GENE EXPRESSION ASSAY FOR MEASUREMENT OF DNA MISMATCH REPAIR DEFICIENCY

Information

  • Patent Application
  • 20240327931
  • Publication Number
    20240327931
  • Date Filed
    June 14, 2024
    6 months ago
  • Date Published
    October 03, 2024
    2 months ago
  • Inventors
  • Original Assignees
    • Bruker Spatial Biology, Inc. (Billerica, MA, US)
Abstract
The present disclosure relates to methods using gene expression measurements to identify mismatch repair deficiency, microsatellite instability and hypermutation in a subject.
Description
SEQUENCE LISTING

The Sequence Listing XML associated with this application is provided electronically in XML file format and is hereby incorporated by reference into the specification. The name of the XML file containing the Sequence Listing is “NATE-038_D01US_SeqList.xml”. The XML file is 177,331 bytes in size, created on Jun. 13, 2024, and is being submitted electronically via USPTO Patent Center.


BACKGROUND OF THE INVENTION

There are currently a variety of methods for identifying mismatch repair deficiency, microsatellite instability and hypermutation in tumor samples from a subject. Current methods rely on PCR and immunohistochemistry. These methods require a large tumor sample, are costly, and are time-intensive. Importantly, whether a subject will respond to and receive a clinical benefit from checkpoint inhibitors, e.g. drugs that target PD-1 or PD-L1, can be predicted based on the presence of mismatch repair deficiency, microsatellite instability and hypermutation. Thus, there is a need in the art for methods of identifying mismatch repair deficiency, microsatellite instability and hypermutation that are rapid, specific, and accurate, and that require smaller tumor samples. The present disclosure addresses these needs.


SUMMARY OF THE INVENTION

The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three gene are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) comparing the MLS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and e) producing a report identifying the presence of mismatch repair deficiency in the subject when the MLS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the MLS score is less than the predetermined cutoff value.


The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three gene are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) comparing the MLS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and e) identifying the presence of mismatch repair deficiency in the subject when the MLS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the MLS score is less than the predetermined cutoff value.


The predetermined cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99%. Alternatively, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. The predetermined cutoff value can be 1.645, 2.326, or 2.576.


The at least one gene in step (a) can comprise MLH1. Alternatively, the at least one gene in step (a) can comprise each of MLH1, MSH2, MSH6 and PMS2.


The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; b) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) comparing the HPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and d) producing a report identifying the presence of mismatch repair deficiency in the subject when the HPS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the HPS score is less than the predetermined cutoff value.


The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; b) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) comparing the HPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and d) identifying the presence of mismatch repair deficiency in the subject when the HPS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the HPS score is less than the predetermined cutoff value.


The prespecified weight for gene i, wi, in step (b) can be:
















Gene
Weight



















EPM2AIP1
−0.31218



TTC30A
−0.19894



SMAP1
−0.1835



RNLS
−0.19023



WNT11
−0.11515



SFXN1
0.214676



SREBF1
0.194835



TYMS
0.206972



EIF5AL1
0.194935



WDR76
0.188582










The predetermined cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99%. Alternatively, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. The cutoff value can be 1.645, 2.326, or 2.576.


The at least one gene in step (a) can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, and WDR76.


The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three genes are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; e) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; f) determining a score MPS wherein MPS=(max(HPS,0)2+min(MLS,0)2)1/2; g) comparing the MPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and h) producing a report identifying the presence of mismatch repair deficiency in the subject when the MPS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the MPS score is less than the predetermined cutoff value.


The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three genes are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; e) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; f) determining a score MPS wherein MPS=(max(HPS,0)2+min(MLS,0)2)1/2; g) comparing the MPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and h) identifying the presence of mismatch repair deficiency in the subject when the MPS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the MPS score is less than the predetermined cutoff value.


The prespecified weight for gene i, wi, in step (e) can be















Gene
Weight


















EPM2AIP1
−0.31218



TTC30A
−0.19894



SMAP1
−0.1835



RNLS
−0.19023



WNT11
−0.11515



SFXN1
0.214676



SREBF1
0.194835



TYMS
0.206972



EIF5AL1
0.194935



WDR76
0.188582









The predetermined cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99%. Alternatively, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. The cutoff value can be 2.058, 2.699, or 2.939.


The at least one gene in step (a) can comprise MLH1. Alternatively, the at least one gene in step (a) can comprise each of MLH1, MSH2, MSH6 and PMS2.


The at least one gene in step (d) can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76.


The at least one gene in step (a) can comprise MLH1 and the at least one gene in step (d) can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76. Alternatively, the at least one gene in step (a) can comprise each of MLH1, MSH2, MSH6 and PMS2 and the at least one gene in step (d) can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76.


A subject can be diagnosed with cancer.


A report identifying mismatch repair deficiency can further identify the subject as having cancer.


A report identifying the presence of mismatch repair deficiency can further identify the subject for treatment with an anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. A treatment can comprise administering to the subject checkpoint inhibitors. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. The CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


The methods of the present disclosure can further comprise determining a tumor inflammation signature score.


Any of the above aspects can be combined with any other aspect.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In the Specification, the singular forms also include the plural unless the context clearly dictates otherwise; as examples, the terms “a,” “an,” and “the” are understood to be singular or plural and the term “or” is understood to be inclusive. By way of example, “an element” means one or more element. Throughout the specification the word “comprising,” or variations such as “comprises” or “comprising,” will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from the context, all numerical values provided herein are modified by the term “about.”


Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. The references cited herein are not admitted to be prior art to the claimed invention. In the case of conflict, the present Specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting. Other features and advantages of the disclosure will be apparent from the following detailed description and claim.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further features will be more clearly appreciated from the following detailed description when taken in conjunction with the accompanying drawings.



FIG. 1 is a series of graphs that shows the expression level of certain mismatch repair genes plotted against mutation load and microsatellite instability status in four different cancer types.



FIG. 2 is a series of volcano plots that shows that particular genes are positively and negatively associated with hypermutation in three different cancer types.



FIG. 3 is a series of graphs that shows the methods of the present disclosure can accurately predict microsatellite instability status in a tumor sample.



FIG. 4 is a series of box plots that shows the relationship between the expression of four mismatch repair genes and microsatellite instability in validation samples of two different cancer types.



FIG. 5 is a series of graphs that shows the performance of the methods of the present disclosure in determining microsatellite instability status in validation samples of two different cancer types.



FIG. 6 is a series of graphs showing the results of the methods of the present disclosure plotted against tumor inflammation signature score and microsatellite instability status.





DETAILED DESCRIPTION OF THE INVENTION

The present disclosure provides methods that identify mismatch repair deficiency, hypermutation, and microsatellite instability in a subject using gene expression measurements.


The clinical benefit of checkpoint inhibitors varies widely between patients and only a small subset experience durable disease remission upon treatment. Response to checkpoint inhibition is associated with two biological axes: tumor foreignness, typically measured by tumor mutation burden or microsatellite instability (MSI), and the presence of an adaptive anti-tumor immune response, typically measured by gene expression signatures of inflammation or immunohistochemistry. Because tumor foreignness and the magnitude of the adaptive immune response in the tumor microenvironment are only weakly correlated, more accurate predictions of immunotherapy response should be possible by measuring and integrating both variables together. However, in a clinical setting, performing multiple assays is often impractical due to more tissue requirement, increased turn-around time, and cost. Here, the ability of gene expression to predict tumor MSI was investigated, and a single assay that enables measurement of tumor foreignness and tumor inflammation was developed.


DNA mismatch repair deficiency (MMRd) has been observed in most cancer types in The Cancer Genome Atlas (TCGA), and occurs in more than 5% of adrenal, rectal, colon, stomach, and uterine tumors. Tumors with this phenotype develop both point and frameshift mutations at an increased rate and are often described as hypermutated. The failure of mismatch repair (MMR) to correct replication errors at short repeated DNA sequences can lead to the phenomenon of high-level MSI (MSI-H). MSI-H cancers have distinct clinical behavior, which has led to widespread MSI testing in cancers where MSI-H is common. In colorectal cancer, the MSI-H phenotype demonstrates association with proximal tumor localization, a dense local lymphocyte infiltration, and a low frequency of distant organ metastasis. Moreover, MSI-H colorectal cancers have a better prognosis than their microsatellite-stable (MSS) counterparts. Diminished responsiveness of MSI-H colorectal cancer patients towards chemotherapy has been shown in several studies. In the era of immunotherapy, MMRd has gained greater relevance as a cause of hypermutation potentiating anti-tumor immune responses which may be augmented by checkpoint inhibition. Importantly, the frame-shift mutations that accrue in MMRd tumors lead to highly abnormal peptides that may be more immunogenic. Thus, the high pan-cancer clinical efficacy of checkpoint inhibitors in MMRd tumors may arise more from their high rate of frameshift mutations than from their total tumor mutation burden.


MMRd often arises from loss of protein expression of 1 of 4 genes essential for MMR: MLH1, MSH2, MSH6, and PMS2. Lost expression of these proteins can arise from mutations in their coding regions, either from acquired somatic mutations or from germline mutations associated with Lynch syndrome. In tumors with intact sequences for these genes, loss of protein expression can follow loss of mRNA expression. A common cause of lost mRNA expression in these genes is the CpG island methylator phenotype (CIMP), which is associated with widespread methylation across the genome and frequently silences DNA repair genes. Loss of MMR activity due to microRNA-induced downregulation of MSH2 has also been observed in colorectal tumors. MMRd can be detected by measuring either its cause or its effect. Immunohistochemistry (IHC) is used to measure loss of expression of proteins essential to the MMR machinery, and PCR and sequencing are used to measure MSI, the genomic “scarring” which occurs as a consequence of MMRd.


The biology underlying MMRd provides two opportunities for capturing MMRd with gene expression data. First, loss of expression of MMR genes may be used to detect cases of MMRd resulting from transcriptional silencing. Second, if it is assumed that MMRd and CIMP exert broad and consistent influence on the transcriptome, then a data-driven predictor of hypermutation based on RNA expression patterns may also be possible.


Various methods of the present disclosure are described in full detail herein.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three gene are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) comparing the MLS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and e) producing a report identifying the presence of mismatch repair deficiency in the subject when the MLS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the MLS score is less than the predetermined cutoff value.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three gene are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) comparing the MLS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and e) identifying the presence of mismatch repair deficiency in the subject when the MLS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the MLS score is less than the predetermined cutoff value.


In some aspects, the preceding methods can further comprise administering at least one treatment to a subject identified as having mismatch repair deficiency. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three gene are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) comparing the MLS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and e) administering at least one treatment to the subject when the MLS score is equal to or greater than the predetermined cutoff value. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In some aspects of the preceding methods, determining μ1 in step (b), wherein μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding method; 2) determining for each of the at least one gene the log-transformed normalized expression; and 3) determining for each of the at least one gene the mean of the log 2-transformed expression from step (2).


In some aspects of the preceding methods, determining σ1 in step (b), wherein σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding method; 2) determining for each of the at least one gene the log-transformed normalized expression; and 3) determining for each of the at least one gene the standard deviation of the log 2-transformed expression from step (2).


In some aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method. In some aspects of the preceding method, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same apparatus. In preferred aspects of the preceding method, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method and apparatus.


In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of 99%. In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 99%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of at least 99.5%.


In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 91%, or at least 92%, or at least 93%, or at least 94%, or at least 95%, or at least 96%, or at least 97% or at least 98%.


In some aspects of the preceding methods, the predetermined cutoff value of the preceding method that identifies mismatch repair deficiency in a subject can be 1.645. Alternatively, the predetermined cutoff value can be 2.326. Alternatively still, the predetermined cutoff value can be 2.576.


In some aspects, the at least one gene in step (a) of the preceding methods can comprise MLH1. Alternatively, the at least one gene in step (a) can comprise each of MLH1, MSH2, MSH6 and PMS2.


In some aspects, step (a) of the preceding methods can comprise measuring the gene expression level of at least two genes, or at least three genes or at least four genes comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject.


In some aspects, when the tumor sample is a colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD) or uterine corpus endometrial carcinoma (UCEC) tumor sample, σ1 in step (b) of the preceeding methods can be:



















MLH1
MSH2
MSH6
PMS2





















COAD
0.3241
0.4108
0.4198
0.3259



ESCA
0.5221
0.6602
0.7347
0.4927



STAD
0.4245
0.6020
0.4814
0.4314



UCEC
0.4543
0.7312
0.6158
0.4217









Table 1 shows the sequences of the at least one gene from step (a) of the preceding method.









TABLE 1







Gene sequences used in the methods of the present invention











GenBank

SEQ ID


Gene
Accession No.
Sequence
NO.













