTACCTCACACACCTGTCATTTATTTGTG




ATGAGAACAAAAAATCTACTCTTTCAGTGATTTTCAAGAATACAG




TACATTGTTATTAACAATAGTCAGCATGGTGTACAATAAGTCTTC




TGCGGCCGGGCGTGGTGGCTCACGCCTATAATCCCAGCACTTTGG




GAGGCCAAGGCTGGCAGATCACGAGGTCAGGAGTTCGAGACCAGC




CTGACCAACATGCTGAAACCTTGCCTCTACTAAAAATAGAAAAAT




TAGCTGAGTGTGGTGGTAAGCGCCTGTAGTCCCAGCTACTCAGGA




GGCTGAGGCAGGAGAATTGCTTGAACCTGGGAGGCGGAGGTTGCA




GTGAGTCGAGATAGTGCCACTGCACTCCAGCCTGGCAAAAGAGGG




AAACTCCGTCTCAATAATAAGTCTCTTGCATTTGTTCTTCCTGTT




TAACTGAAATTATGTATTCTTTGATCAACATCTCCCCAGTCTCCA




CCCCTAACCCCTGGTAACCACAATTCTACTCTGCTTCCGTGAGTT




CAACTTTATGAATAGTCCACATGTAAGTGAGATCATGTGGTATTT




GTCTTTCTGTGCCTAGCTTATTTCACTTAGCATAGTGTCCTCCAG




GTTCACCCATGTTGTCAAAAATGACAGGATTTCCCCCAACTTTTT




TAAGGCTGAACAGTATTCCATGTGTATGTGTATAAATTAGATTAG




TAGATGTTGCCACTCCCTCCTCCACCACAGTGGCTCTATCCCTGG




CTCCTGGCTCCAGCCGAGTACACTAGAGGAGGATATTCTAAACAG




CAACAACACAGGAGCAAAGACATTACAATGGGGTGTTGTCTTATT




GCCCCCATTAGACTGTAAGCATCTTGAAGACAAGGACCCCCATCA




CAGAGTGATGTTGTCATCCCTGGAGTGGGCACTGTGCATGATTGA




TGACTGGAAGCAATGAACATACAGAAGGGCAAAACAGAAATCAGC




AGGATGCTTTGCATTTCAGCATTGACTTTGCCAAATATGCCCAAC




TGTTCAGGGAGTTACATTGGTTCTAACGAAGCTCCTGTGATTCCT




AAGCACAGGAATGGTGATAATATATATAATGGTGCATGCATATAT




ACGCATATCTAGATAATGATATCTCATTATATGTGAGAACTGAAG




AACTCCGTTATGTTTCTCGTCTAACCAAAAAGGGCCTACAGCTAC




GATAATTTCCAAACAAATAAATCTGTGCTACTTGATTTTCATGCA




AAGCTCATATTTGTTCAAAAGGAAAATAAAGCTTAATTTAAAATC




AATTTAGGCTATTTTTATCTAAGTATGCTTACCGTTATTCAACTC




CCTGCAGATATTGTCAAATTTCTCAATATGGTAAATATTTATTCT




GTTAAAATATATCCATAGTTACACTAAAGACAGAGAGGTCTTATA




TGTTCTAAACAACATAGAGCAAATGCTCATAAACAGCATTTTATT




CCTATCTCCCGGAATAACAACGCTACTTCCAATTGCTGGAATCTA




AATTATTAAAATAAACCCATGCTGCAAGCTTTGTATGCTTAACAT




TCTCAAATGTTCACTTTTCAGATATGGAAGTGAAGCAAATCAACA




AACGTGCCTCTGGCCAGGCTTTTGAGCTGATCTTGAAGCCACCAT




CTCCTATCTCAGAAGCCCCACGAACTTTAGCTTCTCCAAAGAAGA




AAGACCTGTCCCTGGAGGAGATCCAGAAGAAACTGGAGGCTGCAG




AGGAAAGAAGAAAGGTAACTTTTTCCATAGGTTTTCCTTCTCTCT




CTCCCTCCCCTGCTCCTCCCTCTCACACACTCGGGCACACATGCA




CGCACACACACACACACACACACACACACACACACACACACACAC




ATACAGAGAGCAATGACAGCTGAACCTGTGCCATGCCAACATGTA




TAGGTTTTCAGTAGACACAGAGCCAGGCTAGTTGGGGTAAAAACT




GTAAGATAGATGCTAATTTTAGGCTAGCCAAACCAGAGCTCTCAG




AAATCCAAAGAGCTTCAGTGCTCTAGTGCCCCTTCCCGTATATTG




AATCCCCTTATTATAAAAGCCTCCCTTCCCTAGACCATCAGGCAG




AAGCACTGTAGAGAAAACACAGCCCTGGCGAACTCCAGTGGTGGG




GAGGGGAAGAAGTGCTGCTTCCTCCCTCTCAGGATCTGTGTCACC




CCCTTTGTCAGGCGTGGTTTTCCTTGGAATTACAAATTACCAGAT




CTTCCCTCCAAGATCTTTCCTGCCCAGGGTAAGGGCCAAGAGCTT




GCCCCTTTCCTCTTCAGAGTCCCACTGCCTGCCCTGGAAGTTGGT




CCTTCCAAGATCAGGACCTTCTCTGAGTTCTTTGAATATGTTCTT




TATCTTTTTCTAAGACTTGATGGGGATTTTTCTCTTTTTGCCATT




GGTCCCTGCTTATATTAAAGAGCTTTCCTTTTGCCAAATCTTTAC




TTTTCCATAATCACATGGCTAAGAAGAGCCAAGGGTATTATTTGA




GAACACTTAGAAATCCTAGGGACTGTGTACACAAACAGAAGTTGT




TTGAATGTGTCTGTTCCAACCATGTGGTTATGGTAGTTAATCCCA




TCAAGGTACTCACGATCATCCAAAAATGGAATTCTTTTATGTAAT




TCATCCCCACATTGTATTTCCCAATATTTTTTATGATATAATTTT




AGAATCAGGTAATCACTAAGAACATGTTCCCTGCACAGTTTTATG




ATGTTTTCTCTAAAAAGTCAGCCAAAACTTTGGACACTTCTATGT




TGGATAATTAAAAACAGAATGAAGATAATCCTCCTCCTAAAGATT




GAATTCTCCAAGAGAGAATGCAGGACAAACACAGATGTGCTGTGT




ATAGTATATGTGCATATATACATGCATATATGTACACAAATATGT




GTATTATCAAATAATGAGGCTCAAACATTAGAAATCCTTAGATTA




AATTTTCTAAACAAGAAAACACTAATCTTTGTAGTTGAAAAAAAA




TCCTCCTATGATATGTAATATGCTGATCTCAATTTTCACCTAAGA




GTGATGTTCTCCAAATGTCCGATGAGCATGTCATATATATATATA




TGAATTTTTATATATATAATTACAATGGTAATTGGTATATAGAGA




TATCTATATTATAGATATATATAGCTATCTCTATATATTACATAT




ACCAATTATAGATATAAATATAACAATGGTAACTGGTGTATATGT




GATGTGTATATATGTATATGTATACCATAATTATATATTAATATT




GTATATATGCCATAATTATATATTAATATTGGTATATATACACCA




TGATTATATATTAATATTGGTGTGTGTATGTGTGTGTGTATATAT




ATATATATATATAAAATACTAGTTATCATTGTTCTAGATTTAAAA




AACAGGAACCTGAGCTACTAACTCGACTATATATATATATATATA




TACAGGAAGTTGCTTTAAAACATTTTTATCAGCTTTTTTATTGTT




ATTTTTAGCTTTATTCTCATAGTAAAGCTAAAATAAATTATTCAA




CATTATCAAAACTTTGCTGCCAGCAGATGTAAGCAATACCTAAAA




CAGTGGAGAGCATGTTGCACCCAAAGCAGTTTAAGCTCTGACCCA




AGCACTGGCATCTTATAGGCACTGGGTAGAGATAAGAGTCATAGG




TCGACATATATTGAGATGCTATGACTTGATTAGAATATGGAGTCA




GTGACTGAGGTGAAATTAAAACTCAAACCACAATTCAACATCCTG




ATTTAGGATGTTGCTGGTGTTTCTAGGTACTACACTTAATTTGAA




AGAAATTATTGAGGATAAAAAAAGAACTGGGATCAACAAAATTAA




CTAGGTGTTCTTATAAGAGTCCCTGAGGTTACTAATTAATGAAAC




TGATAAAGCTCCTGCACCCTGACAGCAAGAAATTATCAATGATTA




TACATTTAAACAATTGAATTGAACTAGAAACTGGCCACATGGTTA




AAAGACATTTACAAATGTAATCATCCAGTGTTATGATGCCCAGAA




AAAAAAAATTCCTTAGAATGCTTTAAAAGCCGTATTCCATCACCT




TTCCAGT






455
TAGCCGGACCCTTTGCCTTCGCCACTGCTCAGCGTCTGCACATCC
STMN2



CTACAATGGCTAAAACAGCAATGGGTAAGGCACTGCGCCTCGTTC
Exon 1



TCCGTCGGCTCTACCTGGAGCCCACCTCT






456
AATCTTTCAAAACCTCCCTGGCTTAGAAAACCAAATTTTTGTAGA
STMN2



GAGAGATGGGTAGAATCTAATTTTATTCTAAAGCAATTAGCATTA
Exon 2



CATCATCACAGCAG






457
GAGAAATTCAGAAAAAATGAAATATACTAATCTTCAGCTTTTCAT
STMN2 



TTCAGCCTACAAGGAAAAAATGAAGGAGCTGTCCATGCTGTCACT
Exon 3



GATCTGCTCTTGCTTTTACCCGGAACCTCGCAACATCAACATCTA




TACTTACGATGGTGAGTAACCTAGGATAGACATACCCCTGCTAGC




TAGATCATTTGGAAAG






458
CCATGCTGCAAGCTTTGTATGCTTAACATTCTCAAATGTTCACTT
STMN2 



TTCAGATATGGAAGTGAAGCAAATCAACAAACGTGCCTCTGGCCA
Exon 4



GGCTTTTGAGCTGATCTTGAAGCCACCATCTCCTATCTCAGAAGC




CCCACGAACTTTAGCTTCTCCAAAGAAGAAAGACCTGTCCCTGGA




GGAGATCCAGAAGAAACTGGAGGCTGCAGAGGAAAGAAGAAAGGT




AACTTTTTCCATAGGTTTTCCTTCTCTCTCTCCCTCCCCTGCTCC




TCC






459
CTAGGTTTGTGTTTGGATAATTATAAGATGGCTATGTTTTTCTTC
STMN2 



CCCAGTCTCAGGAGGCCCAGGTGCTGAAACAATTGGCAGAGAAGA
Exon 5



GGGAACACGAGCGAGAAGTCCTTCAGAAGGCTTTGGAGGAGAACA




ACAACTTCAGCAAGATGGCGGAGGAAAAGCTGATCCTGAAAATGG




AACAAATTAAGGAAAACCGTGAGGCTAATCTAGCTGCTATTATTG




AACGTCTGCAGGAAAAGGTAATCTCAGCAGAGTCCTGAGCAGATG




GATATATTCATATGCAGCACAG






460
TGTAGACTCCTTGAGATTAATAGAGTTTAACGATAAGTTTTACTT
STMN2 



TATAGCTGGTCAAGTTTATTTCTTCTGAACTAAAAGAATCTATAG
Exon 6



AGTCTCAATTTCTGGAGCTTCAGAGGGAAGGAGAGAAGCAATGTA




AGCAACATTCTACAGAAATATAAATAATACTACTAATAATTAGCA




TC






461
ACCAGACAAAAAGGGCCTGTGACATTTCTTCTTCCTTTTGTGTTT
STMN2 



TTTAGGAGAGGCATGCTGCGGAGGTGCGCAGGAACAAGGAACTCC
Exon 7



AGGTTGAACTGTCTGGCTGAAGCAAGGGAGGGTCTGGCACGCCCC




ACCAATAGTAAATCCCCCTGCCTAT









In some embodiments, the gene editing system disclosed herein may comprise a Cas12i polypeptide as disclosed herein. In other embodiments, the gene editing system may comprise a nucleic acid encoding the Cas12i polypeptide. For example, the gene editing system may comprise a vector (e.g., a viral vector such as an AAV vector, such as AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11 and AAV12) encoding the Cas12i polypeptide. Alternatively, the gene editing system may comprise a mRNA molecule encoding the Cas12i polypeptide. In some instances, the mRNA molecule may be codon-optimized.


II. Preparation of Gene Editing System Components

The present disclosure provides methods for production of components of the gene editing systems disclosed herein, e.g., the RNA guide, methods for production of the Cas12i polypeptide, and methods for complexing the RNA guide and Cas12i polypeptide.


A. RNA Guide


In some embodiments, the RNA guide is made by in vitro transcription of a DNA molecule. Thus, for example, in some embodiments, the RNA guide is generated by in vitro transcription of a DNA molecule encoding the RNA guide using an upstream promoter sequence (e.g., a T7 polymerase promoter sequence).


In some embodiments, the DNA molecule encodes multiple RNA guides or the in vitro transcription reaction includes multiple different DNA molecules, each encoding a different RNA guide. In some embodiments, the RNA guide is made using chemical synthetic methods. In some embodiments, the RNA guide is made by expressing the RNA guide sequence in cells transfected with a plasmid including sequences that encode the RNA guide. In some embodiments, the plasmid encodes multiple different RNA guides. In some embodiments, multiple different plasmids, each encoding a different RNA guide, are transfected into the cells. In some embodiments, the RNA guide is expressed from a plasmid that encodes the RNA guide and also encodes a Cas12i polypeptide. In some embodiments, the RNA guide is expressed from a plasmid that expresses the RNA guide but not a Cas12i polypeptide. In some embodiments, the RNA guide is purchased from a commercial vendor. In some embodiments, the RNA guide is synthesized using one or more modified nucleotide, e.g., as described above.


B. Cas12i Polypeptide


In some embodiments, the Cas12i polypeptide of the present disclosure can be prepared by (a) culturing bacteria which produce the Cas12i polypeptide of the present disclosure, isolating the Cas12i polypeptide, optionally, purifying the Cas12i polypeptide, and complexing the Cas12i polypeptide with an RNA guide. The Cas12i polypeptide can be also prepared by (b) a known genetic engineering technique, specifically, by isolating a gene encoding the Cas12i polypeptide of the present disclosure from bacteria, constructing a recombinant expression vector, and then transferring the vector into an appropriate host cell that expresses the RNA guide for expression of a recombinant protein that complexes with the RNA guide in the host cell. Alternatively, the Cas12i polypeptide can be prepared by (c) an in vitro coupled transcription-translation system and then complexing with an RNA guide.