MLH1
NM_000249.2
ATTGGCTGAAGGCACTTCCGTTGAGCATCTAGA
1




CGTTTCCTTGGCTCTTCTGGCGCCAAAATGTCGT





TCGTGGCAGGGGTTATTCGGCGGCTGGACGAG





ACAGTGGTGAACCGCATCGCGGCGGGGGAAGT





TATCCAGCGGCCAGCTAATGCTATCAAAGAGAT





GATTGAGAACTGTTTAGATGCAAAATCCACAAG





TATTCAAGTGATTGTTAAAGAGGGAGGCCTGAA





GTTGATTCAGATCCAAGACAATGGCACCGGGAT





CAGGAAAGAAGATCTGGATATTGTATGTGAAA





GGTTCACTACTAGTAAACTGCAGTCCTTTGAGG





ATTTAGCCAGTATTTCTACCTATGGCTTTCGAG





GTGAGGCTTTGGCCAGCATAAGCCATGTGGCTC





ATGTTACTATTACAACGAAAACAGCTGATGGAA





AGTGTGCATACAGAGCAAGTTACTCAGATGGA





AAACTGAAAGCCCCTCCTAAACCATGTGCTGGC





AATCAAGGGACCCAGATCACGGTGGAGGACCT





TTTTTACAACATAGCCACGAGGAGAAAAGCTTT





AAAAAATCCAAGTGAAGAATATGGGAAAATTT





TGGAAGTTGTTGGCAGGTATTCAGTACACAATG





CAGGCATTAGTTTCTCAGTTAAAAAACAAGGAG





AGACAGTAGCTGATGTTAGGACACTACCCAATG





CCTCAACCGTGGACAATATTCGCTCCATCTTTG





GAAATGCTGTTAGTCGAGAACTGATAGAAATTG





GATGTGAGGATAAAACCCTAGCCTTCAAAATG





AATGGTTACATATCCAATGCAAACTACTCAGTG





AAGAAGTGCATCTTCTTACTCTTCATCAACCAT





CGTCTGGTAGAATCAACTTCCTTGAGAAAAGCC





ATAGAAACAGTGTATGCAGCCTATTTGCCCAAA





AACACACACCCATTCCTGTACCTCAGTTTAGAA





ATCAGTCCCCAGAATGTGGATGTTAATGTGCAC





CCCACAAAGCATGAAGTTCACTTCCTGCACGAG





GAGAGCATCCTGGAGCGGGTGCAGCAGCACAT





CGAGAGCAAGCTCCTGGGCTCCAATTCCTCCAG





GATGTACTTCACCCAGACTTTGCTACCAGGACT





TGCTGGCCCCTCTGGGGAGATGGTTAAATCCAC





AACAAGTCTGACCTCGTCTTCTACTTCTGGAAG





TAGTGATAAGGTCTATGCCCACCAGATGGTTCG





TACAGATTCCCGGGAACAGAAGCTTGATGCATT





TCTGCAGCCTCTGAGCAAACCCCTGTCCAGTCA





GCCCCAGGCCATTGTCACAGAGGATAAGACAG





ATATTTCTAGTGGCAGGGCTAGGCAGCAAGATG





AGGAGATGCTTGAACTCCCAGCCCCTGCTGAAG





TGGCTGCCAAAAATCAGAGCTTGGAGGGGGAT





ACAACAAAGGGGACTTCAGAAATGTCAGAGAA





GAGAGGACCTACTTCCAGCAACCCCAGAAAGA





GACATCGGGAAGATTCTGATGTGGAAATGGTG





GAAGATGATTCCCGAAAGGAAATGACTGCAGC





TTGTACCCCCCGGAGAAGGATCATTAACCTCAC





TAGTGTTTTGAGTCTCCAGGAAGAAATTAATGA





GCAGGGACATGAGGTTCTCCGGGAGATGTTGC





ATAACCACTCCTTCGTGGGCTGTGTGAATCCTC





AGTGGGCCTTGGCACAGCATCAAACCAAGTTAT





ACCTTCTCAACACCACCAAGCTTAGTGAAGAAC





TGTTCTACCAGATACTCATTTATGATTTTGCCAA





TTTTGGTGTTCTCAGGTTATCGGAGCCAGCACC





GCTCTTTGACCTTGCCATGCTTGCCTTAGATAGT





CCAGAGAGTGGCTGGACAGAGGAAGATGGTCC





CAAAGAAGGACTTGCTGAATACATTGTTGAGTT





TCTGAAGAAGAAGGCTGAGATGCTTGCAGACT





ATTTCTCTTTGGAAATTGATGAGGAAGGGAACC





TGATTGGATTACCCCTTCTGATTGACAACTATG





TGCCCCCTTTGGAGGGACTGCCTATCTTCATTCT





TCGACTAGCCACTGAGGTGAATTGGGACGAAG





AAAAGGAATGTTTTGAAAGCCTCAGTAAAGAA





TGCGCTATGTTCTATTCCATCCGGAAGCAGTAC





ATATCTGAGGAGTCGACCCTCTCAGGCCAGCAG





AGTGAAGTGCCTGGCTCCATTCCAAACTCCTGG





AAGTGGACTGTGGAACACATTGTCTATAAAGCC





TTGCGCTCACACATTCTGCCTCCTAAACATTTCA





CAGAAGATGGAAATATCCTGCAGCTTGCTAACC





TGCCTGATCTATACAAAGTCTTTGAGAGGTGTT





AAATATGGTTATTTATGCACTGTGGGATGTGTT





CTTCTTTCTCTGTATTCCGATACAAAGTGTTGTA





TCAAAGTGTGATATACAAAGTGTACCAACATAA





GTGTTGGTAGCACTTAAGACTTATACTTGCCTT





CTGATAGTATTCCTTTATACACAGTGGATTGAT





TATAAATAAATAGATGTGTCTTAACATAA






MSH2
NM_000251.1
GGCGGGAAACAGCTTAGTGGGTGTGGGGTCGC
2




GCATTTTCTTCAACCAGGAGGTGAGGAGGTTTC





GACATGGCGGTGCAGCCGAAGGAGACGCTGCA





GTTGGAGAGCGCGGCCGAGGTCGGCTTCGTGC





GCTTCTTTCAGGGCATGCCGGAGAAGCCGACCA





CCACAGTGCGCCTTTTCGACCGGGGCGACTTCT





ATACGGCGCACGGCGAGGACGCGCTGCTGGCC





GCCCGGGAGGTGTTCAAGACCCAGGGGGTGAT





CAAGTACATGGGGCCGGCAGGAGCAAAGAATC





TGCAGAGTGTTGTGCTTAGTAAAATGAATTTTG





AATCTTTTGTAAAAGATCTTCTTCTGGTTCGTCA





GTATAGAGTTGAAGTTTATAAGAATAGAGCTGG





AAATAAGGCATCCAAGGAGAATGATTGGTATTT





GGCATATAAGGCTTCTCCTGGCAATCTCTCTCA





GTTTGAAGACATTCTCTTTGGTAACAATGATAT





GTCAGCTTCCATTGGTGTTGTGGGTGTTAAAAT





GTCCGCAGTTGATGGCCAGAGACAGGTTGGAG





TTGGGTATGTGGATTCCATACAGAGGAAACTAG





GACTGTGTGAATTCCCTGATAATGATCAGTTCT





CCAATCTTGAGGCTCTCCTCATCCAGATTGGAC





CAAAGGAATGTGTTTTACCCGGAGGAGAGACT





GCTGGAGACATGGGGAAACTGAGACAGATAAT





TCAAAGAGGAGGAATTCTGATCACAGAAAGAA





AAAAAGCTGACTTTTCCACAAAAGACATTTATC





AGGACCTCAACCGGTTGTTGAAAGGCAAAAAG





GGAGAGCAGATGAATAGTGCTGTATTGCCAGA





AATGGAGAATCAGGTTGCAGTTTCATCACTGTC





TGCGGTAATCAAGTTTTTAGAACTCTTATCAGA





TGATTCCAACTTTGGACAGTTTGAACTGACTAC





TTTTGACTTCAGCCAGTATATGAAATTGGATAT





TGCAGCAGTCAGAGCCCTTAACCTTTTTCAGGG





TTCTGTTGAAGATACCACTGGCTCTCAGTCTCT





GGCTGCCTTGCTGAATAAGTGTAAAACCCCTCA





AGGACAAAGACTTGTTAACCAGTGGATTAAGC





AGCCTCTCATGGATAAGAACAGAATAGAGGAG





AGATTGAATTTAGTGGAAGCTTTTGTAGAAGAT





GCAGAATTGAGGCAGACTTTACAAGAAGATTT





ACTTCGTCGATTCCCAGATCTTAACCGACTTGC





CAAGAAGTTTCAAAGACAAGCAGCAAACTTAC





AAGATTGTTACCGACTCTATCAGGGTATAAATC





AACTACCTAATGTTATACAGGCTCTGGAAAAAC





ATGAAGGAAAACACCAGAAATTATTGTTGGCA





GTTTTTGTGACTCCTCTTACTGATCTTCGTTCTG





ACTTCTCCAAGTTTCAGGAAATGATAGAAACAA





CTTTAGATATGGATCAGGTGGAAAACCATGAAT





TCCTTGTAAAACCTTCATTTGATCCTAATCTCAG





TGAATTAAGAGAAATAATGAATGACTTGGAAA





AGAAGATGCAGTCAACATTAATAAGTGCAGCC





AGAGATCTTGGCTTGGACCCTGGCAAACAGATT





AAACTGGATTCCAGTGCACAGTTTGGATATTAC





TTTCGTGTAACCTGTAAGGAAGAAAAAGTCCTT





CGTAACAATAAAAACTTTAGTACTGTAGATATC





CAGAAGAATGGTGTTAAATTTACCAACAGCAA





ATTGACTTCTTTAAATGAAGAGTATACCAAAAA





TAAAACAGAATATGAAGAAGCCCAGGATGCCA





TTGTTAAAGAAATTGTCAATATTTCTTCAGGCT





ATGTAGAACCAATGCAGACACTCAATGATGTGT





TAGCTCAGCTAGATGCTGTTGTCAGCTTTGCTC





ACGTGTCAAATGGAGCACCTGTTCCATATGTAC





GACCAGCCATTTTGGAGAAAGGACAAGGAAGA





ATTATATTAAAAGCATCCAGGCATGCTTGTGTT





GAAGTTCAAGATGAAATTGCATTTATTCCTAAT





GACGTATACTTTGAAAAAGATAAACAGATGTTC





CACATCATTACTGGCCCCAATATGGGAGGTAAA





TCAACATATATTCGACAAACTGGGGTGATAGTA





CTCATGGCCCAAATTGGGTGTTTTGTGCCATGT





GAGTCAGCAGAAGTGTCCATTGTGGACTGCATC





TTAGCCCGAGTAGGGGCTGGTGACAGTCAATTG





AAAGGAGTCTCCACGTTCATGGCTGAAATGTTG





GAAACTGCTTCTATCCTCAGGTCTGCAACCAAA





GATTCATTAATAATCATAGATGAATTGGGAAGA





GGAACTTCTACCTACGATGGATTTGGGTTAGCA





TGGGCTATATCAGAATACATTGCAACAAAGATT





GGTGCTTTTTGCATGTTTGCAACCCATTTTCATG





AACTTACTGCCTTGGCCAATCAGATACCAACTG





TTAATAATCTACATGTCACAGCACTCACCACTG





AAGAGACCTTAACTATGCTTTATCAGGTGAAGA





AAGGTGTCTGTGATCAAAGTTTTGGGATTCATG





TTGCAGAGCTTGCTAATTTCCCTAAGCATGTAA





TAGAGTGTGCTAAACAGAAAGCCCTGGAACTT





GAGGAGTTTCAGTATATTGGAGAATCGCAAGG





ATATGATATCATGGAACCAGCAGCAAAGAAGT





GCTATCTGGAAAGAGAGCAAGGTGAAAAAATT





ATTCAGGAGTTCCTGTCCAAGGTGAAACAAATG





CCCTTTACTGAAATGTCAGAAGAAAACATCACA





ATAAAGTTAAAACAGCTAAAAGCTGAAGTAAT





AGCAAAGAATAATAGCTTTGTAAATGAAATCAT





TTCACGAATAAAAGTTACTACGTGAAAAATCCC





AGTAATGGAATGAAGGTAATATTGATAAGCTAT





TGTCTGTAATAGTTTTATATTGTTTTATATTAAC





CCTTTTTCCATAGTGTTAACTGTCAGTGCCCATG





GGCTATCAACTTAATAAGATATTTAGTAATATT





TTACTTTGAGGACATTTTCAAAGATTTTTATTTT





GAAAAATGAGAGCTGTAACTGAGGACTGTTTG





CAATTGACATAGGCAATAATAAGTGATGTGCTG





AATTTTATAAATAAAATCATGTAGTTTGTGG






MSH6
NM_000179.2
GGCGAGGCGCCTGTTGATTGGCCACTGGGGCCC
3




GGGTTCCTCCGGCGGAGCGCGCCTCCCCCCAGA





TTTCCCGCCAGCAGGAGCCGCGCGGTAGATGCG





GTGCTTTTAGGAGCTCCGTCCGACAGAACGGTT





GGGCCTTGCCGGCTGTCGGTATGTCGCGACAGA





GCACCCTGTACAGCTTCTTCCCCAAGTCTCCGG





CGCTGAGTGATGCCAACAAGGCCTCGGCCAGG





GCCTCACGCGAAGGCGGCCGTGCCGCCGCTGCC





CCCGGGGCCTCTCCTTCCCCAGGCGGGGATGCG





GCCTGGAGCGAGGCTGGGCCTGGGCCCAGGCC





CTTGGCGCGCTCCGCGTCACCGCCCAAGGCGAA





GAACCTCAACGGAGGGCTGCGGAGATCGGTAG





CGCCTGCTGCCCCCACCAGTTGTGACTTCTCAC





CAGGAGATTTGGTTTGGGCCAAGATGGAGGGTT





ACCCCTGGTGGCCTTGTCTGGTTTACAACCACC





CCTTTGATGGAACATTCATCCGCGAGAAAGGGA





AATCAGTCCGTGTTCATGTACAGTTTTTTGATG





ACAGCCCAACAAGGGGCTGGGTTAGCAAAAGG





CTTTTAAAGCCATATACAGGTTCAAAATCAAAG





GAAGCCCAGAAGGGAGGTCATTTTTACAGTGC





AAAGCCTGAAATACTGAGAGCAATGCAACGTG





CAGATGAAGCCTTAAATAAAGACAAGATTAAG





AGGCTTGAATTGGCAGTTTGTGATGAGCCCTCA





GAGCCAGAAGAGGAAGAAGAGATGGAGGTAG





GCACAACTTACGTAACAGATAAGAGTGAAGAA





GATAATGAAATTGAGAGTGAAGAGGAAGTACA





GCCTAAGACACAAGGATCTAGGCGAAGTAGCC





GCCAAATAAAAAAACGAAGGGTCATATCAGAT





TCTGAGAGTGACATTGGTGGCTCTGATGTGGAA





TTTAAGCCAGACACTAAGGAGGAAGGAAGCAG





TGATGAAATAAGCAGTGGAGTGGGGGATAGTG





AGAGTGAAGGCCTGAACAGCCCTGTCAAAGTT





GCTCGAAAGCGGAAGAGAATGGTGACTGGAAA





TGGCTCTCTTAAAAGGAAAAGCTCTAGGAAGG





AAACGCCCTCAGCCACCAAACAAGCAACTAGC





ATTTCATCAGAAACCAAGAATACTTTGAGAGCT





TTCTCTGCCCCTCAAAATTCTGAATCCCAAGCC





CACGTTAGTGGAGGTGGTGATGACAGTAGTCGC





CCTACTGTTTGGTATCATGAAACTTTAGAATGG





CTTAAGGAGGAAAAGAGAAGAGATGAGCACAG





GAGGAGGCCTGATCACCCCGATTTTGATGCATC





TACACTCTATGTGCCTGAGGATTTCCTCAATTCT





TGTACTCCTGGGATGAGGAAGTGGTGGCAGATT





AAGTCTCAGAACTTTGATCTTGTCATCTGTTAC





AAGGTGGGGAAATTTTATGAGCTGTACCACATG





GATGCTCTTATTGGAGTCAGTGAACTGGGGCTG





GTATTCATGAAAGGCAACTGGGCCCATTCTGGC





TTTCCTGAAATTGCATTTGGCCGTTATTCAGATT





CCCTGGTGCAGAAGGGCTATAAAGTAGCACGA





GTGGAACAGACTGAGACTCCAGAAATGATGGA





GGCACGATGTAGAAAGATGGCACATATATCCA





AGTATGATAGAGTGGTGAGGAGGGAGATCTGT





AGGATCATTACCAAGGGTACACAGACTTACAGT





GTGCTGGAAGGTGATCCCTCTGAGAACTACAGT





AAGTATCTTCTTAGCCTCAAAGAAAAAGAGGA





AGATTCTTCTGGCCATACTCGTGCATATGGTGT





GTGCTTTGTTGATACTTCACTGGGAAAGTTTTTC





ATAGGTCAGTTTTCAGATGATCGCCATTGTTCG





AGATTTAGGACTCTAGTGGCACACTATCCCCCA





GTACAAGTTTTATTTGAAAAAGGAAATCTCTCA





AAGGAAACTAAAACAATTCTAAAGAGTTCATT





GTCCTGTTCTCTTCAGGAAGGTCTGATACCCGG





CTCCCAGTTTTGGGATGCATCCAAAACTTTGAG





AACTCTCCTTGAGGAAGAATATTTTAGGGAAAA





GCTAAGTGATGGCATTGGGGTGATGTTACCCCA





GGTGCTTAAAGGTATGACTTCAGAGTCTGATTC





CATTGGGTTGACACCAGGAGAGAAAAGTGAAT





TGGCCCTCTCTGCTCTAGGTGGTTGTGTCTTCTA





CCTCAAAAAATGCCTTATTGATCAGGAGCTTTT





ATCAATGGCTAATTTTGAAGAATATATTCCCTT





GGATTCTGACACAGTCAGCACTACAAGATCTGG





TGCTATCTTCACCAAAGCCTATCAACGAATGGT





GCTAGATGCAGTGACATTAAACAACTTGGAGAT





TTTTCTGAATGGAACAAATGGTTCTACTGAAGG





AACCCTACTAGAGAGGGTTGATACTTGCCATAC





TCCTTTTGGTAAGCGGCTCCTAAAGCAATGGCT





TTGTGCCCCACTCTGTAACCATTATGCTATTAAT





GATCGTCTAGATGCCATAGAAGACCTCATGGTT





GTGCCTGACAAAATCTCCGAAGTTGTAGAGCTT





CTAAAGAAGCTTCCAGATCTTGAGAGGCTACTC





AGTAAAATTCATAATGTTGGGTCTCCCCTGAAG





AGTCAGAACCACCCAGACAGCAGGGCTATAAT





GTATGAAGAAACTACATACAGCAAGAAGAAGA





TTATTGATTTTCTTTCTGCTCTGGAAGGATTCAA





AGTAATGTGTAAAATTATAGGGATCATGGAAG





AAGTTGCTGATGGTTTTAAGTCTAAAATCCTTA





AGCAGGTCATCTCTCTGCAGACAAAAAATCCTG





AAGGTCGTTTTCCTGATTTGACTGTAGAATTGA





ACCGATGGGATACAGCCTTTGACCATGAAAAG





GCTCGAAAGACTGGACTTATTACTCCCAAAGCA





GGCTTTGACTCTGATTATGACCAAGCTCTTGCT





GACATAAGAGAAAATGAACAGAGCCTCCTGGA





ATACCTAGAGAAACAGCGCAACAGAATTGGCT





GTAGGACCATAGTCTATTGGGGGATTGGTAGGA





ACCGTTACCAGCTGGAAATTCCTGAGAATTTCA





CCACTCGCAATTTGCCAGAAGAATACGAGTTGA





AATCTACCAAGAAGGGCTGTAAACGATACTGG





ACCAAAACTATTGAAAAGAAGTTGGCTAATCTC





ATAAATGCTGAAGAACGGAGGGATGTATCATT





GAAGGACTGCATGCGGCGACTGTTCTATAACTT





TGATAAAAATTACAAGGACTGGCAGTCTGCTGT





AGAGTGTATCGCAGTGTTGGATGTTTTACTGTG





CCTGGCTAACTATAGTCGAGGGGGTGATGGTCC





TATGTGTCGCCCAGTAATTCTGTTGCCGGAAGA





TACCCCCCCCTTCTTAGAGCTTAAAGGATCACG





CCATCCTTGCATTACGAAGACTTTTTTTGGAGA





TGATTTTATTCCTAATGACATTCTAATAGGCTGT





GAGGAAGAGGAGCAGGAAAATGGCAAAGCCTA





TTGTGTGCTTGTTACTGGACCAAATATGGGGGG





CAAGTCTACGCTTATGAGACAGGCTGGCTTATT





AGCTGTAATGGCCCAGATGGGTTGTTACGTCCC





TGCTGAAGTGTGCAGGCTCACACCAATTGATAG





AGTGTTTACTAGACTTGGTGCCTCAGACAGAAT





AATGTCAGGTGAAAGTACATTTTTTGTTGAATT





AAGTGAAACTGCCAGCATACTCATGCATGCAAC





AGCACATTCTCTGGTGCTTGTGGATGAATTAGG





AAGAGGTACTGCAACATTTGATGGGACGGCAA





TAGCAAATGCAGTTGTTAAAGAACTTGCTGAGA





CTATAAAATGTCGTACATTATTTTCAACTCACT





ACCATTCATTAGTAGAAGATTATTCTCAAAATG





TTGCTGTGCGCCTAGGACATATGGCATGCATGG





TAGAAAATGAATGTGAAGACCCCAGCCAGGAG





ACTATTACGTTCCTCTATAAATTCATTAAGGGA





GCTTGTCCTAAAAGCTATGGCTTTAATGCAGCA





AGGCTTGCTAATCTCCCAGAGGAAGTTATTCAA





AAGGGACATAGAAAAGCAAGAGAATTTGAGAA





GATGAATCAGTCACTACGATTATTTCGGGAAGT





TTGCCTGGCTAGTGAAAGGTCAACTGTAGATGC





TGAAGCTGTCCATAAATTGCTGACTTTGATTAA





GGAATTATAGACTGACTACATTGGAAGCTTTGA





GTTGACTTCTGACAAAGGTGGTAAATTCAGACA





ACATTATGATCTAATAAACTTTATTTTTTAAAA





ATGAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAA






PMS2
NM_000535.6
AGCCAATGGGAGTTCAGGAGGCGGAGCGCCTG
4




TGGGAGCCCTGGAGGGAACTTTCCCAGTCCCCG





AGGCGGATCGGGTGTTGCATCCATGGAGCGAG





CTGAGAGCTCGAGTACAGAACCTGCTAAGGCC





ATCAAACCTATTGATCGGAAGTCAGTCCATCAG





ATTTGCTCTGGGCAGGTGGTACTGAGTCTAAGC





ACTGCGGTAAAGGAGTTAGTAGAAAACAGTCT





GGATGCTGGTGCCACTAATATTGATCTAAAGCT





TAAGGACTATGGAGTGGATCTTATTGAAGTTTC





AGACAATGGATGTGGGGTAGAAGAAGAAAACT





TCGAAGGCTTAACTCTGAAACATCACACATCTA





AGATTCAAGAGTTTGCCGACCTAACTCAGGTTG





AAACTTTTGGCTTTCGGGGGGAAGCTCTGAGCT





CACTTTGTGCACTGAGCGATGTCACCATTTCTA





CCTGCCACGCATCGGCGAAGGTTGGAACTCGAC





TGATGTTTGATCACAATGGGAAAATTATCCAGA





AAACCCCCTACCCCCGCCCCAGAGGGACCACA





GTCAGCGTGCAGCAGTTATTTTCCACACTACCT





GTGCGCCATAAGGAATTTCAAAGGAATATTAA





GAAGGAGTATGCCAAAATGGTCCAGGTCTTAC





ATGCATACTGTATCATTTCAGCAGGCATCCGTG





TAAGTTGCACCAATCAGCTTGGACAAGGAAAA





CGACAGCCTGTGGTATGCACAGGTGGAAGCCC





CAGCATAAAGGAAAATATCGGCTCTGTGTTTGG





GCAGAAGCAGTTGCAAAGCCTCATTCCTTTTGT





TCAGCTGCCCCCTAGTGACTCCGTGTGTGAAGA





GTACGGTTTGAGCTGTTCCGATGCTCTGCATAA





TCTTTTTTACATCTCAGGTTTCATTTCACAATGC





ACGCATGGAGTTGGAAGGAGTTCAACAGACAG





ACAGTTTTTCTTTATCAACCGGCGGCCTTGTGA





CCCAGCAAAGGTCTGCAGACTCGTGAATGAGG





TCTACCACATGTATAATCGACACCAGTATCCAT





TTGTTGTTCTTAACATTTCTGTTGATTCAGAATG





CGTTGATATCAATGTTACTCCAGATAAAAGGCA





AATTTTGCTACAAGAGGAAAAGCTTTTGTTGGC





AGTTTTAAAGACCTCTTTGATAGGAATGTTTGA





TAGTGATGTCAACAAGCTAAATGTCAGTCAGCA





GCCACTGCTGGATGTTGAAGGTAACTTAATAAA





AATGCATGCAGCGGATTTGGAAAAGCCCATGG





TAGAAAAGCAGGATCAATCCCCTTCATTAAGGA





CTGGAGAAGAAAAAAAAGACGTGTCCATTTCC





AGACTGCGAGAGGCCTTTTCTCTTCGTCACACA





ACAGAGAACAAGCCTCACAGCCCAAAGACTCC





AGAACCAAGAAGGAGCCCTCTAGGACAGAAAA





GGGGTATGCTGTCTTCTAGCACTTCAGGTGCCA





TCTCTGACAAAGGCGTCCTGAGACCTCAGAAAG





AGGCAGTGAGTTCCAGTCACGGACCCAGTGAC





CCTACGGACAGAGCGGAGGTGGAGAAGGACTC





GGGGCACGGCAGCACTTCCGTGGATTCTGAGG





GGTTCAGCATCCCAGACACGGGCAGTCACTGCA





GCAGCGAGTATGCGGCCAGCTCCCCAGGGGAC





AGGGGCTCGCAGGAACATGTGGACTCTCAGGA





GAAAGCGCCTAAAACTGACGACTCTTTTTCAGA





TGTGGACTGCCATTCAAACCAGGAAGATACCG





GATGTAAATTTCGAGTTTTGCCTCAGCCAACTA





ATCTCGCAACCCCAAACACAAAGCGTTTTAAAA





AAGAAGAAATTCTTTCCAGTTCTGACATTTGTC





AAAAGTTAGTAAATACTCAGGACATGTCAGCCT





CTCAGGTTGATGTAGCTGTGAAAATTAATAAGA





AAGTTGTGCCCCTGGACTTTTCTATGAGTTCTTT





AGCTAAACGAATAAAGCAGTTACATCATGAAG





CACAGCAAAGTGAAGGGGAACAGAATTACAGG





AAGTTTAGGGCAAAGATTTGTCCTGGAGAAAAT





CAAGCAGCCGAAGATGAACTAAGAAAAGAGAT





AAGTAAAACGATGTTTGCAGAAATGGAAATCA





TTGGTCAGTTTAACCTGGGATTTATAATAACCA





AACTGAATGAGGATATCTTCATAGTGGACCAGC





ATGCCACGGACGAGAAGTATAACTTCGAGATG





CTGCAGCAGCACACCGTGCTCCAGGGGCAGAG





GCTCATAGCACCTCAGACTCTCAACTTAACTGC





TGTTAATGAAGCTGTTCTGATAGAAAATCTGGA





AATATTTAGAAAGAATGGCTTTGATTTTGTTAT





CGATGAAAATGCTCCAGTCACTGAAAGGGCTA





AACTGATTTCCTTGCCAACTAGTAAAAACTGGA





CCTTCGGACCCCAGGACGTCGATGAACTGATCT





TCATGCTGAGCGACAGCCCTGGGGTCATGTGCC





GGCCTTCCCGAGTCAAGCAGATGTTTGCCTCCA





GAGCCTGCCGGAAGTCGGTGATGATTGGGACT





GCTCTTAACACAAGCGAGATGAAGAAACTGAT





CACCCACATGGGGGAGATGGACCACCCCTGGA





ACTGTCCCCATGGAAGGCCAACCATGAGACAC





ATCGCCAACCTGGGTGTCATTTCTCAGAACTGA





CCGTAGTCACTGTATGGAATAATTGGTTTTATC





GCAGATTTTTATGTTTTGAAAGACAGAGTCTTC





ACTAACCTTTTTTGTTTTAAAATGAACCTGCTAC





TTAAAAAAAATACACATCACACCCATTTAAAAG





TGATCTTGAGAACCTTTTCAAACCAGATGGAGC





ATTGCTTGCAAATTTTTTTTCTCTATGTTTGCAT





GCGCTCGTGTGTGTGTGTCCAGGCAAGAACACA





TTTTATAAAAATAAGAACACTTGGGCTGGGCAT





GGTGGCTCATGCCTGTGATCGCAGCACTTTGGG





AGGCCGAGGCCGGCGGATCACCTGAGATCAGA





AGTTCGAGACCAGCCTGACCAACATGGAGAAA





CCCTGCCTCTACTAAAAATACAAAATTAGCCAG





GTGTGCTGGCGCATGCCTGTAATCCCCGCTACC





CAGGAGGCTGAGGCAGGAGAATCGCTTGAACC





CGGGAGACGGAGGTTGCAGTGAACCGAGATTG





CGCCACTGCGCTCCAGCCTGGGTGAGATAGAAC





AAGACTGTGTCTCAAAAAACAAAACAAAACAA





AACAAAAAAAAAAAAACCAAACCACTTTGGAA





GTTACTCAGGCCTCTGCTCTGGCTGGACATAGT





TTAGTCTATAACTTTCAACCCTTAATGATAATTA





AATTCATCTTTGTTTAATTTCATAAATTTAAAAG





TAGGGTCCTTTTCAGTTAGTGATTCTCAGCCCTG





ATTCACATTAAATTTTTAAACACGGGGGATTCT





CTGCCCGGCTGGAAGAAAATGACTGGATGGGA





CAGGGGTCACTATTTGAAACATTCCTCTGTGCG





GCCAAGGTCGCAAAATGCTGTCCTCGCAGGGG





AACAAAAAGAGTTTGATTTCCCATAATTTGATG





CTGTGATTTGGTTTCCTCAGGATGTGAACTGTA





GAACATTCCAGTTACTGGCCTTGAATGGTTCTG





GGAATATAAGAATCCCTGTCTGTCTTTTCAAAT





AGTTTTCATGGAACCTTGTCCTGTTTGAACTTGG





CTGAAAATGGAAGTAAAGATGCCCTCTTGGGG





GCCCAGAGATGACAGATGTGGCTCCCCCTGCTG





CCCCCACCCCTTCTCCAGACTGTGGGCGGCTCC





CCTTCCTGCTTTAGAATCCCTCAGATGGAGGAG





GCAGTACAGTAGTCACTGTGCCATCGTGTCTGG





CACTGTGCTGGCGTGGTCTGCAGGATCCCACTT





ATGAACTCTCCAGATTGGGAGCTGTGGCAGGAT





AACAGCCCCCAAGACAGCTGTGTCCTAATCCCC





AGAACCTGTGACCACGCTGCCTCACGTGGCAGA





AGGGACTCGGCAGGTGTGATTGAGTGAAGGAT





CTTTTTTTTTTTTTTCTTTGAGATGAAGTTTCGCT





CTTGTTGCCCAGGCTGGAGTTCAATAGCATGAT





CTCAGCTCACTGCAGCCTCTGCCTCCCAGGTTC





AAGTGATTCTCCCACCTCAGCCTCCCGAGTAGC





TGGGATTACAGGTGTCCAGAACCATACTGGCTA





ATTTTTGTATTTTTAGTAGAGACAGGGTTTCACC





ATGTTGACCAGGCTGGTCTCGAACTCCTGACCT





CAGGTGATCCGACCGCCTCGGCCTCCCAAAGTG





CTGGGATTACAGGTGTGAGCCATCATGCCTGGC





TGAGTTAAGGATCTTGCAACAGAGAGATTATCC





TGGATTGTCTGGGTGGGCCCAGTCCATTGGGTG





AGTCCTTCAAAGGTGGAGACCTTTCCCTGCTGG





CCAGAGAGAGGCTGTCTTGCTGGTTTTGGAGAT





GGAAGGAGGTACCACTAGTCAAGGATTGCAAG





CAGTCTCTAGAACAGGGATTCCAACACTCCGGA





CACAGACCAGTAGTGGTCCATGGCCTATTAGGA





AGTGGGGTGCACAGCAGGTTAGGGGCCGGCAA





GCCAGCGAAGCTTCATCTGTATTTATAGCCACT





CCCCGTCGCTGGCGTTACCACCCGAGCTCCGCC





TCCTGTCACATCAGCGGTGGGCATTAGATTCTC





ATAGCAGCACGAGCCCTATTGTGAACTGCACAC





ACGAGGGATGTAGGTTGCACGCTCCTTATGAGA





ATCTGATGCCTGATGATCTGTCACTGTCTCCCGT





CACCCCCAGATGGGGCTGTCTAGTTGCAGGAAA





ACAAGCTCAGGGCTCCCACTGAGTCTCTGTGAT





GGTGAGTTGTAGAATTATTTAATTATATGTTAC





AATGTAATAATAGTAGAAATAAAGTGCACAAT





AAATGCAATGCACTTGAATCGTCCTGAAACCAT





CCCTCCCCGACCCCAATCCATGGAAAAATTGTG





TTCCGCGAAACCGGTCTCTGGTGCCAAAAAGGT





TGGGGACCGCTTCTGGAAAAGCTGGAAAAGGC





AAGAAAACGCATTCTCTCCCTCAGCCTCTGGAA





GGAACCAGCACTGTGGGACTAATTTACATACTG





TAGGGTAATAAATTTGTGTTGCTTCGAACCACT





AAAAAAAAA






EPM2AIP1
NM_014805.3
GCTTGCGCGTTAGAGATCGCTGTCCGCTCTTCC
5




TATTGGTTCGTTTTTAGGAGCTCGGGGAATACG





AAATATCCAGCCAATAGGAGCAGAGATGCCGG





AACCGGGCTTGTGTGCCTCTGCTGAGGTGATCT





GGCGCAGAGCGGAGGAGGTGCTTGGCGCTTCT





CAGGCTCCTCCTCTCCCCTTGCGGCCTTTCTAAC





GTTGGCCCTGCTCTTGTGGCCTCCCGCAGAATG





TGGATGACGCCCAAAAGAAGCAAGATGGAAGT





CGACGAGGCTCTAGTTTTCCGGCCCGAGTGGAC





CCAGCGTTATTTGGTGGTGGAGCCTCCGGAGGG





CGATGGGGCCCTGTGCCTGGTCTGTCGCCGCCT





CATCGTAGCTACCCGCGAACGCGACGTCAGGC





GCCACTACGAGGCTGAGCACGAATACTACGAG





CGGTATGTGGCGGACGGCGAGCGCGCGGCCCT





GGTGGAGCGTCTGCGTCAGGGCGACTTGCCCGT





GGCCTCCTTCACTCCTGAAGAGAGAGCTGCTCG





TGCAGGCCTCGGGCTCTGCCGCCTCTTGGCCTT





GAAGGGTCGCGGCTGGGGTGAGGGGGACTTTG





TATACCAGTGCATGGAGGTGTTGCTGAGAGAG





GTACTGCCCGAGCATGTAAGCGTCCTGCAAGGC





GTTGACTTATCTCCAGATATCACAAGGCAGAGG





ATCCTGAGCATTGACAGGAATCTACGCAACCAG





CTTTTTAACCGAGCCAGGGACTTTAAAGCCTAT





TCTCTTGCCTTGGACGACCAGGCTTTTGTGGCCT





ATGAGAACTACCTCCTGGTCTTTATCCGCGGTG





TAGGCCCTGAGTTGGAGGTGCAAGAAGATCTTC





TGACCATAATCAACCTGACTCATCATTTCAGTG





TTGGTGCGCTCATGTCGGCAATCCTAGAGTCCC





TGCAGACAGCAGGGCTTAGCTTGCAGAGAATG





GTTGGACTGACCACGACCCATACTTTGAGGATG





ATTGGTGAGAACTCAGGACTCGTCTCATACATG





AGAGAAAAGGCCGTAAGCCCCAACTGTTGGAA





TGTCATTCATTATTCAGGATTTCTTCACTTGGAA





CTGTTGAGCTCCTATGATGTAGATGTTAATCAG





ATCATAAATACCATATCCGAATGGATAGTTTTG





ATTAAGACCAGAGGCGTTAGGCGACCTGAATTT





CAGACTTTACTAACGGAATCTGAATCAGAGCAT





GGTGAAAGGGTTAATGGACGATGTCTGAACAA





TTGGCTTAGGAGAGGGAAAACTTTAAAACTAAT





ATTCTCTCTAAGAAAAGAAATGGAAGCGTTCTT





GGTTTCAGTAGGGGCAACAACAGTCCACTTCTC





AGACAAACAATGGCTTTGTGACTTTGGCTTCTT





GGTGGACATTATGGAACACCTTCGAGAACTCAG





TGAAGAATTACGAGTTAGTAAAGTCTTTGCTGC





TGCTGCCTTTGACCATATTTGTACTTTCGAAGTT





AAGCTGAATTTATTTCAAAGACATATTGAGGAA





AAAAATCTAACAGACTTTCCTGCCCTCAGAGAA





GTTGTTGATGAGCTAAAACAGCAAAATAAGGA





AGATGAAAAAATATTTGATCCTGATAGGTATCA





AATGGTGATCTGTCGTCTCCAAAAAGAATTTGA





GAGACATTTTAAGGACCTCAGGTTCATTAAAAA





GGACTTAGAACTTTTTTCAAATCCATTTAACTTT





AAACCTGAATATGCACCTATTTCAGTGAGGGTG





GAGCTAACAAAACTTCAGGCAAACACTAATCTT





TGGAATGAATACAGAATCAAAGACTTGGGGCA





GTTTTATGCTGGATTGTCTGCTGAATCCTACCCA





ATTATCAAAGGGGTTGCCTGTAAGGTGGCATCC





TTGTTTGATAGTAACCAAATCTGTGAAAAGGCT





TTTTCATATTTGACTCGAAACCAACACACTTTG





AGTCAGCCATTAACAGATGAGCATCTCCAAGCC





CTGTTTCGGGTTGCCACAACTGAAATGGAGCCC





GGTTGGGATGACCTTGTGAGAGAAAGAAATGA





ATCTAATCCATAAGGCTTTGTAGTACAAGATTG





AAAAACTCAACAAGAATTTAATTCTAAAAGCA





AAAATTGGTTTGAGTTTTCAAGTTTACTAATTTG





GATTGTGAGAAAGTACCAAGTACCAGCCGTCC





AAACTGATCACAATTAAAATTCTGACAGTTGCC





TTTTTTTTCATCTCAAATGGCAGCATGGGACTG





AAACATGAGAATGCCACCTTTTTTAAAACTTAG





TTTAGTGACAAAGTCATTGTCTTTTATGATATA





GTTAATTTTAAAGAGATTTAGTATTAATGTGAG





TTGAATTTGCAGTCTGTTTTTTAGGTGTTCTGAA





GATAAATGCCAAAAATTTCAGCTCTTATTTTAA





TGGAGTGTTAAAATTCTGATTCATATAGTCTTA





AATTATCAACTCCTTAAATGTGCTTTTGAACCA





ATTTGCAGAAGCTCACATAGCAAGTTCATAAGT





TTCCAAAAAGGAAGCCCATACATAACAGTGGA





GGTGTTTTGTCTAACCATCAAAATGTTTGAGAC





TTTTTTTTAAACATTTCTGAGTTCGAAGGTAATA





CTGACAGATTTCTTCCCTCTTCCCTCCCCATCAC





CCACCTCAGTGATAACACATTACTGATAGAGGA





AGTCATTAGAATCATTTTTAAGTTTCAGATATA





GGAGACTTCATGCAATTTGGAGATAAGACTAAT





TATTGGGGGTTTTCCTTGGATTTTTTTTTTAATA





ACTGGGGGCTATTTTATCAGCTTGCCTATTAAA





GGACTATGGTAAGTATAGAATCTTAATGGTTGC





CAGTTAGTAATTCTTTTTTTTTTTTTTTTTACTGT





AGACACAAGTTTGGCCCTATCAAAAACGATGA





GGAAAAAAGATTGCACTCCAGGATTAGGAGGT





GTGAGATATTTTAGCTTTTTTGTCTTATCTGCGT





GGGTATTGCTGCTTTATTTTAAAAAATCCTGCCT





AAAGTAAACACTTTGTTTTAAAATGATACAGTA





TCAGATTTTGTTAGATGCTAGAAATGGATTTAT





TCTAAAATTTGGAACTGTCGTACACATTCTATA





TGTAAGATAGCACACAAGTAGAAATATTTAAA





AGCAGTCTTATTCACAGATTGCAGTAATTCTGT





ATTTCTACTAAGATAATCTGCTTTGTGCCAAAA





CAGTAATTTCCAAACTTCTGTTCACCATGAAAA





GGCAATCTTAAAGTTCATTATGTAAAACTAATT





ATAAACAGGACCCAATTTATATTCATAGATCCT





CTCAAGTATTATACAATTTAAAAACTCTTGTTC





CAAAGTCCTGTCTTAACTATTGAAACACCTTAA





TCTGTGGTTACTAATCCAGCAAATTCAAGGAAC





CAGGCTATGACTAAGAATTTAGGTGGAATTGAT





GTCTGGGCAATTAAAATAAATGGCATAAGAGC





TTAAAAACCAAAGTIGTGCCAGTGGCTTTCAAC





TAGAGGCAGTAACCTGTCATTCCAGAGGATGCT





GAGAAATGTGTAGGGGCACTTTTTTGGTTGTCA





TATTTACTAGGGGCTTCTGTTGGCATTTAAGCCT





AAAGACACTCACCCCTGCAGTGCATGGGACAG





CCTGGCACAATGAAGAATTAGCCCTCCCAAAAT





GTAGATTATTTTATTTCAAGGGATAGGGCAGAT





TACCATTAGAAGCAAAATTAAAAGTACAAGCT





GGGCAAACTGACAGAATACTAGATAGGAGAGA





CTAATTCCAACCTTCTAAATTTGGCTAGTAAAG





TGCAATAAAGGCATTGATAAGTTCTGTTAGCTC





ACCATAGCACTTGTAAATCAGGAATTAATAATT





GAATCAGATTTAAGGGCTCTGTCCTGTTATACA





TATTTAAGGCAGAAAAAAAGTTACATGTCGATT





AGGTACTTATCAAGAATGGTCAAGCTGAGATTT





TGGTTAATAGAGTAAGCTTACATATCTAGAGAA





ACAACATAGTGGAAAACCGAAAAAAAAAAACA





GAAAAATCTACCGGTAATTTCCCAATAGCTTTG





AATATTCACAGCAGAGCTTTATTACTTGAGAGA





AAGACTGGAAGACCTGAAAGCCACTTCTGCTTT





CTAACCCCAGTTCCTTAAATATTGAAATCTTGT





ACATTTTGTGAAATTCCAGTATGTTTTGCTTAAG





GTGTTAATAAAATTAGTTTGCATCATGTAGTCA





TTGAGTGAGGGGGAGATATAAGCCAAGGATTT





TAAATTGACCCTTAGCTATAGAGAATTTGCTAT





AAGCTAGTCTTGTTTGTAAAAAAAAAAAAAAA





AAAAGAAAAAGAAAAAAGTGTATTTTACTGTTT





TCTGTATTAAGTAATTCTGTAACTGCATGGCAG





TCTTTTTTTTTTTAAATAAATATAGTTGTTACTG





GTCCTGTTGTAGCAGTGAATATAGTTAAAATAC





GTACATTAAAAAAAAAATTATTAGGTCCTTACC





AGTTACTGTCCTATAGCTCATTCCTACTAGTTTT





CTTGACAGATTTGTATTCCCAGTGTCCCGTATTG





CCACTCAAATTGCTCTACTATGCTAAGTCCTTGT





TAATAGTCTTACCCTCCTTGAAACACTTGAACA





CTTGATGACTTTAGCTTTGAGGAGATACCATCT





CCAGGTGTGCTTTCTTAGTCTTTGCAGGCACCTC