In some embodiments, a host cell is used to express the Cas12i polypeptide. The host cell is not particularly limited, and various known cells can be preferably used. Specific examples of the host cell include bacteria such as E. coli, yeasts (budding yeast, Saccharomyces cerevisiae, and fission yeast, Schizosaccharomyces pombe), nematodes (Caenorhabditis elegans), Xenopus laevis oocytes, and animal cells (for example, CHO cells, COS cells and HEK293 cells). The method for transferring the expression vector described above into host cells, i.e., the transformation method, is not particularly limited, and known methods such as electroporation, the calcium phosphate method, the liposome method and the DEAE dextran method can be used.


After a host is transformed with the expression vector, the host cells may be cultured, cultivated or bred, for production of the Cas12i polypeptide. After expression of the Cas12i polypeptide, the host cells can be collected and Cas12i polypeptide purified from the cultures etc. according to conventional methods (for example, filtration, centrifugation, cell disruption, gel filtration chromatography, ion exchange chromatography, etc.).


In some embodiments, the methods for Cas12i polypeptide expression comprises translation of at least 5 amino acids, at least 10 amino acids, at least 15 amino acids, at least 20 amino acids, at least 50 amino acids, at least 100 amino acids, at least 150 amino acids, at least 200 amino acids, at least 250 amino acids, at least 300 amino acids, at least 400 amino acids, at least 500 amino acids, at least 600 amino acids, at least 700 amino acids, at least 800 amino acids, at least 900 amino acids, or at least 1000 amino acids of the Cas12i polypeptide. In some embodiments, the methods for protein expression comprises translation of about 5 amino acids, about 10 amino acids, about 15 amino acids, about 20 amino acids, about 50 amino acids, about 100 amino acids, about 150 amino acids, about 200 amino acids, about 250 amino acids, about 300 amino acids, about 400 amino acids, about 500 amino acids, about 600 amino acids, about 700 amino acids, about 800 amino acids, about 900 amino acids, about 1000 amino acids or more of the Cas12i polypeptide.


A variety of methods can be used to determine the level of production of a Cas12i polypeptide in a host cell. Such methods include, but are not limited to, for example, methods that utilize either polyclonal or monoclonal antibodies specific for the Cas12i polypeptide or a labeling tag as described elsewhere herein. Exemplary methods include, but are not limited to, enzyme-linked immunosorbent assays (ELISA), radioimmunoassays (MA), fluorescent immunoassays (FIA), and fluorescent activated cell sorting (FACS). These and other assays are well known in the art (See, e.g., Maddox et al., J. Exp. Med. 158:1211 [1983]).


The present disclosure provides methods of in vivo expression of the Cas12i polypeptide in a cell, comprising providing a polyribonucleotide encoding the Cas12i polypeptide to a host cell wherein the polyribonucleotide encodes the Cas12i polypeptide, expressing the Cas12i polypeptide in the cell, and obtaining the Cas12i polypeptide from the cell.


The present disclosure further provides methods of in vivo expression of a Cas12i polypeptide in a cell, comprising providing a polyribonucleotide encoding the Cas12i polypeptide to a host cell wherein the polyribonucleotide encodes the Cas12i polypeptide and expressing the Cas12i polypeptide in the cell. In some embodiments, the polyribonucleotide encoding the Cas12i polypeptide is delivered to the cell with an RNA guide and, once expressed in the cell, the Cas12i polypeptide and the RNA guide form a complex. In some embodiments, the polyribonucleotide encoding the Cas12i polypeptide and the RNA guide are delivered to the cell within a single composition. In some embodiments, the polyribonucleotide encoding the Cas12i polypeptide and the RNA guide are comprised within separate compositions. In some embodiments, the host cell is present in a subject, e.g., a human patient.


C. Complexes


In some embodiments, an RNA guide targeting STMN2 is complexed with a Cas12i polypeptide to form a ribonucleoprotein (RNP). In some embodiments, complexation of the RNA guide and Cas12i polypeptide occurs at a temperature lower than about any one of 20° C., 21° C., 22° C., 23° C., 24° C., 25° C., 26° C., 27° C., 28° C., 29° C., 30° C., 31° C., 32° C., 33° C., 34° C., 35° C., 36° C., 37° C., 38° C., 39° C., 40° C., 41° C., 42° C., 43° C., 44° C., 45° C., 50° C., or 55° C. In some embodiments, the RNA guide does not dissociate from the Cas12i polypeptide at about 37° C. over an incubation period of at least about any one of 10 mins, 15 mins, 20 mins, 25 mins, 30 mins, 35 mins, 40 mins, 45 mins, 50 mins, 55 mins, 1 hr, 2 hr, 3 hr, 4 hr, or more hours.


In some embodiments, the RNA guide and Cas12i polypeptide are complexed in a complexation buffer. In some embodiments, the Cas12i polypeptide is stored in a buffer that is replaced with a complexation buffer to form a complex with the RNA guide. In some embodiments, the Cas12i polypeptide is stored in a complexation buffer.


In some embodiments, the complexation buffer has a pH in a range of about 7.3 to 8.6. In one embodiment, the pH of the complexation buffer is about 7.3. In one embodiment, the pH of the complexation buffer is about 7.4. In one embodiment, the pH of the complexation buffer is about 7.5. In one embodiment, the pH of the complexation buffer is about 7.6. In one embodiment, the pH of the complexation buffer is about 7.7. In one embodiment, the pH of the complexation buffer is about 7.8. In one embodiment, the pH of the complexation buffer is about 7.9. In one embodiment, the pH of the complexation buffer is about 8.0. In one embodiment, the pH of the complexation buffer is about 8.1. In one embodiment, the pH of the complexation buffer is about 8.2. In one embodiment, the pH of the complexation buffer is about 8.3. In one embodiment, the pH of the complexation buffer is about 8.4. In one embodiment, the pH of the complexation buffer is about 8.5. In one embodiment, the pH of the complexation buffer is about 8.6.


In some embodiments, the Cas12i polypeptide can be overexpressed and complexed with the RNA guide in a host cell prior to purification as described herein. In some embodiments, mRNA or DNA encoding the Cas12i polypeptide is introduced into a cell so that the Cas12i polypeptide is expressed in the cell. In some embodiments, the RNA guide is also introduced into the cell, whether simultaneously, separately, or sequentially from a single mRNA or DNA construct, such that the RNP complex is formed in the cell.


III. Genetic Editing Methods


The present disclosure also provides methods of modifying a target site within the STMN2 gene. In some embodiments, the methods comprise introducing a STMN2-targeting RNA guide and a Cas12i polypeptide into a cell. The STMN2-targeting RNA guide and Cas12i polypeptide can be introduced as a ribonucleoprotein complex into a cell. The STMN2-targeting RNA guide and Cas12i polypeptide can be introduced on a nucleic acid vector. The Cas12i polypeptide can be introduced as an mRNA. The RNA guide and template DNA can be introduced directly into the cell. In some embodiments, the composition described herein is delivered to a cell/tissue/person to reduce STMN2 in the cell/tissue/person. In some embodiments, the composition described herein is delivered to a cell/tissue/person to reduce STMN2 production in the cell/tissue/person. In some embodiments, the composition described herein is delivered to a cell/tissue/person to treat a neurodegenerative disease (e.g., amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD)) in a cell/tissue/person. In some embodiments, the composition described herein is delivered to a person with a neurodegenerative disease (e.g., amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD)).


Any of the gene editing systems disclosed herein may be used to genetically engineered a STMN2 gene. The gene editing system may comprise a guide RNA, a Cas12i2 polypeptide, and a template DNA. The guide RNA comprises a spacer sequence specific to a target sequence in the STMN2 gene, e.g., specific to a region in exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, or an intron of the STMN2 gene.


A. Target Sequences


In some embodiments, an RNA guide as disclosed herein is designed to be complementary to a target sequence that is adjacent to a 5′-TTN-3′ PAM sequence or 5′-NTTN-3′ PAM sequence.


In some embodiments, the target sequence is within a STMN2 gene or a locus of a STMN2 gene (e.g., exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, or an intron), to which the RNA guide can bind via base pairing. In some embodiments, a cell has only one copy of the target sequence. In some embodiments, a cell has more than one copy, such as at least about any one of 2, 3, 4, 5, 10, 100, or more copies of the target sequence.


In some embodiments, the STMN2 gene is a mammalian gene. In some embodiments, the STMN2 gene is a human gene. For example, in some embodiments, the target sequence is within the sequence of SEQ ID NO: 454, or the reverse complement thereof. In some embodiments, the target sequence is within an exon of the STMN2 gene set forth in SEQ ID NO: 454, or the reverse complement thereof, e.g., within a sequence of any one of SEQ ID NOs: 455-461 (or a reverse complement of any thereof). Target sequences within an exon region of the STMN2 gene of SEQ ID NO: 454 are set forth in Table 6. The exon sequences are set forth in Table 7. In some embodiments, the target sequence is within an intron of the STMN2 gene set forth in SEQ ID NO: 454, or the reverse complement thereof. In some embodiments, the target sequence is within a variant (e.g., a polymorphic variant) of the STMN2 gene sequence set forth in SEQ ID NO: 454, or the reverse complement thereof. In some embodiments, the STMN2 gene sequence is a homolog of the sequence set forth in SEQ ID NO: 454, or the reverse complement thereof. In some embodiments, the STMN2 gene sequence is a non-human STMN2 sequence.


In some embodiments, the target sequence is adjacent to a 5′-NTTN-3′ PAM sequence, wherein N is any nucleotide. The 5′-NTTN-3′ sequence may be immediately adjacent to the target sequence or, for example, within a small number (e.g., 1, 2, 3, 4, or 5) of nucleotides of the target sequence. In some embodiments the 5′-NTTN-3′ sequence is 5′-NTTY-3′, 5′-NTTC-3′, 5′-NTTT-3′, 5′-NTTA-3′, 5′-NTTB-3′, 5′-NTTG-3′, 5′-CTTY-3′, 5′-DTTR′3′, 5′-CTTR-3′, 5′-DTTT-3′, 5′-ATTN-3′, or 5′-GTTN-3′, wherein Y is C or T, B is any nucleotide except for A, D is any nucleotide except for C, and R is A or G. In some embodiments, the 5′-NTTN-3′ sequence is 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′. The PAM sequence may be 5′ to the target sequence.


In some embodiments, the target sequence is single-stranded (e.g., single-stranded DNA). In some embodiments, the target sequence is double-stranded (e.g., double-stranded DNA). In some embodiments, the target sequence comprises both single-stranded and double-stranded regions. In some embodiments, the target sequence is linear. In some embodiments, the target sequence is circular. In some embodiments, the target sequence comprises one or more modified nucleotides, such as methylated nucleotides, damaged nucleotides, or nucleotides analogs. In some embodiments, the target sequence is not modified. In some embodiments, the RNA guide binds to a first strand of a double-stranded target sequence (e.g., the target strand or the spacer-complementary strand), and the 5′-NTTN-3′ PAM sequence is present in the second, complementary strand (e.g., the non-target strand or the non-spacer-complementary strand). In some embodiments, the RNA guide binds adjacent to a 5′-NAAN-3′ sequence on the target strand (e.g., the spacer-complementary strand).


The 5′-NTTN-3′ sequence may be immediately adjacent to the target sequence or, for example, within a small number (e.g., 1, 2, 3, 4, or 5) of nucleotides of the target sequence. In some embodiments the 5′-NTTN-3′ sequence is 5′-NTTY-3′, 5′-NTTC-3′, 5′-NTTT-3′, 5′-NTTA-3′, 5′-NTTB-3′, 5′-NTTG-3′, 5′-CTTY-3′, 5′-DTTR-3′, 5′-CTTR-3′, 5′-DTTT-3′, 5′-ATTN-3′, or 5′-GTTN-3′, wherein Y is C or T, B is any nucleotide except for A, D is any nucleotide except for C, and R is A or G. In some embodiments, the 5′-NTTN-3′ sequence is 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′. In some embodiments, the RNA guide is designed to bind to a first strand of a double-stranded target nucleic acid (i.e., the non-PAM strand), and the 5′-NTTN-3′ PAM sequence is present in the second, complementary strand (i.e., the PAM strand). In some embodiments, the RNA guide binds to a region on the non-PAM strand that is complementary to a target sequence on the PAM strand, which is adjacent to a 5′-NAAN-3′ sequence.


In some embodiments, the target sequence is present in a cell. In some embodiments, the target sequence is present in the nucleus of the cell. In some embodiments, the target sequence is endogenous to the cell. In some embodiments, the target sequence is a genomic DNA. In some embodiments, the target sequence is a chromosomal DNA. In some embodiments, the target sequence is a protein-coding gene or a functional region thereof, such as a coding region, or a regulatory element, such as a promoter, enhancer, a 5′ or 3′ untranslated region, etc. In some embodiments, the target sequence is present in a readily accessible region of the target sequence. In some embodiments, the target sequence is in an exon of a target gene. In some embodiments, the target sequence is across an exon-intron junction of a target gene. In some embodiments, the target sequence is present in a non-coding region, such as a regulatory region of a gene.


B. Gene Editing


In some embodiments, the Cas12i polypeptide has enzymatic activity (e.g., nuclease activity). In some embodiments, the Cas12i polypeptide induces one or more DNA double-stranded breaks in the cell. In some embodiments, the Cas12i polypeptide induces one or more DNA single-stranded breaks in the cell. In some embodiments, the Cas12i polypeptide induces one or more DNA nicks in the cell. In some embodiments, DNA breaks and/or nicks result in formation of one or more indels (e.g., one or more deletions).


In some embodiments, an RNA guide disclosed herein forms a complex with the Cas12i polypeptide and directs the Cas12i polypeptide to a target sequence adjacent to a 5′-NTTN-3′ sequence. In some embodiments, the complex induces a deletion (e.g., a nucleotide deletion or DNA deletion) adjacent to the 5′-NTTN-3′ sequence. In some embodiments, the complex induces a deletion adjacent to a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the complex induces a deletion adjacent to a T/C-rich sequence.


In some embodiments, the deletion is downstream of a 5′-NTTN-3′ sequence. In some embodiments, the deletion is downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion is downstream of a T/C-rich sequence.


In some embodiments, the deletion alters expression of the STMN2 gene. In some embodiments, the deletion alters function of the STMN2 gene. In some embodiments, the deletion inactivates the STMN2 gene. In some embodiments, the deletion is a frameshifting deletion. In some embodiments, the deletion is a non-frameshifting deletion. In some embodiments, the deletion leads to cell toxicity or cell death (e.g., apoptosis).


In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of a T/C-rich sequence.


In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a T/C-rich sequence.