TTCCCTTCAATATCTGTTCTTCGTATTTTTAAAA





AAATTTGTTTTAGACTGCCTTGTTCTGTGTCAGC





TCGCTAGCTGATCTCATTTCCTTCCATGGTTTCC





TTACCATTTATATGCAAATGACTGTCAGATTCA





TATCTCCTTTCTAGATCTTCCCTAATTGATGTAT





CTAATTGCTAACAAATGCTCTTTGCTGTCTCAG





GCACTACATGTCATTGATCTTGCCCCCAATCCT





GCTCCTCCTCTCATGTTTCCTCTTTGACTAAATG





GCATTACCACTACCAACCATTCATTTGTCCTTTT





TACCAATTCTCCAATGCTGCCATTTTAATTCAG





GCCATCAACCTACCTAAATTATAGCAACAGCCT





CCTTATTAGTCTCCCTGTTTTTTATTTTTATTCCT





TTCTACACTACAACCAAATTGCTCCAAAAGACT





TACTGATCATGTCACTGCATTGCTTTCACCATTG





CTCTTAGGGTACAATACAAATTTATCTTCATCTT





TAAGGTCTCAGTATGCCACTTCATCTAGGAAAC





CTTCATTGATGCCCTCTAGATTAGGTGCCCTTAC





TATCCATTCCCTATACACCCTGTTCTTTCCCAGA





CATACACTTGGCACACTTTATTGTTACTGCTTAT





TGATCACTGCTAGACTGTAAGCTTTGTAAGGGC





AGGGACCATATAAGCCTTGTTCACTGTTATATC





TCTAGTGCTTAGCACAATGCCTGGCATTTCAAT





AAATGTTTGGACAAACGAATATTTGTGTAGTGT





TTTACAATTTTTGAAGCTCTTTCACAGTCTTATT





TGACCTTCACAGTCATTCTGCCTTAGACTGTCC





ATTGGGTAACTTTTATCCACATATTACTAATTG





AAAAATGAAGACAAGTTCTTTGTAACTAGGGA





CCTCGTTGTATTCTCAGAATTTAGTGTAGTGCTT





AGCATGTGACTTAAATATGTATTATGTGACTGT





TAAACAAATTGTGGTTTTCTCTGTTGTATGAAA





GGAGAGAAGGATAACAAATTGCGGTTTTCCCTG





GTAAACACAGTAAGTAGTAAACTCAGGATTCA





AAACCAAATATACACACCAAATCCACTATGTAA





TATTAAGTTTGCATATCCATGTATAGAATCTTAT





TTTTTTTTACCCTTTGTAAACAGTGTCATATATA





TATATATATTTTTTTTTTTTTTTTAAATTTCCAAA





GGAACCTACATATAGAGGGAAAAGATTAGACA





ACTACTTAGTGAACTAAAACAATATGTTTTTAC





TAAATGTTACATTTAGTATTGGAAAAAGATAAT





GCCGCCTAAGAGTTAATAATCATTTTTCCTTTTG





TAGGCATCAACACTAGGAGAAAATGGCATGCT





ATTTACTTGCTACTTTCCTTTACAGATGATTTTT





GGCTCTTCTGGGATTTAAAAGTAAGTAAATTTA





ACAAAGTAGAAGACTGACTCAGCCCTTCTGGTC





ACTATATATTCAGTTCACTTGTTTTTACACCTGC





AGAATGTCCTTATCACCCAAAGGGAGATGACCC





AAAAGTGACATCTAGTTAATGTATACTTCTAAA





GTTTGCTGTATTCCTTTGCCTTCTTGTTCCCATG





CCTCTCTGAACTTAATTTCTGGGTAACTGAGGC





TTTTCAGGCTTAGGTGGGAAAGCCACACCCTTA





GTCTGTTTCCTTAAGCCATTTTGACCAATTTATG





GGATTAACTAGTATAATCTTAGTTGGAGTTTTA





GTCTGAGGCATATTAAGTCATTCAGAGATCTTA





ACAGTAGGTGTCATAGTCATCCAGTGATTTGGT





GCTTGCTGCAAAACTGGCTTTTTTTTTTTTTTTTT





TTTTTGAGGCGGGGTCTCACTTTGTCACCCAGG





CTGGAGTGCAGAGGTACAATCTCAGCTCAATGC





AATCTCTGCCTTCCTGGCTCAAGCAATTCTCCC





ACTGCAGCCTCCTAAGTAGCTGGGAATACAGGT





ATACACGAGTACACCCAGCTAATTTTTGTATTT





TTATGTGGAGACAGGGTCTTGCTGTATTCCCCA





GGCTAGTCTCGAATTCCTGGACTCAAGCAGTCC





GCCCGCCTCGGGCTCCCAAAATGTTGGTGTTAT





ACGTGTGAGCCTCTGCACCCGGCGGCAAAACTG





GCTTTTAATCAACCTTTTGGCTAAAGGATTTCTC





TTTTTATTTATTTGTAAAAGGATTTCCCATTTTT





ATCTTTCTTTTTGATATTAAAATGTTGCCTCATC





CTACCCAGTAAGTACTTGAATTTGAATTCTCTTC





CTTTTCATTTTTGCCTGCAAACTGACCAGTCTTT





TCTGAGTTCATCTCTTCTGTACGTTTTGTCAAGT





GCAGTGAACAGCAACTACAAAATATTTTGTTTT





TCTGTCTTTTTCTTTAGTAAAGGGTAGATGATCT





GCCTTTCAGGTTATCTCAAGGGGCAGTTTCACC





TTTCCATAATATAAATTACCCTTGTGTAAGTTAT





TTCTTCCATCTTCTGATAGCAATTTCCTGAATGC





CTGCCAGCTAACCATTAAGCCAGTGTTCAGTAT





TTTAGCATTTTAAAAAACAAGGGACCAATTTCT





GTGTCAGCATGGGCTAGCTTGCCATTGAATAAC





AAAGGCAAAATCTCACTGTCTCACACAACTTTT





CTATTGCAACTTGCCTAGGGACTTTGGTTTAGA





TCATAGGTTGGCCATGATCAAACTATGGTCCAT





GGGCAAAATCTGTCTAGCTCCTTATTTATCTAA





ATAAAGTTTTACTGGAATATA






TTC30A
NM_152275.3
GCGGCGCCACAGGAACGATGCATGCCGGGACC
6




GGGAAGATTCAGTCTCTGAACGGCCCGGAGTA





GTCGTCTTTCCCCTTCTGACTGCCGCCACGCTGC





AGTCCAGAATATTTGAAGATCAAACCGAACTTG





AGAGACTAACGAGAACGGTCCCTTTTTATTCCT





AACAGATTCCTTCCGTGGCAAAGTAACCCGTCG





TCTTCCGTTTCCGGTTGCCCGGTTGCCCTGTTGC





CGTGGTAACCGCACGCATAACAGCCGTGGTGGT





TATGGCTGGTCTGAGCGGCGCGCAGATCCCCGA





CGGGGAGTTTACCGCGCTAGTGTACCGGCTCAT





CCGCGATGCCCGCTACGCCGAGGCGGTGCAGCT





GCTGGGCCGAGAACTGCAGCGGAGCCCCAGGA





GCCGTGCCGGCCTGTCGCTGCTAGGCTACTGCT





ACTACCGCCTGCAGGAGTTCGCGCTGGCGGCCG





AGTGCTATGAGCAGCTGGGCCAGCTGCACCCG





GAACTGGAGCAGTACCGCCTGTACCAGGCCCA





GGCCCTGTACAAGGCCTGCCTTTATCCGGAGGC





CACTCGGGTCGCCTTCCTTCTCCTGGATAACCC





CGCCTACCACAGCCGGGTCCTCCGCCTGCAAGC





TGCCATCAAGTATAGCGAGGGCGATCTGCCAG





GGTCCAGGAGCCTGGTGGAGCAGCTGCTGAGT





GGGGAAGGGGGAGAAGAAAGTGGAGGCGACA





ATGAGACCGATGGCCAGGTCAACCTGGGTTGTT





TGCTCTACAAGGAGGGACAGTATGAAGCTGCA





TGCTCCAAGTTTTCTGCCACACTGCAGGCCTCG





GGCTACCAGCCTGACCTTTCCTACAACCTGGCT





TTGGCCTATTACAGCAGCCGACAGTATGCCTCA





GCACTGAAGCATATCGCTGAGATTATTGAGCGT





GGCATCCGCCAGCATCCTGAGCTAGGTGTGGGC





ATGACCACCGAGGGCTTTGATGTTCGCAGTGTT





GGCAACACCTTAGTTCTCCATCAGACTGCTCTG





GTGGAAGCCTTCAACCTTAAGGCAGCCATAGA





ATACCAACTGAGAAACTATGAGGTAGCTCAAG





AAACCCTCACCGACATGCCACCCAGGGCAGAG





GAAGAGTTGGACCCTGTGACCCTGCACAACCA





GGCACTAATGAACATGGATGCCAGGCCTACAG





AAGGGTTTGAAAAGCTACAGTTTTTGCTCCAAC





AGAATCCCTTTCCTCCAGAGACTTTTGGCAACC





TGTTGCTGCTCTACTGTAAATATGAGTATTTTGA





CCTGGCAGCAGATGTCCTGGCAGAAAATGCCC





ATTTGACGTATAAGTTCCTCACACCCTATCTCTA





TGACTTCTTAGATGCCCTGATCACTTGCCAGAC





AGCTCCTGAAGAGGCTTTCATTAAGCTTGATGG





GCTAGCAGGGATGCTGACTGAGCAGCTTCGGA





GACTCACCAAGCAAGTACAGGAAGCAAGACAC





AACAGAGATGATGAAGCTATCAAAAAGGCAGT





GAATGAATATGATGAAACCATGGAGAAATACA





TTCCTGTGTTGATGGCTCAGGCAAAAATCTACT





GGAATCTTGAAAATTATCCAATGGTGGAAAAG





GTCTTCCGCAAATCTGTGGAATTCTGTAACGAC





CATGATGTGTGGAAGTTGAATGTGGCTCATGTT





CTGTTCATGCAGGAAAACAAATACAAAGAAGC





CATTGGTTTCTATGAACCCATAGTCAAGAAGCA





TTATGATAACATCCTGAATGTCAGTGCTATTGT





ACTGGCTAATCTCTGTGTTTCCTATATTATGACA





AGTCAAAATGAAGAAGCAGAGGAGTTGATGAG





GAAGATTGAAAAGGAGGAAGAGCAGCTCTCTT





ATGATGACCCAAATCGGAAAATGTACCATCTCT





GCATTGTGAATTTGGTGATAGGAACTCTTTATT





GTGCCAAAGGAAACTATGAGTTTGGTATTTCTC





GAGTTATCAAAAGCTTGGAGCCTTATAATAAAA





AGCTGGGAACAGATACCTGGTATTATGCCAAA





AGATGCTTCCTGTCCTTGTTAGAAAACATGTCA





AAACACATGATAGTCATTCATGACAGTGTTATT





CAAGAATGTGTCCAGTTTTTAGGACACTGTGAA





CTTTATGGCACAAACATACCTGCTGTTATTGAA





CAACCCCTCGAAGAAGAAAGAATGCATGTTGG





GAAGAATACAGTCACAGATGAGTCCAGACAAT





TGAAAGCTTTGATTTATGAGATTATAGGATGGA





ATAAGTAGTTATGACTGATAGTGGCTTTTTTCA





AAATGGCTTTCTTACGTACCACACTTTTTTTTAT





CTGTATTTAGCCTTGGCATCTTTATATTTGTCTT





ATTTTGAATCTTATCCACTTTGTAAGAACAAGT





TTATGTTTGAGCAACTTTTTCATTTAATCCAGAA





GGGTAGGGACTATGCAGTGTAAGCTGCATCACT





TCTGCTTTCTTCCTACTAGTGACAATCATCTGGT





CTTGCCCTCAAGCAACAATTGCTAGAGTAACAT





CTTTGTATAAGCAAGTAACCCCAGATAGAGTTG





ACGTTTCAGCTTTGGGCTGTCAAAAGGGTATGT





CATGGACCAAAGCACTGTTAGTACGGGTATGTT





TGCATTTGGTCACTGATATGTAAATGACTGCTA





GCCCACGGCTGGACCACTTCTCAATCAGCAAAT





AAAGCCATGTCTATTTTGCTATCTCAGCATAGA





CTATGCTGTCTGATAAATCTAATTCTTAACTCTA





TTTCTCCAGTTTTTTAGTCCTTTAACTTTCTGGA





TTGCAACGAAGTCTAGTTTAGACCTCTAAGCCC





TTTTAGAAGTACAAGTATAATGGGAATTTCTTT





TCTTGGTTCTTTTCAGGTTATGAGGTTTGGTCAG





TGACAAAATTTTTTTTCATAATTTGGTTGATTGG





TTGCTTCTTAAGTTTTATAATAAACGTTTTTCTT





CATGTTCTATTTTTGATTTTACAGAAATGATTTT





GCCTCCTTGTGGATACTGACATATATTAAGTGT





GGAAGCTTATTAATATTTTTGGTTTTTTAAAAAC





TGAAATTTTTAATTTTTACTTTTTAATTTTTTAG





GAAAAAATAAGCACTGAACTGAGAATGAGAAG





AATAAAAGTATGAGTTCCATACCTTCTAATTTT





AGGCTGTCAGAAATTCCTTTATTCTTTGGGATTT





CACAATCATTTGAACTATCAGAAGCCTTTACAA





TTACTTTTAGCTGTAACATCCGATTCTGTATAAG





CCACATAGAAAAAAGTTGCCTTTCTTTTTTTATG





ACCTGGATATATAAGCAAATCAGCTAGGAAAT





ATATAATTGTATTTTATATTAATGTTTTCTAGGA





TTTTGGCTTACAGTAAATGTTAACCCCTATGGT





AAGTGATTGTTATTGTTGGATGTTATACTGATT





ATTAATAAGAAATTTGGATTTTTGCCTTTTTACC





TGGAATTTTTGCTTACAGCCGTAGCTATGAATA





TATATAGGGTGGTCCCCAGTCTCTGTTATGGTT





GCGCATAAATTAATAATTTTATAAGTATTTAGA





AATGGTATAATTCTCTTAACTTCCTCTTTCAGTT





TTTGTACTAATGTTTGTTTTTGTTCGGGAAGAGG





AGATTTGCTTTTAATCCTTCCAAAAAATGATGA





ACCACCGTTCCATTCAGTAGTTTGACAAGCTGT





TATAATGTGTATTTTTTCCTCAATTATTCTTGAA





ATATTTAGAGCCTCTCCTGCTTCTAACATGAAG





GCCTTTAGATGCCAGTCTGCCAGAAATCTGGAA





ACAGAGGAACCGGTGAAGTGAAGATGTAATGG





AGATTTAGCTAATGATGTACTTCACAATCCACC





TTGGATCTCCTGCATGTCCAAATCTCAGTAGTT





AATCAAGTGTCTGCTGCCATTAACAGAACAGAA





GTAATGGATAACAGAATGGAAATAAGAGATGC





CAGAACTACTTCCATAACTAACTCACCAAATCA





AATCATCAGTCCTCATATTCTTGTTTTATTTAAT





ACAAGGAGAAGAGGCCATGCACTTTCCAAAAG





GTCAAAGCCACATAGAATAGGAAGGCAATCTC





TAGTTTAAAGCTTTCTCTTGGAGTGTTTTCTCCC





CCTGTCTTCAAAGGGTCTACTTGAGAGATAGTG





GTGTTTACTGCTGCAGCATGTATCACAAGATAA





GAAATGAAAAATCAATCTTTCTTACCACCCTGT





TCTCTTTCCCTTTTTTATCTTTTCCCTTTTGTCAA





TTATAGAATTATAGGGACATTTTTCTCTGATAG





CTGGAAGTTGAACCTCAACCAGGTATAAAAGA





TGCATAACAACCTTTTAGCAGTAAGTGTCAAGT





GAGTGAGCACTATGATTATCAAGGTGACTTTGG





AAACCTTTTAAAAATGCATTTTTGCAAAACAAG





ATAACATATATTGATAAAAAGTGACTCTCAGAT





TGGTAATGCCAGAAAAAATTTTAAGAGGACTC





ACCAAAAGTACTAGATCTATGTAAGTTGTAGAA





TAGAGTGAAGTTTTTTTATATATTTGTGGTAGCC





TCCATCTTTTAAACTTTTTGAACTCAGTAGAAA





AACAGACTGAAATTTTAAAGACATGCAGTATTT





GTATCATTTTAAATTCTGTAACACTGGGAATTA





AATATACTCAACTTTAGAGGAAAAAAAAAAAA





AAAAAA






SMAP1
NM_001044305.2
GACCCAGTCCCCCTCCCCCTCCCCTCGCCGGCT
7




AGGGTGGTGCGTGCCGGCAGGCCGGTCAAGGA





GGCGGGACACGTCGGCGCTACCACCGCCACCG





CCGCCGCCGCCCCTCCTCCCGTTCCAGCTGCCG





CTGCCGCTTCCTGGGCTGAGTCCGCCCGCGGTC





CCGGCGGCGCCAGGTGCGTTCACTCTGCCCGGC





TCCAGCCAGCGTCCGCCGCCGCCGTAGCTGCCC





CAGGCTCCCCGCCCCGCTGCCGAGATGGCGACG





CGCTCCTGTCGGGAGAAGGCTCAGAAGCTGAA





CGAGCAGCACCAGCTCATCCTATCCAAGCTTCT





GAGGGAGGAGGACAACAAGTACTGCGCCGACT





GCGAGGCCAAAGGTCCTCGATGGGCTTCCTGGA





ATATTGGTGTGTTTATTTGCATCAGATGTGCTG





GAATTCATAGAAATCTTGGGGTTCATATATCCA





GGGTCAAATCAGTCAACCTAGACCAATGGACA





GCAGAACAGATACAGTGCATGCAAGATATGGG





AAATACTAAAGCAAGACTACTCTATGAAGCCA





ATCTTCCAGAGAACTTTCGAAGACCACAGACAG





ATCAAGCAGTGGAATTTTTCATCAGAGATAAAT





ATGAAAAGAAGAAATACTACGATAAAAATGCC





ATAGCTATTACAAATATTTCCTCCTCTGATGCTC





CTCTTCAGCCTTTGGTATCCTCTCCTTCTCTGCA





AGCTGCTGTTGACAAAAATAAATTGGAGAAAG





AAAAGGAAAAAAAAAAGGAAGAGAAAAAGAG





AGAAAAGGAGCCAGAAAAGCCGGCAAAACCAC





TTACAGCTGAAAAGCTGCAGAAGAAAGATCAG





CAACTGGAGCCTAAAAAAAGTACCAGCCCTAA





AAAAGCTGCGGAGCCCACTGTGGATCTTTTAGG





ACTTGATGGCCCTGCTGTGGCACCAGTGACCAA





CGGGAACACAACGGTGCCACCCCTGAACGATG





ATCTGGACATCTTTGGACCGATGATTTCTAATC





CCTTACCTGCAACTGTCATGCCCCCAGCTCAGG





GGACACCCTCTGCACCAGCAGCTGCAACCCTGT





CTACAGTAACATCTGGGGATCTAGATTTATTCA





CTGAGCAAACTACAAAATCAGAAGAAGTGGCA





AAGAAACAACTTTCCAAAGACTCCATCTTATCT





CTGTATGGCACAGGAACCATTCAACAGCAAAG





TACTCCTGGTGTATTTATGGGACCCACAAATAT





ACCATTTACCTCACAAGCACCAGCTGCATTTCA





GGGCTTTCCATCGATGGGCGTGCCTGTGCCTGC





AGCTCCTGGCCTTATAGGAAATGTGATGGGACA





GAGTCCAAGCATGATGGTGGGCATGCCCATGCC





CAATGGGTTTATGGGAAATGCACAAACTGGTGT





GATGCCACTTCCTCAGAACGTTGTTGGCCCCCA





AGGAGGAATGGTGGGACAAATGGGTGCACCCC





AGAGTAAGTTTGGCCTGCCGCAAGCTCAGCAGC





CCCAGTGGAGCCTCTCACAGATGAATCAGCAG





ATGGCTGGCATGAGTATCAGTAGTGCAACCCCT





ACTGCAGGTTTTGGCCAGCCCTCCAGCACAACA





GCAGGATGGTCTGGAAGCTCATCAGGTCAGACT





CTCAGCACACAACTGTGGAAATGAAAACTGCA





ATACAAGTTTCATCCAGAACTACCACCTGACAT





TCCTTGCTGAAACGCATCTAGTTCCCCTGTTTAT





TCATATGCATATTTTTTTTCTTTTTACCCATTTGT





TCATATTAAGAATGATCTGATTGACCGTGTTGG





TCTGTACTGATTCAATTTGATGTGGTGAAAAGC





AGGTTGATAAATCATTTTATGTCAAGGGCAGCT





TTGCTCATATTTCCCATGATTTCATGTACTGCAT





TATTTGAGAAGCTGCTCAACTTGCAAAATCAGT





TTTCCTCTCAATAAAATTATAGCTCTAATGTTTG





CATATAAGGGAAGTAGTTATCATGTTAGTAATA





CCTCTAATAGTATAAACCCCACCCCAAAATTAG





CCAGTAATCCTGTAGGAAGGTACTGTATGATCA





AATGTTTAATCATATAAATAGAATGTAAATGTC





TCACTGAGCACTGTTTTCTAGTGTATCAAAATG





CTCTTATTTCATCATTCACTTCACTGTGCTGTTG





TTATGATGTGCTTAACAGGGAACGTGATTAGTG





AAAGGAAGATAAACGTGGATGTTACTCCAAAA





CTTCGTTTAATGAATGCTTAAAGAATTCAAATT





TTATCTGCCTCTCTTGTAATTTGGATCTCTTCTT





AATGTACATAGTGCTAACATGAAGACCTTTTTC





TGCACTATATGCAAACAGGGTAACTAACTAAA





ACAAAGCCACTTTCAATCTTCAATCCTTGAAGG





TATATCTAGGTTTATGACAGTAATTGTGTTTAC





ATTTTATGGTGCCTAGTATTGACAAAATGTTAT





TTCCCTACATTAAACATGACTCCATAGACCTTTT





CATTTGTGGGTTTTTATTTCCTATGATGTATACT





GCCACTAACCTTCCAAAAATTACTTAGTATTGC





AAAGTCAGGAATCATCAGGAACGTTTAGCTGA





CAAAATACTTGTCTGTTTTAAAAACCTGTTCAA





GTCTACCAACCTGTTCAAGTCTACCAATTATAA





GGGCAAATTGGAGAAAAAGAAAAAATATATAC





TCAAGAGTGGTATCTTGCAGTATCGGCACTGTA





CAAAAAAATCTTCCAATTTAGTTGTTGTAGAGA





AAACATGCAGAACAAATGAAGACAAAACATAC





ATTTTGTACCAACCATCCAATTAGCTTATGTTA





ACTGACAAGCTCCATTTAAACAGATGTCCATCA





GATGACAAGAAAGGCTGCTGTACTGAAGTAAA





ACAAACAATACCTGAATGCTCTGTAGCCTAAAC





TCCAAACATCCTCTTCCATATGGATCCACTGGC





TGGACAAACTGCACCAGTTGCTGCTTCAATTTA





TACCTCAATTTTCACTGTGTCCAGGTGGTACTTT





GGCTCGTTGGCTAGATTAACCTTCTCTGTCCGA





GTGTGCCACACGAGAACCTGAAGGGGAAGGAA





ATAGCTTGGGTAGCGCACTCTTCATGGTGACAC





TCGAGGTCGGGCAGCACAAGTGTAATGAATAC





CTTAGTGCAGTTATTTGCTTTCGGTTCCAGTTCT





TCGACTGTTGTTATCTGTTTGAGAAAGTCAGAT





TCTTGCATCCCTGGCTGGGATCCACGACGCTTA





AATACAGCTTTTGGATTGGACAAAATGACTTGA





AGACTTACAGCAAATCCTTTGTGAAAAATAAAA





AAAAAAAAGAGACTTTAAAAAAAAAAAAAAA






RNLS
NM_001031709.2
AAAGCTCAGGGCCCAGGTCGGCCCAGGGAGCA
8




CGGAACCAAAGAGCGCTAGCGCCGGTTCGGCC





GCCTTTCCAGAAAGCCCGGGCCGAACGGCCCC





GCCGCAGAGACTCAGCGCGGATCGCTGCTCCCT





CTCGCCATGGCGCAGGTGCTGATCGTGGGCGCC





GGGATGACAGGAAGCTTGTGCGCTGCGCTGCTG





AGGAGGCAGACGTCCGGTCCCTTGTACCTTGCT





GTGTGGGACAAGGCTGAGGACTCAGGGGGAAG





AATGACTACAGCCTGCAGTCCTCATAATCCTCA





GTGCACAGCTGACTTGGGTGCTCAGTACATCAC





CTGCACTCCTCATTATGCCAAAAAACACCAACG





TTTTTATGATGAACTGTTAGCCTATGGCGTTTTG





AGGCCTCTAAGCTCGCCTATTGAAGGAATGGTG





ATGAAAGAAGGAGACTGTAACTTTGTGGCACCT





CAAGGAATTTCTTCAATTATTAAGCATTACTTG





AAAGAATCAGGTGCAGAAGTCTACTTCAGACA





TCGTGTGACACAGATCAACCTAAGAGATGACA





AATGGGAAGTATCCAAACAAACAGGCTCCCCT





GAGCAGTTTGATCTTATTGTTCTCACAATGCCA





GTTCCTGAGATTCTGCAGCTTCAAGGTGACATC





ACCACCTTAATTAGTGAATGCCAAAGGCAGCA





ACTGGAGGCTGTGAGCTACTCCTCTCGATATGC





TCTGGGCCTCTTTTATGAAGCTGGTACGAAGAT





TGATGTCCCTTGGGCTGGGCAGTACATCACCAG





TAATCCCTGCATACGCTTCGTCTCCATTGATAAT





AAGAAGCGCAATATAGAGTCATCAGAAATTGG





GCCTTCCCTCGTGATTCACACCACTGTCCCATTT





GGAGTTACATACTTGGAACACAGCATTGAGGAT





GTGCAAGAGTTAGTCTTCCAGCAGCTGGAAAAC





ATTTTGCCGGGTTTGCCTCAGCCAATTGCTACC





AAATGCCAAAAATGGAGACATTCACAGGTTAC





AAATGCTGCTGCCAACTGTCCTGGCCAAATGAC





TCTGCATCACAAACCTTTCCTTGCATGTGGAGG





GGATGGATTTACTCAGTCCAACTTTGATGGCTG





CATCACTTCTGCCCTATGTGTTCTGGAAGCTTTA





AAGAATTATATTTAGTGCCTATATCCTTATTCTC





TACATGTGTATTGGGTTTTTATTTTCACAATTTT





CTGTTATTGATTATTTTGTTTTCTATTTTGCTAA





GAAAAATTACTGGAAAATTGTTCTTCACTTATT





ATCATTTTTCATGTGGAGTATAAAATCAATTTT





GTAATTTTGATAGTTACAACCCATGCTAGAATG





GAAATTCCTCACACCTTGCACCTTCCCTACTTTT





CTGAATTGCTATGACTACTCCTTGTTGGAGGAA





AAGTGGTACTTAAAAAATAACAAACGACTCTCT





CAAAAAAATTACATTAAATCACAATAACAGTTT





GTGTGCCAAAAACTTGATTATCCTTATGAAAAT





TTCAATTCTGAATAAAGAATAATCACATTATCA





AAGCCCCATCTTAAGTCTTCGGATGTGTCCTTG





AATCAATATTTTTGCAAATTATACAAAACAAGA





TTTTTCCAAAATGTAGGTAACAGAGTGTAATTC





TTATTTCTCATTTATCCCCCAAGTTATTAAGTGA





TCCTGAATTGTAGGTCATATATGTCATCATCTTA





GTGTGGAGGGCAACTTGACTGATAAAGAGACC





TTCCTTCAGATTTTCAGAAAGTATAAGATTCCA





CATGATTTTCCCAGCCACACAGTACTTTTTAACT





TTCAAACAAATTCCAGTCCTAATATGAAAGATA





AAAATTAAATAGAAACAGAGAGAAAGTATATC





GATCCTTACCTTTTGCTATATTTTATAGCTGTTG





CTGTTACTTTATGGGTTCTCCAGTATGTGCTGTG





GCATTTAGACTGTGTCGAGTTTAATGAATTTAA





CACAACAAAAAATTTACTGAACCAGAAAATAG





ATGCACTTAAAATAGTTCAATATTTGCCAAGTT





GGTGGTTCAGCATATCACCCACATGCTTCAGTG





ACCTGACCCCACGACTTGCTAGCTGGAGAGAA





ATCAATCTCCAGCCTTCCAAACCAGCTACCTGT





TGCTAATTTGAAAAGCAAAATGATGAGTTCTAT





TTCAGCATTTTGAAAGGAGAAAAATCATTGCAG





CCTCTCAAACTAACAAAAGTTCAACAAAAGACT





TCTTACTGTAATAGTGTTTAAAGTTTCACACTTA





CATGTCCACTGTCATACATACACATACACAGGC





ACAGGCAGAACTTGCTTCTATAGCTGCAAAGTG





GGTTTTATGACCCTATAGCATATTATTATATGTT





TCCTCTTAGCAATAAATTGGTGAAAAACTTAAA





TGCCAAAAAA






WNT11
XM_011545241.2
CCGGGCCTTTGCCGACATGCGCTGGAACTGCTC
9




CTCCATTGAGCTCGCCCCCAACTATTTGCTTGA





CCTGGAGAGAGGACACCAGCCACTGGCCTAGG





GCCCACCCTGATCCGGTATGACCTCGTCTCAGC





CCCATTACATCTGCAAAGACCCCACTTCGTCAT





AAGATTATGCTCACAGGGACCCGGGAGTCGGC





CTTCGTGTATGCGCTGTCGGCCGCCGCCATCAG





CCACGCCATCGCCCGGGCCTGCACCTCCGGCGA





CCTGCCCGGCTGCTCCTGCGGCCCCGTCCCAGG





TGAGCCACCCGGGCCCGGGAACCGCTGGGGAG





GATGTGCGGACAACCTCAGCTACGGGCTCCTCA





TGGGGGCCAAGTTTTCCGATGCTCCTATGAAGG





TGAAAAAAACAGGATCCCAAGCCAATAAACTG





ATGCGTCTACACAACAGTGAAGTGGGGAGACA





GGCTCTGCGCGCCTCTCTGGAAATGAAGTGTAA





GTGCCATGGGGTGTCTGGCTCCTGCTCCATCCG





CACCTGCTGGAAGGGGCTGCAGGAGCTGCAGG





ATGTGGCTGCTGACCTCAAGACCCGATACCTGT





CGGCCACCAAGGTAGTGCACCGACCCATGGGC





ACCCGCAAGCACCTGGTGCCCAAGGACCTGGA





TATCCGGCCTGTGAAGGACTCGGAACTCGTCTA





TCTGCAGAGCTCACCTGACTTCTGCATGAAGAA





TGAGAAGGTGGGCTCCCACGGGACACAAGACA





GGCAGTGCAACAAGACATCCAACGGAAGCGAC





AGCTGCGACCTTATGTGCTGCGGGCGTGGCTAC





AACCCCTACACAGACCGCGTGGTCGAGCGGTG





CCACTGTAAGTACCACTGGTGCTGCTACGTCAC





CTGCCGCAGGTGTGAGCGTACCGTGGAGCGCTA





TGTCTGCAAGTGAGGCCCTGCCCTCCGCCCCAC





GCAGGAGCGAGGACTCTGCTCAAGGACCCTCA





GCAACTGGGGCCAGGGGCCTGGAGACACTCCA





TGGAGCTCTGCTTGTGAATTCCAGATGCCAGGC





ATGGGAGGCGGCTTGTGCTTTGCCTTCACTTGG





AAGCCACCAGGAACAGAAGGTCTGGCCACCCT





GGAAGGAGGGCAGGACATCAAAGGAAACCGAC





AAGATTAAAAATAACTTGGCAGCCTGAGGCTCT





GGAGTGCCCACAGGCTGGTGTAAGGAGCGGGG





CTTGGGATCGGTGAGACTGATACAGACTTGACC





TTTCAGGGCCACAGAGACCAGCCTCCGGGAAG





GGGTCTGCCCGCCTTCTTCAGAATGTTCTGCGG





GACCCCCTGGCCCACCCTGGGGTCTGAGCCTGC





TGGGCCCACCACATGGAATCACTAGCTTGGGTT





GTAAATGTTTTCTTTTGTTTTTTGCTTTTTCTTCC





TTTGGGATGTGGAAGCTACAGAAATATTTATAA





AACATAGCTTTTTCTTTGGGGTGGCACTTCTCA





ATTCCTCTTTATATATTTTATATATATAAATATA





TATGTATATATATAATGATCTCTATTTTAAAACT





AGCTTTTTAAGCAGCTGTATGAAATAAATGCTG





AGTGAGCCCCAGCCCGCCCCTGCA






SFXN1
NM_001322977.1
CGGACGCGCGCTCACAGGCGCGCGCGAGGACG
10




CGCTCCGGGGACGCGCGAGGACGCCGTGGCGG





GAGAAGCGTTTCCGGTGGCGGCGGAGGCTGCA





CTGAGCGGGACCTGCGAGCAGCGCGGGCGGCA





GCCCGGGGGAAGCGGTGAGTCGCGGGCGGCAG





GCCCAGCCAGTCCGGGACCATGTCTGGAGAACT





ACCACCAAACATTAACATCAAGGAACCTCGAT





GGGATCAAAGCACTTTCATTGGACGAGCCAATC





ATTTCTTCACTGTAACTGACCCCAGGAACATTC





TGTTAACCAACGAACAACTCGAGAGTGCGAGA





AAAATAGTACATGATTACAGGCAAGGAATTGTT





CCTCCTGGTCTTACAGAAAATGAATTGTGGAGA





GCAAAGTACATCTATGATTCAGCTTTTCATCCT





GACACTGGTGAGAAGATGATTTTGATAGGAAG





AATGTCAGCCCAGGTTCCCATGAACATGACCAT





CACAGGTTGTATGATGACGTTTTACAGGACTAC





GCCGGCTGTGCTGTTCTGGCAGTGGATTAACCA





GTCCTTCAATGCCGTCGTCAATTACACCAACAG





AAGTGGAGACGCACCCCTCACTGTCAATGAGTT





GGGAACAGCTTACGTTTCTGCAACAACTGGTGC





CGTAGCAACAGCTCTAGGACTCAATGCATTGAC





CAAGCATGTCTCACCACTGATAGGACGTTTTGT





TCCCTTTGCTGCCGTAGCTGCTGCTAATTGCATT





AATATTCCATTAATGAGGCAAAGGGAACTCAA





AGTTGGCATTCCCGTCACGGATGAGAATGGGA





ACCGCTTGGGGGAGTCGGCGAACGCTGCGAAA





CAAGCCATCACGCAAGTTGTCGTGTCCAGGATT





CTCATGGCAGCCCCTGGCATGGCCATCCCTCCA





TTCATTATGAACACTTTGGAAAAGAAAGCCTTT





TTGAAGAGGTTCCCATGGATGAGTGCACCCATT





CAAGTTGGGTTAGTTGGCTTCTGTTTGGTGTTTG





CTACACCCCTGTGTTGTGCCCTGTTTCCTCAGAA





AAGTTCCATGTCTGTGACAAGCTTGGAGGCCGA





GTTGCAAGCTAAGATCCAAGAGAGCCATCCTG





AATTGCGACGCGTGTACTTCAATAAGGGATTGT





AAAGCAGGGAGGAAACCTCTGCAGCTCATTCT





GCCACTGCAAAGCTGGTGTAGCCATGCTGGTGA





GAAAAATCCTGTTCAACCTGGGTTCTCCCAGTT





ACGGAAACCTTTTAAAGATCCACATTAGCCTTT





TAGAATAAAGCTGCTACTTTAACAGAGCACCTG





GCGTGGGCCAAGTGCCTGATACTCCCTTACACT





GAATCATGTTATGATTTATAGAAATACCTTTCC





TGTAGCTTTTATAGTCATTGTTTTTCAAAGACGA





TATACCAGCCCTCACCCAGGTTTTAAAAAAGCA





CTGGTAGGCATAGAATAGGTGCTCAGTATATGG





TCAGTAAATGTTCTATTGATTATCAATCAGTGA





AAAAAGAAATCTGTTTAAAATACTGAATTTTCA





TCTCACTCCCATTGCAAATCAAGGAGATCTCAG





CAGTGAACTGGGAAAATACAAAAGCTCTGGGC





TAATCTATAAAAACTTACCCTGAAATATTAAGG





GCAGTTTGCTTCTAGTTTGGGGATTGCGCTAGC





CCAATGAAGGTGATGAAGCTTTTGGATTTGGAG





GGTAAAAGCTCCTTCACACCCCTTCCAAAAGTC





AGTCACAGACCACTGCAACATGCCTTCCCTGCT





GGATCATTATATACATTCAGATTGTGAGTGGAT





TGCCTTGGTTGACTTTTAATTTATTGTTTTTTGTT





CTTATAAAGATGATAATCTTACCTTGCAGTTAT





TGACTTTATATTCAATTATTTACATCAAATAATG





AAATAACTGAAATGTACAAATGTCAAATTTTGG





AAGTATATTCAATACCAATGCTGTATGAGTGGG





CTGAATCCAGTTCATTGTTTTTTTTTTGGTAAGA





AGTGAGACTACAGTTCCAGCTACCTACATGTCT





TTTCTTGTCATCCTTATAGATCTCTTTGGCTTTC





AGAAAGATACAGTGATAATGTGTGTATGAATC





AGTCACAATGAATTTTACTTGAATATTGTATGT





TGCATTCCACTTCATTTGAAAATAATGAAACCA





TGTACCACTGTTTACATCATCTGTAGTGATTTCA





TAGATAATATATTTAATATGACAGATTATGTTT





CAACTCTGTAGATGTTTAACGTCATAGACAGTT





GGCCCTCTGTATCCGTGAGCTCTATATCTGTGA





ATTCAACCAAGTTTGGATGGAAAATTTTTTTTTT





TTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCA





CCCAGGCTGGAGTGCAGTGGCGTAGTCTCGGCT





CACTGCAAGCTCCGCCTCCCGGGTTCACGCCGT





TCTCCTGCCTCAGCCTCTCTGAGAAGCTGGGAC





TACAGGCGCCCGCCACCACGCCCGGCTAATTTT





TTTGTATTTTTAGTAGAGACGGGGTTTCACTGT





GGTCTCGATCTCCTGACCTCGTGATCCGCCCGC





CTTGGCCTCCCAAGGTGCTGGGATTACAAGCGT





GAGCCACCGCACCCGGCCTGAAAATATTTTCTA





AAAAGATAAAAAATATACATAACGATGAAAAA





TAATACAAATTTAAAAACCAATACAGTATAACA





ACTATTTACATAGTGCTTACATTGTATTAGGTGT





TATAAGCAATCTAGAGATGATTTAGCAAGTATA





CAGGAGGATGTGCCTAGGTTATATGCAAATACT





GTGCCATTTTATATCAGGAACTTGAGCATCTGC





AGATATTGGTATCGGAGGGCGGTCCTGGAACC





AAGCATCCACGGATACTGAGGGGTGACATTTCA





TGAAGTGTAGATCATTGTATTCAGAGATTGTAA





ATGAAAAAAATATAGAAACTATTTAGTTTTGGT





AGATTTTTTTTCTGACAATGTGACCAGACTGAA





TTTCCTCATAAAGAAAAAATGGCGTGCCTTGTG





TCTGTGTTTCTCTTTTCTCTGAAAGGATTAATAG





ATCTGAAGCTTTGGGCCACTCAGAGCCTTCCTT





GATGCTGCCAGAGTCTTCTTATTTAGATTTTCTG





TCTTAAACCATTGGAAGCAAAACGGTTTTCCCA





TGACATTCTGGCCTTGGACAGATTCTGTTGTCCT





CGACGCGTCTCTTTATAAAGTGGTAAAAGCCTG





AAATTCAGGGCAGCTCTCCATGAGGTGCTGAAG





GGCTCTTTTCATAAGAAGCTAAGGCACTGCTGC





CTGCCCCAGGTGTCCCGCTCCTCTCAGAGTCCT





CCCCCTACCAGGTAGTGTGTAGCTCCATTTCAG





AATGTTAACCTCCAGTGAAGAGCTAATGACTGG





TTAGAAGATTGACAAACTAACCAAAATTTTACA





CACTCCGGTTATGTGTGTGAAAGGTTATAAAAG





GAATGGCCGGGTGCGGTGGCTCACCCCTGTAAT





CCCAGCACTTTGGGAGGCCGAGGCGGGTGGAT





CACCTGAGGTCAGGAGTTTGAGACCAGCCTGGC





CAACATGGAGAAACCCCGCCTCTACTAAAAAT





ACAAAAAATTAGCCAGGCATGGAGGCACATGC





CTATAATCCCAGCTACTCGGGAGGCTGAGGTAG





GAGAATCGCTTGAATCCGGGAGCTGGAGGTTG





CAGTGAGCCAAGATCGCACCATTGCACTCCAGC





CTGGGCAACAAGAGCGAAACTCCATCTCAAAA





AAAAAAAAAAGAGATTATAAAAGGGATGATGA





ACATGGAGCTGCATCTTTTTAAACGTTGTTTTTT





GATGCTTCAGACTCTTAATGCTTTTATATAAAG





CTATCAACTGTATGTTGATCACAGTTTATAAGA





AAGAACAAATCAAGATTGGCAATCCTTGCCGAT





CTTTTAGAAATACCTTTTCTGGAGAAAAAAAAA





TCCACATGAAGTGCAATAAGCTTATAAAGCTAA





GTAGTTATTAATATTTCTATTAACATGATACAA





AGGATGATGATTGTAAGTGTTTACTGACTGGCA





GCTTTTATTTCAGTATTAGCACAGCGTCTTGCCA





GTGTTGGAGGCCATGTATTATTTCAGTTCAACT





GGATGAAATGTTAAATAAACTCAGAATGAAAA





TAAA






SREBF1
NM_001005291.1
AGCAGAGCTGCGGCCGGGGGAACCCAGTTTCC
11




GAGGAACTTTTCGCCGGCGCCGGGCCGCCTCTG





AGGCCAGGGCAGGACACGAACGCGCGGAGCGG





CGGCGGCGACTGAGAGCCGGGGCCGCGGCGGC





GCTCCCTAGGAAGGGCCGTACGAGGCGGCGGG





CCCGGCGGGCCTCCCGGAGGAGGCGGCTGCGC





CATGGACGAGCCACCCTTCAGCGAGGCGGCTTT





GGAGCAGGCGCTGGGCGAGCCGTGCGATCTGG





ACGCGGCGCTGCTGACCGACATCGAAGGTGAA





GTCGGCGCGGGGAGGGGTAGGGCCAACGGCCT





GGACGCCCCAAGGGCGGGCGCAGATCGCGGAG





CCATGGATTGCACTTTCGAAGACATGCTTCAGC





TTATCAACAACCAAGACAGTGACTTCCCTGGCC





TATTTGACCCACCCTATGCTGGGAGTGGGGCAG





GGGGCACAGACCCTGCCAGCCCCGATACCAGC





TCCCCAGGCAGCTTGTCTCCACCTCCTGCCACA





TTGAGCTCCTCTCTTGAAGCCTTCCTGAGCGGG





CCGCAGGCAGCGCCCTCACCCCTGTCCCCTCCC





CAGCCTGCACCCACTCCATTGAAGATGTACCCG





TCCATGCCCGCTTTCTCCCCTGGGCCTGGTATCA





AGGAAGAGTCAGTGCCACTGAGCATCCTGCAG





ACCCCCACCCCACAGCCCCTGCCAGGGGCCCTC





CTGCCACAGAGCTTCCCAGCCCCAGCCCCACCG





CAGTTCAGCTCCACCCCTGTGTTAGGCTACCCC





AGCCCTCCGGGAGGCTTCTCTACAGGAAGCCCT





CCCGGGAACACCCAGCAGCCGCTGCCTGGCCTG





CCACTGGCTTCCCCGCCAGGGGTCCCGCCCGTC





TCCTTGCACACCCAGGTCCAGAGTGTGGTCCCC





CAGCAGCTACTGACAGTCACAGCTGCCCCCACG





GCAGCCCCTGTAACGACCACTGTGACCTCGCAG





ATCCAGCAGGTCCCGGTCCTGCTGCAGCCCCAC





TTCATCAAGGCAGACTCGCTGCTTCTGACAGCC





ATGAAGACAGACGGAGCCACTGTGAAGGCGGC





AGGTCTCAGTCCCCTGGTCTCTGGCACCACTGT





GCAGACAGGGCCTTTGCCGACCCTGGTGAGTGG





CGGAACCATCTTGGCAACAGTCCCACTGGTCGT





AGATGCGGAGAAGCTGCCTATCAACCGGCTCG





CAGCTGGCAGCAAGGCCCCGGCCTCTGCCCAG





AGCCGTGGAGAGAAGCGCACAGCCCACAACGC





CATTGAGAAGCGCTACCGCTCCTCCATCAATGA





CAAAATCATTGAGCTCAAGGATCTGGTGGTGGG





CACTGAGGCAAAGCTGAATAAATCTGCTGTCTT





GCGCAAGGCCATCGACTACATTCGCTTTCTGCA





ACACAGCAACCAGAAACTCAAGCAGGAGAACC





TAAGTCTGCGCACTGCTGTCCACAAAAGCAAAT





CTCTGAAGGATCTGGTGTCGGCCTGTGGCAGTG





GAGGGAACACAGACGTGCTCATGGAGGGCGTG





AAGACTGAGGTGGAGGACACACTGACCCCACC





CCCCTCGGATGCTGGCTCACCTTTCCAGAGCAG





CCCCTTGTCCCTTGGCAGCAGGGGCAGTGGCAG





CGGTGGCAGTGGCAGTGACTCGGAGCCTGACA





GCCCAGTCTTTGAGGACAGCAAGGCAAAGCCA





GAGCAGCGGCCGTCTCTGCACAGCCGGGGCAT





GCTGGACCGCTCCCGCCTGGCCCTGTGCACGCT





CGTCTTCCTCTGCCTGTCCTGCAACCCCTTGGCC





TCCTTGCTGGGGGCCCGGGGGCTTCCCAGCCCC





TCAGATACCACCAGCGTCTACCATAGCCCTGGG





CGCAACGTGCTGGGCACCGAGAGCAGAGATGG





CCCTGGCTGGGCCCAGTGGCTGCTGCCCCCAGT





GGTCTGGCTGCTCAATGGGCTGTTGGTGCTCGT





CTCCTTGGTGCTTCTCTTTGTCTACGGTGAGCCA





GTCACACGGCCCCACTCAGGCCCCGCCGTGTAC





TTCTGGAGGCATCGCAAGCAGGCTGACCTGGAC





CTGGCCCGGGGAGACTTTGCCCAGGCTGCCCAG





CAGCTGTGGCTGGCCCTGCGGGCACTGGGCCGG





CCCCTGCCCACCTCCCACCTGGACCTGGCTTGT





AGCCTCCTCTGGAACCTCATCCGTCACCTGCTG





CAGCGTCTCTGGGTGGGCCGCTGGCTGGCAGGC





CGGGCAGGGGGCCTGCAGCAGGACTGTGCTCT





GCGAGTGGATGCTAGCGCCAGCGCCCGAGACG





CAGCCCTGGTCTACCATAAGCTGCACCAGCTGC





ACACCATGGGGAAGCACACAGGCGGGCACCTC





ACTGCCACCAACCTGGCGCTGAGTGCCCTGAAC





CTGGCAGAGTGTGCAGGGGATGCCGTGTCTGTG





GCGACGCTGGCCGAGATCTATGTGGCGGCTGCA





TTGAGAGTGAAGACCAGTCTCCCACGGGCCTTG





CATTTTCTGACACGCTTCTTCCTGAGCAGTGCCC





GCCAGGCCTGCCTGGCACAGAGTGGCTCAGTGC





CTCCTGCCATGCAGTGGCTCTGCCACCCCGTGG





GCCACCGTTTCTTCGTGGATGGGGACTGGTCCG





TGCTCAGTACCCCATGGGAGAGCCTGTACAGCT





TGGCCGGGAACCCAGTGGACCCCCTGGCCCAG





GTGACTCAGCTATTCCGGGAACATCTCTTAGAG





CGAGCACTGAACTGTGTGACCCAGCCCAACCCC





AGCCCTGGGTCAGCTGATGGGGACAAGGAATT





CTCGGATGCCCTCGGGTACCTGCAGCTGCTGAA





CAGCTGTTCTGATGCTGCGGGGGCTCCTGCCTA





CAGCTTCTCCATCAGTTCCAGCATGGCCACCAC





CACCGGCGTAGACCCGGTGGCCAAGTGGTGGG





CCTCTCTGACAGCTGTGGTGATCCACTGGCTGC





GGCGGGATGAGGAGGCGGCTGAGCGGCTGTGC





CCGCTGGTGGAGCACCTGCCCCGGGTGCTGCAG





GAGTCTGAGAGACCCCTGCCCAGGGCAGCTCTG





CACTCCTTCAAGGCTGCCCGGGCCCTGCTGGGC





TGTGCCAAGGCAGAGTCTGGTCCAGCCAGCCTG





ACCATCTGTGAGAAGGCCAGTGGGTACCTGCA





GGACAGCCTGGCTACCACACCAGCCAGCAGCT





CCATTGACAAGGCCGTGCAGCTGTTCCTGTGTG





ACCTGCTTCTTGTGGTGCGCACCAGCCTGTGGC





GGCAGCAGCAGCCCCCGGCCCCGGCCCCAGCA





GCCCAGGGCACCAGCAGCAGGCCCCAGGCTTC





CGCCCTTGAGCTGCGTGGCTTCCAACGGGACCT





GAGCAGCCTGAGGCGGCTGGCACAGAGCTTCC





GGCCCGCCATGCGGAGGGTGTTCCTACATGAGG





CCACGGCCCGGCTGATGGCGGGGGCCAGCCCC





ACACGGACACACCAGCTCCTCGACCGCAGTCTG





AGGCGGCGGGCAGGCCCCGGTGGCAAAGGAGG





CGCGGTGGCGGAGCTGGAGCCGCGGCCCACGC





GGCGGGAGCACGCGGAGGCCTTGCTGCTGGCC





TCCTGCTACCTGCCCCCCGGCTTCCTGTCGGCG





CCCGGGCAGCGCGTGGGCATGCTGGCTGAGGC





GGCGCGCACACTCGAGAAGCTTGGCGATCGCC





GGCTGCTGCACGACTGTCAGCAGATGCTCATGC





GCCTGGGCGGTGGGACCACTGTCACTTCCAGCT





AGACCCCGTGTCCCCGGCCTCAGCACCCCTGTC





TCTAGCCACTTTGGTCCCGTGCAGCTTCTGTCCT





GCGTCGAAGCTTTGAAGGCCGAAGGCAGTGCA





AGAGACTCTGGCCTCCACAGTTCGACCTGCGGC





TGCTGTGTGCCTTCGCGGTGGAAGGCCCGAGGG





GCGCGATCTTGACCCTAAGACCGGCGGCCATGA





TGGTGCTGACCTCTGGTGGCCGATCGGGGCACT





GCAGGGGCCGAGCCATTTTGGGGGGCCCCCCTC





CTTGCTCTGCAGGCACCTTAGTGGCTTTTTTCCT





CCTGTGTACAGGGAAGAGAGGGGTACATTTCCC





TGTGCTGACGGAAGCCAACTTGGCTTTCCCGGA





CTGCAAGCAGGGCTCTGCCCCAGAGGCCTCTCT





CTCCGTCGTGGGAGAGAGACGTGTACATAGTGT





AGGTCAGCGTGCTTAGCCTCCTGACCTGAGGCT





CCTGTGCTACTTTGCCTTTTGCAAACTTTATTTT





CATAGATTGAGAAGTTTTGTACAGAGAATTAAA





AATGAAATTATTTATAATCTGGAAAAAA






TYMS
NM_001071.1
GGGGGGGGGGGGACCACTTGGCCTGCCTCCGT
12




CCCGCCGCGCCACTTGGCCTGCCTCCGTCCCGC





CGCGCCACTTCGCCTGCCTCCGTCCCCCGCCCG





CCGCGCCATGCCTGTGGCCGGCTCGGAGCTGCC





GCGCCGGCCCTTGCCCCCCGCCGCACAGGAGCG





GGACGCCGAGCCGCGTCCGCCGCACGGGGAGC





TGCAGTACCTGGGGCAGATCCAACACATCCTCC





GCTGCGGCGTCAGGAAGGACGACCGCACGGGC





ACCGGCACCCTGTCGGTATTCGGCATGCAGGCG





CGCTACAGCCTGAGAGATGAATTCCCTCTGCTG





ACAACCAAACGTGTGTTCTGGAAGGGTGTTTTG





GAGGAGTTGCTGTGGTTTATCAAGGGATCCACA





AATGCTAAAGAGCTGTCTTCCAAGGGAGTGAA





AATCTGGGATGCCAATGGATCCCGAGACTTTTT





GGACAGCCTGGGATTCTCCACCAGAGAAGAAG





GGGACTTGGGCCCAGTTTATGGCTTCCAGTGGA





GGCATTTTGGGGCAGAATACAGAGATATGGAA





TCAGATTATTCAGGACAGGGAGTTGACCAACTG





CAAAGAGTGATTGACACCATCAAAACCAACCC





TGACGACAGAAGAATCATCATGTGCGCTTGGA





ATCCAAGAGATCTTCCTCTGATGGCGCTGCCTC





CATGCCATGCCCTCTGCCAGTTCTATGTGGTGA





ACAGTGAGCTGTCCTGCCAGCTGTACCAGAGAT





CGGGAGACATGGGCCTCGGTGTGCCTTTCAACA





TCGCCAGCTACGCCCTGCTCACGTACATGATTG





CGCACATCACGGGCCTGAAGCCAGGTGACTTTA





TACACACTTTGGGAGATGCACATATTTACCTGA





ATCACATCGAGCCACTGAAAATTCAGCTTCAGC





GAGAACCCAGACCTTTCCCAAAGCTCAGGATTC





TTCGAAAAGTTGAGAAAATTGATGACTTCAAAG





CTGAAGACTTTCAGATTGAAGGGTACAATCCGC





ATCCAACTATTAAAATGGAAATGGCTGTTTAGG





GTGCTTTCAAAGGAGCTTGAAGGATATTGTCAG





TCTTTAGGGGTTGGGCTGGATGCCGAGGTAAAA





GTTCTTTTTGCTCTAAAAGAAAAAGGAACTAGG





TCAAAAATCTGTCCGTGACCTATCAGTTATTAA





TTTTTAAGGATGTTGCCACTGGCAAATGTAACT





GTGCCAGTTCTTTCCATAATAAAAGGCTTTGAG





TTAACTCACTGAGGGTATCTGACAATGCTGAGG





TTATGAACAAAGTGAGGAGAATGAAATGTATG





TGCTCTTAGCAAAAACATGTATGTGCATTTCAA





TCCCACGTACTTATAAAGAAGGTTGGTGAATTT





CACAAGCTATTTTTGGAATATTTTTAGAATATTT





TAAGAATTTCACAAGCTATTCCCTCAAATCTGA





GGGAGCTGAGTAACACCATCGATCATGATGTA





GAGTGTGGTTATGAACTTTATAGTTGTTTTATAT





GTTGCTATAATAAAGAAGTGTTCTGC






EIF5AL1
NM_001099692.1
GGGGTCGAGTCAGTGCCGTTTGCGCCAGTTGGA
13




ATCGAAGCCTCTTAAAATGGCAGATGATTTGGA





CTTCGAGACAGGAGATGCAGGGGCCTCAGCCA





CCTTCCCAATGCAGTGCTCAGCATTACGTAAGA





ATGGCTTTGTGGTGCTCAAAGGCTGGCCATGTA





AGATCGTGGAGATGTCTGCTTCGAAGACTGGCA





AGCACGGCCACGCCAAGGTCCATCTGGTTGGTA





TTGACATCTTTACTGGGAAGAAATATGAAGATA





TCTGCCCGTCAACTCATAATATGGATGTCCCCA





ACATCAAAAGGAATGACTTCCAGCTGATTGGCA





TCCAGGATGGGTACCTATCACTGCTCCAGGACA





GCGGGGAGGTACCAGAGGACCTTCGTCTCCCTG





AGGGAGACCTTGGCAAGGAGATTGAGCAGAAG





TACGACTGTGGAGAAGAGATCCTGATCACGGT





GCTGTCTGCCATGACAGAGGAGGCAGCTGTTGC





AATCAAGGCCATGGCAAAATAACTGGCTCCCA





AGGTGGCAGTGGTGGCAGCAGTGATCCTCCGA





ACCTGCAGAGGCCCCCTCCCCCAGCCTGGCCTG





GCTCTGGCCTGGTCCTAGGTTGGACTCCTCCTA





CACAATTTATTTGACGTTTTATTTTGGTTTTCCC





CACCCCCTCAATCTGTCAGGGAGCCCCTGCCCT





TCACCTAGCTCCCTTGGCCAGGAGCGAGCGAAG





CCATGGCCTTGGTGAAGCTGCCCTCCTCTTCTCC





CCTCACACTACAGCCCTGGTGGGGGAGAAGGG





GGTGGGTGCTGCTTGTGGTTTAGTCTTTTTTTTT





TTTTTAAATTCAATCTGGAATCAGAAAGCGGTG





GATTCTGGCAAATGGTCCTTGTGCCCTCCCCAC





TCATCCTTGGTCTGGTCCCCTGTTGCCCATAGCC





CTTTACCCTGAGCACCACCCAACAGACTGGGGA





CCAGCCCCCTCGCCTGCCTGTGTCTCTCCCCAA





ACCCCTTTAGATGGGGAGGGAAGAAGAGGAGA





GGGGAGGGGACCTGCCCCCTCCTCAGGCATCTG





GGAAGGGCCTGCCCCCATGGGCTTTACCCTTCC





CTGCGGGCTCTCTCCCCGACACATTTGTTAAAA





TCAAACCTGAATAAAACTACAAGTTTAATATGA





AAAAAAAAAAAAAAGAAAGAAAGACGTGTAA





AATGCCAAGAACTCTAGGAAACAGGGACAAAA





ACACTTCAAAGAGAAAGTTCATGCACTTGTTTC





TGACCACCCAGGGCACCCTTCAGCACACGCTGT





CTGGAGTGGCCTGAAGCAAGGAGTGTCTTGTGA





GGTGCAGAGGATGCAATGGGAGCAGGGTCCTG





TCCCCACCCTAAAGGAGTTCACAGTTTAACGCA





AATGAGAAGCCAGTGAGGACATCACTACTCCT





GCTGTGAACTTGGGAACTAGAAACACAAAACC





TGAGTCTGGAGGGAAGCTAAGGAAGCATTCTG





CTCTGGAGTAGACATGAGTGCGTGTGAAGCTTC





TGATCTCCCATGAGAGCAATGGGGACATGGGG





CAGAATCTAAAACCCATGACTGAAAGCACCAA





ATTGCTAAAATGGCAATAAAGAGACATGAGGC





CAAGATGGAGAAGAAGGAACCCAGGACGAGG





GTCAGCCTCACATTTGGGGCTCATTTCCCTCAG





TTTCCTCACTGAATTTCAGAAGGGACTAACTGA





GATGCAAAGAAGCAGAGCAGCTTTTGCACCAT





GTGGAGGACTAGATGGAAAACAAGTAGACTGA





GGGTCTGCTAGTGAAGGTGACCCCTACTGAAGT





CCACTGGCTTTGGTTGGGACCCAGAAGAGTCAC





ACGCCAGGAATAGAGGTGGACAGGAAACACCC





TGACTTTTGTAGGGACTGAACCTCACTGATAAC





CTCAATTGCGGATGGTATGGAGGGTGTCTAGGT





GTGCTAGGACCCCTGCCCATTCCCCAGAAATAG





ACTCCCATCTTTTCTACAGCAAGATAACGTGCT





AGTAGGCCTCAATTCATTGCTAAATATTTTTAA





CGAGTGTCTTACATTTAGCCAAAAAGACTAGTC





ATGTGGCAGGAAAAATACAATGTCATATGACC





AAAAGCTAAAAGACTGTGAAAATGAATCCAGA





GGTGACCCAAGCATTGAATTTAACAATGCCAGT





ACCTGGACCTCCGCTTGCCCCTAAAACATTACA





ATCAAGAATGTAGGAAGGGAAAGGAAACACGA





AGATTAATCAAGCAGGAAGGACAAGCTCAGTT





TTGCACCCACTGAATTTGCCACAAATATTGTGG





AAAATATTCTCGGGGACATTGCAGTTGTCTACT





TTGGTTGGCACATGGTTCATACAACAGTGTTTG





TGTCAGTGAACATCTTACTCTTCCTCGGCAGTCT





TTCTTTGCCCAGAGATTTCGCAATGACTGTTGA





CCTTCATCATCACCTTTTGGACTTTGGCTTGCAC





TTTAGCTTCTGTAGATCTCCATGATGTAAAGAA





GTATTTTAGGTCCATTTTAATTCCTGCAAAGGA





TAAAATCCTTCTATTTGTGTGCATATAAGTGGA





CCTGAGCCCTTGGTTAGGGTGTAGAGAGGAGA





AGGGGAGAAACCTGAGGGCCAGAAGCTGTTCT





TTCCCTTAAAAGGGCAAACTCATTTCCACACTA





TGGGGACTCTGACAGATAGCATACCTTCCTGTC





TATGGCTATTGGACCTGCAGGCTTTCCCCTGTA





AATCCGTGTTCTGTCATTGACATTTTGTGACTGT





AAGACAGACTTGAGATAAGACATCTAGAAAAC





AATAATTGAACAATGATGTGAATATATTTCACA





CAACTGAACTGTACATTTCAACAAGGTTAAGAT





GGTAATTATCACGTTATACATTTTTTACCGCAG





GTTAAAATGTTTCACAGGTTGAAAGGAAAGCA





ACTACCTTCAGTTCTCTGAGTTCAAGAATTTGT





AACATTTCACCCCCTGCTCCTTCCTGATCTTCTG





TGGAGCATCTTTTTTCCATCCATGCTCTACTCAG





AGCCCACTTTCCCTTCCCTGACACCAGCTTCACT





GAGGCTGGTTGGAACCTAACACAAAACATTCTC





AGTAATGACTGAATTCCCACAAAGAATTCCATA





TAGACTGCATATGAGTTGAATCTTCTAAGACAT





GAAATATTTGTTCTCTTCTTGGCTAATATGCAAT





GCAAATCCTGTTGCAGATGTACGTCATATACCT





CTGAAATTCCTGATGTATTCAATGAAATAACAT





CTTTAAAGTTCTGTGTAGAATGTTTTTTTTCTGA





TTTCTTCACATACGATAGAAAAAAAAACCCAAA





AAAACATGTACTAGGATTTCAATAGAAGCAAT





GGGTGATCTAAAAAGATGAAAGAGCAACCGCA





TGCGCCCTACAGCTACCGCTAGATTTTATGGGG





AAAGCAGCTGGCCCAGTTTGCAGCTAGGAGAA





ATGTCAAACACATGAAGAAATGAGAAGCAAAG





AAAAACCATGAGGCATGAACATTTCATGGCAA





TCACGATGTCCTGGTTTGTGAGATAATGGGATA





GAGGAGTAGAAAACAAGGAGAAAGATGAGAA





GGTACAAAGTGGTTCAAGTCAAACAGCTCAACT





GAACTTTTCTTAATGGAATATTTAAAAAGTGGT





ACATTAAAAAACTTCCCCCAGTTCACATCAAAA





ATTCTCTCTTCAGGACTAAGTTGGGTAGAGACT





GTTCAATGTGCCTAGATATCTTCAGAACTTATA





TATTTTCTGTTTTCTACGTATGTTGAAGGGCAGT





GCCAAATGATGTGTAATTATCTAGGTTGTAAAA





ATAAAACATACTCCCCCTTCCCTTGAGGATAAA





AAAAAAAAAAAA






WDR76
NM_024908.3
CTGCTCTGGCGCTGCGGCCGCTGGGGATCTGAG
14




TGGGCTCCGCCCCGCCTCGGACCCGCCCCTCCC





GGCCTCCCGCCGCAATCTTGGCGGGAAGGCGCC





GGCCGCTAAGAAGCCGAAAGATGTCCAGGTCG





GGCGCGGCGGCTGAGAAGGCGGACTCCAGACA





GCGACCCCAGATGAAGGTAAATGAATATAAAG





AAAATCAAAACATCGCTTATGTGTCTCTGAGAC





CAGCACAGACTACAGTTTTAATAAAAACAGCTA





AGGTCTATCTTGCCCCCTTTTCACTCAGTAATTA





CCAGCTAGACCAGCTTATGTGCCCCAAATCCCT





ATCAGAAAAGAATTCTAACAATGAAGTGGCGT





GTAAGAAGACTAAAATAAAGAAAACTTGCAGA





AGGATTATACCTCCAAAGATGAAAAACACATCT





TCCAAGGCAGAATCCACGCTGCAAAATTCATCC





TCAGCTGTTCATACTGAAAGTAACAAGCTACAA





CCCAAGAGAACGGCAGATGCGATGAATCTCAG





TGTTGATGTGGAAAGTAGTCAGGATGGAGACA





GTGATGAAGATACCACACCATCCCTGGATTTTT





CGGGATTGTCACCCTACGAAAGGAAGAGACTG





AAGAACATATCAGAAAACGCAGACTTTTTTGCT





TCTCTTCAGTTGTCTGAGTCTGCTGCAAGACTCC





GTGAAATGATAGAGAAGAGACAGCCTCCTAAA





TCCAAAAGAAAGAAGCCTAAGAGAGAAAATGG





GATTGGATGTAGAAGGTCAATGCGATTACTAAA





AGTTGATCCTTCGGGAGTTTCATTACCAGCAGC





TCCAACACCGCCGACATTAGTAGCAGATGAAA





CTCCTTTGTTACCTCCTGGGCCTTTAGAAATGAC





TTCTGAAAATCAAGAAGACAACAATGAACGAT





TTAAAGGATTTCTGCACACATGGGCAGGAATGA





GCAAGCCAAGTAGTAAGAACACTGAGAAGGGA





TTATCTAGCATTAAAAGCTACAAAGCCAATTTA





AATGGCATGGTCATTAGTGAAGATACCGTTTAC





AAAGTTACCACAGGCCCAATATTCTCTATGGCT





CTCCATCCATCAGAAACTAGAACTTTGGTAGCA





GTTGGGGCCAAATTTGGGCAAGTTGGACTTTGT





GATTTGACCCAGCAACCTAAAGAAGATGGAGT





TTATGTTTTTCATCCCCATAGTCAGCCAGTTAGC





TGTCTTTACTTCTCACCCGCCAATCCGGCCCAC





ATACTGTCACTGAGCTATGATGGCACGTTACGC





TGTGGGGATTTTTCCAGGGCTATTTTTGAAGAG





GTGTATAGAAATGAAAGAAGTAGCTTTTCCTCC





TTCGACTTCTTGGCAGAAGATGCCTCCACTTTA





ATAGTAGGACACTGGGATGGAAATATGTCACT





GGTGGATAGACGGACACCTGGAACTTCTTATGA





GAAACTTACCAGTTCTTCTATGGGAAAAATAAG





AACTGTTCATGTCCACCCAGTGCATAGACAGTA





TTTTATCACTGCCGGATTGAGGGATACTCATAT





TTATGATGCAAGGCGATTGAATTCCAGGAGAA





GTCAGCCTTTGATTTCTTTGACTGAACATACAA





AGAGCATTGCTTCCGCCTATTTTTCACCTCTTAC





TGGTAACAGAGTGGTGACCACATGTGCTGATTG





TAATCTGAGAATTTTTGACAGCAGCTGTATATC





TTCTAAGATTCCGCTCCTCACCACCATCAGGCA





CAACACTTTCACTGGGCGATGGCTGACCAGGTT





CCAAGCCATGTGGGATCCTAAACAAGAAGACT





GTGTCATAGTTGGCAGCATGGCCCATCCACGAC





GGGTAGAAATCTTCCATGAGACAGGAAAGAGG





GTGCATTCGTTTGGTGGAGAATACCTTGTCTCT





GTGTGTTCCATCAATGCCATGCACCCAACTCGG





TATATTTTGGCTGGAGGTAATTCCAGCGGGAAG





ATACATGTTTTTATGAATGAAAAAAGCTGCTGA





GTTTTTGGTTTAGGAACATCAATTTGTTCAAATT





GACCACTGTCTAAGGAGCCTAGTAATCGGCGTG





CCTTAGTGTGTTTATGTGGTAATGTGTTACATTT





AGCAATTATAACATTGTTTTATTAATAAGACTA





TAAGAAGAGTGTACTTTTAGTAAGGGAGAAGT





CTTGGAGGGTTGCTTCTGCAGGACGGGGAGGG





AATTTGAGGGGAGGCTGAGGTGCCGTCAGGAC





TTTTTTTTTTTTTTTTTTTTTGAGATGGAGTTTTG





CTCTTGTTGCCCAGGCTGGAGTGCAATAGCGCG





ATCTTGGCTCACCGCAACCTCCGCCTCCCAGGT





TCAAGCGATTCTCCTGCCTCAGACTCCTAAGTA





GCTGGGATTACAGGCACCTGCCACCACGCCTGG





CTATTTTTTTGTATTTTTAGTAGAGATGGGGTTT





CATCATGTTGGCCAGGCTGGTCTCGAGCTCCTG





ACCTCAGGTGATCTGCCCGCCTCGGCCTCCAAA





AGTGCTGGAATTACAGGCGTGAGCCACCATGCC





TGGCCATCAGAACTTGTAATCAAGACAGTATGT





TGAGAAATTCTAACATTATAAATTACAAAGCTT





TGACTATTAAAGTTTTTGTGATCTAATGATACA





GTTTTGATTCTATAGTAATTTGTGGCTTATTTTA





TAGTTTATAATGAATACTTATTTCTAGACTCATA





CACTGGAAGGGGACCCGGAAAGGTAATGTAAC





TCAGTGATTTTAAAACTTGATTTTTTTAACTGAG





AACTTTTTTTGCCCCCTGCCTGTAGGTTAAGTCT





TACGTGAAATGCCAAGATAATTGCTGAGCAGCT





TTGGTTACCCAGGGCGGGGTCTGGGTCTGTCTG





TACTTTGCCTTTACTCTAGATGGCTCCTGAGAC





ACAGGCAGGACTCCCAAGCACCGGGTTGGGAT





CTGCCCTGGTCCCGGCATTCCAGTATAAGATTG





CCTCAGACCTGTGTTTTTCAGACTGGGTTTTTGC





TCTTCACATGAAATCAAGTTAGATGACAATGAC





TGGTGTTGAAAAAAATGAAAAGGAAAGAATTT





GTAAAGAACAGAAAATATATTTGAGTAAGTATT





GTTTGGTAAAACTTAGTTACATATGCATATATA





TTTGTTAGGTATATATGTTTATGTGTATTCTGAT





GTAAAATATATATATATATATATTTTATTACTAT





AGTACCATGGGTAATGGATAAAGAAGTTAAAG





CTACTGCTTAGAATGAAGAAGGCCCCAGGCTTA





CCTGTCCCGATCTTTAAACTGTCCGAAGGAAAT





TCAATAGCCTGTTAAGTGAATACCTTCATTCTT





ACTTGTATTTGGGGGAATATTATGAAATACTCA





CCACTTTTGGTATTTTATGAAAATGTTTTCTTTT





CAGAAGTTATGGTAATTTCAATGTGTTTGTTGTT





GGGAGGGGAGCTGCCAAATCAGTTACTAATATT





ACTGTGTGACATCTATCCAACTTTTTTCATTATT





CTTCATTGCCAAATACTGAAAGACTTGTAAATG





GCTTTGGCAATATGTTTGAATTCTAAGAGGAAA





TATTTTCCCATAATTGTATATCAGAGAAATATA





GTGATATACAATTTCCTTGAAAACCAATTTCTA





AATAATTTTCTTCTCTGTAATCTAAGTGTAAAA





AGGTTTAGTTTTTTAATAGGTTTAGGTGTTTATA





AGCAATAGTTCTCTATTTTCTAGTTGATATAAGT





AGAAGAATTGACAAGTGAGATGGAAATGTTAA





TTTATAAAGGGAAAGAAAAGCTAGGTGAGGTT





GAGTTATAATTAAACTGTTCAGGAAACATCGTA





AAGGCTTTAGGCTCCCTTTTTCATTTCTATACCA





ATTAATCTCATGGGTTCTAGAGTGGTTAGTTCT





ACGGGAATTGTTTTTGTTTTTGTTTTTAAAGATG





CTGAAAACTACTCTCAATCAAATTAGTACCATC





ATTTAAGCTTTGAATACTTGGCAGTAATTGCCT





GGGCTCGTCAATAAATGTTAGCAAATTCTTGAT





GTTCAAAAAAAAAA









In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; b) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) comparing the HPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and d) producing a report identifying the presence of mismatch repair deficiency in the subject when the HPS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the HPS score is less than the predetermined cutoff value.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; b) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) comparing the HPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and d) identifying the presence of mismatch repair deficiency in the subject when the HPS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the HPS score is less than the predetermined cutoff value.


In some aspects, the preceding methods can further comprise administering at least one treatment to a subject identified as having mismatch repair deficiency. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; b) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) comparing the HPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and d) administering at least one treatment to the subject when the HPS score is equal to or greater than the predetermined cutoff value. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In some aspects of the preceding methods, determining μ2 in step (b), wherein μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining z, wherein z=Σi=110ziwi, wherein zi is the log-transformed normalized expression of the at least one gene i from step (1) and wi is the prespecified weight for gene i; and 3) determining for each of the at least one gene the mean of z from step (2).


In some aspects of the preceding methods, determining σ2 in step (b), wherein σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining z, wherein z=Σi=110ziwi, wherein zi is the log-transformed normalized expression of the at least one gene i from step (1) and wi is the prespecified weight for gene i; and 3) determining for each of the at least one gene the standard deviation of z from step (2).


In some aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method. In some aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same apparatus. In preferred aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method and apparatus.


In some aspects, the prespecified weight for gene i, wi, in step (b) of the preceding methods can be:















Gene
Weight


















EPM2AIP1
−0.31218



TTC30A
−0.19894



SMAP1
−0.1835



RNLS
−0.19023



WNT11
−0.11515



SFXN1
0.214676



SREBF1
0.194835



TYMS
0.206972



EIF5AL1
0.194935



WDR76
0.188582









In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of 99%. In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 99%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of at least 99.5%.


In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 91%, or at least 92%, or at least 93%, or at least 94%, or at least 95%, or at least 96%, or at least 97% or at least 98%.


In some aspects, the predetermined cutoff value of the preceding methods that identifies mismatch repair deficiency in a subject can be 1.645. Alternatively, the predetermined cutoff value can be 2.326. Alternatively still, the predetermined cutoff value can be 2.576.


The at least one gene in step (a) of the preceding methods can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, and WDR76.


In some aspects, step (a) of the preceding methods can comprise measuring the gene expression level of at least two genes, or at least three genes, or at least four genes, or at least five genes, or at least six genes, or at least seven genes, or at least eight genes, or at least nine genes or at least 10 genes comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, and WDR76.


In some aspects, when the tumor sample is a colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD) or uterine corpus endometrial carcinoma (UCEC) tumor sample, σ2, the standard deviation of the linear combination of the log transformed gene expression of the at least one gene in non-hypermutated samples, in step (b) of the preceding methods can be:













Tumor



Type
σ2
















COAD
0.6604


ESCA
0.7617


STAD
0.8153


UCEC
0.7027









Table 1 shows the sequences of the at least one gene from step (a) of the preceding methods.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three genes are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; e) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; f) determining a score MPS wherein MPS=(max(HPS,0)2+min(MLS,0)2)1/2; g) comparing the MPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and h) producing a report identifying the presence of mismatch repair deficiency in the subject when the MPS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the MPS score is less than the predetermined cutoff value.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three genes are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; e) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; f) determining a score MPS wherein MPS=(max(HPS,0)2+min(MLS,0)2)1/2; g) comparing the MPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and h) identifying the presence of mismatch repair deficiency in the subject when the MPS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the MPS score is less than the predetermined cutoff value.


In some aspects, the preceding methods can further comprise administering at least one treatment to a subject identified as having mismatch repair deficiency. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three genes are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; e) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; f) determining a score MPS wherein MPS=(max(HPS,0)2+min(MLS,0)2)1/2; g) comparing the MPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and h) administering at least one treatment to the subject when the MPS score is equal to or greater than the predetermined cutoff value. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In some aspects of the preceding methods, determining μ1 in step (b), wherein μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining for each of the at least one gene the log-transformed normalized expression; and 3) determining for each of the at least one gene the mean of the log 2-transformed expression from step (2).


In some aspects of the preceding methods, determining σ1 in step (b), wherein σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining for each of the at least one gene the log-transformed normalized expression; and 3) determining for each of the at least one gene the standard deviation of the log 2-transformed expression from step (2).


In some aspects of the preceding methods, determining μ2 in step (e), wherein μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining z, wherein z=Σi=110ziwi, wherein zi is the log-transformed normalized expression of the at least one gene i from step (1) and wi is the prespecified weight for gene i; and 3) determining for each of the at least one gene the mean of z from step (2).


In some aspects of the preceding methods, determining σ2 in step (e), wherein σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining z, wherein z=Σi=110ziwi, wherein zi is the log-transformed normalized expression of the at least one gene i from step (1) and wi is the prespecified weight for gene i; and 3) determining for each of the at least one gene the standard deviation of z from step (2).


In some aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method. In some aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same apparatus. In preferred aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method and apparatus.


In some aspects, the prespecified weight for gene i, wi, in step (e) of the preceding methods can be:















Gene
Weight


















EPM2AIP1
−0.31218



TTC30A
−0.19894



SMAP1
−0.1835



RNLS
−0.19023



WNT11
−0.11515



SFXN1
0.214676



SREBF1
0.194835



TYMS
0.206972



EIF5AL1
0.194935



WDR76
0.188582









In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of 99%. In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 99%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of at least 99.5%.