In some embodiments, the deletion ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of a T/C-rich sequence.


In some embodiments, the deletion ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of a T/C-rich sequence.


In some embodiments, the deletion ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of a T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of the 5′-NTTN-3′ sequence and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a T/C-rich sequence and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of the 5′-NTTN-3′ sequence and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of the 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a T/C-rich sequence and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of the T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of the 5′-NTTN-3′ sequence and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 15 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a T/C-rich sequence and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of the 5′-NTTN-3′ sequence and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of a T/C-rich sequence and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of the 5′-NTTN-3′ sequence and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of the 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of a T/C-rich sequence and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of the T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of the 5′-NTTN-3′ sequence and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 5 to about 10 nucleotides (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 nucleotides) downstream of a T/C-rich sequence and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the T/C-rich sequence.


In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of the 5′-NTTN-3′ sequence and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a T/C-rich sequence and ends within about 20 to about 30 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the T/C-rich sequence.


In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of the 5′-NTTN-3′ sequence and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of the 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a T/C-rich sequence and ends within about 20 to about 25 nucleotides (e.g., about 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides) downstream of the T/C-rich sequence.


In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) of a T/C-rich sequence.


In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of the 5′-NTTN-3′ sequence and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-NTTN-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′ sequence. In some embodiments, the deletion starts within about 10 to about 15 nucleotides (e.g., about 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides) downstream of a T/C-rich sequence and ends within about 25 to about 30 nucleotides (e.g., about 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, or 33 nucleotides) downstream of the T/C-rich sequence.


In some embodiments, the deletion is up to about 50 nucleotides in length (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, or 55 nucleotides). In some embodiments, the deletion is up to about 40 nucleotides in length (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, or 45 nucleotides). In some embodiments, the deletion is between about 4 nucleotides and about 40 nucleotides in length (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, or 45 nucleotides). In some embodiments, the deletion is between about 4 nucleotides and about 25 nucleotides in length (e.g., about 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides). In some embodiments, the deletion is between about 10 nucleotides and about 25 nucleotides in length (e.g., about 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 nucleotides). In some embodiments, the deletion is between about 10 nucleotides and about 15 nucleotides in length (e.g., about 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 nucleotides).


In some embodiments, two or more RNA guides described herein are used to introduce a deletion that has a length of greater than 40 nucleotides. In some embodiments, two or more RNA guides described herein are used to introduce a deletion of at least about 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 16, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, or 400 nucleotides. In some embodiments, two or more RNA guides described herein are used delete all or a portion of the STMN2 gene or SEQ ID NO: 454.


In some embodiments, the methods described herein are used to engineer a cell comprising a deletion as described herein in a STMN2 gene. In some embodiments, the methods are carried out using a complex comprising a Cas12i enzyme as described herein and an RNA guide comprising a direct repeat sequence and a spacer sequence as described herein.


In some embodiments, the RNA guide targeting STMN2 is encoded in a plasmid. In some embodiments, the RNA guide targeting STMN2 is synthetic or purified RNA. In some embodiments, the Cas12i polypeptide is encoded in a plasmid. In some embodiments, the Cas12i polypeptide is encoded by an RNA that is synthetic or purified.


C. Delivery


Components of any of the gene editing systems disclosed herein may be formulated, for example, including a carrier, such as a carrier and/or a polymeric carrier, e.g., a liposome, and delivered by known methods to a cell (e.g., a prokaryotic, eukaryotic, plant, mammalian, etc.). Such methods include, but not limited to, transfection (e.g., lipid-mediated, cationic polymers, calcium phosphate, dendrimers); electroporation or other methods of membrane disruption (e.g., nucleofection), viral delivery (e.g., lentivirus, retrovirus, adenovirus, adeno-associated virus (AAV)), microinjection, microprojectile bombardment (“gene gun”), fugene, direct sonic loading, cell squeezing, optical transfection, protoplast fusion, impalefection, magnetofection, exosome-mediated transfer, lipid nanoparticle-mediated transfer, and any combination thereof.


In some embodiments, the method comprises delivering one or more nucleic acids (e.g., nucleic acids encoding the Cas12i polypeptide, RNA guide, donor DNA, etc.), one or more transcripts thereof, and/or a pre-formed RNA guide/Cas12i polypeptide complex to a cell, where a ternary complex is formed. In some embodiments, an RNA guide and an RNA encoding a Cas12i polypeptide are delivered together in a single composition. In some embodiments, an RNA guide and an RNA encoding a Cas12i polypeptide are delivered in separate compositions. In some embodiments, an RNA guide and an RNA encoding a Cas12i polypeptide delivered in separate compositions are delivered using the same delivery technology. In some embodiments, an RNA guide and an RNA encoding a Cas12i polypeptide delivered in separate compositions are delivered using different delivery technologies.


In some embodiments, the Cas12i component and the RNA guide component are delivered together. For example, the Cas12i component and the RNA guide component are packaged together in a single AAV particle. In another example, the Cas12i component and the RNA guide component are delivered together via lipid nanoparticles (LNPs). In some embodiments, the Cas12i component and the RNA guide component are delivered separately. For example, the Cas12i component and the RNA guide are packaged into separate AAV particles. In another example, the Cas12i component is delivered by a first delivery mechanism and the RNA guide is delivered by a second delivery mechanism.


Exemplary intracellular delivery methods, include, but are not limited to: viruses, such as AAV, or virus-like agents; chemical-based transfection methods, such as those using calcium phosphate, dendrimers, liposomes, or cationic polymers (e.g., DEAE-dextran or polyethylenimine); non-chemical methods, such as microinjection, electroporation, cell squeezing, sonoporation, optical transfection, impalefection, protoplast fusion, bacterial conjugation, delivery of plasmids or transposons; particle-based methods, such as using a gene gun, magnectofection or magnet assisted transfection, particle bombardment; and hybrid methods, such as nucleofection. In some embodiments, a lipid nanoparticle comprises an mRNA encoding a Cas12i polypeptide, an RNA guide, or an mRNA encoding a Cas12i polypeptide and an RNA guide. In some embodiments, the mRNA encoding the Cas12i polypeptide is a transcript of the nucleotide sequence set forth in SEQ ID NO: 447 or SEQ ID NO: 481 or a variant thereof. In some embodiments, the present application further provides cells produced by such methods, and organisms (such as animals, plants, or fungi) comprising or produced from such cells.


D. Genetically Modified Cells


Any of the gene editing systems disclosed herein can be delivered to a variety of cells. In some embodiments, the cell is an isolated cell. In some embodiments, the cell is in cell culture or a co-culture of two or more cell types. In some embodiments, the cell is ex vivo. In some embodiments, the cell is obtained from a living organism and maintained in a cell culture. In some embodiments, the cell is a single-cellular organism.


In some embodiments, the cell is a prokaryotic cell. In some embodiments, the cell is a bacterial cell or derived from a bacterial cell. In some embodiments, the cell is an archaeal cell or derived from an archaeal cell.


In some embodiments, the cell is a eukaryotic cell. In some embodiments, the cell is a plant cell or derived from a plant cell. In some embodiments, the cell is a fungal cell or derived from a fungal cell. In some embodiments, the cell is an animal cell or derived from an animal cell. In some embodiments, the cell is an invertebrate cell or derived from an invertebrate cell. In some embodiments, the cell is a vertebrate cell or derived from a vertebrate cell. In some embodiments, the cell is a mammalian cell or derived from a mammalian cell. In some embodiments, the cell is a human cell. In some embodiments, the cell is a zebra fish cell. In some embodiments, the cell is a rodent cell. In some embodiments, the cell is synthetically made, sometimes termed an artificial cell.


In some embodiments, the cell is derived from a cell line. A wide variety of cell lines for tissue culture are known in the art. Examples of cell lines include, but are not limited to, 293T, MF7, K562, HeLa, CHO, and transgenic varieties thereof. Cell lines are available from a variety of sources known to those with skill in the art (see, e.g., the American Type Culture Collection (ATCC) (Manassas, Va.)). In some embodiments, the cell is an immortal or immortalized cell.


In some embodiments, the cell is a primary cell. In some embodiments, the cell is a stem cell such as a totipotent stem cell (e.g., omnipotent), a pluripotent stem cell, a multipotent stem cell, an oligopotent stem cell, or an unipotent stem cell. In some embodiments, the cell is an induced pluripotent stem cell (iPSC) or derived from an iPSC. In some embodiments, the cell is a differentiated cell. For example, in some embodiments, the differentiated cell is a neural cell (e.g., a glial cell, such as an astrocyte, an oligodendrocyte, a microglial cell, or an ependymal cell, or a neuron), muscle cell (e.g., a myocyte), a fat cell (e.g., an adipocyte), a bone cell (e.g., an osteoblast, osteocyte, osteoclast), a blood cell (e.g., a monocyte, a lymphocyte, a neutrophil, an eosinophil, a basophil, a macrophage, a erythrocyte, or a platelet), an epithelial cell, an immune cell (e.g., a lymphocyte, a neutrophil, a monocyte, or a macrophage), a liver cell (e.g., a hepatocyte), a fibroblast, or a sex cell. In some embodiments, the cell is a terminally differentiated cell. For example, in some embodiments, the terminally differentiated cell is a neuronal cell, an adipocyte, a cardiomyocyte, a skeletal muscle cell, an epidermal cell, or a gut cell. In some embodiments, the cell is an immune cell. In some embodiments, the immune cell is a T cell. In some embodiments, the immune cell is a B cell. In some embodiments, the immune cell is a Natural Killer (NK) cell. In some embodiments, the immune cell is a Tumor Infiltrating Lymphocyte (TIL). In some embodiments, the cell is a cancer cell (e.g., a colorectal cancer cell, renal cell cancer cell, breast cancer cell, or glioma cell). In some embodiments, the cell is a mammalian cell, e.g., a human cell or a murine cell. In some embodiments, the murine cell is derived from a wild-type mouse, an immunosuppressed mouse, or a disease-specific mouse model. In some embodiments, the cell is a cell within a living tissue, organ, or organism.


Any of the genetically modified cells produced using any of the gene editing system disclosed herein is also within the scope of the present disclosure. Such modified cells may comprise a disrupted STMN2 gene.


Any of the gene editing systems, compositions comprising such, vectors, nucleic acids, RNA guides and cells disclosed herein may be used in therapy. Gene editing systems, compositions, vectors, nucleic acids, RNA guides and cells disclosed herein may be used in methods of treating a disease or condition in a subject. Any suitable delivery or administration method known in the art may be used to deliver compositions, vectors, nucleic acids, RNA guides and cells disclosed herein. Such methods may involve contacting a target sequence with a composition, vector, nucleic acid, or RNA guide disclosed herein. Such methods may involve a method of editing a STMN2 sequence as disclosed herein. In some embodiments, a cell engineered using an RNA guide disclosed herein is used for ex vivo gene therapy.


IV. Therapeutic Applications


Any of the gene editing systems or modified cells generated using such a gene editing system as disclosed herein may be used for treating a disease that is associated with the STMN2 gene, for example, neurodegenerative diseases (e.g., amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD)). Any suitable delivery or administration method known in the art may be used to deliver compositions, vectors, nucleic acids, RNA guides and cells disclosed herein. Such methods may involve contacting a target sequence with a composition, vector, nucleic acid, or RNA guide disclosed herein. Such methods may involve a method of editing a STMN2 sequence as disclosed herein. In some embodiments, a cell engineered using an RNA guide disclosed herein is used for ex vivo gene therapy. In some embodiments, provided herein is a method for treating a target disease as disclosed herein (e.g., a neurodegenerative disease) comprising administering to a subject (e.g., a human patient) in need of the treatment any of the gene editing systems disclosed herein. The gene editing system may be delivered to a specific tissue or specific type of cells where the gene edit is needed. The gene editing system may comprise LNPs encompassing one or more of the components, one or more vectors (e.g., viral vectors) encoding one or more of the components, or a combination thereof. Components of the gene editing system may be formulated to form a pharmaceutical composition, which may further comprise one or more pharmaceutically acceptable carriers.


In some embodiments, modified cells produced using any of the gene editing systems disclosed herein may be administered to a subject (e.g., a human patient) in need of the treatment. The modified cells may comprise a substitution, insertion, and/or deletion described herein. In some examples, the modified cells may include a cell line modified by a CRISPR nuclease, reverse transcriptase polypeptide, and editing template RNA (e.g., RNA guide and RT donor RNA). In some instances, the modified cells may be a heterogenous population comprising cells with different types of gene edits. Alternatively, the modified cells may comprise a substantially homogenous cell population (e.g., at least 80% of the cells in the whole population) comprising one particular gene edit in the STMN2 gene. In some examples, the cells can be suspended in a suitable media.


In some embodiments, provided herein is a composition comprising the gene editing system or components thereof. Such a composition can be a pharmaceutical composition. A pharmaceutical composition that is useful may be prepared, packaged, or sold in a formulation suitable for oral, rectal, vaginal, parenteral, topical, pulmonary, intranasal, intra-lesional, buccal, ophthalmic, intravenous, intra-organ or another route of administration. A pharmaceutical composition of the disclosure may be prepared, packaged, or sold in bulk, as a single unit dose, or as a plurality of single unit doses. As used herein, a “unit dose” is discrete amount of the pharmaceutical composition (e.g., the gene editing system or components thereof), which would be administered to a subject or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.


A formulation of a pharmaceutical composition suitable for parenteral administration may comprise the active agent (e.g., the gene editing system or components thereof or the modified cells) combined with a pharmaceutically acceptable carrier, such as sterile water or sterile isotonic saline. Such a formulation may be prepared, packaged, or sold in a form suitable for bolus administration or for continuous administration. Some injectable formulations may be prepared, packaged, or sold in unit dosage form, such as in ampules or in multi-dose containers containing a preservative. Some formulations for parenteral administration include, but are not limited to, suspensions, solutions, emulsions in oily or aqueous vehicles, pastes, and implantable sustained-release or biodegradable formulations. Some formulations may further comprise one or more additional ingredients including, but not limited to, suspending, stabilizing, or dispersing agents.


The pharmaceutical composition may be in the form of a sterile injectable aqueous or oily suspension or solution. This suspension or solution may be formulated according to the known art, and may comprise, in addition to the cells, additional ingredients such as the dispersing agents, wetting agents, or suspending agents described herein. Such sterile injectable formulation may be prepared using a non-toxic parenterally-acceptable diluent or solvent, such as water or saline. Other acceptable diluents and solvents include, but are not limited to, Ringer's solution, isotonic sodium chloride solution, and fixed oils such as synthetic mono- or di-glycerides. Other parentally-administrable formulations which that are useful include those which may comprise the cells in a packaged form, in a liposomal preparation, or as a component of a biodegradable polymer system. Some compositions for sustained release or implantation may comprise pharmaceutically acceptable polymeric or hydrophobic materials such as an emulsion, an ion exchange resin, a sparingly soluble polymer, or a sparingly soluble salt.


V. Kits and Uses Thereof

The present disclosure also provides kits that can be used, for example, to carry out a method described herein for genetical modification of the STMN2 gene. In some embodiments, the kits include an RNA guide and a Cas12i polypeptide. In some embodiments, the kits include an RNA guide, a template DNA, and a Cas12i polypeptide. In some embodiments, the kits include a polynucleotide that encodes such a Cas12i polypeptide, and optionally the polynucleotide is comprised within a vector, e.g., as described herein. In some embodiments, the kits include a polynucleotide that encodes an RNA guide disclosed herein. The Cas12i polypeptide (or polynucleotide encoding the Cas12i polypeptide) and the RNA guide (e.g., as a ribonucleoprotein) can be packaged within the same or other vessel within a kit or can be packaged in separate vials or other vessels, the contents of which can be mixed prior to use.


The Cas12i polypeptide, the RNA guide, and the template DNA can be packaged within the same or other vessel within a kit or can be packaged in separate vials or other vessels, the contents of which can be mixed prior to use. The kits can additionally include, optionally, a buffer and/or instructions for use of the RNA guide, template DNA, and Cas12i polypeptide.


All references and publications cited herein are hereby incorporated by reference.


Additional Embodiments

Provided below are additional embodiments, which are also within the scope of the present disclosure.


Embodiment 1: A composition comprising an RNA guide, wherein the RNA guide comprises (i) a spacer sequence that is substantially complementary or complete complementary to a region on a non-PAM strand (the complementary sequence of a target sequence) within an STMN2 gene and (ii) a direct repeat sequence; wherein the target sequence is adjacent to a protospacer adjacent motif (PAM) comprising the sequence 5′-NTTN-3′.


In Embodiment 1, the target sequence may be within exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, or an intron of the STMN2 gene. In some examples, the STMN2 gene comprises the sequence of SEQ ID NO: 454, the reverse complement of SEQ ID NO: 454, a variant of SEQ ID NO: 454, or the reverse complement of a variant of SEQ ID NO: 454.


In Embodiment 1, the spacer sequence may comprise: (a) nucleotide 1 through nucleotide 16 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (b) nucleotide 1 through nucleotide 17 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (c) nucleotide 1 through nucleotide 18 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (d) nucleotide 1 through nucleotide 19 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; I nucleotide 1 through nucleotide 20 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (f) nucleotide 1 through nucleotide 21 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (g) nucleotide 1 through nucleotide 22 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (h) nucleotide 1 through nucleotide 23 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (i) nucleotide 1 through nucleotide 24 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (j) nucleotide 1 through nucleotide 25 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (k) nucleotide 1 through nucleotide 26 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (1) nucleotide 1 through nucleotide 27 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (m) nucleotide 1 through nucleotide 28 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (n) nucleotide 1 through nucleotide 29 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; or (o) nucleotide 1 through nucleotide 30 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502.


In any of the compositions of Embodiment 1, the spacer sequence may comprise: (a) nucleotide 1 through nucleotide 16 of any one of SEQ ID NOs: 229-446 or 2497-4502; (b) nucleotide 1 through nucleotide 17 of any one of SEQ ID NOs: 229-446 or 2497-4502; (c) nucleotide 1 through nucleotide 18 of any one of SEQ ID NOs: 229-446 or 2497-4502; (d) nucleotide 1 through nucleotide 19 of any one of SEQ ID NOs: 229-446 or 2497-4502; (e) nucleotide 1 through nucleotide 20 of any one of SEQ ID NOs: 229-446 or 2497-4502; (f) nucleotide 1 through nucleotide 21 of any one of SEQ ID NOs: 229-446 or 2497-4502; (g) nucleotide 1 through nucleotide 22 of any one of SEQ ID NOs: 229-446 or 2497-4502; (h) nucleotide 1 through nucleotide 23 of any one of SEQ ID NOs: 229-446 or 2497-4502; (i) nucleotide 1 through nucleotide 24 of any one of SEQ ID NOs: 229-446 or 2497-4502; (j) nucleotide 1 through nucleotide 25 of any one of SEQ ID NOs: 229-446 or 2497-4502; (k) nucleotide 1 through nucleotide 26 of any one of SEQ ID NOs: 229-446 or 2497-4502; (1) nucleotide 1 through nucleotide 27 of any one of SEQ ID NOs: 229-446 or 2497-4502; (m) nucleotide 1 through nucleotide 28 of any one of SEQ ID NOs: 229-446 or 2497-4502; (n) nucleotide 1 through nucleotide 29 of any one of SEQ ID NOs: 229-446 or 2497-4502; or (o) nucleotide 1 through nucleotide 30 of any one of SEQ ID NOs: 229-446 or 2497-4502.


In any of the compositions of Embodiment 1, the direct repeat sequence may comprise: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (o) nucleotide 1 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (p) nucleotide 2 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (q) nucleotide 3 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (r) nucleotide 4 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (s) nucleotide 5 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (t) nucleotide 6 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (u) nucleotide 7 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (v) nucleotide 8 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (w) nucleotide 9 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (x) nucleotide 10 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (y) nucleotide 11 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (z) nucleotide 12 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; or (aa) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 10 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (b) nucleotide 2 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (c) nucleotide 3 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (d) nucleotide 4 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (e) nucleotide 5 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (f) nucleotide 6 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (g) nucleotide 7 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (h) nucleotide 8 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (i) nucleotide 9 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (j) nucleotide 10 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (k) nucleotide 11 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (1) nucleotide 12 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (m) nucleotide 13 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (n) nucleotide 14 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (o) nucleotide 1 through nucleotide 34 of SEQ ID NO: 9; (p) nucleotide 2 through nucleotide 34 of SEQ ID NO: 9; (q) nucleotide 3 through nucleotide 34 of SEQ ID NO: 9; (r) nucleotide 4 through nucleotide 34 of SEQ ID NO: 9; (s) nucleotide 5 through nucleotide 34 of SEQ ID NO: 9; (t) nucleotide 6 through nucleotide 34 of SEQ ID NO: 9; (u) nucleotide 7 through nucleotide 34 of SEQ ID NO: 9; (v) nucleotide 8 through nucleotide 34 of SEQ ID NO: 9; (w) nucleotide 9 through nucleotide 34 of SEQ ID NO: 9; (x) nucleotide 10 through nucleotide 34 of SEQ ID NO: 9; (y) nucleotide 11 through nucleotide 34 of SEQ ID NO: 9; (z) nucleotide 12 through nucleotide 34 of SEQ ID NO: 9; or (aa) SEQ ID NO: 10 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; or (o) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 480 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (b) nucleotide 2 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (c) nucleotide 3 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (d) nucleotide 4 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (e) nucleotide 5 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (f) nucleotide 6 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (g) nucleotide 7 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (h) nucleotide 8 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (i) nucleotide 9 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (j) nucleotide 10 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (k) nucleotide 11 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (1) nucleotide 12 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (m) nucleotide 13 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (n) nucleotide 14 through nucleotide 36 of any one of SEQ ID NOs: 462-479; or (o) SEQ ID NO: 480 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; or (o) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 486 or SEQ ID NO: 487 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of SEQ ID NO: 485; (b) nucleotide 2 through nucleotide 36 of SEQ ID NO: 485; (c) nucleotide 3 through nucleotide 36 of SEQ ID NO: 485; (d) nucleotide 4 through nucleotide 36 of SEQ ID NO: 485; (e) nucleotide 5 through nucleotide 36 of SEQ ID NO: 485; (f) nucleotide 6 through nucleotide 36 of SEQ ID NO: 485; (g) nucleotide 7 through nucleotide 36 of SEQ ID NO: 485; (h) nucleotide 8 through nucleotide 36 of SEQ ID NO: 485; (i) nucleotide 9 through nucleotide 36 of SEQ ID NO: 485; (j) nucleotide 10 through nucleotide 36 of SEQ ID NO: 485; (k) nucleotide 11 through nucleotide 36 of SEQ ID NO: 485; (1) nucleotide 12 through nucleotide 36 of SEQ ID NO: 485; (m) nucleotide 13 through nucleotide 36 of SEQ ID NO: 485; (n) nucleotide 14 through nucleotide 36 of SEQ ID NO: 485; or (o) SEQ ID NO: 486 or SEQ ID NO: 487 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (o) nucleotide 15 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; or (p) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 490 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (b) nucleotide 2 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (c) nucleotide 3 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (d) nucleotide 4 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (e) nucleotide 5 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (f) nucleotide 6 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (g) nucleotide 7 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (h) nucleotide 8 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (i) nucleotide 9 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (j) nucleotide 10 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (k) nucleotide 11 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (1) nucleotide 12 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (m) nucleotide 13 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (n) nucleotide 14 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (o) nucleotide 15 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; or (p) SEQ ID NO: 490 or a portion thereof.


In some examples, the spacer sequence is substantially complementary to the complement of a sequence of any one of SEQ ID NOs: 11-228 or 491-2496.


In any of the composition of Embodiment 1, the PAM may comprise the sequence 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′.


In some examples, the target sequence is immediately adjacent to the PAM sequence.


In some examples, the RNA guide has a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 4505-4562.


In some examples, the RNA guide has the sequence of any one of SEQ ID NOs: 4505-4562.


Embodiment 2: The composition of Embodiment 1 may further comprise a Cas12i polypeptide or a polyribonucleotide encoding a Cas12i polypeptide, which can be one of the following: (a) a Cas12i2 polypeptide comprising a sequence that is at least 90% identical to the sequence of SEQ ID NO: 448, SEQ ID NO: 449, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 452, or SEQ ID NO: 453; (b) a Cas12i4 polypeptide comprising a sequence that is at least 90% identical to the sequence of SEQ ID NO: 482, SEQ ID NO: 483, or SEQ ID NO: 484; (c) a Cas12i1 polypeptide comprising a sequence that is at least 90% identical to the sequence of SEQ ID NO: 4503; or (d) a Cas12i3 polypeptide comprising a sequence that is at least 90% identical to the sequence of SEQ ID NO: 4504.


In specific examples, the Cas12i polypeptide is: (a) a Cas12i2 polypeptide comprising a sequence of SEQ ID NO: 448, SEQ ID NO: 449, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 452, or SEQ ID NO: 453; (b) a Cas12i4 polypeptide comprising a sequence of SEQ ID NO: 482, SEQ ID NO: 483, or SEQ ID NO: 484; (c) a Cas12i1 polypeptide comprising a sequence of SEQ ID NO: 4503; or (d) a Cas12i3 polypeptide comprising a sequence of SEQ ID NO: 4504.


In any of the compositions of Embodiment 2, the RNA guide and the Cas12i polypeptide may form a ribonucleoprotein complex. In some examples, the ribonucleoprotein complex binds a target nucleic acid. In some examples, the composition is present within a cell.


In any of the compositions of Embodiment 2, the RNA guide and the Cas12i polypeptide may be encoded in a vector, e.g., expression vector. In some examples, the RNA guide and the Cas12i polypeptide are encoded in a single vector. In other examples, the RNA guide is encoded in a first vector and the Cas12i polypeptide is encoded in a second vector.


Embodiment 3: A vector system comprising one or more vectors encoding an RNA guide disclosed herein and a Cas12i polypeptide. In some examples, the vector system comprises a first vector encoding an RNA guide disclosed herein and a second vector encoding a Cas12i polypeptide. The vectors may be expression vectors.


Embodiment 4: A composition comprising an RNA guide and a Cas12i polypeptide, wherein the RNA guide comprises (i) a spacer sequence that is substantially complementary or completely complementary to a region on a non-PAM strand (the complementary sequence of a target sequence) within an STMN2 gene, and (ii) a direct repeat sequence.


In some examples, the target sequence is within exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, or an intron of the STMN2 gene, which may comprise the sequence of SEQ ID NO: 454, the reverse complement of SEQ ID NO: 454, a variant of the sequence of SEQ ID NO: 454, or the reverse complement of a variant of SEQ ID NO: 454.


In some examples, the spacer sequence comprises: (a) nucleotide 1 through nucleotide 16 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (b) nucleotide 1 through nucleotide 17 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (c) nucleotide 1 through nucleotide 18 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (d) nucleotide 1 through nucleotide 19 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (e) nucleotide 1 through nucleotide 20 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (f) nucleotide 1 through nucleotide 21 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (g) nucleotide 1 through nucleotide 22 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (h) nucleotide 1 through nucleotide 23 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (i) nucleotide 1 through nucleotide 24 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (j) nucleotide 1 through nucleotide 25 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (k) nucleotide 1 through nucleotide 26 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (1) nucleotide 1 through nucleotide 27 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (m) nucleotide 1 through nucleotide 28 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (n) nucleotide 1 through nucleotide 29 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; or (o) nucleotide 1 through nucleotide 30 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502.