In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 91%, or at least 92%, or at least 93%, or at least 94%, or at least 95%, or at least 96%, or at least 97% or at least 98%.


In some aspects, the predetermined cutoff value of the preceding methods that identifies mismatch repair deficiency in a subject can be 2.058. Alternatively, the predetermined cutoff value can be 2.699. Alternatively still, the predetermined cutoff value can be 2.939.


The at least one gene in step (a) of the preceding methods can comprise MLH1. Alternatively, the at least one gene in step (a) can comprise each of MLH1, MSH2, MSH6 and PMS2.


The at least one gene in step (d) of the preceding can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76.


The at least one gene in step (a) of the preceding can comprise MLH1 and the at least one gene in step (d) of the preceding can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76. Alternatively, the at least one gene in step (a) of the preceding can comprise each of MLH1, MSH2, MSH6 and PMS2 and the at least one gene in step (d) of the preceding can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76.


In some aspects, step (a) of the preceding methods can comprise measuring the gene expression level of at least two genes, or at least three genes or at least four genes comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject.


In some aspects, step (d) of the preceding methods can comprise measuring the gene expression level of at least two genes, or at least three genes, or at least four genes, or at least five genes, or at least six genes, or at least seven genes, or at least eight genes, or at least nine genes or at least 10 genes comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, and WDR76.


In some aspects, when the tumor sample is a colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD) or uterine corpus endometrial carcinoma (UCEC) tumor sample, σ1, the standard deviation of the expression of the at least one gene in non-hypermutated samples, in step (b) of the preceding methods can be



















MLH1
MSH2
MSH6
PMS2





















COAD
0.3241
0.4108
0.4198
0.3259



ESCA
0.5221
0.6602
0.7347
0.4927



STAD
0.4245
0.6020
0.4814
0.4314



UCEC
0.4543
0.7312
0.6158
0.4217









In some aspects, when the tumor sample is a colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD) or uterine corpus endometrial carcinoma (UCEC) tumor sample, σ2, the standard deviation of the linear combination of the log transformed gene expression of the at least one gene in non-hypermutated samples, in step (e) of the preceding methods can be













Tumor



Type
σ2
















COAD
0.6604


ESCA
0.7617


STAD
0.8153


UCEC
0.7027









Table 1 shows the sequences of the at least one gene from step (a) and the at least one gene from step (d) of the preceding methods.


In some aspects, a subject can be diagnosed with cancer.


In some aspects, a report of the preceding methods identifying mismatch repair deficiency can further identify the subject as having cancer. In some aspects of the methods of the present disclosure, identifying mismatch repair deficiency in a subject can further identify the subject as having cancer.


In some aspects, a report of the preceding method that identifies the presence of mismatch repair deficiency in a subject can further identify the subject for treatment with an anti-cancer therapy. In some aspects of the methods of the present disclosure, identifying the presence of mismatch repair deficiency in a subject can further identify the subject for treatment with anti-cancer therapy.


In some aspects, a treatment with an anti-cancer therapy can comprise administering a treatment to a subject identified as having mismatch repair deficiency. A treatment can comprise administering to the subject immunotherapy. A treatment can also comprise administering to the subject checkpoint inhibitors. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. The CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In aspects of the methods of the present disclosure, gene expression is measured using methods known in the art. In preferred aspects, the methods are enzyme free methods e.g. US2003/0013091, US2007/0166708, US2010/0015607, US2010/0261026, US2010/0262374, US2010/0112710, US2010/0047924, and US2014/0371088, each of which is incorporated herein by reference in its entirety. Preferably, nCounter® probes, systems, and methods from NanoString Technologies®, as described in US2003/0013091, US2007/0166708, US2010/0015607, US2010/0261026, US2010/0262374, US2010/0112710, US2010/0047924, US2014/0371088, US2014/0017688, and US2011/0086774) are a preferred means for measuring gene expression. nCounter® probes, systems, and methods from NanoString Technologies® allow simultaneous multiplexed identification a plurality (800 or more) distinct target proteins and/or target nucleic acids. Each of the above-mentioned patent publications is incorporated herein by reference in its entirety. The above-mentioned nCounter® probes, systems, and methods from NanoString Technologies® can be combined with any aspect or embodiment described herein.


In one aspect, the present disclosure provides a method of determining a tumor inflammation signature score in a subject comprising: a) measuring the raw RNA level of at least one gene comprising CCL5, CD27, CD274, CD276, CD8A, CMKRLR1, CXCL9, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCD1LG2, PSMB10, STAT1 and TIGIT; b) measuring the raw RNA level of at least one gene comprising ABCF1, C14ORF102, G6PD, OAZ1, POLR2A, SDHA, STK11IP, TBC1D10B, TBP, UBB and ZBTB34; c) normalizing the measured raw RNA level of the at least one gene from step (a) using the measured raw RNA levels of the at least one gene from step (b); and d) generating a tumor inflammation signature score (TIS) wherein TIS=Σi=110qiwi, wherein qi is the normalized raw RNA level of the at least one gene i from step (c), and wi is a prespecified weight for gene i.


A more detailed description for determining a tumor inflammation signature score in a subject is disclosed in PCT/US2015/064445 (WO2016/094377), which is incorporated by reference in its entirety. See also Ayers M et al. The Journal of clinical investigation. 2017 Aug. 1; 127(8):2930-40.


In some aspects, the prespecified weight for gene i, wi, in step (d) of the preceding method can be















Gene
Weight


















CCL5
0.008346



CD27
0.072293



CD274
0.042853



CD276
−0.0239



CD8A
0.031021



CMKRLR1
0.151253



CXCL9
0.074135



CXCR6
0.004313



HLA-DQA1
0.020091



HLA-DRB1
0.058806



HLA-E
0.07175



IDO1
0.060679



LAG3
0.123895



NKG7
0.075524



PDCDILG2
0.003734



PSMB10
0.032999



STAT1
0.250229



TIGIT
0.084767









In alternative aspects of the preceding method, step (a) comprises measuring the raw RNA level of at least two genes, or at least three genes, or at least four genes, or at least five genes, or at least six genes, or at least seven genes, or at least eight genes, or at least nine genes, or at least 10 genes, or at least 11 genes, or at least 12 genes, or at least 13 genes, or at least 14 genes, or at least 15 genes, or at least 16 genes, at least 17 genes comprising CCL5, CD27, CD274, CD276, CD8A, CMKRLR1, CXCL9, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCDILG2, PSMB10, STAT1 and TIGIT. In a preferred aspect, step (a) comprises measuring the raw RNA level of at least 18 genes comprising each of CCL5, CD27, CD274, CD276, CD8A, CMKRLR1, CXCL9, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCDILG2, PSMB10, STAT1 and TIGIT.


In alternative aspects of the preceding method, step (b) comprises measuring the raw RNA level of at least two genes, or at least three genes, or at least four genes, or at least five genes, or at least six genes, or at least seven genes, or at least eight genes, or at least nine genes, or at least 10 genes or at least 11 genes comprising ABCF1, C14ORF102, G6PD, OAZ1, POLR2A, SDHA, STK11IP, TBC1D10B, TBP, UBB and ZBTB34. In a preferred aspect, step (b) comprises measuring the raw RNA level of at least 11 genes comprising each of ABCF1, C14ORF102, G6PD, OAZ1, POLR2A, SDHA, STK11IP, TBC1D10B, TBP, UBB and ZBTB34.


Table 2 shows the sequences of the at least one gene from step (a) and the at least one gene from step (b) of the preceding method.









TABLE 2







Sequences of genes measured for determining tumor inflammation


signature score











Gen Bank

SEQ


Gene
Accession No.
Sequence
ID No.





CCL5
NM_002985.2
GCTGCAGAGGATTCCTGCAGAGGATCAAGACAG
15




CACGTGGACCTCGCACAGCCTCTCCCACAGGTA





CCATGAAGGTCTCCGCGGCAGCCCTCGCTGTCAT





CCTCATTGCTACTGCCCTCTGCGCTCCTGCATCT





GCCTCCCCATATTCCTCGGACACCACACCCTGCT





GCTTTGCCTACATTGCCCGCCCACTGCCCCGTGC





CCACATCAAGGAGTATTTCTACACCAGTGGCAA





GTGCTCCAACCCAGCAGTCGTCTTTGTCACCCGA





AAGAACCGCCAAGTGTGTGCCAACCCAGAGAAG





AAATGGGTTCGGGAGTACATCAACTCTTTGGAG





ATGAGCTAGGATGGAGAGTCCTTGAACCTGAAC





TTACACAAATTTGCCTGTTTCTGCTTGCTCTTGTC





CTAGCTTGGGAGGCTTCCCCTCACTATCCTACCC





CACCCGCTCCTTGAAGGGCCCAGATTCTACCACA





CAGCAGCAGTTACAAAAACCTTCCCCAGGCTGG





ACGTGGTGGCTCACGCCTGTAATCCCAGCACTTT





GGGAGGCCAAGGTGGGTGGATCACTTGAGGTCA





GGAGTTCGAGACCAGCCTGGCCAACATGATGAA





ACCCCATCTCTACTAAAAATACAAAAAATTAGC





CGGGCGTGGTAGCGGGCGCCTGTAGTCCCAGCT





ACTCGGGAGGCTGAGGCAGGAGAATGGCGTGAA





CCCGGGAGGCGGAGCTTGCAGTGAGCCGAGATC





GCGCCACTGCACTCCAGCCTGGGCGACAGAGCG





AGACTCCGTCTCAAAAAAAAAAAAAAAAAAAA





AAATACAAAAATTAGCCGGGCGTGGTGGCCCAC





GCCTGTAATCCCAGCTACTCGGGAGGCTAAGGC





AGGAAAATTGTTTGAACCCAGGAGGTGGAGGCT





GCAGTGAGCTGAGATTGTGCCACTTCACTCCAGC





CTGGGTGACAAAGTGAGACTCCGTCACAACAAC





AACAACAAAAAGCTTCCCCAACTAAAGCCTAGA





AGAGCTTCTGAGGCGCTGCTTTGTCAAAAGGAA





GTCTCTAGGTTCTGAGCTCTGGCTTTGCCTTGGC





TTTGCCAGGGCTCTGTGACCAGGAAGGAAGTCA





GCATGCCTCTAGAGGCAAGGAGGGGAGGAACAC





TGCACTCTTAAGCTTCCGCCGTCTCAACCCCTCA





CAGGAGCTTACTGGCAAACATGAAAAATCGGCT





TACCATTAAAGTTCTCAATGCAACCATAAAAAA





AAAA






CD27
NM_001242.4
CGGAAGGGGAAGGGGGTGGAGGTTGCTGCTATG
16




AGAGAGAAAAAAAAAACAGCCACAATAGAGAT





TCTGCCTTCAAAGGTTGGCTTGCCACCTGAAGCA





GCCACTGCCCAGGGGGTGCAAAGAAGAGACAGC





AGCGCCCAGCTTGGAGGTGCTAACTCCAGAGGC





CAGCATCAGCAACTGGGCACAGAAAGGAGCCGC





CTGGGCAGGGACCATGGCACGGCCACATCCCTG





GTGGCTGTGCGTTCTGGGGACCCTGGTGGGGCTC





TCAGCTACTCCAGCCCCCAAGAGCTGCCCAGAG





AGGCACTACTGGGCTCAGGGAAAGCTGTGCTGC





CAGATGTGTGAGCCAGGAACATTCCTCGTGAAG





GACTGTGACCAGCATAGAAAGGCTGCTCAGTGT





GATCCTTGCATACCGGGGGTCTCCTTCTCTCCTG





ACCACCACACCCGGCCCCACTGTGAGAGCTGTC





GGCACTGTAACTCTGGTCTTCTCGTTCGCAACTG





CACCATCACTGCCAATGCTGAGTGTGCCTGTCGC





AATGGCTGGCAGTGCAGGGACAAGGAGTGCACC





GAGTGTGATCCTCTTCCAAACCCTTCGCTGACCG





CTCGGTCGTCTCAGGCCCTGAGCCCACACCCTCA





GCCCACCCACTTACCTTATGTCAGTGAGATGCTG





GAGGCCAGGACAGCTGGGCACATGCAGACTCTG





GCTGACTTCAGGCAGCTGCCTGCCCGGACTCTCT





CTACCCACTGGCCACCCCAAAGATCCCTGTGCA





GCTCCGATTTTATTCGCATCCTTGTGATCTTCTCT





GGAATGTTCCTTGTTTTCACCCTGGCCGGGGCCC





TGTTCCTCCATCAACGAAGGAAATATAGATCAA





ACAAAGGAGAAAGTCCTGTGGAGCCTGCAGAGC





CTTGTCGTTACAGCTGCCCCAGGGAGGAGGAGG





GCAGCACCATCCCCATCCAGGAGGATTACCGAA





AACCGGAGCCTGCCTGCTCCCCCTGAGCCAGCA





CCTGCGGGAGCTGCACTACAGCCCTGGCCTCCA





CCCCCACCCCGCCGACCATCCAAGGGAGAGTGA





GACCTGGCAGCCACAACTGCAGTCCCATCCTCTT





GTCAGGGCCCTTTCCTGTGTACACGTGACAGAGT





GCCTTTTCGAGACTGGCAGGGACGAGGACAAAT





ATGGATGAGGTGGAGAGTGGGAAGCAGGAGCC





CAGCCAGCTGCGCCTGCGCTGCAGGAGGGCGGG





GGCTCTGGTTGTAAAACACACTTCCTGCTGCGAA





AGACCCACATGCTACAAGACGGGCAAAATAAAG





TGACAGATGACCACCCTGCA






CD274
NM_014143.3
GGCGCAACGCTGAGCAGCTGGCGCGTCCCGCGC
17




GGCCCCAGTTCTGCGCAGCTTCCCGAGGCTCCGC





ACCAGCCGCGCTTCTGTCCGCCTGCAGGGCATTC





CAGAAAGATGAGGATATTTGCTGTCTTTATATTC





ATGACCTACTGGCATTTGCTGAACGCATTTACTG





TCACGGTTCCCAAGGACCTATATGTGGTAGAGT





ATGGTAGCAATATGACAATTGAATGCAAATTCC





CAGTAGAAAAACAATTAGACCTGGCTGCACTAA





TTGTCTATTGGGAAATGGAGGATAAGAACATTA





TTCAATTTGTGCATGGAGAGGAAGACCTGAAGG





TTCAGCATAGTAGCTACAGACAGAGGGCCCGGC





TGTTGAAGGACCAGCTCTCCCTGGGAAATGCTG





CACTTCAGATCACAGATGTGAAATTGCAGGATG





CAGGGGTGTACCGCTGCATGATCAGCTATGGTG





GTGCCGACTACAAGCGAATTACTGTGAAAGTCA





ATGCCCCATACAACAAAATCAACCAAAGAATTT





TGGTTGTGGATCCAGTCACCTCTGAACATGAACT





GACATGTCAGGCTGAGGGCTACCCCAAGGCCGA





AGTCATCTGGACAAGCAGTGACCATCAAGTCCT





GAGTGGTAAGACCACCACCACCAATTCCAAGAG





AGAGGAGAAGCTTTTCAATGTGACCAGCACACT





GAGAATCAACACAACAACTAATGAGATTTTCTA





CTGCACTTTTAGGAGATTAGATCCTGAGGAAAA





CCATACAGCTGAATTGGTCATCCCAGAACTACCT





CTGGCACATCCTCCAAATGAAAGGACTCACTTG





GTAATTCTGGGAGCCATCTTATTATGCCTTGGTG





TAGCACTGACATTCATCTTCCGTTTAAGAAAAGG





GAGAATGATGGATGTGAAAAAATGTGGCATCCA





AGATACAAACTCAAAGAAGCAAAGTGATACACA





TTTGGAGGAGACGTAATCCAGCATTGGAACTTCT





GATCTTCAAGCAGGGATTCTCAACCTGTGGTTTA





GGGGTTCATCGGGGCTGAGCGTGACAAGAGGAA





GGAATGGGCCCGTGGGATGCAGGCAATGTGGGA





CTTAAAAGGCCCAAGCACTGAAAATGGAACCTG





GCGAAAGCAGAGGAGGAGAATGAAGAAAGATG





GAGTCAAACAGGGAGCCTGGAGGGAGACCTTGA





TACTTTCAAATGCCTGAGGGGCTCATCGACGCCT





GTGACAGGGAGAAAGGATACTTCTGAACAAGGA





GCCTCCAAGCAAATCATCCATTGCTCATCCTAGG





AAGACGGGTTGAGAATCCCTAATTTGAGGGTCA





GTTCCTGCAGAAGTGCCCTTTGCCTCCACTCAAT





GCCTCAATTTGTTTTCTGCATGACTGAGAGTCTC





AGTGTTGGAACGGGACAGTATTTATGTATGAGTT





TTTCCTATTTATTTTGAGTCTGTGAGGTCTTCTTG





TCATGTGAGTGTGGTTGTGAATGATTTCTTTTGA





AGATATATTGTAGTAGATGTTACAATTTTGTCGC





CAAACTAAACTTGCTGCTTAATGATTTGCTCACA





TCTAGTAAAACATGGAGTATTTGTAAGGTGCTTG





GTCTCCTCTATAACTACAAGTATACATTGGAAGC





ATAAAGATCAAACCGTTGGTTGCATAGGATGTC





ACCTTTATTTAACCCATTAATACTCTGGTTGACC





TAATCTTATTCTCAGACCTCAAGTGTCTGTGCAG





TATCTGTTCCATTTAAATATCAGCTTTACAATTA





TGTGGTAGCCTACACACATAATCTCATTTCATCG





CTGTAACCACCCTGTTGTGATAACCACTATTATT





TTACCCATCGTACAGCTGAGGAAGCAAACAGAT





TAAGTAACTTGCCCAAACCAGTAAATAGCAGAC





CTCAGACTGCCACCCACTGTCCTTTTATAATACA





ATTTACAGCTATATTTTACTTTAAGCAATTCTTTT





ATTCAAAAACCATTTATTAAGTGCCCTTGCAATA





TCAATCGCTGTGCCAGGCATTGAATCTACAGATG





TGAGCAAGACAAAGTACCTGTCCTCAAGGAGCT





CATAGTATAATGAGGAGATTAACAAGAAAATGT





ATTATTACAATTTAGTCCAGTGTCATAGCATAAG





GATGATGCGAGGGGAAAACCCGAGCAGTGTTGC





CAAGAGGAGGAAATAGGCCAATGTGGTCTGGGA





CGGTTGGATATACTTAAACATCTTAATAATCAGA





GTAATTTTCATTTACAAAGAGAGGTCGGTACTTA





AAATAACCCTGAAAAATAACACTGGAATTCCTT





TTCTAGCATTATATTTATTCCTGATTTGCCTTTGC





CATATAATCTAATGCTTGTTTATATAGTGTCTGG





TATTGTTTAACAGTTCTGTCTTTTCTATTTAAATG





CCACTAAATTTTAAATTCATACCTTTCCATGATT





CAAAATTCAAAAGATCCCATGGGAGATGGTTGG





AAAATCTCCACTTCATCCTCCAAGCCATTCAAGT





TTCCTTTCCAGAAGCAACTGCTACTGCCTTTCAT





TCATATGTTCTTCTAAAGATAGTCTACATTTGGA





AATGTATGTTAAAAGCACGTATTTTTAAAATTTT





TTTCCTAAATAGTAACACATTGTATGTCTGCTGT





GTACTTTGCTATTTTTATTTATTTTAGTGTTTCTT





ATATAGCAGATGGAATGAATTTGAAGTTCCCAG





GGCTGAGGATCCATGCCTTCTTTGTTTCTAAGTT





ATCTTTCCCATAGCTTTTCATTATCTTTCATATGA





TCCAGTATATGTTAAATATGTCCTACATATACAT





TTAGACAACCACCATTTGTTAAGTATTTGCTCTA





GGACAGAGTTTGGATTTGTTTATGTTTGCTCAAA





AGGAGACCCATGGGCTCTCCAGGGTGCACTGAG





TCAATCTAGTCCTAAAAAGCAATCTTATTATTAA





CTCTGTATGACAGAATCATGTCTGGAACTTTTGT





TTTCTGCTTTCTGTCAAGTATAAACTTCACTTTGA





TGCTGTACTTGCAAAATCACATTTTCTTTCTGGA





AATTCCGGCAGTGTACCTTGACTGCTAGCTACCC





TGTGCCAGAAAAGCCTCATTCGTTGTGCTTGAAC





CCTTGAATGCCACCAGCTGTCATCACTACACAGC





CCTCCTAAGAGGCTTCCTGGAGGTTTCGAGATTC





AGATGCCCTGGGAGATCCCAGAGTTTCCTTTCCC





TCTTGGCCATATTCTGGTGTCAATGACAAGGAGT





ACCTTGGCTTTGCCACATGTCAAGGCTGAAGAA





ACAGTGTCTCCAACAGAGCTCCTTGTGTTATCTG





TTTGTACATGTGCATTTGTACAGTAATTGGTGTG





ACAGTGTTCTTTGTGTGAATTACAGGCAAGAATT





GTGGCTGAGCAAGGCACATAGTCTACTCAGTCT





ATTCCTAAGTCCTAACTCCTCCTTGTGGTGTTGG





ATTTGTAAGGCACTTTATCCCTTTTGTCTCATGTT





TCATCGTAAATGGCATAGGCAGAGATGATACCT





AATTCTGCATTTGATTGTCACTTTTTGTACCTGCA





TTAATTTAATAAAATATTCTTATTTATTTTGTTAC





TTGGTACACCAGCATGTCCATTTTCTTGTTTATTT





TGTGTTTAATAAAATGTTCAGTTTAACATCCCAG





TGGAGAAAGTTAAAAAA






CD276
NM_001024736.1
CCGGCCTCAGGGACGCACCGGAGCCGCCTTTCC
18




GGGCCTCAGGCGGATTCTCCGGCGCGGCCCGCC





CCGCCCCTCGGACTCCCCGGGCCGCCCCCGGCCC





CCATTCGGGCCGGGCCTCGCTGCGGCGGCGACT





GAGCCAGGCTGGGCCGCGTCCCTGAGTCCCAGA





GTCGGCGCGGCGCGGCAGGGGCAGCCTTCCACC





ACGGGGAGCCCAGCTGTCAGCCGCCTCACAGGA





AGATGCTGCGTCGGCGGGGCAGCCCTGGCATGG





GTGTGCATGTGGGTGCAGCCCTGGGAGCACTGT





GGTTCTGCCTCACAGGAGCCCTGGAGGTCCAGG





TCCCTGAAGACCCAGTGGTGGCACTGGTGGGCA





CCGATGCCACCCTGTGCTGCTCCTTCTCCCCTGA





GCCTGGCTTCAGCCTGGCACAGCTCAACCTCATC





TGGCAGCTGACAGATACCAAACAGCTGGTGCAC





AGCTTTGCTGAGGGCCAGGACCAGGGCAGCGCC





TATGCCAACCGCACGGCCCTCTTCCCGGACCTGC





TGGCACAGGGCAACGCATCCCTGAGGCTGCAGC





GCGTGCGTGTGGCGGACGAGGGCAGCTTCACCT





GCTTCGTGAGCATCCGGGATTTCGGCAGCGCTGC





CGTCAGCCTGCAGGTGGCCGCTCCCTACTCGAA





GCCCAGCATGACCCTGGAGCCCAACAAGGACCT





GCGGCCAGGGGACACGGTGACCATCACGTGCTC





CAGCTACCAGGGCTACCCTGAGGCTGAGGTGTT





CTGGCAGGATGGGCAGGGTGTGCCCCTGACTGG





CAACGTGACCACGTCGCAGATGGCCAACGAGCA





GGGCTTGTTTGATGTGCACAGCATCCTGCGGGTG





GTGCTGGGTGCAAATGGCACCTACAGCTGCCTG





GTGCGCAACCCCGTGCTGCAGCAGGATGCGCAC





AGCTCTGTCACCATCACACCCCAGAGAAGCCCC





ACAGGAGCCGTGGAGGTCCAGGTCCCTGAGGAC





CCGGTGGTGGCCCTAGTGGGCACCGATGCCACC





CTGCGCTGCTCCTTCTCCCCCGAGCCTGGCTTCA





GCCTGGCACAGCTCAACCTCATCTGGCAGCTGA





CAGACACCAAACAGCTGGTGCACAGTTTCACCG





AAGGCCGGGACCAGGGCAGCGCCTATGCCAACC





GCACGGCCCTCTTCCCGGACCTGCTGGCACAAG





GCAATGCATCCCTGAGGCTGCAGCGCGTGCGTG





TGGCGGACGAGGGCAGCTTCACCTGCTTCGTGA





GCATCCGGGATTTCGGCAGCGCTGCCGTCAGCCT





GCAGGTGGCCGCTCCCTACTCGAAGCCCAGCAT





GACCCTGGAGCCCAACAAGGACCTGCGGCCAGG





GGACACGGTGACCATCACGTGCTCCAGCTACCG





GGGCTACCCTGAGGCTGAGGTGTTCTGGCAGGA





TGGGCAGGGTGTGCCCCTGACTGGCAACGTGAC





CACGTCGCAGATGGCCAACGAGCAGGGCTTGTT





TGATGTGCACAGCGTCCTGCGGGTGGTGCTGGG





TGCGAATGGCACCTACAGCTGCCTGGTGCGCAA





CCCCGTGCTGCAGCAGGATGCGCACGGCTCTGT





CACCATCACAGGGCAGCCTATGACATTCCCCCC





AGAGGCCCTGTGGGTGACCGTGGGGCTGTCTGT





CTGTCTCATTGCACTGCTGGTGGCCCTGGCTTTC





GTGTGCTGGAGAAAGATCAAACAGAGCTGTGAG





GAGGAGAATGCAGGAGCTGAGGACCAGGATGG





GGAGGGAGAAGGCTCCAAGACAGCCCTGCAGCC





TCTGAAACACTCTGACAGCAAAGAAGATGATGG





ACAAGAAATAGCCTGACCATGAGGACCAGGGAG





CTGCTACCCCTCCCTACAGCTCCTACCCTCTGGC





TGCAATGGGGCTGCACTGTGAGCCCTGCCCCCA





ACAGATGCATCCTGCTCTGACAGGTGGGCTCCTT





CTCCAAAGGATGCGATACACAGACCACTGTGCA





GCCTTATTTCTCCAATGGACATGATTCCCAAGTC





ATCCTGCTGCCTTTTTTCTTATAGACACAATGAA





CAGACCACCCACAACCTTAGTTCTCTAAGTCATC





CTGCCTGCTGCCTTATTTCACAGTACATACATTT





CTTAGGGACACAGTACACTGACCACATCACCAC





CCTCTTCTTCCAGTGCTGCGTGGACCATCTGGCT





GCCTTTTTTCTCCAAAAGATGCAATATTCAGACT





GACTGACCCCCTGCCTTATTTCACCAAAGACACG





ATGCATAGTCACCCCGGCCTTGTTTCTCCAATGG





CCGTGATACACTAGTGATCATGTTCAGCCCTGCT





TCCACCTGCATAGAATCTTTTCTTCTCAGACAGG





GACAGTGCGGCCTCAACATCTCCTGGAGTCTAG





AAGCTGTTTCCTTTCCCCTCCTTCCTCCTCTTGCT





CTAGCCTTAATACTGGCCTTTTCCCTCCCTGCCC





CAAGTGAAGACAGGGCACTCTGCGCCCACCACA





TGCACAGCTGTGCATGGAGACCTGCAGGTGCAC





GTGCTGGAACACGTGTGGTTCCCCCCTGGCCCAG





CCTCCTCTGCAGTGCCCCTCTCCCCTGCCCATCC





TCCCCACGGAAGCATGTGCTGGTCACACTGGTTC





TCCAGGGGTCTGTGATGGGGCCCCTGGGGGTCA





GCTTCTGTCCCTCTGCCTTCTCACCTCTTTGTTCC





TTTCTTTTCATGTATCCATTCAGTTGATGTTTATT





GAGCAACTACAGATGTCAGCACTGTGTTAGGTG





CTGGGGGCCCTGCGTGGGAAGATAAAGTTCCTC





CCTCAAGGACTCCCCATCCAGCTGGGAGACAGA





CAACTAACTACACTGCACCCTGCGGTTTGCAGG





GGGCTCCTGCCTGGCTCCCTGCTCCACACCTCCT





CTGTGGCTCAAGGCTTCCTGGATACCTCACCCCC





ATCCCACCCATAATTCTTACCCAGAGCATGGGGT





TGGGGCGGAAACCTGGAGAGAGGGACATAGCCC





CTCGCCACGGCTAGAGAATCTGGTGGTGTCCAA





AATGTCTGTCCAGGTGTGGGCAGGTGGGCAGGC





ACCAAGGCCCTCTGGACCTTTCATAGCAGCAGA





AAAGGCAGAGCCTGGGGCAGGGCAGGGCCAGG





AATGCTTTGGGGACACCGAGGGGACTGCCCCCC





ACCCCCACCATGGTGCTATTCTGGGGCTGGGGC





AGTCTTTTCCTGGCTTGCCTCTGGCCAGCTCCTG





GCCTCTGGTAGAGTGAGACTTCAGACGTTCTGAT





GCCTTCCGGATGTCATCTCTCCCTGCCCCAGGAA





TGGAAGATGTGAGGACTTCTAATTTAAATGTGG





GACTCGGAGGGATTTTGTAAACTGGGGGTATAT





TTTGGGGAAAATAAATGTCTTTGTAAAAAGCTTA





AAAAAAAAAAAAAAAAA






CD8A
NM_001768.5
CGAAAAGGAGGGTGACTCTCCTCGGCGGGGGCT
19




TCGGGTGACATCACATCCTCCAAATGCGAAATC





AGGCTCCGGGCCGGCCGAAGGGCGCAACTTTCC





CCCCTCGGCGCCCCACCGGCTCCCGCGCGCCTCC





CCTCGCGCCCGAGCTTCGAGCCAAGCAGCGTCC





TGGGGAGCGCGTCATGGCCTTACCAGTGACCGC





CTTGCTCCTGCCGCTGGCCTTGCTGCTCCACGCC





GCCAGGCCGAGCCAGTTCCGGGTGTCGCCGCTG





GATCGGACCTGGAACCTGGGCGAGACAGTGGAG





CTGAAGTGCCAGGTGCTGCTGTCCAACCCGACG





TCGGGCTGCTCGTGGCTCTTCCAGCCGCGCGGCG





CCGCCGCCAGTCCCACCTTCCTCCTATACCTCTC





CCAAAACAAGCCCAAGGCGGCCGAGGGGCTGG





ACACCCAGCGGTTCTCGGGCAAGAGGTTGGGGG





ACACCTTCGTCCTCACCCTGAGCGACTTCCGCCG





AGAGAACGAGGGCTACTATTTCTGCTCGGCCCT





GAGCAACTCCATCATGTACTTCAGCCACTTCGTG





CCGGTCTTCCTGCCAGCGAAGCCCACCACGACG





CCAGCGCCGCGACCACCAACACCGGCGCCCACC





ATCGCGTCGCAGCCCCTGTCCCTGCGCCCAGAG





GCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCAC





ACGAGGGGGCTGGACTTCGCCTGTGATATCTAC





ATCTGGGCGCCCTTGGCCGGGACTTGTGGGGTCC





TTCTCCTGTCACTGGTTATCACCCTTTACTGCAA





CCACAGGAACCGAAGACGTGTTTGCAAATGTCC





CCGGCCTGTGGTCAAATCGGGAGACAAGCCCAG





CCTTTCGGCGAGATACGTCTAACCCTGTGCAACA





GCCACTACATTACTTCAAACTGAGATCCTTCCTT





TTGAGGGAGCAAGTCCTTCCCTTTCATTTTTTCC





AGTCTTCCTCCCTGTGTATTCATTCTCATGATTAT





TATTTTAGTGGGGGCGGGGTGGGAAAGATTACT





TTTTCTTTATGTGTTTGACGGGAAACAAAACTAG





GTAAAATCTACAGTACACCACAAGGGTCACAAT





ACTGTTGTGCGCACATCGCGGTAGGGCGTGGAA





AGGGGCAGGCCAGAGCTACCCGCAGAGTTCTCA





GAATCATGCTGAGAGAGCTGGAGGCACCCATGC





CATCTCAACCTCTTCCCCGCCCGTTTTACAAAGG





GGGAGGCTAAAGCCCAGAGACAGCTTGATCAAA





GGCACACAGCAAGTCAGGGTTGGAGCAGTAGCT





GGAGGGACCTTGTCTCCCAGCTCAGGGCTCTTTC





CTCCACACCATTCAGGTCTTTCTTTCCGAGGCCC





CTGTCTCAGGGTGAGGTGCTTGAGTCTCCAACGG





CAAGGGAACAAGTACTTCTTGATACCTGGGATA





CTGTGCCCAGAGCCTCGAGGAGGTAATGAATTA





AAGAAGAGAACTGCCTTTGGCAGAGTTCTATAA





TGTAAACAATATCAGACTTTTTTTTTTTATAATC





AAGCCTAAAATTGTATAGACCTAAAATAAAATG





AAGTGGTGAGCTTAACCCTGGAAAATGAATCCC





TCTATCTCTAAAGAAAATCTCTGTGAAACCCCTA





TGTGGAGGCGGAATTGCTCTCCCAGCCCTTGCAT





TGCAGAGGGGCCCATGAAAGAGGACAGGCTACC





CCTTTACAAATAGAATTTGAGCATCAGTGAGGTT





AAACTAAGGCCCTCTTGAATCTCTGAATTTGAGA





TACAAACATGTTCCTGGGATCACTGATGACTTTT





TATACTTTGTAAAGACAATTGTTGGAGAGCCCCT





CACACAGCCCTGGCCTCTGCTCAACTAGCAGAT





ACAGGGATGAGGCAGACCTGACTCTCTTAAGGA





GGCTGAGAGCCCAAACTGCTGTCCCAAACATGC





ACTTCCTTGCTTAAGGTATGGTACAAGCAATGCC





TGCCCATTGGAGAGAAAAAACTTAAGTAGATAA





GGAAATAAGAACCACTCATAATTCTTCACCTTAG





GAATAATCTCCTGTTAATATGGTGTACATTCTTC





CTGATTATTTTCTACACATACATGTAAAATATGT





CTTTCTTTTTTAAATAGGGTTGTACTATGCTGTTA





TGAGTGGCTTTAATGAATAAACATTTGTAGCATC





CTCTTTAATGGGTAAACAGCATCCGAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAA






CMKRLR1
NM_004072.1
GAATTCGGCACGAGTCAGGGAAGCAGCCCCGGC
20




GGCCAGCAGGGAGCTCAGGACAGAGCAGGCTCC





CTGGGAAGCCTCCGGGTGATAGGGGTGTTCCAG





CTGCGGCGCTCTGGGGGTTCAGAGGGGGATCTT





GAATGAACAAATGAATGAACTGCTTTCTGGGCA





AACAGCCACAGCCAGAGGAGCCTGTGATTGGCA





GAAAGAAGCCAGGGTGTGCAAGTCTCCCCAACA





GCCTCGAGTGGCCTGCAGTCACAGGGAACCCTC





AGGAAGACCTTCCGGGCAGAGACCAGAGGGAA





GCCCATCTCTCCAGCAGAACTGCTTGGATTTTTC





TACCAGGAGGCTCAGGGCTCTGCAACAATGATA





GCAGAAGCTGATGGCATCTAGAGATCTAGGCTG





GGACTAGCACAGCATCACTTCTACCACTTTCTGT





TGGTCACAGCAACTCACCATGCCAGTGCAGATT





CAAGGGGAGGAGAAATAGAGTCCACTTCTTGAT





GGGAGGCGTGACATAGAATGGAGGATGAAGATT





ACAACACTTCCATCAGTTACGGTGATGAATACCC





TGATTATTTAGACTCCATTGTGGTTTTGGAGGAC





TTATCCCCCTTGGAAGCCAGGGTGACCAGGATCT





TCCTGGTGGTGGTCTACAGCATCGTCTGCTTCCT





CGGGATTCTGGGCAATGGTCTGGTGATCATCATT





GCCACCTTCAAGATGAAGAAGACAGTGAACATG





GTCTGGTTCCTCAACCTGGCAGTGGCAGATTTCC





TGTTCAACGTCTTCCTCCCAATCCATATCACCTA





TGCCGCCATGGACTACCACTGGGTTTTCGGGACA





GCCATGTGCAAGATCAGCAACTTCCTTCTCATCC





ACAACATGTTCACCAGCGTCTTCCTGCTGACCAT





CATCAGCTCTGACCGCTGCATCTCTGTGCTCCTC





CCTGTCTGGTCCCAGAACCACCGCAGCGTTCGCC





TGGCTTACATGGCCTGCATGGTCATCTGGGTCCT





GGCTTTCTTCTTGAGTTCCCCATCTCTCGTCTTCC





GGGACACAGCCAACCTGCATGGGAAAATATCCT





GCTTCAACAACTTCAGCCTGTCCACACCTGGGTC





TTCCTCGTGGCCCACTCACTCCCAAATGGACCCT





GTGGGGTATAGCCGGCACATGGTGGTGACTGTC





ACCCGCTTCCTCTGTGGCTTCCTGGTCCCAGTCC





TCATCATCACAGCTTGCTACCTCACCATCGTGTG





CAAACTGCAGCGCAACCGCCTGGCCAAGACCAA





GAAGCCCTTCAAGATTATTGTGACCATCATCATT





ACCTTCTTCCTCTGCTGGTGCCCCTACCACACAC





TCAACCTCCTAGAGCTCCACCACACTGCCATGCC





TGGCTCTGTCTTCAGCCTGGGTTTGCCCCTGGCC





ACTGCCCTTGCCATTGCCAACAGCTGCATGAACC





CCATTCTGTATGTTTTCATGGGTCAGGACTTCAA





GAAGTTCAAGGTGGCCCTCTTCTCTCGCCTGGTC





AATGCTCTAAGTGAAGATACAGGCCACTCTTCCT





ACCCCAGCCATAGAAGCTTTACCAAGATGTCAT





CAATGAATGAGAGGACTTCTATGAATGAGAGGG





AGACCGGCATGCTTTGATCCTCACTGTGGAACCC





CTCAATGGACTCTCTCAACCCAGGGACACCCAA





GGATATGTCTTCTGAAGATCAAGGCAAGAACCT





CTTTAGCATCCACCAATTTTCACTGCATTTTGCA





TGGGATGAACAGTGTTTTATGCTGGGAATCTAG





GGCCTGGAACCCCTTTCTTCTAGTGGACAGAACA





TGCTGTGTTCCATACAGCCTTGGACTAGCAATTT





ATGCTTCTTGGGAGGCCAGCCTTGACTGACTCAA





AGCAAAAAAGGAAGAATTC






CXCL9
NM_002416.1
ATCCAATACAGGAGTGACTTGGAACTCCATTCTA
21




TCACTATGAAGAAAAGTGGTGTTCTTTTCCTCTT





GGGCATCATCTTGCTGGTTCTGATTGGAGTGCAA





GGAACCCCAGTAGTGAGAAAGGGTCGCTGTTCC





TGCATCAGCACCAACCAAGGGACTATCCACCTA





CAATCCTTGAAAGACCTTAAACAATTTGCCCCAA





GCCCTTCCTGCGAGAAAATTGAAATCATTGCTAC





ACTGAAGAATGGAGTTCAAACATGTCTAAACCC





AGATTCAGCAGATGTGAAGGAACTGATTAAAAA





GTGGGAGAAACAGGTCAGCCAAAAGAAAAAGC





AAAAGAATGGGAAAAAACATCAAAAAAAGAAA





GTTCTGAAAGTTCGAAAATCTCAACGTTCTCGTC





AAAAGAAGACTACATAAGAGACCACTTCACCAA





TAAGTATTCTGTGTTAAAAATGTTCTATTTTAAT





TATACCGCTATCATTCCAAAGGAGGATGGCATA





TAATACAAAGGCTTATTAATTTGACTAGAAAATT





TAAAACATTACTCTGAAATTGTAACTAAAGTTAG





AAAGTTGATTTTAAGAATCCAAACGTTAAGAAT





TGTTAAAGGCTATGATTGTCTTTGTTCTTCTACC





ACCCACCAGTTGAATTTCATCATGCTTAAGGCCA





TGATTTTAGCAATACCCATGTCTACACAGATGTT





CACCCAACCACATCCCACTCACAACAGCTGCCT





GGAAGAGCAGCCCTAGGCTTCCACGTACTGCAG





CCTCCAGAGAGTATCTGAGGCACATGTCAGCAA





GTCCTAAGCCTGTTAGCATGCTGGTGAGCCAAG





CAGTTTGAAATTGAGCTGGACCTCACCAAGCTG





CTGTGGCCATCAACCTCTGTATTTGAATCAGCCT





ACAGGCCTCACACACAATGTGTCTGAGAGATTC





ATGCTGATTGTTATTGGGTATCACCACTGGAGAT





CACCAGTGTGTGGCTTTCAGAGCCTCCTTTCTGG





CTTTGGAAGCCATGTGATTCCATCTTGCCCGCTC





AGGCTGACCACTTTATTTCTTTTTGTTCCCCTTTG





CTTCATTCAAGTCAGCTCTTCTCCATCCTACCAC





AATGCAGTGCCTTTCTTCTCTCCAGTGCACCTGT





CATATGCTCTGATTTATCTGAGTCAACTCCTTTCT





CATCTTGTCCCCAACACCCCACAGAAGTGCTTTC





TTCTCCCAATTCATCCTCACTCAGTCCAGCTTAG





TTCAAGTCCTGCCTCTTAAATAAACCTTTTTGGA





CACACAAATTATCTTAAAACTCCTGTTTCACTTG





GTTCAGTACCACATGGGTGAACACTCAATGGTT





AACTAATTCTTGGGTGTTTATCCTATCTCTCCAA





CCAGATTGTCAGCTCCTTGAGGGCAAGAGCCAC





AGTATATTTCCCTGTTTCTTCCACAGTGCCTAAT





AATACTGTGGAACTAGGTTTTAATAATTTTTTAA





TTGATGTTGTTATGGGCAGGATGGCAACCAGAC





CATTGTCTCAGAGCAGGTGCTGGCTCTTTCCTGG





CTACTCCATGTTGGCTAGCCTCTGGTAACCTCTT





ACTTATTATCTTCAGGACACTCACTACAGGGACC





AGGGATGATGCAACATCCTTGTCTTTTTATGACA





GGATGTTTGCTCAGCTTCTCCAACAATAAGAAGC





ACGTGGTAAAACACTTGCGGATATTCTGGACTGT





TTTTAAAAAATATACAGTTTACCGAAAATCATAT





AATCTTACAATGAAAAGGACTTTATAGATCAGC





CAGTGACCAACCTTTTCCCAACCATACAAAAATT





CCTTTTCCCGAAGGAAAAGGGCTTTCTCAATAAG





CCTCAGCTTTCTAAGATCTAACAAGATAGCCACC





GAGATCCTTATCGAAACTCATTTTAGGCAAATAT





GAGTTTTATTGTCCGTTTACTTGTTTCAGAGTTTG





TATTGTGATTATCAATTACCACACCATCTCCCAT





GAAGAAAGGGAACGGTGAAGTACTAAGCGCTA





GAGGAAGCAGCCAAGTCGGTTAGTGGAAGCATG





ATTGGTGCCCAGTTAGCCTCTGCAGGATGTGGA





AACCTCCTTCCAGGGGAGGTTCAGTGAATTGTGT





AGGAGAGGTTGTCTGTGGCCAGAATTTAAACCT





ATACTCACTTTCCCAAATTGAATCACTGCTCACA





CTGCTGATGATTTAGAGTGCTGTCCGGTGGAGAT





CCCACCCGAACGTCTTATCTAATCATGAAACTCC





CTAGTTCCTTCATGTAACTTCCCTGAAAAATCTA





AGTGTTTCATAAATTTGAGAGTCTGTGACCCACT





TACCTTGCATCTCACAGGTAGACAGTATATAACT





AACAACCAAAGACTACATATTGTCACTGACACA





CACGTTATAATCATTTATCATATATATACATACA





TGCATACACTCTCAAAGCAAATAATTTTTCACTT





CAAAACAGTATTGACTTGTATACCTTGTAATTTG





AAATATTTTCTTTGTTAAAATAGAATGGTATCAA





TAAATAGACCATTAATCAG






CXCR6
NM_006564.1
GCAGACCTTGCTTCATGAGCAAGCTCATCTCTGG
22




AACAAACTGGCAAAGCATCTCTGCTGGTGTTCAT





CAGAACAGACACCATGGCAGAGCATGATTACCA





TGAAGACTATGGGTTCAGCAGTTTCAATGACAG





CAGCCAGGAGGAGCATCAAGACTTCCTGCAGTT





CAGCAAGGTCTTTCTGCCCTGCATGTACCTGGTG





GTGTTTGTCTGTGGTCTGGTGGGGAACTCTCTGG





TGCTGGTCATATCCATCTTCTACCATAAGTTGCA





GAGCCTGACGGATGTGTTCCTGGTGAACCTACCC





CTGGCTGACCTGGTGTTTGTCTGCACTCTGCCCT





TCTGGGCCTATGCAGGCATCCATGAATGGGTGTT





TGGCCAGGTCATGTGCAAGAGCCTACTGGGCAT





CTACACTATTAACTTCTACACGTCCATGCTCATC





CTCACCTGCATCACTGTGGATCGTTTCATTGTAG





TGGTTAAGGCCACCAAGGCCTACAACCAGCAAG





CCAAGAGGATGACCTGGGGCAAGGTCACCAGCT





TGCTCATCTGGGTGATATCCCTGCTGGTTTCCTT





GCCCCAAATTATCTATGGCAATGTCTTTAATCTC





GACAAGCTCATATGTGGTTACCATGACGAGGCA





ATTTCCACTGTGGTTCTTGCCACCCAGATGACAC





TGGGGTTCTTCTTGCCACTGCTCACCATGATTGT





CTGCTATTCAGTCATAATCAAAACACTGCTTCAT





GCTGGAGGCTTCCAGAAGCACAGATCTCTAAAG





ATCATCTTCCTGGTGATGGCTGTGTTCCTGCTGA





CCCAGATGCCCTTCAACCTCATGAAGTTCATCCG





CAGCACACACTGGGAATACTATGCCATGACCAG





CTTTCACTACACCATCATGGTGACAGAGGCCATC





GCATACCTGAGGGCCTGCCTTAACCCTGTGCTCT





ATGCCTTTGTCAGCCTGAAGTTTCGAAAGAACTT





CTGGAAACTTGTGAAGGACATTGGTTGCCTCCCT





TACCTTGGGGTCTCACATCAATGGAAATCTTCTG





AGGACAATTCCAAGACTTTTTCTGCCTCCCACAA





TGTGGAGGCCACCAGCATGTTCCAGTTATAGGC





CTTGCCAGGGTTTCGAGAAGCTGCTCTGGAATTT





GCAAGTCATGGCTGTGCCCTCTTGATGTGGTGAG





GCAGGCTTTGTTTATAGCTTGCGCATTCTCATGG





AGAAGTTATCAGACACTCTGGCTGGTTTGGAAT





GCTTCTTCTCAGGCATGAACATGTACTGTTCTCT





TCTTGAACACTCATGCTGAAAGCCCAAGTAGGG





GGTCTAAAATTTTTAAGGACTTTCCTTCCTCCAT





CTCCAAGAATGCTGAAACCAAGGGGGATGACAT





GTGACTCCTATGATCTCAGGTTCTCCTTGATTGG





GACTGGGGCTGAAGGTTGAAGAGGTGAGCACGG





CCAACAAAGCTGTTGATGGTAGGTGGCACACTG





GGTGCCCAAGCTCAGAAGGCTCTTCTGACTACTG





GGCAAAGAGTGTAGATCAGAGCAGCAGTGAAA





ACAAGTGCTGGCACCACCAGGCACCTCACAGAA





ATGAGATCAGGCTCTGCCTCACCTTGGGGCTTGA





CTTTTGTATAGGTAGATGTTCAGATTGCTTTGAT





TAATCCAGAATAACTAGCACCAGGGACTATGAA





TGGGCAAAACTGAATTATAAGAGGCTGATAATT





CCAGTGGTCCATGGAATGCTTGAAAAATGTGCA





AAACAGCGTTTAAGACTGTAATGAATCTAAGCA





GCATTTCTGAAGTGGACTCTTTGGTGGCTTTGCA





TTTTAAAAATGAAATTTTCCAATGTCTGCCACAC





AAACGTATGTAAATGTATATACCCACACACATA





CACACATATGTCATATATTACTAGCATATGAGTT





TCATAGCTAAGAAATAAAACTGTTAAAGTCTCC





AAACT






HLA-
NM_002122.3
ACAATTACTCTACAGCTCAGAACACCAACTGCT
23


DQA1

GAGGCTGCCTTGGGAAGAGGATGATCCTAAACA





AAGCTCTGCTGCTGGGGGCCCTCGCTCTGACCAC





CGTGATGAGCCCCTGTGGAGGTGAAGACATTGT





GGCTGACCACGTTGCCTCTTGTGGTGTAAACTTG





TACCAGTTTTACGGTCCCTCTGGCCAGTACACCC





ATGAATTTGATGGAGATGAGCAGTTCTACGTGG





ACCTGGAGAGGAAGGAGACTGCCTGGCGGTGGC





CTGAGTTCAGCAAATTTGGAGGTTTTGACCCGCA





GGGTGCACTGAGAAACATGGCTGTGGCAAAACA





CAACTTGAACATCATGATTAAACGCTACAACTCT





ACCGCTGCTACCAATGAGGTTCCTGAGGTCACA





GTGTTTTCCAAGTCTCCCGTGACACTGGGTCAGC





CCAACACCCTCATTTGTCTTGTGGACAACATCTT





TCCTCCTGTGGTCAACATCACATGGCTGAGCAAT





GGGCAGTCAGTCACAGAAGGTGTTTCTGAGACC





AGCTTCCTCTCCAAGAGTGATCATTCCTTCTTCA





AGATCAGTTACCTCACCTTCCTCCCTTCTGCTGA





TGAGATTTATGACTGCAAGGTGGAGCACTGGGG





CCTGGACCAGCCTCTTCTGAAACACTGGGAGCCT





GAGATTCCAGCCCCTATGTCAGAGCTCACAGAG





ACTGTGGTCTGTGCCCTGGGGTTGTCTGTGGGCC





TCATGGGCATTGTGGTGGGCACTGTCTTCATCAT





CCAAGGCCTGCGTTCAGTTGGTGCTTCCAGACAC





CAAGGGCCATTGTGAATCCCATCCTGGAAGGGA





AGGTGCATCGCCATCTACAGGAGCAGAAGAATG





GACTTGCTAAATGACCTAGCACTATTCTCTGGCC





CGATTTATCATATCCCTTTTCTCCTCCAAATATTT





CTCCTCTCACCTTTTCTCTGGGACTTAAGCTGCT





ATATCCCCTCAGAGCTCACAAATGCCTTTACATT





CTTTCCCTGACCTCCTGATTTTTTTTTTCTTTTCTC





AAATGTTACCTACAAAGACATGCCTGGGGTAAG





CCACCCGGCTACCTAATTCCTCAGTAACCTCCAT





CTAAAATCTCCAAGGAAGCAATAAATTCCTTTTA





TGAGATCTATGTCAAATTTTTCCATCTTTCATCC





AGGGCTGACTGAAACTATGGCTAATAATTGGGG





TACTCTTATGTTTCAATCCAATTTAACCTCATTTC





CCAGATCATTTTTCATGTCCAGTAACACAGAAGC





CACCAAGTACAGTATAGCCTGATAATATGTTGAT





TTCTTAGCTGACATTAATATTTCTTGCTTCCTTGT





GTTCCCACCCTTGGCACTGCCACCCACCCCTCAA





TTCAGGCAACAATGAAATTAATGGATACCGTCT





GCCCTTGGCCCAGAATTGTTATAGCAAAAATTTT





AGAACCAAAAAATAAGTCTGTACTAATTTCAAT





GTGGCTTTTAAAAGTATGACAGAGAAATAAGTT





AGGATAAAGGAAATTTGAATCTCA






HLA-
NM_002124.1
TAGTTCTCCCTGAGTGAGACTTGCCTGCTTCTCT
24


DRB1

GGCCCCTGGTCCTGTCCTGTTCTCCAGCATGGTG





TGTCTGAAGCTCCCTGGAGGCTCCTGCATGACAG





CGCTGACAGTGACACTGATGGTGCTGAGCTCCC





CACTGGCTTTGGCTGGGGACACCCGACCACGTTT





CTTGTGGCAGCTTAAGTTTGAATGTCATTTCTTC





AATGGGACGGAGCGGGTGCGGTTGCTGGAAAGA





TGCATCTATAACCAAGAGGAGTCCGTGCGCTTC





GACAGCGACGTGGGGGAGTACCGGGCGGTGACG





GAGCTGGGGCGGCCTGATGCCGAGTACTGGAAC





AGCCAGAAGGACCTCCTGGAGCAGAGGCGGGCC





GCGGTGGACACCTACTGCAGACACAACTACGGG





GTTGGTGAGAGCTTCACAGTGCAGCGGCGAGTT





GAGCCTAAGGTGACTGTGTATCCTTCAAAGACC





CAGCCCCTGCAGCACCACAACCTCCTGGTCTGCT





CTGTGAGTGGTTTCTATCCAGGCAGCATTGAAGT





CAGGTGGTTCCGGAACGGCCAGGAAGAGAAGGC





TGGGGTGGTGTCCACAGGCCTGATCCAGAATGG





AGATTGGACCTTCCAGACCCTGGTGATGCTGGA





AACAGTTCCTCGGAGTGGAGAGGTTTACACCTG





CCAAGTGGAGCACCCAAGTGTGACGAGCCCTCT





CACAGTGGAATGGAGAGCACGGTCTGAATCTGC





ACAGAGCAAGATGCTGAGTGGAGTCGGGGGCTT





CGTGCTGGGCCTGCTCTTCCTTGGGGCCGGGCTG





TTCATCTACTTCAGGAATCAGAAAGGACACTCTG





GACTTCAGCCAACAGGATTCCTGAGCTGAAATG





CAGATGACCACATTCAAGGAAGAACCTTCTGTC





CCAGCTTTGCAGAATGAAAAGCTTTCCTGCTTGG





CAGTTATTCTTCCACAAGAGAGGGCTTTCTCAGG





ACCTGGTTGCTACTGGTTCGGCAACTGCAGAAA





ATGTCCTCCCTTGTGGCTTCCTCAGCTCCTGCCCT





TGGCCTGAAGTCCCAGCATTGATGACAGCGCCT





CATCTTCAACTTTTGTGCTCCCCTTTGCCTAAACC





GTATGGCCTCCCGTGCATCTGTACTCACCCTGTA





CGACAAACACATTACATTATTAAATGTTTCTCAA





AGATGGAGTT






HLA-E
NM_005516.4
CGGACTCAAGAAGTTCTCAGGACTCAGAGGCTG
25




GGATCATGGTAGATGGAACCCTCCTTTTACTCCT





CTCGGAGGCCCTGGCCCTTACCCAGACCTGGGC





GGGCTCCCACTCCTTGAAGTATTTCCACACTTCC





GTGTCCCGGCCCGGCCGCGGGGAGCCCCGCTTC





ATCTCTGTGGGCTACGTGGACGACACCCAGTTCG





TGCGCTTCGACAACGACGCCGCGAGTCCGAGGA





TGGTGCCGCGGGCGCCGTGGATGGAGCAGGAGG





GGTCAGAGTATTGGGACCGGGAGACACGGAGCG





CCAGGGACACCGCACAGATTTTCCGAGTGAACC





TGCGGACGCTGCGCGGCTACTACAATCAGAGCG





AGGCCGGGTCTCACACCCTGCAGTGGATGCATG





GCTGCGAGCTGGGGCCCGACGGGCGCTTCCTCC





GCGGGTATGAACAGTTCGCCTACGACGGCAAGG





ATTATCTCACCCTGAATGAGGACCTGCGCTCCTG





GACCGCGGTGGACACGGCGGCTCAGATCTCCGA





GCAAAAGTCAAATGATGCCTCTGAGGCGGAGCA





CCAGAGAGCCTACCTGGAAGACACATGCGTGGA





GTGGCTCCACAAATACCTGGAGAAGGGGAAGGA





GACGCTGCTTCACCTGGAGCCCCCAAAGACACA





CGTGACTCACCACCCCATCTCTGACCATGAGGCC





ACCCTGAGGTGCTGGGCCCTGGGCTTCTACCCTG





CGGAGATCACACTGACCTGGCAGCAGGATGGGG





AGGGCCATACCCAGGACACGGAGCTCGTGGAGA





CCAGGCCTGCAGGGGATGGAACCTTCCAGAAGT





GGGCAGCTGTGGTGGTGCCTTCTGGAGAGGAGC





AGAGATACACGTGCCATGTGCAGCATGAGGGGC





TACCCGAGCCCGTCACCCTGAGATGGAAGCCGG





CTTCCCAGCCCACCATCCCCATCGTGGGCATCAT





TGCTGGCCTGGTTCTCCTTGGATCTGTGGTCTCT





GGAGCTGTGGTTGCTGCTGTGATATGGAGGAAG





AAGAGCTCAGGTGGAAAAGGAGGGAGCTACTCT





AAGGCTGAGTGGAGCGACAGTGCCCAGGGGTCT





GAGTCTCACAGCTTGTAAAGCCTGAGACAGCTG





CCTTGTGTGCGACTGAGATGCACAGCTGCCTTGT





GTGCGACTGAGATGCAGGATTTCCTCACGCCTCC





CCTATGTGTCTTAGGGGACTCTGGCTTCTCTTTTT





GCAAGGGCCTCTGAATCTGTCTGTGTCCCTGTTA





GCACAATGTGAGGAGGTAGAGAAACAGTCCACC





TCTGTGTCTACCATGACCCCCTTCCTCACACTGA





CCTGTGTTCCTTCCCTGTTCTCTTTTCTATTAAAA





ATAAGAACCTGGGCAGAGTGCGGCAGCTCATGC





CTGTAATCCCAGCACTTAGGGAGGCCGAGGAGG





GCAGATCACGAGGTCAGGAGATCGAAACCATCC





TGGCTAACACGGTGAAACCCCGTCTCTACTAAA





AAATACAAAAAATTAGCTGGGCGCAGAGGCACG





GGCCTGTAGTCCCAGCTACTCAGGAGGCGGAGG





CAGGAGAATGGCGTCAACCCGGGAGGCGGAGGT





TGCAGTGAGCCAGGATTGTGCGACTGCACTCCA





GCCTGGGTGACAGGGTGAAACGCCATCTCAAAA





AATAAAAATTGAAAAATAAAAAAAAAAAAAAA





AAA






IDO1
NM_002164.3
AATTTCTCACTGCCCCTGTGATAAACTGTGGTCA
26




CTGGCTGTGGCAGCAACTATTATAAGATGCTCTG





AAAACTCTTCAGACACTGAGGGGCACCAGAGGA





GCAGACTACAAGAATGGCACACGCTATGGAAAA





CTCCTGGACAATCAGTAAAGAGTACCATATTGA





TGAAGAAGTGGGCTTTGCTCTGCCAAATCCACA





GGAAAATCTACCTGATTTTTATAATGACTGGATG





TTCATTGCTAAACATCTGCCTGATCTCATAGAGT





CTGGCCAGCTTCGAGAAAGAGTTGAGAAGTTAA





ACATGCTCAGCATTGATCATCTCACAGACCACA





AGTCACAGCGCCTTGCACGTCTAGTTCTGGGATG





CATCACCATGGCATATGTGTGGGGCAAAGGTCA





TGGAGATGTCCGTAAGGTCTTGCCAAGAAATAT





TGCTGTTCCTTACTGCCAACTCTCCAAGAAACTG





GAACTGCCTCCTATTTTGGTTTATGCAGACTGTG





TCTTGGCAAACTGGAAGAAAAAGGATCCTAATA





AGCCCCTGACTTATGAGAACATGGACGTTTTGTT





CTCATTTCGTGATGGAGACTGCAGTAAAGGATTC





TTCCTGGTCTCTCTATTGGTGGAAATAGCAGCTG





CTTCTGCAATCAAAGTAATTCCTACTGTATTCAA





GGCAATGCAAATGCAAGAACGGGACACTTTGCT





AAAGGCGCTGTTGGAAATAGCTTCTTGCTTGGA





GAAAGCCCTTCAAGTGTTTCACCAAATCCACGAT





CATGTGAACCCAAAAGCATTTTTCAGTGTTCTTC





GCATATATTTGTCTGGCTGGAAAGGCAACCCCC





AGCTATCAGACGGTCTGGTGTATGAAGGGTTCT





GGGAAGACCCAAAGGAGTTTGCAGGGGGCAGTG





CAGGCCAAAGCAGCGTCTTTCAGTGCTTTGACGT





CCTGCTGGGCATCCAGCAGACTGCTGGTGGAGG





ACATGCTGCTCAGTTCCTCCAGGACATGAGAAG





ATATATGCCACCAGCTCACAGGAACTTCCTGTGC





TCATTAGAGTCAAATCCCTCAGTCCGTGAGTTTG





TCCTTTCAAAAGGTGATGCTGGCCTGCGGGAAG





CTTATGACGCCTGTGTGAAAGCTCTGGTCTCCCT





GAGGAGCTACCATCTGCAAATCGTGACTAAGTA





CATCCTGATTCCTGCAAGCCAGCAGCCAAAGGA





GAATAAGACCTCTGAAGACCCTTCAAAACTGGA





AGCCAAAGGAACTGGAGGCACTGATTTAATGAA





TTTCCTGAAGACTGTAAGAAGTACAACTGAGAA





ATCCCTTTTGAAGGAAGGTTAATGTAACCCAAC





AAGAGCACATTTTATCATAGCAGAGACATCTGT





ATGCATTCCTGTCATTACCCATTGTAACAGAGCC





ACAAACTAATACTATGCAATGTTTTACCAATAAT





GCAATACAAAAGACCTCAAAATACCTGTGCATT





TCTTGTAGGAAAACAACAAAAGGTAATTATGTG





TAATTATACTAGAAGTTTTGTAATCTGTATCTTA





TCATTGGAATAAAATGACATTCAATAAATAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAA






LAG3
NM_002286.5
ACAGGGGTGAAGGCCCAGAGACCAGCAGAACG
27




GCATCCCAGCCACGACGGCCACTTTGCTCTGTCT





GCTCTCCGCCACGGCCCTGCTCTGTTCCCTGGGA





CACCCCCGCCCCCACCTCCTCAGGCTGCCTGATC





TGCCCAGCTTTCCAGCTTTCCTCTGGATTCCGGC





CTCTGGTCATCCCTCCCCACCCTCTCTCCAAGGC





CCTCTCCTGGTCTCCCTTCTTCTAGAACCCCTTCC





TCCACCTCCCTCTCTGCAGAACTTCTCCTTTACCC





CCCACCCCCCACCACTGCCCCCTTTCCTTTTCTG





ACCTCCTTTTGGAGGGCTCAGCGCTGCCCAGACC





ATAGGAGAGATGTGGGAGGCTCAGTTCCTGGGC





TTGCTGTTTCTGCAGCCGCTTTGGGTGGCTCCAG





TGAAGCCTCTCCAGCCAGGGGCTGAGGTCCCGG





TGGTGTGGGCCCAGGAGGGGGCTCCTGCCCAGC





TCCCCTGCAGCCCCACAATCCCCCTCCAGGATCT





CAGCCTTCTGCGAAGAGCAGGGGTCACTTGGCA





GCATCAGCCAGACAGTGGCCCGCCCGCTGCCGC





CCCCGGCCATCCCCTGGCCCCCGGCCCTCACCCG





GCGGCGCCCTCCTCCTGGGGGCCCAGGCCCCGC





CGCTACACGGTGCTGAGCGTGGGTCCCGGAGGC





CTGCGCAGCGGGAGGCTGCCCCTGCAGCCCCGC





GTCCAGCTGGATGAGCGCGGCCGGCAGCGCGGG





GACTTCTCGCTATGGCTGCGCCCAGCCCGGCGCG





CGGACGCCGGCGAGTACCGCGCCGCGGTGCACC





TCAGGGACCGCGCCCTCTCCTGCCGCCTCCGTCT





GCGCCTGGGCCAGGCCTCGATGACTGCCAGCCC





CCCAGGATCTCTCAGAGCCTCCGACTGGGTCATT





TTGAACTGCTCCTTCAGCCGCCCTGACCGCCCAG





CCTCTGTGCATTGGTTCCGGAACCGGGGCCAGG





GCCGAGTCCCTGTCCGGGAGTCCCCCCATCACCA





CTTAGCGGAAAGCTTCCTCTTCCTGCCCCAAGTC





AGCCCCATGGACTCTGGGCCCTGGGGCTGCATC





CTCACCTACAGAGATGGCTTCAACGTCTCCATCA





TGTATAACCTCACTGTTCTGGGTCTGGAGCCCCC





AACTCCCTTGACAGTGTACGCTGGAGCAGGTTCC





AGGGTGGGGCTGCCCTGCCGCCTGCCTGCTGGT





GTGGGGACCCGGTCTTTCCTCACTGCCAAGTGGA





CTCCTCCTGGGGGAGGCCCTGACCTCCTGGTGAC





TGGAGACAATGGCGACTTTACCCTTCGACTAGA





GGATGTGAGCCAGGCCCAGGCTGGGACCTACAC





CTGCCATATCCATCTGCAGGAACAGCAGCTCAA





TGCCACTGTCACATTGGCAATCATCACAGTGACT





CCCAAATCCTTTGGGTCACCTGGATCCCTGGGGA





AGCTGCTTTGTGAGGTGACTCCAGTATCTGGACA





AGAACGCTTTGTGTGGAGCTCTCTGGACACCCCA





TCCCAGAGGAGTTTCTCAGGACCTTGGCTGGAG





GCACAGGAGGCCCAGCTCCTTTCCCAGCCTTGGC





AATGCCAGCTGTACCAGGGGGAGAGGCTTCTTG





GAGCAGCAGTGTACTTCACAGAGCTGTCTAGCC





CAGGTGCCCAACGCTCTGGGAGAGCCCCAGGTG





CCCTCCCAGCAGGCCACCTCCTGCTGTTTCTCAT





CCTTGGTGTCCTTTCTCTGCTCCTTTTGGTGACTG





GAGCCTTTGGCTTTCACCTTTGGAGAAGACAGTG





GCGACCAAGACGATTTTCTGCCTTAGAGCAAGG





GATTCACCCTCCGCAGGCTCAGAGCAAGATAGA





GGAGCTGGAGCAAGAACCGGAGCCGGAGCCGG





AGCCGGAACCGGAGCCCGAGCCCGAGCCCGAGC





CGGAGCAGCTCTGACCTGGAGCTGAGGCAGCCA





GCAGATCTCAGCAGCCCAGTCCAAATAAACTCC





CTGTCAGCAGCAAAAA






NKG7
NM_005601.3
TCATGTGACAAAGCGCAGGACCCCTCACTGCCC
28




CAACTGCTTGCTGTTCTCTCTTTCTTGGGCTCTAA





GGACCCAGGAGTCTGGGTGCACAGCCTCCTTCTC





TCTGAGATTCAAGAGTCTGATCAGCAGCCTCTTC





CTCCTCCAGGACCCAGAAGCCCTGAGCTTATCCC





CATGGAGCTCTGCCGGTCCCTGGCCCTGCTGGGG





GGCTCCCTGGGCCTGATGTTCTGCCTGATTGCTT





TGAGCACCGATTTCTGGTTTGAGGCTGTGGGTCC





CACCCACTCAGCTCACTCGGGCCTCTGGCCAACA





GGGCATGGGGACATCATATCAGGCTACATCCAC





GTGACGCAGACCTTCAGCATTATGGCTGTTCTGT





GGGCCCTGGTGTCCGTGAGCTTCCTGGTCCTGTC





CTGCTTCCCCTCACTGTTCCCCCCAGGCCACGGC





CCGCTTGTCTCAACCACCGCAGCCTTTGCTGCAG





CCATCTCCATGGTGGTGGCCATGGCGGTGTACAC





CAGCGAGCGGTGGGACCAGCCTCCACACCCCCA





GATCCAGACCTTCTTCTCCTGGTCCTTCTACCTG





GGCTGGGTCTCAGCTATCCTCTTGCTCTGTACAG





GTGCCCTGAGCCTGGGTGCTCACTGTGGCGGTCC





CCGTCCTGGCTATGAAACCTTGTGAGCAGAAGG





CAAGAGCGGCAAGATGAGTTTTGAGCGTTGTAT





TCCAAAGGCCTCATCTGGAGCCTCGGGAAAGTC





TGGTCCCACATCTGCCCGCCCTTCCAGCCCTTCC





CCAGCCCCTCCTCTTGTTTCTTCATTCATTCAACA





AAATTTGGCTGGAA






PDCD1LG2
NM_025239.3
GCAAACCTTAAGCTGAATGAACAACTTTTCTTCT
29




CTTGAATATATCTTAACGCCAAATTTTGAGTGCT





TTTTTGTTACCCATCCTCATATGTCCCAGCTAGA





AAGAATCCTGGGTTGGAGCTACTGCATGTTGATT





GTTTTGTTTTTCCTTTTGGCTGTTCATTTTGGTGG





CTACTATAAGGAAATCTAACACAAACAGCAACT





GTTTTTTGTTGTTTACTTTTGCATCTTTACTTGTG





GAGCTGTGGCAAGTCCTCATATCAAATACAGAA





CATGATCTTCCTCCTGCTAATGTTGAGCCTGGAA





TTGCAGCTTCACCAGATAGCAGCTTTATTCACAG





TGACAGTCCCTAAGGAACTGTACATAATAGAGC





ATGGCAGCAATGTGACCCTGGAATGCAACTTTG





ACACTGGAAGTCATGTGAACCTTGGAGCAATAA





CAGCCAGTTTGCAAAAGGTGGAAAATGATACAT





CCCCACACCGTGAAAGAGCCACTTTGCTGGAGG





AGCAGCTGCCCCTAGGGAAGGCCTCGTTCCACA





TACCTCAAGTCCAAGTGAGGGACGAAGGACAGT





ACCAATGCATAATCATCTATGGGGTCGCCTGGG





ACTACAAGTACCTGACTCTGAAAGTCAAAGCTT





CCTACAGGAAAATAAACACTCACATCCTAAAGG





TTCCAGAAACAGATGAGGTAGAGCTCACCTGCC





AGGCTACAGGTTATCCTCTGGCAGAAGTATCCTG





GCCAAACGTCAGCGTTCCTGCCAACACCAGCCA





CTCCAGGACCCCTGAAGGCCTCTACCAGGTCAC





CAGTGTTCTGCGCCTAAAGCCACCCCCTGGCAG





AAACTTCAGCTGTGTGTTCTGGAATACTCACGTG





AGGGAACTTACTTTGGCCAGCATTGACCTTCAAA





GTCAGATGGAACCCAGGACCCATCCAACTTGGC





TGCTTCACATTTTCATCCCCTTCTGCATCATTGCT





TTCATTTTCATAGCCACAGTGATAGCCCTAAGAA





AACAACTCTGTCAAAAGCTGTATTCTTCAAAAG





ACACAACAAAAAGACCTGTCACCACAACAAAGA





GGGAAGTGAACAGTGCTATCTGAACCTGTGGTC





TTGGGAGCCAGGGTGACCTGATATGACATCTAA





AGAAGCTTCTGGACTCTGAACAAGAATTCGGTG





GCCTGCAGAGCTTGCCATTTGCACTTTTCAAATG





CCTTTGGATGACCCAGCACTTTAATCTGAAACCT





GCAACAAGACTAGCCAACACCTGGCCATGAAAC





TTGCCCCTTCACTGATCTGGACTCACCTCTGGAG





CCTATGGCTTTAAGCAAGCACTACTGCACTTTAC





AGAATTACCCCACTGGATCCTGGACCCACAGAA





TTCCTTCAGGATCCTTCTTGCTGCCAGACTGAAA





GCAAAAGGAATTATTTCCCCTCAAGTTTTCTAAG





TGATTTCCAAAAGCAGAGGTGTGTGGAAATTTC





CAGTAACAGAAACAGATGGGTTGCCAATAGAGT





TATTTTTTATCTATAGCTTCCTCTGGGTACTAGA





AGAGGCTATTGAGACTATGAGCTCACAGACAGG





GCTTCGCACAAACTCAAATCATAATTGACATGTT





TTATGGATTACTGGAATCTTGATAGCATAATGAA





GTTGTTCTAATTAACAGAGAGCATTTAAATATAC





ACTAAGTGCACAAATTGTGGAGTAAAGTCATCA





AGCTCTGTTTTTGAGGTCTAAGTCACAAAGCATT





TGTTTTAACCTGTAATGGCACCATGTTTAATGGT





GGTTTTTTTTTTGAACTACATCTTTCCTTTAAAAA





TTATTGGTTTCTTTTTATTTGTTTTTACCTTAGAA





ATCAATTATATACAGTCAAAAATATTTGATATGC





TCATACGTTGTATCTGCAGCAATTTCAGATAAGT





AGCTAAAATGGCCAAAGCCCCAAACTAAGCCTC





CTTTTCTGGCCCTCAATATGACTTTAAATTTGAC





TTTTCAGTGCCTCAGTTTGCACATCTGTAATACA





GCAATGCTAAGTAGTCAAGGCCTTTGATAATTG





GCACTATGGAAATCCTGCAAGATCCCACTACAT





ATGTGTGGAGCAGAAGGGTAACTCGGCTACAGT





AACAGCTTAATTTTGTTAAATTTGTTCTTTATACT





GGAGCCATGAAGCTCAGAGCATTAGCTGACCCT





TGAACTATTCAAATGGGCACATTAGCTAGTATA





ACAGACTTACATAGGTGGGCCTAAAGCAAGCTC





CTTAACTGAGCAAAATTTGGGGCTTATGAGAAT





GAAAGGGTGTGAAATTGACTAACAGACAAATCA





TACATCTCAGTTTCTCAATTCTCATGTAAATCAG





AGAATGCCTTTAAAGAATAAAACTCAATTGTTAT





TCTTCAACGTTCTTTATATATTCTACTTTTGGGTA






PSMB10
NM_002801.2
AGACGTGAAGCCTAGCAGAGGACTTTTTAGCTG
30




CTCACTGGCCCCGCTTGTCTGGCCGACTCATCCG





CCCGCGACCCCTAATCCCCTCTGCCTGCCCCAAG





ATGCTGAAGCCAGCCCTGGAGCCCCGAGGGGGC





TTCTCCTTCGAGAACTGCCAAAGAAATGCATCAT





TGGAACGCGTCCTCCCGGGGCTCAAGGTCCCTC





ACGCACGCAAGACCGGGACCACCATCGCGGGCC





TGGTGTTCCAAGACGGGGTCATTCTGGGCGCCG





ATACGCGAGCCACTAACGATTCGGTCGTGGCGG





ACAAGAGCTGCGAGAAGATCCACTTCATCGCCC





CCAAAATCTACTGCTGTGGGGCTGGAGTAGCCG





CGGACGCCGAGATGACCACACGGATGGTGGCGT





CCAAGATGGAGCTACACGCGTTATCTACGGGCC





GCGAGCCCCGCGTGGCCACGGTCACTCGCATCC





TGCGCCAGACGCTCTTCAGGTACCAGGGCCACG





TGGGTGCATCGCTGATCGTGGGCGGCGTAGACC





TGACTGGACCGCAGCTCTACGGCGTGCATCCCC





ATGGCTCCTACAGCCGTCTGCCCTTCACAGCCCT





GGGCTCTGGTCAGGACGCGGCCCTGGCGGTGCT





AGAAGACCGGTTCCAGCCGAACATGACGCTGGA





GGCTGCTCAGGGGCTGCTGGTGGAAGCCGTCAC





CGCCGGGATCTTGGGTGACCTGGGCTCCGGGGG





CAATGTGGACGCATGTGTGATCACAAAGACTGG





CGCCAAGCTGCTGCGGACACTGAGCTCACCCAC





AGAGCCCGTGAAGAGGTCTGGCCGCTACCACTT





TGTGCCTGGAACCACAGCTGTCCTGACCCAGAC





AGTGAAGCCACTAACCCTGGAGCTAGTGGAGGA





AACTGTGCAGGCTATGGAGGTGGAGTAAGCTGA





GGCTTAGAGCTTGGAACAAGGGGGAATAAACCC





AGAAAATACAGTTAAACAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAA






STAT1
NM_007315.2
AGCGGGGCGGGGCGCCAGCGCTGCCTTTTCTCCT
31




GCCGGGTAGTTTCGCTTTCCTGCGCAGAGTCTGC





GGAGGGGCTCGGCTGCACCGGGGGGATCGCGCC





TGGCAGACCCCAGACCGAGCAGAGGCGACCCAG





CGCGCTCGGGAGAGGCTGCACCGCCGCGCCCCC





GCCTAGCCCTTCCGGATCCTGCGCGCAGAAAAG





TTTCATTTGCTGTATGCCATCCTCGAGAGCTGTC





TAGGTTAACGTTCGCACTCTGTGTATATAACCTC





GACAGTCTTGGCACCTAACGTGCTGTGCGTAGCT





GCTCCTTTGGTTGAATCCCCAGGCCCTTGTTGGG





GCACAAGGTGGCAGGATGTCTCAGTGGTACGAA





CTTCAGCAGCTTGACTCAAAATTCCTGGAGCAG





GTTCACCAGCTTTATGATGACAGTTTTCCCATGG





AAATCAGACAGTACCTGGCACAGTGGTTAGAAA





AGCAAGACTGGGAGCACGCTGCCAATGATGTTT





CATTTGCCACCATCCGTTTTCATGACCTCCTGTC





ACAGCTGGATGATCAATATAGTCGCTTTTCTTTG





GAGAATAACTTCTTGCTACAGCATAACATAAGG





AAAAGCAAGCGTAATCTTCAGGATAATTTTCAG





GAAGACCCAATCCAGATGTCTATGATCATTTACA





GCTGTCTGAAGGAAGAAAGGAAAATTCTGGAAA





ACGCCCAGAGATTTAATCAGGCTCAGTCGGGGA





ATATTCAGAGCACAGTGATGTTAGACAAACAGA





AAGAGCTTGACAGTAAAGTCAGAAATGTGAAGG





ACAAGGTTATGTGTATAGAGCATGAAATCAAGA





GCCTGGAAGATTTACAAGATGAATATGACTTCA





AATGCAAAACCTTGCAGAACAGAGAACACGAGA





CCAATGGTGTGGCAAAGAGTGATCAGAAACAAG





AACAGCTGTTACTCAAGAAGATGTATTTAATGCT





TGACAATAAGAGAAAGGAAGTAGTTCACAAAAT





AATAGAGTTGCTGAATGTCACTGAACTTACCCA





GAATGCCCTGATTAATGATGAACTAGTGGAGTG





GAAGCGGAGACAGCAGAGCGCCTGTATTGGGGG





GCCGCCCAATGCTTGCTTGGATCAGCTGCAGAA





CTGGTTCACTATAGTTGCGGAGAGTCTGCAGCA





AGTTCGGCAGCAGCTTAAAAAGTTGGAGGAATT





GGAACAGAAATACACCTACGAACATGACCCTAT





CACAAAAAACAAACAAGTGTTATGGGACCGCAC





CTTCAGTCTTTTCCAGCAGCTCATTCAGAGCTCG





TTTGTGGTGGAAAGACAGCCCTGCATGCCAACG





CACCCTCAGAGGCCGCTGGTCTTGAAGACAGGG





GTCCAGTTCACTGTGAAGTTGAGACTGTTGGTGA





AATTGCAAGAGCTGAATTATAATTTGAAAGTCA





AAGTCTTATTTGATAAAGATGTGAATGAGAGAA





ATACAGTAAAAGGATTTAGGAAGTTCAACATTT





TGGGCACGCACACAAAAGTGATGAACATGGAGG





AGTCCACCAATGGCAGTCTGGCGGCTGAATTTC





GGCACCTGCAATTGAAAGAACAGAAAAATGCTG





GCACCAGAACGAATGAGGGTCCTCTCATCGTTA





CTGAAGAGCTTCACTCCCTTAGTTTTGAAACCCA





ATTGTGCCAGCCTGGTTTGGTAATTGACCTCGAG





ACGACCTCTCTGCCCGTTGTGGTGATCTCCAACG





TCAGCCAGCTCCCGAGCGGTTGGGCCTCCATCCT





TTGGTACAACATGCTGGTGGCGGAACCCAGGAA





TCTGTCCTTCTTCCTGACTCCACCATGTGCACGA





TGGGCTCAGCTTTCAGAAGTGCTGAGTTGGCAGT





TTTCTTCTGTCACCAAAAGAGGTCTCAATGTGGA





CCAGCTGAACATGTTGGGAGAGAAGCTTCTTGG





TCCTAACGCCAGCCCCGATGGTCTCATTCCGTGG





ACGAGGTTTTGTAAGGAAAATATAAATGATAAA





AATTTTCCCTTCTGGCTTTGGATTGAAAGCATCC





TAGAACTCATTAAAAAACACCTGCTCCCTCTCTG





GAATGATGGGTGCATCATGGGCTTCATCAGCAA





GGAGCGAGAGCGTGCCCTGTTGAAGGACCAGCA





GCCGGGGACCTTCCTGCTGCGGTTCAGTGAGAG





CTCCCGGGAAGGGGCCATCACATTCACATGGGT





GGAGCGGTCCCAGAACGGAGGCGAACCTGACTT





CCATGCGGTTGAACCCTACACGAAGAAAGAACT





TTCTGCTGTTACTTTCCCTGACATCATTCGCAATT





ACAAAGTCATGGCTGCTGAGAATATTCCTGAGA





ATCCCCTGAAGTATCTGTATCCAAATATTGACAA





AGACCATGCCTTTGGAAAGTATTACTCCAGGCC





AAAGGAAGCACCAGAGCCAATGGAACTTGATGG





CCCTAAAGGAACTGGATATATCAAGACTGAGTT





GATTTCTGTGTCTGAAGTTCACCCTTCTAGACTT





CAGACCACAGACAACCTGCTCCCCATGTCTCCTG





AGGAGTTTGACGAGGTGTCTCGGATAGTGGGCT





CTGTAGAATTCGACAGTATGATGAACACAGTAT





AGAGCATGAATTTTTTTCATCTTCTCTGGCGACA





GTTTTCCTTCTCATCTGTGATTCCCTCCTGCTACT





CTGTTCCTTCACATCCTGTGTTTCTAGGGAAATG





AAAGAAAGGCCAGCAAATTCGCTGCAACCTGTT





GATAGCAAGTGAATTTTTCTCTAACTCAGAAACA





TCAGTTACTCTGAAGGGCATCATGCATCTTACTG





AAGGTAAAATTGAAAGGCATTCTCTGAAGAGTG





GGTTTCACAAGTGAAAAACATCCAGATACACCC





AAAGTATCAGGACGAGAATGAGGGTCCTTTGGG





AAAGGAGAAGTTAAGCAACATCTAGCAAATGTT





ATGCATAAAGTCAGTGCCCAACTGTTATAGGTTG





TTGGATAAATCAGTGGTTATTTAGGGAACTGCTT





GACGTAGGAACGGTAAATTTCTGTGGGAGAATT





CTTACATGTTTTCTTTGCTTTAAGTGTAACTGGC





AGTTTTCCATTGGTTTACCTGTGAAATAGTTCAA





AGCCAAGTTTATATACAATTATATCAGTCCTCTT





TCAAAGGTAGCCATCATGGATCTGGTAGGGGGA





AAATGTGTATTTTATTACATCTTTCACATTGGCT





ATTTAAAGACAAAGACAAATTCTGTTTCTTGAGA





AGAGAATATTAGCTTTACTGTTTGTTATGGCTTA





ATGACACTAGCTAATATCAATAGAAGGATGTAC





ATTTCCAAATTCACAAGTTGTGTTTGATATCCAA





AGCTGAATACATTCTGCTTTCATCTTGGTCACAT





ACAATTATTTTTACAGTTCTCCCAAGGGAGTTAG





GCTATTCACAACCACTCATTCAAAAGTTGAAATT





AACCATAGATGTAGATAAACTCAGAAATTTAAT





TCATGTTTCTTAAATGGGCTACTTTGTCCTTTTTG





TTATTAGGGTGGTATTTAGTCTATTAGCCACAAA





ATTGGGAAAGGAGTAGAAAAAGCAGTAACTGAC





AACTTGAATAATACACCAGAGATAATATGAGAA





TCAGATCATTTCAAAACTCATTTCCTATGTAACT





GCATTGAGAACTGCATATGTTTCGCTGATATATG





TGTTTTTCACATTTGCGAATGGTTCCATTCTCTCT





CCTGTACTTTTTCCAGACACTTTTTTGAGTGGAT





GATGTTTCGTGAAGTATACTGTATTTTTACCTTTT





TCCTTCCTTATCACTGACACAAAAAGTAGATTAA





GAGATGGGTTTGACAAGGTTCTTCCCTTTTACAT





ACTGCTGTCTATGTGGCTGTATCTTGTTTTTCCAC





TACTGCTACCACAACTATATTATCATGCAAATGC





TGTATTCTTCTTTGGTGGAGATAAAGATTTCTTG





AGTTTTGTTTTAAAATTAAAGCTAAAGTATCTGT





ATTGCATTAAATATAATATGCACACAGTGCTTTC





CGTGGCACTGCATACAATCTGAGGCCTCCTCTCT





CAGTTTTTATATAGATGGCGAGAACCTAAGTTTC





AGTTGATTTTACAATTGAAATGACTAAAAAACA





AAGAAGACAACATTAAAACAATATTGTTTCTA






TIGIT
NM_173799.2
ACATCTGCTTCCTGTAGGCCCTCTGGGCAGAAGC
32




ATGCGCTGGTGTCTCCTCCTGATCTGGGCCCAGG





GGCTGAGGCAGGCTCCCCTCGCCTCAGGAATGA





TGACAGGCACAATAGAAACAACGGGGAACATTT





CTGCAGAGAAAGGTGGCTCTATCATCTTACAAT





GTCACCTCTCCTCCACCACGGCACAAGTGACCCA





GGTCAACTGGGAGCAGCAGGACCAGCTTCTGGC





CATTTGTAATGCTGACTTGGGGTGGCACATCTCC





CCATCCTTCAAGGATCGAGTGGCCCCAGGTCCC





GGCCTGGGCCTTACCCTCCAGTCGCTGACCGTGA





ACGATACAGGGGAGTACTTCTGCATCTATCACA





CCTACCCTGATGGGGCGTACACTGGGAGAATCT





TCCTGGAGGTCCTAGAAAGCTCAGTGGCTGAGC





ACGGTGCCAGGTTCCAGATTCCATTGCTTGGAGC





CATGGCCGCGACGCTGGTGGTCATCTGCACAGC





AGTCATCGTGGTGGTCGCGTTGACTAGAAAGAA





GAAAGCCCTCAGAATCCATTCTGTGGAAGGTGA





CCTCAGGAGAAAATCAGCTGGACAGGAGGAATG





GAGCCCCAGTGCTCCCTCACCCCCAGGAAGCTG





TGTCCAGGCAGAAGCTGCACCTGCTGGGCTCTGT





GGAGAGCAGCGGGGAGAGGACTGTGCCGAGCT





GCATGACTACTTCAATGTCCTGAGTTACAGAAGC





CTGGGTAACTGCAGCTTCTTCACAGAGACTGGTT





AGCAACCAGAGGCATCTTCTGGAAGATACACTT





TTGTCTTTGCTATTATAGATGAATATATAAGCAG





CTGCACTCTCCATCAGTGCTGCGTGTGTGTGTGT





GTGTGTATGTGTGTGTGTGTTCAGTTGAGTGAAT





AAATGTCATCCTCTTCTCCATCTTCATTTCCTTGG





CCTTTTCGTTCTATTCCATTTTGCATTATGGCAGG





CCTAGGGTGAGTAACGTGGATCTTGATCATAAA





TGCAAAATTAAAAAATATCTTGACCTGGTTTTAA





ATCTGGCAGTTTGAGCAGATCCTATGTCTCTGAG





AGACACATTCCTCATAATGGCCAGCATTTTGGGC





TACAAGGTTTTGTGGTTGATGATGAGGATGGCAT





GACTGCAGAGCCATCCTCATCTCATTTTTTCACG





TCATTTTCAGTAACTTTCACTCATTCAAAGGCAG





GTTATAAGTAAGTCCTGGTAGCAGCCTCTATGGG





GAGATTTGAGAGTGACTAAATCTTGGTATCTGCC





CTCAAGAACTTACAGTTAAATGGGGAGACAATG





TTGTCATGAAAAGGTATTATAGTAAGGAGAGAA





GGAGACATACACAGGCCTTCAGGAAGAGACGAC





AGTTTGGGGTGAGGTAGTTGGCATAGGCTTATCT





GTGATGAAGTGGCCTGGGAGCACCAAGGGGATG





TTGAGGCTAGTCTGGGAGGAGCAGGAGTTTTGT





CTAGGGAACTTGTAGGAAATTCTTGGAGCTGAA





AGTCCCACAAAGAAGGCCCTGGCACCAAGGGAG





TCAGCAAACTTCAGATTTTATTCTCTGGGCAGGC





ATTTCAAGTTTCCTTTTGCTGTGACATACTCATCC





ATTAGACAGCCTGATACAGGCCTGTAGCCTCTTC





CGGCCGTGTGTGCTGGGGAAGCCCCAGGAAACG





CACATGCCCACACAGGGAGCCAAGTCGTAGCAT





TTGGGCCTTGATCTACCTTTTCTGCATCAATACA





CTCTTGAGCCTTTGAAAAAAGAACGTTTCCCACT





AAAAAGAAAATGTGGATTTTTAAAATAGGGACT





CTTCCTAGGGGAAAAAGGGGGGCTGGGAGTGAT





AGAGGGTTTAAAAAATAAACACCTTCAAACTAA





CTTCTTCGAACCCTTTTATTCACTCCCTGACGACT





TTGTGCTGGGGTTGGGGTAACTGAACTGCTTATT





TCTGTTTAATTGCATTCAGGCTGGATCTTAGAAG





ACTTTTATCCTTCCACCATCTCTCTCAGAGGAAT





GAGCGGGGAGGTTGGATTTACTGGTGACTGATT





TTCTTTCATGGGCCAAGGAACTGAAAGAGAATG





TGAAGCAAGGTTGTGTCTTGCGCATGGTTAAAA





ATAAAGCATTGTCCTGCTTCCTAAG






ABCF1
NM_001090.2
GCGCCAGCTTGGAGAGCCAGCCCCATCGGGGTT
33




CCCCGCCGCCGGAAGCGGAAATAGCACCGGGCG





CCGCCACAGTAGCTGTAACTGCCACCGCGATGC





CGAAGGCGCCCAAGCAGCAGCCGCCGGAGCCCG





AGTGGATCGGGGACGGAGAGAGCACGAGCCCAT





CAGACAAAGTGGTGAAGAAAGGGAAGAAGGAC





AAGAAGATCAAAAAAACGTTCTTTGAAGAGCTG





GCAGTAGAAGATAAACAGGCTGGGGAAGAAGA





GAAAGTGCTCAAGGAGAAGGAGCAGCAGCAGC





AGCAACAGCAACAGCAGCAAAAAAAAAAGCGA





GATACCCGAAAAGGCAGGCGGAAGAAGGATGT





GGATGATGATGGAGAAGAGAAAGAGCTCATGG





AGCGTCTTAAGAAGCTCTCAGTGCCAACCAGTG





ATGAGGAGGATGAAGTACCCGCCCCAAAACCCC





GCGGAGGGAAGAAAACCAAGGGTGGTAATGTTT





TTGCAGCCCTGATTCAGGATCAGAGTGAGGAAG





AGGAGGAGGAAGAAAAACATCCTCCTAAGCCTG





CCAAGCCGGAGAAGAATCGGATCAATAAGGCCG





TATCTGAGGAACAGCAGCCTGCACTCAAGGGCA





AAAAGGGAAAGGAAGAGAAGTCAAAAGGGAAG





GCTAAGCCTCAAAATAAATTCGCTGCTCTGGAC





AATGAAGAGGAGGATAAAGAAGAAGAAATTAT





AAAGGAAAAGGAGCCTCCCAAACAAGGGAAGG





AGAAGGCCAAGAAGGCAGAGCAGATGGAGTAT





GAGCGCCAAGTGGCTTCATTAAAAGCAGCCAAT





GCAGCTGAAAATGACTTCTCCGTGTCCCAGGCG





GAGATGTCCTCCCGCCAAGCCATGTTAGAAAAT





GCATCTGACATCAAGCTGGAGAAGTTCAGCATC





TCCGCTCATGGCAAGGAGCTGTTCGTCAATGCA





GACCTGTACATTGTAGCCGGCCGCCGCTACGGG





CTGGTAGGACCCAATGGCAAGGGCAAGACCACA





CTCCTCAAGCACATTGCCAACCGAGCCCTGAGC





ATCCCTCCCAACATTGATGTGTTGCTGTGTGAGC





AGGAGGTGGTAGCAGATGAGACACCAGCAGTCC





AGGCTGTTCTTCGAGCTGACACCAAGCGATTGA





AGCTGCTGGAAGAGGAGCGGCGGCTTCAGGGAC





AGCTGGAACAAGGGGATGACACAGCTGCTGAGA





GGCTAGAGAAGGTGTATGAGGAATTGCGGGCCA





CTGGGGCGGCAGCTGCAGAGGCCAAAGCACGGC





GGATCCTGGCTGGCCTGGGCTTTGACCCTGAAAT





GCAGAATCGACCCACACAGAAGTTCTCAGGGGG





CTGGCGCATGCGTGTCTCCCTGGCCAGGGCACTG





TTCATGGAGCCCACACTGCTGATGCTGGATGAG





CCCACCAACCACCTGGACCTCAACGCTGTCATCT





GGCTTAATAACTACCTCCAGGGCTGGCGGAAGA





CCTTGCTGATCGTCTCCCATGACCAGGGCTTCTT





GGATGATGTCTGCACTGATATCATCCACCTCGAT





GCCCAGCGGCTCCACTACTATAGGGGCAATTAC





ATGACCTTCAAAAAGATGTACCAGCAGAAGCAG





AAAGAACTGCTGAAACAGTATGAGAAGCAAGA





GAAAAAGCTGAAGGAGCTGAAGGCAGGCGGGA





AGTCCACCAAGCAGGCGGAAAAACAAACGAAG





GAAGCCCTGACTCGGAAGCAGCAGAAATGCCGA





CGGAAAAACCAAGATGAGGAATCCCAGGAGGC





CCCTGAGCTCCTGAAGCGCCCTAAGGAGTACAC





TGTGCGCTTCACTTTTCCAGACCCCCCACCACTC





AGCCCTCCAGTGCTGGGTCTGCATGGTGTGACAT





TCGGCTACCAGGGACAGAAACCACTCTTTAAGA





ACTTGGATTTTGGCATCGACATGGATTCAAGGAT





TTGCATTGTGGGCCCTAATGGTGTGGGGAAGAG





TACGCTACTCCTGCTGCTGACTGGCAAGCTGACA





CCGACCCATGGGGAAATGAGAAAGAACCACCGG





CTGAAAATTGGCTTCTTCAACCAGCAGTATGCAG





AGCAGCTGCGCATGGAGGAGACGCCCACTGAGT





ACCTGCAGCGGGGCTTCAACCTGCCCTACCAGG





ATGCCCGCAAGTGCCTGGGCCGCTTCGGCCTGG





AGAGTCACGCCCACACCATCCAGATCTGCAAAC





TCTCTGGTGGTCAGAAGGCGCGAGTTGTGTTTGC





TGAGCTGGCCTGTCGGGAACCTGATGTCCTCATC





TTGGACGAGCCAACCAATAACCTGGACATAGAG





TCTATTGATGCTCTAGGGGAGGCCATCAATGAAT





ACAAGGGTGCTGTGATCGTTGTCAGCCATGATG





CCCGACTCATCACAGAAACCAATTGCCAGCTGT





GGGTGGTGGAGGAGCAGAGTGTTAGCCAAATCG





ATGGTGACTTTGAAGACTACAAGCGGGAGGTGT





TGGAGGCCCTGGGTGAAGTCATGGTCAGCCGGC





CCCGAGAGTGAGCTTTCCTTCCCAGAAGTCTCCC





GAGAGACATATTTGTGTGGCCTAGAAGTCCTCTG





TGGTCTCCCCTCCTCTGAAGACTGCCTCTGGCCT





GCAGCTGACCTGGCAACCATTCAGGCACATGAA





GGTGGAGTGTGACCTTGATGTGACCGGGATCCC





ACTCTGATTGCATCCATTTCTCTGAAAGACTTGT





TTGTTCTGCTTCTCTTCATATAACTGAGCTGGCCT





TATCCTTGGCATCCCCCTAAACAAACAAGAGGT





GACCACCTTATTGTGAGGTTCCATCCAGCCAAGT





TTATGTGGCCTATTGTCTCAGGACTCTCATCACT





CAGAAGCCTGCCTCTGATTTACCCTACAGCTTCA





GGCCCAGCTGCCCCCCAGTCTTTGGGTGGTGCTG





TTCTTTTCTGGTGGATTTAATGCTGACTCACTGG





TACAAACAGCTGTTGAAGCTCAGAGCTGGAGGT





GAGCTTCTGAGGCCTTTGCCATTATCCAGCCCAA





GATTTGGTGCCTGCAGCCTCTTGTCTGGTTGAGG





ACTTGGGGCAGGAAAGGAATGCTGCTGAACTTG





AATTTCCCTTTACAAGGGGAAGAAATAAAGGAA





AGGAGTTGCTGCCGACCTGTCACTGTTTGGAGAT





TGATGGGAGTTGGAACTGTTCTCAGTCTTGATTT





GCTTTATTCAGTTTTCTAGCAGCTTTTAATAGTCC





CCTCTTCCCCACTAAATGGATCTTGTTTGCAGTC





TTGCTGACAGTGTTTGCTGTTTAAGGATCATAGG





ATTCCTTTCCCCCAACCCTTCACGCAAGGAAAAA





GCAAAGTGATTCATACCTTCTATCTTGGAAAAAA





AAAAAA






C14ORF102
NM_017970.3
CCCCTTGGCCCCGCCCCACCCTGCTTTGCCCTGC