In some examples, the spacer sequence comprises: (a) nucleotide 1 through nucleotide 16 of any one of SEQ ID NOs: 229-446 or 2497-4502; (b) nucleotide 1 through nucleotide 17 of any one of SEQ ID NOs: 229-446 or 2497-4502; (c) nucleotide 1 through nucleotide 18 of any one of SEQ ID NOs: 229-446 or 2497-4502; (d) nucleotide 1 through nucleotide 19 of any one of SEQ ID NOs: 229-446 or 2497-4502; (e) nucleotide 1 through nucleotide 20 of any one of SEQ ID NOs: 229-446 or 2497-4502; (f) nucleotide 1 through nucleotide 21 of any one of SEQ ID NOs: 229-446 or 2497-4502; (g) nucleotide 1 through nucleotide 22 of any one of SEQ ID NOs: 229-446 or 2497-4502; (h) nucleotide 1 through nucleotide 23 of any one of SEQ ID NOs: 229-446 or 2497-4502; (i) nucleotide 1 through nucleotide 24 of any one of SEQ ID NOs: 229-446 or 2497-4502; (j) nucleotide 1 through nucleotide 25 of any one of SEQ ID NOs: 229-446 or 2497-4502; (k) nucleotide 1 through nucleotide 26 of any one of SEQ ID NOs: 229-446 or 2497-4502; (1) nucleotide 1 through nucleotide 27 of any one of SEQ ID NOs: 229-446 or 2497-4502; (m) nucleotide 1 through nucleotide 28 of any one of SEQ ID NOs: 229-446 or 2497-4502; (n) nucleotide 1 through nucleotide 29 of any one of SEQ ID NOs: 229-446 or 2497-4502; or (o) nucleotide 1 through nucleotide 30 of any one of SEQ ID NOs: 229-446 or 2497-4502.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SIQ ID NOs: 1-8; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (o) nucleotide 1 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (p) nucleotide 2 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (q) nucleotide 3 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (r) nucleotide 4 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (s) nucleotide 5 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (t) nucleotide 6 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (u) nucleotide 7 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (v) nucleotide 8 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (w) nucleotide 9 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (x) nucleotide 10 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (y) nucleotide 11 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (z) nucleotide 12 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; or (aa) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 10 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (b) nucleotide 2 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (c) nucleotide 3 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (d) nucleotide 4 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (e) nucleotide 5 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (f) nucleotide 6 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (g) nucleotide 7 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (h) nucleotide 8 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (i) nucleotide 9 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (j) nucleotide 10 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (k) nucleotide 11 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (1) nucleotide 12 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (m) nucleotide 13 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (n) nucleotide 14 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (o) nucleotide 1 through nucleotide 34 of SEQ ID NO: 9; (p) nucleotide 2 through nucleotide 34 of SEQ ID NO: 9; (q) nucleotide 3 through nucleotide 34 of SEQ ID NO: 9; (r) nucleotide 4 through nucleotide 34 of SEQ ID NO: 9; (s) nucleotide 5 through nucleotide 34 of SEQ ID NO: 9; (t) nucleotide 6 through nucleotide 34 of SEQ ID NO: 9; (u) nucleotide 7 through nucleotide 34 of SEQ ID NO: 9; (v) nucleotide 8 through nucleotide 34 of SEQ ID NO: 9; (w) nucleotide 9 through nucleotide 34 of SEQ ID NO: 9; (x) nucleotide 10 through nucleotide 34 of SEQ ID NO: 9; (y) nucleotide 11 through nucleotide 34 of SEQ ID NO: 9; (z) nucleotide 12 through nucleotide 34 of SEQ ID NO: 9; or (aa) SEQ ID NO: 10 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; or (o) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 480 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (b) nucleotide 2 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (c) nucleotide 3 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (d) nucleotide 4 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (e) nucleotide 5 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (f) nucleotide 6 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (g) nucleotide 7 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (h) nucleotide 8 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (i) nucleotide 9 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (j) nucleotide 10 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (k) nucleotide 11 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (1) nucleotide 12 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (m) nucleotide 13 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (n) nucleotide 14 through nucleotide 36 of any one of SEQ ID NOs: 462-479; or (o) SEQ ID NO: 480 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; or (o) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 486 or SEQ ID NO: 487 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of SEQ ID NO: 485; (b) nucleotide 2 through nucleotide 36 of SEQ ID NO: 485; (c) nucleotide 3 through nucleotide 36 of SEQ ID NO: 485; (d) nucleotide 4 through nucleotide 36 of SEQ ID NO: 485; (e) nucleotide 5 through nucleotide 36 of SEQ ID NO: 485; (f) nucleotide 6 through nucleotide 36 of SEQ ID NO: 485; (g) nucleotide 7 through nucleotide 36 of SEQ ID NO: 485; (h) nucleotide 8 through nucleotide 36 of SEQ ID NO: 485; (i) nucleotide 9 through nucleotide 36 of SEQ ID NO: 485; (j) nucleotide 10 through nucleotide 36 of SEQ ID NO: 485; (k) nucleotide 11 through nucleotide 36 of SEQ ID NO: 485; (1) nucleotide 12 through nucleotide 36 of SEQ ID NO: 485; (m) nucleotide 13 through nucleotide 36 of SEQ ID NO: 485; (n) nucleotide 14 through nucleotide 36 of SEQ ID NO: 485; or (o) SEQ ID NO: 486 or SEQ ID NO: 487 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (o) nucleotide 15 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; or (p) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 490 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (b) nucleotide 2 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (c) nucleotide 3 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (d) nucleotide 4 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (e) nucleotide 5 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (f) nucleotide 6 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (g) nucleotide 7 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (h) nucleotide 8 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (i) nucleotide 9 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (j) nucleotide 10 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (k) nucleotide 11 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (1) nucleotide 12 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (m) nucleotide 13 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (n) nucleotide 14 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (o) nucleotide 15 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; or (p) SEQ ID NO: 490 or a portion thereof.


In any of the compositions of Embodiment 4, the spacer sequence may be substantially complementary to the complement of a sequence of any one of SEQ ID NOs: 11-228 or 491-2496.


In some examples, the target sequence is adjacent to a protospacer adjacent motif (PAM) comprising the sequence 5′-NTTN-3′. In some examples, the PAM comprises the sequence 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′.


In some examples, the target sequence is immediately adjacent to the PAM sequence. In some examples, the target sequence is within 1, 2, 3, 4, or 5 nucleotides of the PAM sequence.


In any of the compositions of Embodiment 4, the Cas12i polypeptide is: (a) a Cas12i2 polypeptide comprising a sequence that is at least 90% identical to the sequence of SEQ ID NO: 448, SEQ ID NO: 449, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 452, or SEQ ID NO: 453; (b) a Cas12i4 polypeptide comprising a sequence that is at least 90% identical to the sequence of SEQ ID NO: 482, SEQ ID NO: 483, or SEQ ID NO: 484; (c) a Cas12i1 polypeptide comprising a sequence that is at least 90% identical to the sequence of SEQ ID NO: 4503; or (d) a Cas12i3 polypeptide comprising a sequence that is at least 90% identical to the sequence of SEQ ID NO: 4504.


In some examples, the Cas12i polypeptide is: (a) a Cas12i2 polypeptide comprising a sequence of SEQ ID NO: 448, SEQ ID NO: 449, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 452, or SEQ ID NO: 453; (b) a Cas12i4 polypeptide comprising a sequence of SEQ ID NO: 482, SEQ ID NO: 483, or SEQ ID NO: 484; (c) a Cas12i1 polypeptide comprising a sequence of SEQ ID NO: 4503; or (d) a Cas12i3 polypeptide comprising a sequence of SEQ ID NO: 4504.


In any of the composition of Embodiment 4, the RNA guide and the Cas12i polypeptide may form a ribonucleoprotein complex. In some examples, the ribonucleoprotein complex binds a target nucleic acid.


In any of the composition of Embodiment 4, the composition may be present within a cell.


In any of the composition of Embodiment 4, the RNA guide and the Cas12i polypeptide may be encoded in a vector, e.g., expression vector. In some examples, the RNA guide and the Cas12i polypeptide are encoded in a single vector. In other examples, the RNA guide is encoded in a first vector and the Cas12i polypeptide is encoded in a second vector.


Embodiment 5: A vector system comprising one or more vectors encoding an RNA guide disclosed herein and a Cas12i polypeptide. In some examples, the vector system comprises a first vector encoding an RNA guide disclosed herein and a second vector encoding a Cas12i polypeptide. In some examples, the vectors are expression vectors.


Embodiment 6: An RNA guide comprising (i) a spacer sequence that is substantially complementary or completely complementary to a region on a non-PAM strand (the complementary sequence of a target sequence) within an STMN2 gene, and (ii) a direct repeat sequence.


In some examples, the target sequence is within exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, or an intron of the STMN2 gene, which may comprise the sequence of SEQ ID NO: 454, the reverse complement of SEQ ID NO: 454, a variant of the sequence of SEQ ID NO: 454, or the reverse complement of a variant of SEQ ID NO: 454.


In some examples, the spacer sequence comprises: (a) nucleotide 1 through nucleotide 16 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (b) nucleotide 1 through nucleotide 17 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (c) nucleotide 1 through nucleotide 18 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (d) nucleotide 1 through nucleotide 19 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (e) nucleotide 1 through nucleotide 20 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (f) nucleotide 1 through nucleotide 21 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (g) nucleotide 1 through nucleotide 22 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (h) nucleotide 1 through nucleotide 23 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (i) nucleotide 1 through nucleotide 24 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (j) nucleotide 1 through nucleotide 25 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (k) nucleotide 1 through nucleotide 26 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (1) nucleotide 1 through nucleotide 27 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (m) nucleotide 1 through nucleotide 28 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; (n) nucleotide 1 through nucleotide 29 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502; or (o) nucleotide 1 through nucleotide 30 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 229-446 or 2497-4502.


In some examples, the spacer sequence comprises: (a) nucleotide 1 through nucleotide 16 of any one of SEQ ID NOs: 229-446 or 2497-4502; (b) nucleotide 1 through nucleotide 17 of any one of SEQ ID NOs: 229-446 or 2497-4502; (c) nucleotide 1 through nucleotide 18 of any one of SEQ ID NOs: 229-446 or 2497-4502; (d) nucleotide 1 through nucleotide 19 of any one of SEQ ID NOs: 229-446 or 2497-4502; (e) nucleotide 1 through nucleotide 20 of any one of SEQ ID NOs: 229-446 or 2497-4502; (f) nucleotide 1 through nucleotide 21 of any one of SEQ ID NOs: 229-446 or 2497-4502; (g) nucleotide 1 through nucleotide 22 of any one of SEQ ID NOs: 229-446 or 2497-4502; (h) nucleotide 1 through nucleotide 23 of any one of SEQ ID NOs: 229-446 or 2497-4502; (i) nucleotide 1 through nucleotide 24 of any one of SEQ ID NOs: 229-446 or 2497-4502; (j) nucleotide 1 through nucleotide 25 of any one of SEQ ID NOs: 229-446 or 2497-4502; (k) nucleotide 1 through nucleotide 26 of any one of SEQ ID NOs: 229-446 or 2497-4502; (1) nucleotide 1 through nucleotide 27 of any one of SEQ ID NOs: 229-446 or 2497-4502; (m) nucleotide 1 through nucleotide 28 of any one of SEQ ID NOs: 229-446 or 2497-4502; (n) nucleotide 1 through nucleotide 29 of any one of SEQ ID NOs: 229-446 or 2497-4502; or (o) nucleotide 1 through nucleotide 30 of any one of SEQ ID NOs: 229-446 or 2497-4502.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (o) nucleotide 1 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (p) nucleotide 2 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (q) nucleotide 3 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (r) nucleotide 4 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (s) nucleotide 5 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (t) nucleotide 6 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (u) nucleotide 7 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (v) nucleotide 8 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (w) nucleotide 9 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (x) nucleotide 10 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (y) nucleotide 11 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (z) nucleotide 12 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; or (aa) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 10 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (b) nucleotide 2 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (c) nucleotide 3 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (d) nucleotide 4 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (e) nucleotide 5 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (f) nucleotide 6 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (g) nucleotide 7 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (h) nucleotide 8 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (i) nucleotide 9 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (j) nucleotide 10 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (k) nucleotide 11 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (1) nucleotide 12 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (m) nucleotide 13 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (n) nucleotide 14 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (o) nucleotide 1 through nucleotide 34 of SEQ ID NO: 9; (p) nucleotide 2 through nucleotide 34 of SEQ ID NO: 9; (q) nucleotide 3 through nucleotide 34 of SEQ ID NO: 9; (r) nucleotide 4 through nucleotide 34 of SEQ ID NO: 9; (s) nucleotide 5 through nucleotide 34 of SEQ ID NO: 9; (t) nucleotide 6 through nucleotide 34 of SEQ ID NO: 9; (u) nucleotide 7 through nucleotide 34 of SEQ ID NO: 9; (v) nucleotide 8 through nucleotide 34 of SEQ ID NO: 9; (w) nucleotide 9 through nucleotide 34 of SEQ ID NO: 9; (x) nucleotide 10 through nucleotide 34 of SEQ ID NO: 9; (y) nucleotide 11 through nucleotide 34 of SEQ ID NO: 9; (z) nucleotide 12 through nucleotide 34 of SEQ ID NO: 9; or (aa) SEQ ID NO: 10 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; or (o) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 480 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (b) nucleotide 2 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (c) nucleotide 3 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (d) nucleotide 4 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (e) nucleotide 5 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (f) nucleotide 6 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (g) nucleotide 7 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (h) nucleotide 8 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (i) nucleotide 9 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (j) nucleotide 10 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (k) nucleotide 11 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (1) nucleotide 12 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (m) nucleotide 13 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (n) nucleotide 14 through nucleotide 36 of any one of SEQ ID NOs: 462-479; or (o) SEQ ID NO: 480 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; or (o) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 486 or SEQ ID NO: 487 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of SEQ ID NO: 485; (b) nucleotide 2 through nucleotide 36 of SEQ ID NO: 485; (c) nucleotide 3 through nucleotide 36 of SEQ ID NO: 485; (d) nucleotide 4 through nucleotide 36 of SEQ ID NO: 485; (e) nucleotide 5 through nucleotide 36 of SEQ ID NO: 485; (f) nucleotide 6 through nucleotide 36 of SEQ ID NO: 485; (g) nucleotide 7 through nucleotide 36 of SEQ ID NO: 485; (h) nucleotide 8 through nucleotide 36 of SEQ ID NO: 485; (i) nucleotide 9 through nucleotide 36 of SEQ ID NO: 485; (j) nucleotide 10 through nucleotide 36 of SEQ ID NO: 485; (k) nucleotide 11 through nucleotide 36 of SEQ ID NO: 485; (1) nucleotide 12 through nucleotide 36 of SEQ ID NO: 485; (m) nucleotide 13 through nucleotide 36 of SEQ ID NO: 485; (n) nucleotide 14 through nucleotide 36 of SEQ ID NO: 485; or (o) SEQ ID NO: 486 or SEQ ID NO: 487 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (o) nucleotide 15 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; or (p) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 490 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (b) nucleotide 2 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (c) nucleotide 3 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (d) nucleotide 4 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (e) nucleotide 5 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (f) nucleotide 6 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (g) nucleotide 7 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (h) nucleotide 8 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (i) nucleotide 9 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (j) nucleotide 10 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (k) nucleotide 11 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (1) nucleotide 12 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (m) nucleotide 13 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (n) nucleotide 14 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (o) nucleotide 15 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; or (p) SEQ ID NO: 490 or a portion thereof.


In any of the RNA guide of Embodiment 6, the spacer sequence may be substantially complementary to the complement of a sequence of any one of SEQ ID NOs: 11-228 or 491-2496.


In any of the RNA guide of Embodiment 6, the target sequence may be adjacent to a protospacer adjacent motif (PAM) comprising the sequence 5′-NTTN-3′, wherein N is any nucleotide. In some examples, the PAM comprises the sequence 5′-ATTA-3′, 5′-ATTT-3′, 5′-ATTG-3′, 5′-ATTC-3′, 5′-TTTA-3′, 5′-TTTT-3′, 5′-TTTG-3′, 5′-TTTC-3′, 5′-GTTA-3′, 5′-GTTT-3′, 5′-GTTG-3′, 5′-GTTC-3′, 5′-CTTA-3′, 5′-CTTT-3′, 5′-CTTG-3′, or 5′-CTTC-3′.


In some examples, the target sequence is immediately adjacent to the PAM sequence. In other examples, the target sequence is within 1, 2, 3, 4, or 5 nucleotides of the PAM sequence.


In some examples, the RNA guide has a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 4505-4562. In specific examples, the RNA guide has the sequence of any one of SEQ ID NOs: 4505-4562.


Embodiment 7: A nucleic acid encoding an RNA guide as described herein.


Embodiment 8: A vector comprising such an RNA guide as described herein.


Embodiment 9: A cell comprising a composition, an RNA guide, a nucleic acid, or a vector as described herein. In some examples, the cell is a eukaryotic cell, an animal cell, a mammalian cell, a human cell, a primary cell, a cell line, a stem cell, a neuron, or a T cell.


Embodiment 10: A kit comprising a composition, an RNA guide, a nucleic acid, or a vector as described herein.


Embodiment 11: A method of editing an STMN2 sequence, the method comprising contacting an STMN2 sequence with a composition or an RNA guide as described herein. In some examples, the method is carried out in vitro. In other examples, the method is carried out ex vivo.


In some examples, the STMN2 sequence is in a cell.


In some examples, the composition or the RNA guide induces a deletion in the STMN2 sequence. In some examples, the deletion is adjacent to a 5′-NTTN-3′ sequence, wherein N is any nucleotide. In some specific examples, the deletion is downstream of the 5′-NTTN-3′ sequence. In some specific examples, the deletion is up to about 40 nucleotides in length. In some instances, the deletion is from about 4 nucleotides to 40 nucleotides, about 4 nucleotides to 25 nucleotides, about 10 nucleotides to 25 nucleotides, or about 10 nucleotides to 15 nucleotides in length.


In some examples, the deletion starts within about 5 nucleotides to about 15 nucleotides, about 5 nucleotides to about 10 nucleotides, or about 10 nucleotides to about 15 nucleotides of the 5′-NTTN-3′ sequence.


In some examples, the deletion starts within about 5 nucleotides to about 15 nucleotides, about 5 nucleotides to about 10 nucleotides, or about 10 nucleotides to about 15 nucleotides downstream of the 5′-NTTN-3′ sequence.


In some examples, the deletion ends within about 20 nucleotides to about 30 nucleotides, about 20 nucleotides to about 25 nucleotides, or about 25 nucleotides to about 30 nucleotides of the 5′-NTTN-3′ sequence.


In some examples, the deletion ends within about 20 nucleotides to about 30 nucleotides, about 20 nucleotides to about 25 nucleotides, about 25 nucleotides to about 30 nucleotides downstream of the 5′-NTTN-3′ sequence.


In some examples, the deletion starts within about 5 nucleotides to about 15 nucleotides downstream of the 5′-NTTN-3′ sequence and ends within about 20 nucleotides to about 30 nucleotides downstream of the 5′-NTTN-3′ sequence.


In some examples, the deletion starts within about 5 nucleotides to about 15 nucleotides downstream of the 5′-NTTN-3′ sequence and ends within about 20 nucleotides to about 25 nucleotides downstream of the 5′-NTTN-3′ sequence.


In some examples, the deletion starts within about 5 nucleotides to about 15 nucleotides downstream of the 5′-NTTN-3′ sequence and ends within about 25 nucleotides to about 30 nucleotides downstream of the 5′-NTTN-3′ sequence.


In some examples, the deletion starts within about 5 nucleotides to about 10 nucleotides downstream of the 5′-NTTN-3′ sequence and ends within about 20 nucleotides to about 30 nucleotides downstream of the 5′-NTTN-3′ sequence.


In some examples, the deletion starts within about 5 nucleotides to about 10 nucleotides downstream of the 5′-NTTN-3′ sequence and ends within about 20 nucleotides to about 25 nucleotides downstream of the 5′-NTTN-3′ sequence.


In some examples, the deletion starts within about 5 nucleotides to about 10 nucleotides downstream of the 5′-NTTN-3′ sequence and ends within about 25 nucleotides to about 30 nucleotides downstream of the 5′-NTTN-3′ sequence.


In some examples, the deletion starts within about 10 nucleotides to about 15 nucleotides downstream of the 5′-NTTN-3′ sequence and ends within about 20 nucleotides to about 30 nucleotides downstream of the 5′-NTTN-3′ sequence.


In some examples, the deletion starts within about 10 nucleotides to about 15 nucleotides downstream of the 5′-NTTN-3′ sequence and ends within about 20 nucleotides to about 25 nucleotides downstream of the 5′-NTTN-3′ sequence.


In some examples, the deletion starts within about 10 nucleotides to about 15 nucleotides downstream of the 5′-NTTN-3′ sequence and ends within about 25 nucleotides to about 30 nucleotides downstream of the 5′-NTTN-3′ sequence.


In some examples, the 5′-NTTN-3′ sequence is 5′-CTTT-3′, 5′-CTTC-3′, 5′-GTTT-3′, 5′-GTTC-3′, 5′-TTTC-3′, 5′-GTTA-3′, or 5′-GTTG-3′.


In some examples, the deletion overlaps with a mutation in the STMN2 sequence. In some instances, the deletion overlaps with an insertion in the STMN2 sequence. In some instances, the deletion removes a repeat expansion of the STMN2 sequence or a portion thereof. In some instances, the deletion disrupts one or both alleles of the STMN2 sequence.


In any of the composition, RNA guide, nucleic acid, vector, cell, kit, or method of Embodiments 1-11 described herein, the RNA guide may comprise the sequence of any one of SEQ ID NOs: 4505-4562.


Embodiment 12: A method of treating neurodegenerative diseases (e.g., amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD)) in a subject, the method comprising administering a composition, an RNA guide, or a cell described herein to the subject.


In any of the compositions, RNA guides, cells, kits, or methods described herein, the RNA guide and/or the polyribonucleotide encoding the Cas12i polypeptide are comprised within a lipid nanoparticle. In some examples, the RNA guide and the polyribonucleotide encoding the Cas12i polypeptide are comprised within the same lipid nanoparticle. In other examples, the RNA guide and the polyribonucleotide encoding the Cas12i polypeptide are comprised within separate lipid nanoparticles.


Embodiment 13: An RNA guide comprising (i) a spacer sequence that is complementary to a target site within an STMN2 gene (the target site being on the non-PAM strand and complementary to a target sequence), and (ii) a direct repeat sequence.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 1-8; (o) nucleotide 1 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (p) nucleotide 2 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (q) nucleotide 3 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (r) nucleotide 4 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (s) nucleotide 5 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (t) nucleotide 6 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (u) nucleotide 7 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (v) nucleotide 8 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (w) nucleotide 9 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (x) nucleotide 10 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (y) nucleotide 11 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; (z) nucleotide 12 through nucleotide 34 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 9; or (aa) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 10 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (b) nucleotide 2 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (c) nucleotide 3 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (d) nucleotide 4 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (e) nucleotide 5 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (f) nucleotide 6 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (g) nucleotide 7 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (h) nucleotide 8 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (i) nucleotide 9 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (j) nucleotide 10 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (k) nucleotide 11 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (1) nucleotide 12 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (m) nucleotide 13 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (n) nucleotide 14 through nucleotide 36 of any one of SEQ ID NOs: 1-8; (o) nucleotide 1 through nucleotide 34 of SEQ ID NO: 9; (p) nucleotide 2 through nucleotide 34 of SEQ ID NO: 9; (q) nucleotide 3 through nucleotide 34 of SEQ ID NO: 9; (r) nucleotide 4 through nucleotide 34 of SEQ ID NO: 9; (s) nucleotide 5 through nucleotide 34 of SEQ ID NO: 9; (t) nucleotide 6 through nucleotide 34 of SEQ ID NO: 9; (u) nucleotide 7 through nucleotide 34 of SEQ ID NO: 9; (v) nucleotide 8 through nucleotide 34 of SEQ ID NO: 9; (w) nucleotide 9 through nucleotide 34 of SEQ ID NO: 9; (x) nucleotide 10 through nucleotide 34 of SEQ ID NO: 9; (y) nucleotide 11 through nucleotide 34 of SEQ ID NO: 9; (z) nucleotide 12 through nucleotide 34 of SEQ ID NO: 9; or (aa) SEQ ID NO: 10 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of any one of SEQ ID NOs: 462-479; or (o) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 480 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (b) nucleotide 2 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (c) nucleotide 3 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (d) nucleotide 4 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (e) nucleotide 5 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (f) nucleotide 6 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (g) nucleotide 7 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (h) nucleotide 8 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (i) nucleotide 9 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (j) nucleotide 10 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (k) nucleotide 11 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (1) nucleotide 12 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (m) nucleotide 13 through nucleotide 36 of any one of SEQ ID NOs: 462-479; (n) nucleotide 14 through nucleotide 36 of any one of SEQ ID NOs: 462-479; or (o) SEQ ID NO: 480 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to SEQ ID NO: 485; or (o) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 486 or SEQ ID NO: 487 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of SEQ ID NO: 485; (b) nucleotide 2 through nucleotide 36 of SEQ ID NO: 485; (c) nucleotide 3 through nucleotide 36 of SEQ ID NO: 485; (d) nucleotide 4 through nucleotide 36 of SEQ ID NO: 485; (e) nucleotide 5 through nucleotide 36 of SEQ ID NO: 485; (f) nucleotide 6 through nucleotide 36 of SEQ ID NO: 485; (g) nucleotide 7 through nucleotide 36 of SEQ ID NO: 485; (h) nucleotide 8 through nucleotide 36 of SEQ ID NO: 485; (i) nucleotide 9 through nucleotide 36 of SEQ ID NO: 485; (j) nucleotide 10 through nucleotide 36 of SEQ ID NO: 485; (k) nucleotide 11 through nucleotide 36 of SEQ ID NO: 485; (1) nucleotide 12 through nucleotide 36 of SEQ ID NO: 485; (m) nucleotide 13 through nucleotide 36 of SEQ ID NO: 485; (n) nucleotide 14 through nucleotide 36 of SEQ ID NO: 485; or (o) SEQ ID NO: 486 or SEQ ID NO: 487 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (b) nucleotide 2 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (c) nucleotide 3 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (d) nucleotide 4 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (e) nucleotide 5 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (f) nucleotide 6 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (g) nucleotide 7 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (h) nucleotide 8 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (i) nucleotide 9 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (j) nucleotide 10 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (k) nucleotide 11 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (1) nucleotide 12 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (m) nucleotide 13 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (n) nucleotide 14 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; (o) nucleotide 15 through nucleotide 36 of a sequence that is at least 90% identical to a sequence of SEQ ID NO: 488 or SEQ ID NO: 489; or (p) a sequence that is at least 90% identical to a sequence of SEQ ID NO: 490 or a portion thereof.


In some examples, the direct repeat sequence comprises: (a) nucleotide 1 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (b) nucleotide 2 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (c) nucleotide 3 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (d) nucleotide 4 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (e) nucleotide 5 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (f) nucleotide 6 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (g) nucleotide 7 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (h) nucleotide 8 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (i) nucleotide 9 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (j) nucleotide 10 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (k) nucleotide 11 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (1) nucleotide 12 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (m) nucleotide 13 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (n) nucleotide 14 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; (o) nucleotide 15 through nucleotide 36 of SEQ ID NO: 488 or SEQ ID NO: 489; or (p) SEQ ID NO: 490 or a portion thereof.


In some examples, each of the first three nucleotides of the RNA guide comprises a 2′ methyl phosphorothioate modification.


In some examples, each of the last four nucleotides of the RNA guide comprises a 2′ methyl phosphorothioate modification.


In some examples, each of the first to last, second to last, and third to last nucleotides of the RNA guide comprises a 2′-O-methyl phosphorothioate modification, and wherein the last nucleotide of the RNA guide is unmodified.


Embodiment 14: A nucleic acid encoding an RNA guide as described herein.


Embodiment 15: A vector comprising the nucleic acid as described herein.


Embodiment 16: A vector system comprising one or more vectors encoding (i) the RNA guide of Embodiment 13 as described herein and (ii) a Cas12i polypeptide. In some examples, the vector system comprises a first vector encoding the RNA guide and a second vector encoding the Cas12i polypeptide.


Embodiment 17: A cell comprising the RNA guide, the nucleic acid, the vector, or the vector system of Embodiments 13-16 as described herein. In some examples, the cell is a eukaryotic cell, an animal cell, a mammalian cell, a human cell, a primary cell, a cell line, a stem cell, a neuron, or a T cell.


Embodiment 18: A kit comprising the RNA guide, the nucleic acid, the vector, or the vector system of Embodiments 13-16 as described herein.


Embodiment 19: A method of editing an STMN2 sequence, the method comprising contacting an STMN2 sequence with an RNA guide of Embodiment 13 as described herein. In some examples, the STMN2 sequence is in a cell.


In some examples, the RNA guide induces an indel (e.g., an insertion or deletion) in the STMN2 sequence.


Embodiment 20: A method of treating neurodegenerative diseases (e.g., amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD)), in a subject, the method comprising administering the RNA guide of Embodiment 13 as described herein to the subject.


General Techniques

The practice of the present disclosure will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature, such as Molecular Cloning: A Laboratory Manual, second edition (Sambrook, et al., 1989) Cold Spring Harbor Press; Oligonucleotide Synthesis (M. J. Gait, ed. 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J. E. Cellis, ed., 1989) Academic Press; Animal Cell Culture (R. I. Freshney, ed. 1987); Introduction to Cell and Tissue Culture (J. P. Mather and P. E. Roberts, 1998) Plenum Press; Cell and Tissue Culture: Laboratory Procedures (A. Doyle, J. B. Griffiths, and D. G. Newell, eds. 1993-8) J. Wiley and Sons; Methods in Enzymology (Academic Press, Inc.); Handbook of Experimental Immunology (D. M. Weir and C. C. Blackwell, eds.): Gene Transfer Vectors for Mammalian Cells (J. M. Miller and M. P. Calos, eds., 1987); Current Protocols in Molecular Biology (F. M. Ausubel, et al. eds. 1987); PCR: The Polymerase Chain Reaction, (Mullis, et al., eds. 1994); Current Protocols in Immunology (J. E. Coligan et al., eds., 1991); Short Protocols in Molecular Biology (Wiley and Sons, 1999); Immunobiology (C. A. Janeway and P. Travers, 1997); Antibodies (P. Finch, 1997); Antibodies: a practice approach (D. Catty., ed., IRL Press, 1988-1989); Monoclonal antibodies: a practical approach (P. Shepherd and C. Dean, eds., Oxford University Press, 2000); Using antibodies: a laboratory manual (E. Harlow and D. Lane (Cold Spring Harbor Laboratory Press, 1999); The Antibodies (M. Zanetti and J. D. Capra, eds. Harwood Academic Publishers, 1995); DNA Cloning: A practical Approach, Volumes I and II (D. N. Glover ed. 1985); Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. (1985»; Transcription and Translation (B. D. Hames & S. J. Higgins, eds. (1984»; Animal Cell Culture (R. I. Freshney, ed. (1986»; Immobilized Cells and Enzymes (IRL Press, (1986»; and B. Perbal, A practical Guide To Molecular Cloning (1984); F. M. Ausubel et al. (eds.).


Without further elaboration, it is believed that one skilled in the art can, based on the above description, utilize the present disclosure to its fullest extent. The following specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the present disclosure in any way whatsoever. All publications cited herein are incorporated by reference for the purposes or subject matter referenced herein.


EXAMPLES

The following examples are provided to further illustrate some embodiments of the present disclosure but are not intended to limit the scope of the present disclosure; it will be understood by their exemplary nature that other procedures, methodologies, or techniques known to those skilled in the art may alternatively be used.


Example 1—Targeting of STMN2 Intron 1 by Variant Cas12i2

This Example describes indel assessment on multiple targets at the STMN2 gene in cells after transfection with plasmids coding for variant Cas12i2 (SEQ ID NO: 450) and RNA guides.


The variant Cas12i2 polypeptide was cloned into a plasmid comprising a CMV promoter. Fragments coding for RNA guides targeting the STMN2 intron 1 gene were cloned into a pUC19 backbone (New England Biolabs). The plasmids were then maxi-prepped and diluted. The crRNA, target, and PAM sequences are listed in Table 6.









TABLE 6







Mammalian targets and corresponding crRNAs.












Target
SEQ

SEQ

PAM


identifier
ID NO
crRNA sequence
ID NO
Target sequence
sequence





 1
4505
AGAAAUCCGUCUUUCAUU
4563
TGCCCCATCACTCTCTCT
TTC


or I1T1

GACGGUGCCCCAUCACUCU

TA





CUCUUA








 2
4506
AGAAAUCCGUCUUUCAUU
4564
ATTGGATTTTTAAAATTA
TTA


or I1T2

GACGGAUUGGAUUUUUAA

TA





AAUUAUA








 3
4507
AGAAAUCCGUCUUUCAUU
4565
GATTTTTAAAATTATATT
TTG


or I1T3

GACGGGAUUUUUAAAAUU

CA





AUAUUCA








 4
4508
AGAAAUCCGUCUUUCAUU
4566
TTAAAATTATATTCATAT
TTT


or I1T4

GACGGUUAAAAUUAUAUU

TG





CAUAUUG








 5
4509
AGAAAUCCGUCUUUCAUU
4567
TAAAATTATATTCATATT
TTT


or I1T5

GACGGUAAAAUUAUAUUC

GC





AUAUUGC








 6
4510
AGAAAUCCGUCUUUCAUU
4568
AAAATTATATTCATATTG
TTT


or I1T6

GACGGAAAAUUAUAUUCA

CA





UAUUGCA








 7
4511
AGAAAUCCGUCUUUCAUU
4569
AAATTATATTCATATTGC
TTA


or I1T7

GACGGAAAUUAUAUUCAU

AG





AUUGCAG








 8
4512
AGAAAUCCGUCUUUCAUU
4570
TATTCATATTGCAGGACT
TTA


or I1T8

GACGGUAUUCAUAUUGCA

CG





GGACUCG








 9
4513
AGAAAUCCGUCUUUCAUU
4571
ATATTGCAGGACTCGGC
TTC


or I1T9

GACGGAUAUUGCAGGACU

AGA





CGGCAGA








10
4514
AGAAAUCCGUCUUUCAUU
4572
CAGGACTCGGCAGAAGA
TTG


or I1T10

GACGGCAGGACUCGGCAG

CCT





AAGACCU








11
4515
AGAAAUCCGUCUUUCAUU
4573
GAGAGAAAGGTAGAAA
TTC


or I1T11

GACGGGAGAGAAAGGUAG

ATAA





AAAAUAA








12
4516
AGAAAUCCGUCUUUCAUU
4574
GGCTCTCTGTGTGAGCA
TTT


or I1T12

GACGGGGCUCUCUGUGUG

TGT





AGCAUGU








13
4517
AGAAAUCCGUCUUUCAUU
4575
GCTCTCTGTGTGAGCAT
TTG


or I1T13

GACGGGCUCUCUGUGUGA

GTG





GCAUGUG








14
4318
AGAAAUCCGUCUUUCAUU
4576
TGGCACAGTTGACAAGG
TTG


or I1T14

GACGGUGGCACAGUUGAC

ATG





AAGGAUG








15
4519
AGAAAUCCGUCUUUCAUU
4577
ACAAGGATGATAAATCA
TTG


or I1T15

GACGGACAAGGAUGAUAA

ATA





AUCAAUA








16
4520
AGAAAUCCGUCUUUCAUU
4578
CTATCATTTATGAATAGC
TTA


or I1T16

GACGGCUAUCAUUUAUGA

AA





AUAGCAA








17
4521
AGAAAUCCGUCUUUCAUU
4579
ATGAATAGCAATACTGA
TTT


or I1T17

GACGGAUGAAUAGCAAUA

AGA





CUGAAGA








18
4522
AGAAAUCCGUCUUUCAUU
4580
TGAATAGCAATACTGAA
TTA


or I1T18

GACGGUGAAUAGCAAUAC

GAA





UGAAGAA








19
4523
AGAAAUCCGUCUUUCAUU
4581
AAACAAAAGATTGCTGT
TTA


or I1T19

GACGGAAACAAAAGAUUG

CTC





CUGUCUC








20
4524
AGAAAUCCGUCUUUCAUU
4582
CTGTCTCAATATATCTTA
TTG


or I1T20

GACGGCUGUCUCAAUAUA

TA





UCUUAUA








21
4525
AGAAAUCCGUCUUUCAUU
4583
TATTTATTATTTACCAAA
TTA


or I1T21

GACGGUAUUUAUUAUUUA

TT





CCAAAUU








22
4526
AGAAAUCCGUCUUUCAUU
4584
AGGAAGAAATACTCTTA
TTC


or I1T22

GACGGAGGAAGAAAUACU

GAA





CUUAGAA








23
4527
AGAAAUCCGUCUUUCAUU
4585
GAATAATTTGGTAAATA
TTA


or I1T23

GACGGGAAUAAUUUGGUA

ATA





AAUAAUA








24
4528
AGAAAUCCGUCUUUCAUU
4586
GGTAAATAATAAATATA
TTT


or I1T24

GACGGGGUAAAUAAUAAA

AGA





UAUAAGA








25
4529
AGAAAUCCGUCUUUCAUU
4587
GTAAATAATAAATATAA
TTG


or I1T25

GACGGGUAAAUAAUAAAU

GAT





AUAAGAU








26
4530
AGAAAUCCGUCUUUCAUU
4588
AGACAGCAATCTTTTGTT
TTG


or I1T26

GACGGAGACAGCAAUCUU

TT





UUGUUUU








27
4531
AGAAAUCCGUCUUUCAUU
4589
TGTTTTAATTTCTTCAGT
TTT


or I1T27

GACGGUGUUUUAAUUUCU

AT





UCAGUAU








28
4532
AGAAAUCCGUCUUUCAUU
4590
GTTTTAATTTCTTCAGTA
TTT


or I1T28

GACGGGUUUUAAUUUCUU

TT





CAGUAUU








29
4533
AGAAAUCCGUCUUUCAUU
4591
TTTTAATTTCTTCAGTAT
TTG


or I1T29

GACGGUUUUAAUUUCUUC

TG





AGUAUUG








30
4534
AGAAAUCCGUCUUUCAUU
4592
TAATTTCTTCAGTATTGC
TTT


or I1T30

GACGGUAAUUUCUUCAGU

TA





AUUGCUA








31
4535
AGAAAUCCGUCUUUCAUU
4593
AATTTCTTCAGTATTGCT
TTT


or I1T31

GACGGAAUUUCUUCAGUA

AT





UUGCUAU








32
4536
AGAAAUCCGUCUUUCAUU
4594
ATTTCTTCAGTATTGCTA
TTA


or I1T32

GACGGAUUUCUUCAGUAU

TT





UGCUAUU








33
4537
AGAAAUCCGUCUUUCAUU
4595
CTTCAGTATTGCTATTCA
TTT


or I1T33

GACGGCUUCAGUAUUGCU

TA





AUUCAUA








34
4538
AGAAAUCCGUCUUUCAUU
4596
TTCAGTATTGCTATTCAT
TTC


or I1T34

GACGGUUCAGUAUUGCUA

AA





UUCAUAA








35
4539
AGAAAUCCGUCUUUCAUU
4597
AGTATTGCTATTCATAA
TTC


or I1T35

GACGGAGUAUUGCUAUUC

ATG





AUAAAUG








36
4540
AGAAAUCCGUCUUUCAUU
4598
CTATTCATAAATGATAG
TTG


or I1T36

GACGGCUAUUCAUAAAUG

TAA





AUAGUAA








37
4541
AGAAAUCCGUCUUUCAUU
4599
ATAAATGATAGTAAGCT
TTC


or I1T37

GACGGAUAAAUGAUAGUA

TGC





AGCUUGC








38
4542
AGAAAUCCGUCUUUCAUU
4600
CATTATTGATTTATCATC
TTG


or I1T38

GACGGCAUUAUUGAUUUA

CT





UCAUCCU








39
4543
AGAAAUCCGUCUUUCAUU
4601
TTGATTTATCATCCTTGT
TTA


or I1T39

GACGGUUGAUUUAUCAUC

CA





CUUGUCA








40
4544
AGAAAUCCGUCUUUCAUU
4602
ATTTATCATCCTTGTCAA
TTG


or I1T40

GACGGAUUUAUCAUCCUU

CT





GUCAACU








41
4545
AGAAAUCCGUCUUUCAUU
4603
ATCATCCTTGTCAACTGT
TTT


or I1T41

GACGGAUCAUCCUUGUCA

GC





ACUGUGC








42
4546
AGAAAUCCGUCUUUCAUU
4604
TCATCCTTGTCAACTGTG
TTA


or I1T42

GACGGUCAUCCUUGUCAA

CC





CUGUGCC








43
4547
AGAAAUCCGUCUUUCAUU
4605
TCAACTGTGCCACAAGC
TTG


or I1T43

GACGGUCAACUGUGCCAC

CGC





AAGCCGC








44
4548
AGAAAUCCGUCUUUCAUU
4606
ACATTCATTTCTTCTTAG
TTC


or I1T44

GACGGACAUUCAUUUCUU

GC





CUUAGGC








45
4549
AGAAAUCCGUCUUUCAUU
4607
ATTTCTTCTTAGGCAGGC
TTC


or I1T45

GACGGAUUUCUUCUUAGG

TG





CAGGCUG








46
4550
AGAAAUCCGUCUUUCAUU
4608
CTTCTTAGGCAGGCTGTC
TTT


or I1T46

GACGGCUUCUUAGGCAGG

TG





CUGUCUG








47
4551
AGAAAUCCGUCUUUCAUU
4609
TTCTTAGGCAGGCTGTCT
TTC


or I1T47

GACGGUUCUUAGGCAGGC

GT





UGUCUGU








48
4552
AGAAAUCCGUCUUUCAUU
4610
TTAGGCAGGCTGTCTGT
TTC


or I1T48

GACGGUUAGGCAGGCUGU

CTC





CUGUCUC








49
4553
AGAAAUCCGUCUUUCAUU
4611
GGCAGGCTGTCTGTCTCT
TTA


or I1T49

GACGGGGCAGGCUGUCUG

CT





UCUCUCU








50
4554
AGAAAUCCGUCUUUCAUU
4612
TTATTTTCTACCTTTCTC
TTC


or I1T50

GACGGUUAUUUUCUACCU

TC





UUCUCUC








51
4555
AGAAAUCCGUCUUUCAUU
4613
TTTTCTACCTTTCTCTCG
TTA


or I1T51

GACGGUUUUCUACCUUUC

AA





UCUCGAA








52
4556
AGAAAUCCGUCUUUCAUU
4614
TCTACCTTTCTCTCGAAG
TTT


or I1T52

GACGGUCUACCUUUCUCUC

GT





GAAGGU








53
4557
AGAAAUCCGUCUUUCAUU
4615
CTACCTTTCTCTCGAAGG
TTT


or I1T53

GACGGCUACCUUUCUCUCG

TC





AAGGUC








54
4558
AGAAAUCCGUCUUUCAUU
4616
TACCTTTCTCTCGAAGGT
TTC


or I1T54

GACGGUACCUUUCUCUCG

CT





AAGGUCU








55
4559
AGAAAUCCGUCUUUCAUU
4617
CTCTCGAAGGTCTTCTGC
TTT


or I1T55

GACGGCUCUCGAAGGUCU

CG





UCUGCCG








56
4560
AGAAAUCCGUCUUUCAUU
4618
TCTCGAAGGTCTTCTGCC
TTC


or I1T56

GACGGUCUCGAAGGUCUU

GA





CUGCCGA








57
4561
AGAAAUCCGUCUUUCAUU
4619
TGCCGAGTCCTGCAATA
TTC


or I1T57

GACGGUGCCGAGUCCUGC

TGA





AAUAUGA








58
4562
AGAAAUCCGUCUUUCAUU
4620
TAAAAATCCAATTAAGA
TTT


or I1T58

GACGGUAAAAAUCCAAUU

GAG





AAGAGAG









Approximately 16 hours prior to transfection, 25,000 HEK293T cells in DMEM/10% FBS+Pen/Strep (D10 media) were plated into each well of a 96-well plate. On the day of transfection, the cells were 70-90% confluent. For each well to be transfected, a mixture of LIPOFECTAMINE® 2000 transfection reagent (ThermoFisher) and Opti-MEM® reduced serum medium (ThermoFisher) was prepared and incubated at room temperature for 5 minutes (Solution 1). After incubation, the LIPOFECTAMINE® 2000:Opti-MEM® (transfection reagent (ThermoFisher):reduced serum medium (ThermoFisher)) mixture was added to a separate mixture containing nuclease plasmid, RNA guide plasmid, and Opti-MEM® reduced serum medium (ThermoFisher) (Solution 2). In the case of negative controls, the RNA guide plasmid was not included in Solution 2. Solution 1 and 2 were pipette mixed 8 times, then incubated at room temperature for 25 minutes. Following incubation, the Solution 1 and 2 mixture was added dropwise to each well of a 96-well plate containing the cells. 72 hours post transfection, cells were trypsinized by adding TRYPLE™ (recombinant cell-dissociation enzymes; ThermoFisher) to the center of each well and incubating at 37° C. for approximately 5 minutes. D10 media was then added to each well and mixed to resuspend cells. The resuspended cells were centrifuged at 500×g for 10 minutes to obtain a pellet, and the supernatant was discarded. QUICKEXTRACT™ (DNA extraction solution; Lucigen) extraction reagent was added to each well to lyse pelleted cells. Cells were incubated at 65° C. for 15 minutes, 68° C. for 15 minutes, and 98° C. for 10 minutes.


Samples for NGS were prepared by two rounds of PCR. The first round (PCR1) was used to amplify specific genomic regions depending on the target. Round 2 PCR (PCR2) was performed to add Illumina adapters and indices. Reactions were then pooled and purified by column purification. Sequencing runs were done with a 300 Cycle NEXTSEQ™ (Illumina) 500/550 High Output v2.5 Kit.


As shown in FIG. 1, RNA guides 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, and 58 all resulted in measurable indel activity, defined as >1% and >0.2% above the background rate for the no-RNA guide control.


RNA guides 4, 8, 55, and 57 resulted in >15% disruption of the cryptic splice site in intron 1 (FIG. 2A), where disruption is defined as an insertion or deletion at one or more bases of the cryptic splice site. 97% of the indels generated by RNA guide 4 resulted in disruption of the cryptic splice site in intron 1, where disruption is defined as an insertion or deletion at one or more bases of the cryptic splice site.


RNA guides 12, 46, 47, 48, and 49 resulted in >15% disruption of at least one of 3 TDP-43 binding motifs in intron 1 (FIG. 2B), where disruption is defined as an insertion or deletion at one or more bases of a TDP-43 binding motif. 97% of the indels generated by RNA guide 12 resulted in disruption of at least one of 3 TDP-43 binding motifs in intron 1, where disruption is defined as an insertion or deletion at one or more bases of a TDP-43 binding motif.


RNA guides 17 and 18 resulted in >15% disruption of the premature polyadenylation signal in intron 1 (FIG. 2C), where disruption is defined as an insertion or deletion at one or more bases of the polyadenylation signal. 88% of the indels generated by RNA guide 17 resulted in disruption of the premature polyadenylation signal at intron 1, where disruption is defined as an insertion or deletion at one or more bases of the premature polyadenylation site. 93% of the indels generated by RNA guide 18 resulted in disruption of the premature polyadenylation signal at intron 1, where disruption is defined as an insertion or deletion at one or more bases of the premature polyadenylation site.



FIG. 3 depicts the positions where each of the RNA guides binds intron 1 of STMN2 relative to the positions of the cryptic splice site, the TDP-43 binding motifs, and the premature polyadenylation signal. The darker grey reflects RNA guides demonstrating indels in greater than 30% of NGS reads, and the lighter grey reflects RNA guides demonstrating indels in less than 30% of NGS read. This Example thus shows that Cas12i2 guides edited intron 1 of STMN2 and were able to disrupt the cryptic splice site, TDP-43 binding motifs, and premature polyadenylation signals.


Example 2—Targeting of STMN2 Intron 1 by Variant Cas12i2 in SH-SY % Y Cells

This Example describes indel assessment on multiple targets at the STMN2 gene in a neuroblastoma cell line after transfection with plasmids coding for variant Cas12i2 (SEQ ID NO: 450) and RNA guides targeting the cryptic splice site of intron 1.


The variant Cas12i2 polypeptide and RNA guides 4, 5, 8, 9, 55, 56, 57, and 58 of Table 6 were cloned, purified, and diluted as described in Example 1. Approximately 16 hours prior to transfection, 25,000 SH-SY5Y cells in EMEM:F12/10% FBS+Pen/Strep (EF12-10 media) were plated into each well of a 96-well plate. On the day of transfection, the cells were 70-90% confluent. For each well to be transfected, a mixture of LIPOFECTAMINE® 2000 transfection reagent (ThermoFisher) and Opti-MEM® reduced serum medium (ThermoFisher) was prepared and incubated at room temperature for 5 minutes (Solution 1). After incubation, the LIPOFECTAMINE® 2000:Opti-MEM® (transfection reagent (ThermoFisher):reduced serum medium (ThermoFisher)) mixture was added to a separate mixture containing nuclease plasmid, RNA guide plasmid, and Opti-MEM® reduced serum medium (ThermoFisher) (Solution 2). In the case of negative controls, the RNA guide plasmid was not included in Solution 2. Solution 1 and 2 were pipette mixed 8 times, then incubated at room temperature for 25 minutes. Following incubation, the Solution 1 and 2 mixture was added dropwise to each well of a 96-well plate containing the cells. 72 hours post transfection, cells were trypsinized by adding TRYPLE™ (recombinant cell-dissociation enzymes; ThermoFisher) to the center of each well and incubating at 37° C. for approximately 5 minutes. EF12-10 media was then added to each well and mixed to resuspend cells. The resuspended cells were centrifuged at 500×g for 10 minutes to obtain a pellet, and the supernatant was discarded. QUICKEXTRACT™ (DNA extraction solution; Lucigen) extraction reagent was added to each well to lyse pelleted cells. Cells were incubated at 65° C. for 15 minutes, 68° C. for 15 minutes, and 98° C. for 10 minutes.


Samples for NGS were prepared by two rounds of PCR. The first round (PCR1) was used to amplify specific genomic regions depending on the target. Round 2 PCR (PCR2) was performed to add Illumina adapters and indices. Reactions were then pooled and purified by column purification. Sequencing runs were done with a 300 Cycle NEXTSEQ™ (Illumina) 500/550 High Output v2.5 Kit.



FIG. 4 shows indel activity of the tested RNA guides in SH-SY5Y cells. Guide 4 showed 0.56% splice site motif disruption and 2.0% overall editing; greater than 25% of total edits disrupted the splice site. Guide 5 showed 0.12% splice site motif disruption and 1.5% overall editing; less than 10% of total edits disrupted the splice site. Guide 8 showed 0.62% splice site motif disruption and 2.4% overall editing; greater than 25% of total edits disrupted the splice site. Guide 9 showed 0.34% splice site motif disruption and 3.8% overall editing; less than 10% of total edits disrupted the splice site. Guide 55 showed 2.2% splice site motif disruption and 4.9% overall editing; greater than 40% of total edits disrupted the splice site. Guide 56 showed 2.3% splice site motif disruption and 4.9% overall editing; greater than 45% of total edits disrupted the splice site. Guide 57 showed 0% splice site motif disruption and 1.6% overall editing. Guide 58 showed 0.49% splice site motif disruption and 3.3% overall editing; greater than 10% of total edits disrupted the splice site.



FIG. 5A is a plot comparing indel activity (% indels) demonstrated in HEK293T cells and SH-SY5Y cells from Example 1 and Example 2, respectively. FIG. 5B is a plot comparing splice site motif disruption demonstrated in HEK293T cells and SH-SY5Y cells from Example 1 and Example 2, respectively. As shown in FIG. 5A, Guide 55 and Guide 9 demonstrated the highest % indels across the two cell types. Guide 56 demonstrated the highest % indels in SH-SY5Y cells but low % indels in HEK293T cells. Guide 55 resulted in the highest splice site motif disruption in the two cell types as well (FIG. 5B).


This Example thus shows that the cryptic splice site of intron 1 of STMN2 is capable of being targeted by Cas12i2 and multiple RNA guides in multiple cell types.


Other Embodiments

All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, each feature disclosed is only an example of a generic series of equivalent or similar features.


From the above description, one skilled in the art can easily ascertain the essential characteristics of the present disclosure, and without departing from the spirit and scope thereof, can make various changes and modifications of the present disclosure to adapt it to various usages and conditions. Thus, other embodiments are also within the claims.


EQUIVALENTS

While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.


All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.


All references, patents and patent applications disclosed herein are incorporated by reference with respect to the subject matter for which each is cited, which in some cases may encompass the entirety of the document.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.

Claims
  • 1. A gene editing system for genetic editing of a stathmin 2 (STMN2) gene, comprising (i) a Cas12i2 polypeptide or a first nucleic acid encoding the Cas12i2 polypeptide, wherein the Cas12i2 polypeptide comprises an amino acid sequence at least 95% identical to SEQ ID NO: 448 and comprises one or more mutations relative to SEQ ID NO: 448; and(ii) an RNA guide or a second nucleic acid encoding the RNA guide, wherein the RNA guide comprises a spacer sequence specific to a target sequence within an STMN2 gene, the target sequence being adjacent to a protospacer adjacent motif (PAM) comprising the motif of 5′-TTN-3′, which is located 5′ to the target sequence.
  • 2. The gene editing system of claim 1, wherein the one or more mutations in the Cas12i2 polypeptide are at positions D581, G624, F626, P868, 1926, V1030, E1035, and/or S1046 of SEQ ID NO: 448.
  • 3. The gene editing system of claim 2, wherein the one or more mutations are amino acid substitutions, which is D581R, G624R, F626R, P868T, I926R, V1030G, E1035R, 51046G, or a combination thereof.
  • 4. The gene editing system of claim 3, wherein the Cas12i2 polypeptide comprises: (i) mutations at positions D581, D911, 1926, and V1030, which optionally are amino acid substitutions of D581R, D911R, I926R, and V1030G;(ii) mutations at positions D581, 1926, and V1030, which optionally are amino acid substitutions of D581R, I926R, and V1030G;(iii) mutations at positions D581, 1926, V1030, and S1046, which optionally are amino acid substitutions of D581R, I926R, V1030G, and 51046G;(iv) mutations at positions D581, G624, F626, 1926, V1030, E1035, and 51046, which optionally are amino acid substitutions of D581R, G624R, F626R, I926R, V1030G, E1035R, and 51046G; or(v) mutations at positions D581, G624, F626, P868, 1926, V1030, E1035, and S1046, which optionally are amino acid substitutions of D581R, G624R, F626R, P868T, I926R, V1030G, E1035R, and 51046G.
  • 5. The gene editing system of claim 1, wherein the Cas12i2 polypeptide comprises the amino acid sequence of SEQ ID NO: 449, 450, 451, 452, or 453.
  • 6. The gene editing system of claim 1, which comprises the first nucleic acid encoding the Cas12i2 polypeptide.
  • 7. The gene editing system of claim 6, wherein the first nucleic acid is a messenger RNA (mRNA), or wherein the first nucleic acid is included in a viral vector.
  • 8. (canceled)
  • 9. The gene editing system of claim 1, wherein the target sequence is within exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, or an intron of the STMN2 gene, and/or wherein the RNA guide comprises the sequence of any one of SEQ ID NOs: 4508, 4512, 4559, and 4561.
  • 10. (canceled)
  • 11. The gene editing system of claim 1, wherein the RNA guide comprises the sequence of any one of SEQ ID NOs: 4505, 4506, 4507, 4508, 4509, 4510, 4511, 4512, 4513, 4514, 4515, 4554, 4555, 4556, 4557, 4558, 4559, 4560, 4561, and 4562, or the second nucleic acid encodes an RNA guide comprising any one of SEQ ID NOs: 4505, 4506, 4507, 4508, 4509, 4510, 4511, 4512, 4513, 4514, 4515, 4554, 4555, 4556, 4557, 4558, 4559, 4560, 4561, and 4562.
  • 12. (canceled)
  • 13. The gene editing system of claim 1, wherein the RNA guide comprises the spacer sequence and a direct repeat sequence, wherein the direct repeat sequence is at least 90% identical to any one of SEQ ID NOs: 1-10 or a fragment thereof that is at least 23-nucleotides in length.
  • 14-16. (canceled)
  • 17. The gene editing system of claim 13, wherein the direct repeat sequence is 5′-AGAAAUCCGUCUUUCAUUGACGG-3′ (SEQ ID NO: 10).
  • 18. The gene editing system of claim 1, wherein the system comprises the second nucleic acid encoding the RNA guide, wherein the second nucleic acid encoding the RNA guide is located in a viral vector.
  • 19. (canceled)
  • 20. The gene editing system of claim 7, wherein the viral vector comprises the both the first nucleic acid encoding the Cas12i2 polypeptide and the second nucleic acid encoding the RNA guide.
  • 21. The gene editing system of claim 1, wherein the system comprises the first nucleic acid encoding the Cas12i2 polypeptide, which is located on a first vector, and wherein the system comprises the second nucleic acid encoding the RNA guide, which is located on a second vector.
  • 22. The gene editing system of claim 21, wherein the first and second vector are the same vector.
  • 23-25. (canceled)
  • 26. A gene editing system for genetic editing of a stathmin 2 (STMN2) gene, comprising (i) a Cas12i polypeptide or a first nucleic acid encoding the Cas12i polypeptide, optionally wherein the Cas12i polypeptide is a Cas12i2 polypeptide; and(ii) an RNA guide or a second nucleic acid encoding the RNA guide, wherein the RNA guide comprises a spacer sequence specific to a target sequence within exon 1, exon 2, exon 3, exon 4, exon 5, exon 6, exon 7, or an intron of a STMN2 gene, the target sequence being adjacent to a protospacer adjacent motif (PAM) comprising the motif of 5′-TTN-3′, which is located 5′ to the target sequence.
  • 27-44. (canceled)
  • 45. A pharmaceutical composition comprising the gene editing system of claim 1.
  • 46. A kit comprising the elements (i) and (ii) of the gene editing system of claim 1.
  • 47. A method for editing a stathmin 2 (STMN2) gene in a cell, the method comprising contacting a host cell with the gene editing system for editing the STMN2 gene of claim 1 to genetically edit the STMN2 gene in the host cell.
  • 48-49. (canceled)
  • 50. A cell comprising a disrupted stathmin 2 (STMN2) gene, wherein the cell optionally is produced by contacting a host cell with the gene editing system of claim 1 to genetically edit the STMN2 gene in the host cell, thereby disrupting the STMN2 gene.
  • 51. A method for treating neurodegenerative diseases in a subject, comprising administering to a subject in need thereof the gene editing system for editing a stathmin 2 (STMN2) gene of claim 1 or the cell of claim 50.
  • 52-53. (canceled)
  • 54. An RNA guide, comprising (i) a spacer sequence that is specific to a target sequence in a stathmin 2 (STMN2) gene, wherein the target sequence is adjacent to a protospacer adjacent motif (PAM) comprising the motif of 5′-TTN-3′, which is located 5′ to the target sequence; and (ii) a direct repeat sequence.
  • 55-62. (canceled)
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 63/231,784, filed Aug. 11, 2021, and U.S. Provisional Application No. 63/322,002, filed Mar. 21, 2022, the contents of each of which are incorporated by reference herein in their entirety.

Provisional Applications (2)
Number Date Country
63322002 Mar 2022 US
63231784 Aug 2021 US