34




CTCTCCCTGCCCCGCCGCGCCCCAGTCCCTTGAC





GACCCTCCTCTCTGGGCCCCGCCCCTCCCGCTTC





GGGGTCAAGCCCCAGAGAGCGCCGCGAAAACCA





CATTTCCCAGAGTGCACCGCGACGGCAGGGGTC





CTCAGACCGGCGCTCGCTCGCCGGCGCCATCCCT





ATAGAGAAGAACGGAGGTACGGCCTGTGGTCAT





GGCGCTGTTCCCAGCCTTTGCGGGGCTTAGTGAG





GCTCCCGATGGCGGGAGCTCCAGGAAAGAGTTA





GACTGGCTGAGCAACCCAAGCTTTTGTGTTGGAT





CCATAACGTCCCTGAGCCAACAAACTGAAGCAG





CTCCAGCCCATGTTTCTGAAGGGTTACCGCTGAC





AAGGAGTCATCTGAAATCAGAGTCTTCAGATGA





AAGTGACACTAACAAAAAGCTCAAACAAACAAG





TAGAAAAAAGAAGAAAGAGAAAAAGAAAAAAA





GGAAGCATCAGCATCATAAGAAAACAAAGAGG





AAGCATGGGCCGTCGAGTAGCAGCAGGTCTGAG





ACAGACACCGATTCTGAAAAGGACAAACCTTCC





AGAGGCGTTGGAGGCAGTAAAAAGGAATCTGAG





GAACCGAATCAAGGAAATAATGCTGCAGCTGAT





ACTGGACATCGCTTTGTTTGGCTTGAGGACATTC





AGGCTGTGACGGGAGAAACCTTCAGAACAGATA





AGAAACCAGATCCTGCGAACTGGGAGTACAAGT





CTCTCTACCGAGGGGATATAGCAAGATACAAGA





GGAAAGGAGACTCCTGCCTTGGCATTAACCCTA





AGAAGCAGTGCATATCTTGGGAAGGGACTTCCA





CAGAGAAGAAGCATTCACGCAAGCAGGTTGAAC





GCTATTTTACTAAGAAGAGTGTGGGATTAATGA





ACATCGATGGAGTTGCCATTAGCAGTAAAACTG





AACCTCCCTCATCTGAGCCCATCTCCTTTATACC





AGTGAAGGACTTGGAAGATGCGGCTCCTGTTAC





AACCTGGTTGAATCCTCTGGGGATTTATGATCAG





TCAACCACACATTGGCTACAAGGACAGGGTCCT





CCAGAGCAGGAATCAAAGCAGCCAGACGCACA





GCCAGACAGCGAGAGTGCGGCTCTCAAGGCCAA





GGTGGAGGAGTTTAACAGGAGGGTGCGGGAGA





ATCCTCGGGATACGCAGCTGTGGATGGCATTTGT





TGCTTTTCAGGACGAGGTCATGAAAAGTCCTGG





CCTGTATGCCATCGAGGAAGGAGAGCAGGAAAA





GCGAAAGAGGTCCCTGAAGCTCATTCTGGAGAA





GAAGCTGGCCATTCTGGAGCGGGCCATTGAGAG





CAACCAGAGCAGTGTGGATCTGAAACTGGCCAA





GCTGAAGCTCTGCACAGAGTTCTGGGAGCCCTC





CACTCTGGTCAAAGAGTGGCAGAAACTGATATT





TTTGCATCCCAATAATACAGCCCTTTGGCAGAAA





TACCTTTTATTTTGCCAGAGCCAGTTTAGTACCT





TTTCGATATCAAAAATTCACAGTCTTTATGGAAA





ATGCTTGAGCACTTTGTCTGCTGTTAAGGACGGC





AGCATCTTATCTCACCCTGCGTTGCCTGGCACGG





AAGAGGCCATGTTTGCACTCTTTCTTCAGCAGTG





CCACTTTCTGCGGCAGGCTGGCCACTCTGAGAA





GGCCATCTCATTGTTCCAGGCCATGGTGGACTTC





ACCTTCTTCAAACCCGACAGCGTGAAAGATCTG





CCTACCAAAGGACAGGTGGAATTCTTTGAACCC





TTTTGGGACAGTGGAGAGCCCCGGGCTGGGGAG





AAGGGAGCCCGAGGCTGGAAGGCGTGGATGCAC





CAGCAGGAACGAGGTGGCTGGGTGGTCATCAAC





CCAGATGAGGATGACGATGAACCAGAAGAGGAT





GACCAGGAAATAAAAGATAAGACTCTGCCCAGG





TGGCAGATCTGGCTTGCTGCTGAGCGTTCCCGTG





ACCAGAGGCACTGGCGGCCCTGGCGCCCTGATA





AGACCAAGAAGCAAACCGAGGAAGACTGTGAG





GATCCCGAGAGACAGGTGTTGTTTGATGATATTG





GGCAATCTTTGATCAGACTTTCCAGCCATGATCT





TCAGTTCCAGCTGGTGGAGGCCTTCCTGCAGTTC





TTGGGTGTGCCTTCTGGCTTTACTCCTCCAGCCT





CCTGTCTTTATCTGGCCATGGATGAGAACAGCAT





CTTTGATAATGGACTTTATGATGAAAAGCCCTTG





ACTTTTTTCAACCCTTTGTTTTCTGGGGCTAGCTG





TGTTGGCCGCATGGATAGGTTGGGCTATCCTCGC





TGGACCAGGGGTCAGAACCGAGAGGGCGAGGA





GTTCATCCGCAATGTCTTCCACCTTGTCATGCCT





TTATTTTCAGGCAAAGAGAAGTCCCAGCTCTGCT





TCTCCTGGTTACAGTATGAGATTGCAAAGGTCAT





TTGGTGCCTGCACACTAAAAACAAGAAGAGATT





AAAGTCTCAAGGGAAGAACTGCAAAAAACTAGC





CAAGAATCTCCTTAAGGAGCCAGAAAACTGCAA





CAACTTTTGCCTGTGGAAGCAGTATGCACATCTG





GAGTGGTTGCTTGGCAACACGGAGGATGCCAGA





AAAGTTTTTGACACAGCACTTGGCATGGCAGGA





AGCAGAGAACTGAAAGACTCTGACCTCTGTGAG





CTCAGTCTGCTCTATGCTGAGCTGGAGGTGGAGC





TGTCGCCAGAAGTGAGAAGGGCTGCCACAGCTC





GAGCTGTTCACATATTAACCAAGCTGACTGAGA





GCAGCCCCTATGGGCCCTACACTGGACAGGTGT





TGGCTGTTCACATTTTGAAAGCGCGAAAGGCTTA





TGAGCACGCACTGCAGGACTGTTTGGGTGACAG





CTGTGTCTCCAATCCAGCTCCCACCGATTCCTGT





AGCCGCCTAATTAGCCTGGCTAAATGCTTCATGC





TCTTCCAGTATTTGACCATAGGGATTGATGCTGC





TGTGCAGATATACGAACAGGTGTTTGCAAAACT





GAACAGTTCTGTTTTCCCAGAAGGCTCTGGCGAG





GGGGACAGTGCCAGCTCCCAGAGTTGGACCAGT





GTTCTCGAAGCCATCACACTGATGCACACGAGC





CTGCTGAGATTCCACATGAAAGTGAGTGTTTACC





CGCTGGCCCCTCTGCGAGAGGCACTCTCACAGG





CTTTAAAGTTGTATCCAGGCAACCAGGTTCTTTG





GAGGTCCTATGTACAGATTCAGAATAAGTCCCA





CAGTGCCAGCAAAACCAGGAGATTTTTTGACAC





AATCACCAGGTCTGCCAAACCCTTGGAGCCTTG





GTTGTTTGCAATTGAAGCTGAGAAACTGAGGAA





GAGACTGGTGGAAACTGTCCAGAGGTTAGACGG





TAGAGAGATCCACGCCACAATTCCTGAGACCGG





CTTAATGCATCGGATCCAAGCCCTGTTTGAAAAT





GCCATGCGCAGCGACAGTGGCAGCCAGTGCCCC





TTGCTGTGGAGGATGTATTTGAACTTTCTGGTTT





CCTTAGGAAATAAAGAAAGAAGCAAAGGTGTAT





TCTACAAAGCACTTCAGAATTGCCCTTGGGCAA





AGGTGTTGTACCTGGACGCCGTGGAGTATTTCCC





CGATGAGATGCAGGAGATCCTGGACCTGATGAC





TGAGAAGGAGCTCCGGGTGCGCCTGCCGCTGGA





GGAGCTGGAGCTGCTGCTGGAGGATTAGAGAGC





AGCGGGAAAACGGGCTGTGCCTGCGAGGCCAAG





TTGCCCACCCTGCGGAGCTAGGAGGCGCGAGCA





GAGAACGTGTGTGTTAGGAGAACTCGGCTTTTG





AAATGTTCTTTCTCGATAGTAATAATGTGGGCTG





CCAGCCTCTCACATCTTGCACACTTTTTGGGTGT





GTAAATGACACAAAAGTTATTTACATATTATATA





TGTGAATATGTGTATATATGTACATAGCCAGAG





AGTCATGCCACGTGGTCATTAAACCGATGATGA





TTGAGGCGTGAAAAAAAAAAAAAAAA






G6PD
NM_000402.2
AGGGACAGCCCAGAGGAGGCGTGGCCACGCTGC
35




CGGCGGAAGTGGAGCCCTCCGCGAGCGCGCGAG





GCCGCCGGGGCAGGCGGGGAAACCGGACAGTA





GGGGCGGGGCCGGGCCGGCGATGGGGATGCGG





GAGCACTACGCGGAGCTGCACCCGTGCCCGCCG





GAATTGGGGATGCAGAGCAGCGGCAGCGGGTAT





GGCAGGCAGCCGGCGGGCCGGCCTCCAGCGCAG





GTGCCCGAGAGGCAGGGGCTGGCCTGGGATGCG





CGCGCACCTGCCCTCGCCCCGCCCCGCCCGCACG





AGGGGTGGTGGCCGAGGCCCCGCCCCGCACGCC





TCGCCTGAGGCGGGTCCGCTCAGCCCAGGCGCC





CGCCCCCGCCCCCGCCGATTAAATGGGCCGGCG





GGGCTCAGCCCCCGGAAACGGTCGTAACTTCGG





GGCTGCGAGCGCGGAGGGCGACGACGACGAAG





CGCAGACAGCGTCATGGCAGAGCAGGTGGCCCT





GAGCCGGACCCAGGTGTGCGGGATCCTGCGGGA





AGAGCTTTTCCAGGGCGATGCCTTCCATCAGTCG





GATACACACATATTCATCATCATGGGTGCATCGG





GTGACCTGGCCAAGAAGAAGATCTACCCCACCA





TCTGGTGGCTGTTCCGGGATGGCCTTCTGCCCGA





AAACACCTTCATCGTGGGCTATGCCCGTTCCCGC





CTCACAGTGGCTGACATCCGCAAACAGAGTGAG





CCCTTCTTCAAGGCCACCCCAGAGGAGAAGCTC





AAGCTGGAGGACTTCTTTGCCCGCAACTCCTATG





TGGCTGGCCAGTACGATGATGCAGCCTCCTACC





AGCGCCTCAACAGCCACATGGATGCCCTCCACC





TGGGGTCACAGGCCAACCGCCTCTTCTACCTGGC





CTTGCCCCCGACCGTCTACGAGGCCGTCACCAA





GAACATTCACGAGTCCTGCATGAGCCAGATAGG





CTGGAACCGCATCATCGTGGAGAAGCCCTTCGG





GAGGGACCTGCAGAGCTCTGACCGGCTGTCCAA





CCACATCTCCTCCCTGTTCCGTGAGGACCAGATC





TACCGCATCGACCACTACCTGGGCAAGGAGATG





GTGCAGAACCTCATGGTGCTGAGATTTGCCAAC





AGGATCTTCGGCCCCATCTGGAACCGGGACAAC





ATCGCCTGCGTTATCCTCACCTTCAAGGAGCCCT





TTGGCACTGAGGGTCGCGGGGGCTATTTCGATG





AATTTGGGATCATCCGGGACGTGATGCAGAACC





ACCTACTGCAGATGCTGTGTCTGGTGGCCATGGA





GAAGCCCGCCTCCACCAACTCAGATGACGTCCG





TGATGAGAAGGTCAAGGTGTTGAAATGCATCTC





AGAGGTGCAGGCCAACAATGTGGTCCTGGGCCA





GTACGTGGGGAACCCCGATGGAGAGGGCGAGGC





CACCAAAGGGTACCTGGACGACCCCACGGTGCC





CCGCGGGTCCACCACCGCCACTTTTGCAGCCGTC





GTCCTCTATGTGGAGAATGAGAGGTGGGATGGG





GTGCCCTTCATCCTGCGCTGCGGCAAGGCCCTGA





ACGAGCGCAAGGCCGAGGTGAGGCTGCAGTTCC





ATGATGTGGCCGGCGACATCTTCCACCAGCAGT





GCAAGCGCAACGAGCTGGTGATCCGCGTGCAGC





CCAACGAGGCCGTGTACACCAAGATGATGACCA





AGAAGCCGGGCATGTTCTTCAACCCCGAGGAGT





CGGAGCTGGACCTGACCTACGGCAACAGATACA





AGAACGTGAAGCTCCCTGACGCCTACGAGCGCC





TCATCCTGGACGTCTTCTGCGGGAGCCAGATGCA





CTTCGTGCGCAGCGACGAGCTCCGTGAGGCCTG





GCGTATTTTCACCCCACTGCTGCACCAGATTGAG





CTGGAGAAGCCCAAGCCCATCCCCTATATTTATG





GCAGCCGAGGCCCCACGGAGGCAGACGAGCTGA





TGAAGAGAGTGGGTTTCCAGTATGAGGGCACCT





ACAAGTGGGTGAACCCCCACAAGCTCTGAGCCC





TGGGCACCCACCTCCACCCCCGCCACGGCCACC





CTCCTTCCCGCCGCCCGACCCCGAGTCGGGAGG





ACTCCGGGACCATTGACCTCAGCTGCACATTCCT





GGCCCCGGGCTCTGGCCACCCTGGCCCGCCCCTC





GCTGCTGCTACTACCCGAGCCCAGCTACATTCCT





CAGCTGCCAAGCACTCGAGACCATCCTGGCCCC





TCCAGACCCTGCCTGAGCCCAGGAGCTGAGTCA





CCTCCTCCACTCACTCCAGCCCAACAGAAGGAA





GGAGGAGGGCGCCCATTCGTCTGTCCCAGAGCT





TATTGGCCACTGGGTCTCACTCCTGAGTGGGGCC





AGGGTGGGAGGGAGGGACAAGGGGGAGGAAAG





GGGCGAGCACCCACGTGAGAGAATCTGCCTGTG





GCCTTGCCCGCCAGCCTCAGTGCCACTTGACATT





CCTTGTCACCAGCAACATCTCGAGCCCCCTGGAT





GTCCCCTGTCCCACCAACTCTGCACTCCATGGCC





ACCCCGTGCCACCCGTAGGCAGCCTCTCTGCTAT





AAGAAAAGCAGACGCAGCAGCTGGGACCCCTCC





CAACCTCAATGCCCTGCCATTAAATCCGCAAAC





AGCCAAAAAAAAAAAAAAAAAAAA






OAZ1
NM_004152.2
TTTTGCGAACGGCGAGCAGCGGCGGCGGCGCGG
36




AGAGACGCAGCGGAGGTTTTCCTGGTTTCGGAC





CCCAGCGGCCGGATGGTGAAATCCTCCCTGCAG





CGGATCCTCAATAGCCACTGCTTCGCCAGAGAG





AAGGAAGGGGATAAACCCAGCGCCACCATCCAC





GCCAGCCGCACCATGCCGCTCCTAAGCCTGCAC





AGCCGCGGCGGCAGCAGCAGTGAGAGTTCCAGG





GTCTCCCTCCACTGCTGTAGTAACCCGGGTCCGG





GGCCTCGGTGGTGCTCCTGATGCCCCTCACCCAC





CCCTGAAGATCCCAGGTGGGCGAGGGAATAGTC





AGAGGGATCACAATCTTTCAGCTAACTTATTCTA





CTCCGATGATCGGCTGAATGTAACAGAGGAACT





AACGTCCAACGACAAGACGAGGATTCTCAACGT





CCAGTCCAGGCTCACAGACGCCAAACGCATTAA





CTGGCGAACAGTGCTGAGTGGCGGCAGCCTCTA





CATCGAGATCCCGGGCGGCGCGCTGCCCGAGGG





GAGCAAGGACAGCTTTGCAGTTCTCCTGGAGTTC





GCTGAGGAGCAGCTGCGAGCCGACCATGTCTTC





ATTTGCTTCCACAAGAACCGCGAGGACAGAGCC





GCCTTGCTCCGAACCTTCAGCTTTTTGGGCTTTG





AGATTGTGAGACCGGGGCATCCCCTTGTCCCCA





AGAGACCCGACGCTTGCTTCATGGCCTACACGTT





CGAGAGAGAGTCTTCGGGAGAGGAGGAGGAGT





AGGGCCGCCTCGGGGCTGGGCATCCGGCCCCTG





GGGCCACCCCTTGTCAGCCGGGTGGGTAGGAAC





CGTAGACTCGCTCATCTCGCCTGGGTTTGTCCGC





ATGTTGTAATCGTGCAAATAAACGCTCACTCCGA





ATTAGCGGTGTATTTCTTGAAGTTTAATATTGTG





TTTGTGATACTGAAGTATTTGCTTTAATTCTAAA





TAAAAATTTATATTTTACTTTTTTATTGCTGGTTT





AAGATGATTCAGATTATCCTTGTACTTTGAGGAG





AAGTTTCTTATTTGGAGTCTTTTGGAAACAGTCT





TAGTCTTTTAACTTGGAAAGATGAGGTATTAATC





CCCTCCATTGCTCTCCAAAAGCCAATAAAGTGAT





TACACCCGA






POLR2A
NM_000937.2
GAGAGCGCGGCCGGGACGGTTGGAGAAGAAGG
37




CGGCTCCCCGGAAGGGGGAGAGACAAACTGCCG





TAACCTCTGCCGTTCAGGAACCCGGTTACTTATT





TATTCGTTACCCTTTTTCTTCTTCCTCCCCCAAAA





ACCTTTTCCTTTTCCCTTCTTTTTTTTTCCTTTTTG





GGAGCTGAAAAATTTCCGGTAAGGGAAAGAAGG





GCTCCTTTCGCTCCTTATTTCGCCGCCTCCTTCCC





TCCGCCACCTTCCCCTCCTCCGGCTTTTTCCTCCC





AACTCGGGGAGGTCCTTCCCGGTGGCCGCCCTG





ACGAGGTCTGAGCACCTAGGCGGAGGCGGCGCA





GGCTTTTTGTAGTGAGGTTTGCGCCTGCGCAGGC





GCCTGCCTCCGCCATGCACGGGGGTGGCCCCCC





CTCGGGGGACAGCGCATGCCCGCTGCGCACCAT





CAAGAGAGTCCAGTTCGGAGTCCTGAGTCCGGA





TGAACTGAAGCGAATGTCTGTGACGGAGGGTGG





CATCAAATACCCAGAGACGACTGAGGGAGGCCG





CCCCAAGCTTGGGGGGCTGATGGACCCGAGGCA





GGGGGTGATTGAGCGGACTGGCCGCTGCCAAAC





ATGTGCAGGAAACATGACAGAGTGTCCTGGCCA





CTTTGGCCACATTGAACTGGCCAAGCCTGTGTTT





CACGTGGGCTTCCTGGTGAAGACAATGAAAGTT





TTGCGCTGTGTCTGCTTCTTCTGCTCCAAACTGCT





TGTGGACTCTAACAACCCAAAGATCAAGGATAT





CCTGGCTAAGTCCAAGGGACAGCCCAAGAAGCG





GCTCACACATGTCTACGACCTTTGCAAGGGCAA





AAACATATGCGAGGGTGGGGAGGAGATGGACA





ACAAGTTCGGTGTGGAACAACCTGAGGGTGACG





AGGATCTGACCAAAGAAAAGGGCCATGGTGGCT





GTGGGCGGTACCAGCCCAGGATCCGGCGTTCTG





GCCTAGAGCTGTATGCGGAATGGAAGCACGTTA





ATGAGGACTCTCAGGAGAAGAAGATCCTGCTGA





GTCCAGAGCGAGTGCATGAGATCTTCAAACGCA





TCTCAGATGAGGAGTGTTTTGTGCTGGGCATGGA





GCCCCGCTATGCACGGCCAGAGTGGATGATTGT





CACAGTGCTGCCTGTGCCCCCGCTCTCCGTGCGG





CCTGCTGTTGTGATGCAGGGCTCTGCCCGTAACC





AGGATGACCTGACTCACAAACTGGCTGACATCG





TGAAGATCAACAATCAGCTGCGGCGCAATGAGC





AGAACGGCGCAGCGGCCCATGTCATTGCAGAGG





ATGTGAAGCTCCTCCAGTTCCATGTGGCCACCAT





GGTGGACAATGAGCTGCCTGGCTTGCCCCGTGC





CATGCAGAAGTCTGGGCGTCCCCTCAAGTCCCTG





AAGCAGCGGTTGAAGGGCAAGGAAGGCCGGGT





GCGAGGGAACCTGATGGGCAAAAGAGTGGACTT





CTCGGCCCGTACTGTCATCACCCCCGACCCCAAC





CTCTCCATTGACCAGGTTGGCGTGCCCCGCTCCA





TTGCTGCCAACATGACCTTTGCGGAGATTGTCAC





CCCCTTCAACATTGACAGACTTCAAGAACTAGTG





CGCAGGGGGAACAGTCAGTACCCAGGCGCCAAG





TACATCATCCGAGACAATGGTGATCGCATTGACT





TGCGTTTCCACCCCAAGCCCAGTGACCTTCACCT





GCAGACCGGCTATAAGGTGGAACGGCACATGTG





TGATGGGGACATTGTTATCTTCAACCGGCAGCCA





ACTCTGCACAAAATGTCCATGATGGGGCATCGG





GTCCGCATTCTCCCATGGTCTACCTTTCGCTTGA





ATCTTAGCGTGACAACTCCGTACAATGCAGACTT





TGACGGGGATGAGATGAACTTGCACCTGCCACA





GTCTCTGGAGACGCGAGCAGAGATCCAGGAGCT





GGCCATGGTTCCTCGCATGATTGTCACCCCCCAG





AGCAATCGGCCTGTCATGGGTATTGTGCAGGAC





ACACTCACAGCAGTGCGCAAATTCACCAAGAGA





GACGTCTTCCTGGAGCGGGGTGAAGTGATGAAC





CTCCTGATGTTCCTGTCGACGTGGGATGGGAAG





GTCCCACAGCCGGCCATCCTAAAGCCCCGGCCC





CTGTGGACAGGCAAGCAAATCTTCTCCCTCATCA





TACCTGGTCACATCAATTGTATCCGTACCCACAG





CACCCATCCCGATGATGAAGACAGTGGCCCTTA





CAAGCACATCTCTCCTGGGGACACCAAGGTGGT





GGTGGAGAATGGGGAGCTGATCATGGGCATCCT





GTGTAAGAAGTCTCTGGGCACGTCAGCTGGCTC





CCTGGTCCACATCTCCTACCTAGAGATGGGTCAT





GACATCACTCGCCTCTTCTACTCCAACATTCAGA





CTGTCATTAACAACTGGCTCCTCATCGAGGGTCA





TACTATTGGCATTGGGGACTCCATTGCTGATTCT





AAGACTTACCAGGACATTCAGAACACTATTAAG





AAGGCCAAGCAGGACGTAATAGAGGTCATCGAG





AAGGCACACAACAATGAGCTGGAGCCCACCCCA





GGGAACACTCTGCGGCAGACGTTTGAGAATCAG





GTGAACCGCATTCTTAACGATGCCCGAGACAAG





ACTGGCTCCTCTGCTCAGAAATCCCTGTCTGAAT





ACAACAACTTCAAGTCTATGGTCGTGTCCGGAG





CTAAAGGTTCCAAGATTAACATCTCCCAGGTCAT





TGCTGTCGTTGGACAGCAGAACGTCGAGGGCAA





GCGGATTCCATTTGGCTTCAAGCACCGGACTCTG





CCTCACTTCATCAAGGATGACTACGGGCCTGAG





AGCCGTGGCTTTGTGGAGAACTCCTACCTAGCCG





GCCTCACACCCACTGAGTTCTTTTTCCACGCCAT





GGGGGGTCGTGAGGGGCTCATTGACACGGCTGT





CAAGACTGCTGAGACTGGATACATCCAGCGGCG





GCTGATCAAGTCCATGGAGTCAGTGATGGTGAA





GTACGACGCGACTGTGCGGAACTCCATCAACCA





GGTGGTGCAGCTGCGCTACGGCGAAGACGGCCT





GGCAGGCGAGAGCGTTGAGTTCCAGAACCTGGC





TACGCTTAAGCCTTCCAACAAGGCTTTTGAGAAG





AAGTTCCGCTTTGATTATACCAATGAGAGGGCCC





TGCGGCGCACTCTGCAGGAGGACCTGGTGAAGG





ACGTGCTGAGCAACGCACACATCCAGAACGAGT





TGGAGCGGGAATTTGAGCGGATGCGGGAGGATC





GGGAGGTGCTCAGGGTCATCTTCCCAACTGGAG





ACAGCAAGGTCGTCCTCCCCTGTAACCTGCTGCG





GATGATCTGGAATGCTCAGAAAATCTTCCACATC





AACCCACGCCTTCCCTCCGACCTGCACCCCATCA





AAGTGGTGGAGGGAGTCAAGGAATTGAGCAAG





AAGCTGGTGATTGTGAATGGGGATGACCCACTA





AGTCGACAGGCCCAGGAAAATGCCACGCTGCTC





TTCAACATCCACCTGCGGTCCACGTTGTGTTCCC





GCCGCATGGCAGAGGAGTTTCGGCTCAGTGGGG





AGGCCTTCGACTGGCTGCTTGGGGAGATTGAGT





CCAAGTTCAACCAAGCCATTGCGCATCCCGGGG





AAATGGTGGGGGCTCTGGCTGCGCAGTCCCTTG





GAGAACCTGCCACCCAGATGACCTTGAATACCT





TCCACTATGCTGGTGTGTCTGCCAAGAATGTGAC





GCTGGGTGTGCCCCGACTTAAGGAGCTCATCAA





CATTTCCAAGAAGCCAAAGACTCCTTCGCTTACT





GTCTTCCTGTTGGGCCAGTCCGCTCGAGATGCTG





AGAGAGCCAAGGATATTCTGTGCCGTCTGGAGC





ATACAACGTTGAGGAAGGTGACTGCCAACACAG





CCATCTACTATGACCCCAACCCCCAGAGCACGG





TGGTGGCAGAGGATCAGGAATGGGTGAATGTCT





ACTATGAAATGCCTGACTTTGATGTGGCCCGAAT





CTCCCCCTGGCTGTTGCGGGTGGAGCTGGATCGG





AAGCACATGACTGACCGGAAGCTCACCATGGAG





CAGATTGCTGAAAAGATCAATGCTGGTTTTGGTG





ACGACTTGAACTGCATCTTTAATGATGACAATGC





AGAGAAGCTGGTGCTCCGTATTCGCATCATGAA





CAGCGATGAGAACAAGATGCAAGAGGAGGAAG





AGGTGGTGGACAAGATGGATGATGATGTCTTCC





TGCGCTGCATCGAGTCCAACATGCTGACAGATA





TGACCCTGCAGGGCATCGAGCAGATCAGCAAGG





TGTACATGCACTTGCCACAGACAGACAACAAGA





AGAAGATCATCATCACGGAGGATGGGGAATTCA





AGGCCCTGCAGGAGTGGATCCTGGAGACGGACG





GCGTGAGCTTGATGCGGGTGCTGAGTGAGAAGG





ACGTGGACCCCGTACGCACCACGTCCAATGACA





TTGTGGAGATCTTCACGGTGCTGGGCATTGAAGC





CGTGCGGAAGGCCCTGGAGCGGGAGCTGTACCA





CGTCATCTCCTTTGATGGCTCCTATGTCAATTAC





CGACACTTGGCTCTCTTGTGTGATACCATGACCT





GTCGTGGCCACTTGATGGCCATCACCCGACACG





GAGTCAACCGCCAGGACACAGGACCACTCATGA





AGTGTTCCTTTGAGGAAACGGTGGACGTGCTTAT





GGAAGCAGCCGCACACGGTGAGAGTGACCCCAT





GAAGGGGGTCTCTGAGAATATCATGCTGGGCCA





GCTGGCTCCGGCCGGCACTGGCTGCTTTGACCTC





CTGCTTGATGCAGAGAAGTGCAAGTATGGCATG





GAGATCCCCACCAATATCCCCGGCCTGGGGGCT





GCTGGACCCACCGGCATGTTCTTTGGTTCAGCAC





CCAGTCCCATGGGTGGAATCTCTCCTGCCATGAC





ACCTTGGAACCAGGGTGCAACCCCTGCCTATGG





CGCCTGGTCCCCCAGTGTTGGGAGTGGAATGAC





CCCAGGGGCAGCCGGCTTCTCTCCCAGTGCTGCG





TCAGATGCCAGCGGCTTCAGCCCAGGTTACTCCC





CTGCCTGGTCTCCCACACCGGGCTCCCCGGGGTC





CCCAGGTCCCTCAAGCCCCTACATCCCTTCACCA





GGTGGTGCCATGTCTCCCAGCTACTCGCCAACGT





CACCTGCCTACGAGCCCCGCTCTCCTGGGGGCTA





CACACCCCAGAGTCCCTCTTATTCCCCCACTTCA





CCCTCCTACTCCCCTACCTCTCCATCCTATTCTCC





AACCAGTCCCAACTATAGTCCCACATCACCCAG





CTATTCGCCAACGTCACCCAGCTACTCACCGACC





TCTCCCAGCTACTCACCCACCTCTCCCAGCTACT





CGCCCACCTCTCCCAGCTATTCGCCCACCTCTCC





CAGCTACTCACCCACTTCCCCTAGCTATTCGCCC





ACTTCCCCTAGCTACTCGCCAACGTCTCCCAGCT





ACTCGCCGACATCTCCCAGCTACTCGCCAACTTC





ACCCAGCTATTCTCCCACTTCTCCCAGCTACTCA





CCTACCTCTCCAAGCTATTCACCCACCTCCCCCA





GCTACTCACCCACTTCCCCAAGTTACTCACCCAC





CAGCCCGAACTATTCTCCAACCAGTCCCAATTAC





ACCCCAACATCACCCAGCTACAGCCCGACATCA





CCCAGCTATTCCCCTACTAGTCCCAACTACACAC





CTACCAGCCCTAACTACAGCCCAACCTCTCCAAG





CTACTCTCCAACATCACCCAGCTATTCCCCGACC





TCACCAAGTTACTCCCCTTCCAGCCCACGATACA





CACCACAGTCTCCAACCTATACCCCAAGCTCACC





CAGCTACAGCCCCAGTTCGCCCAGCTACAGCCC





AACCTCACCCAAGTACACCCCAACCAGTCCTTCT





TATAGTCCCAGCTCCCCAGAGTATACCCCAACCT





CTCCCAAGTACTCACCTACCAGTCCCAAATATTC





ACCCACCTCTCCCAAGTACTCGCCTACCAGTCCC





ACCTATTCACCCACCACCCCAAAATACTCCCCAA





CATCTCCTACTTATTCCCCAACCTCTCCAGTCTA





CACCCCAACCTCTCCCAAGTACTCACCTACTAGC





CCCACTTACTCGCCCACTTCCCCCAAGTACTCGC





CCACCAGCCCCACCTACTCGCCCACCTCCCCCAA





AGGCTCAACCTACTCTCCCACTTCCCCTGGTTAC





TCGCCCACCAGCCCCACCTACAGTCTCACAAGCC





CGGCTATCAGCCCGGATGACAGTGACGAGGAGA





ACTGAGGGCACGTGGGGTGCGGCAGCGGGCTAG





GGCCCAGGGCAGCTTGCCCGTGCTGCCGTGCAG





TTCTTGCCTCCCTCACGGGGCGTCACCCCCAGCC





CAGCTCCGTTGTACATAAATACCTTGTGACAGAG





CTCCCGGTGAACTTCTGGATCCCGTTTCTGATGC





AGATTCTTGTCTTGTTCTCCACTTGTGCTGTTAGA





ACTCACTGGCCCAGTGGTGTTCTACCTCCTACCC





CACCCACCCCCTGCCTGTCCCCAAATTGAAGATC





CTTCCTTGCCTGTGGCTTGATGCGGGGGGGGTAA





AGGGTATTTTAACTTAGGGGTAGTTCCTGCTGTG





AGTGGTTACAGCTGATCCTCGGGAAGAACAAAG





CTAAAGCTGCCTTTTGTCTGTTATTTTATTTTTTT





GAAGTTTAAATAAAGTTTACTAATTTTGACC






SDHA
NM_004168.1
GACTGCGCGGCGGCAACAGCAGACATGTCGGGG
38




GTCCGGGGCCTGTCGCGGCTGCTGAGCGCTCGG





CGCCTGGCGCTGGCCAAGGCGTGGCCAACAGTG





TTGCAAACAGGAACCCGAGGTTTTCACTTCACTG





TTGATGGGAACAAGAGGGCATCTGCTAAAGTTT





CAGATTCCATTTCTGCTCAGTATCCAGTAGTGGA





TCATGAATTTGATGCAGTGGTGGTAGGCGCTGG





AGGGGCAGGCTTGCGAGCTGCATTTGGCCTTTCT





GAGGCAGGGTTTAATACAGCATGTGTTACCAAG





CTGTTTCCTACCAGGTCACACACTGTTGCAGCGC





AGGGAGGAATCAATGCTGCTCTGGGGAACATGG





AGGAGGACAACTGGAGGTGGCATTICTACGACA





CCGTGAAGGGCTCCGACTGGCTGGGGGACCAGG





ATGCCATCCACTACATGACGGAGCAGGCCCCCG





CCGCCGTGGTCGAGCTAGAAAATTATGGCATGC





CGTTTAGCAGAACTGAAGATGGGAAGATTTATC





AGCGTGCATTTGGTGGACAGAGCCTCAAGTTTG





GAAAGGGCGGGCAGGCCCATCGGTGCTGCTGTG





TGGCTGATCGGACTGGCCACTCGCTATTGCACAC





CTTATATGGACGGTCTCTGCGATATGATACCAGC





TATTTTGTGGAGTATTTTGCCTTGGATCTCCTGAT





GGAGAACGGGGAGTGCCGTGGTGTCATCGCACT





GTGCATAGAGGACGGGTCCATCCATCGCATAAG





AGCAAAGAACACTGTTGTTGCCACAGGAGGCTA





CGGGCGCACCTACTTCAGCTGCACGTCTGCCCAC





ACCAGCACTGGCGACGGCACGGCCATGATCACC





AGGGCAGGCCTTCCTTGCCAGGACCTAGAGTTT





GTTCAGTTCCACCCCACAGGCATATATGGTGCTG





GTTGTCTCATTACGGAAGGATGTCGTGGAGAGG





GAGGCATTCTCATTAACAGTCAAGGCGAAAGGT





TTATGGAGCGATACGCCCCTGTCGCGAAGGACC





TGGCGTCTAGAGATGTGGTGTCTCGGTCGATGAC





TCTGGAGATCCGAGAAGGAAGAGGCTGTGGCCC





TGAGAAAGATCACGTCTACCTGCAGCTGCACCA





CCTACCTCCAGAGCAGCTGGCCACGCGCCTGCCT





GGCATTTCAGAGACAGCCATGATCTTCGCTGGC





GTGGACGTCACGAAGGAGCCGATCCCTGTCCTC





CCCACCGTGCATTATAACATGGGCGGCATTCCCA





CCAACTACAAGGGGCAGGTCCTGAGGCACGTGA





ATGGCCAGGATCAGATTGTGCCCGGCCTGTACG





CCTGTGGGGAGGCCGCCTGTGCCTCGGTACATG





GTGCCAACCGCCTCGGGGCAAACTCGCTCTTGG





ACCTGGTTGTCTTTGGTCGGGCATGTGCCCTGAG





CATCGAAGAGTCATGCAGGCCTGGAGATAAAGT





CCCTCCAATTAAACCAAACGCTGGGGAAGAATC





TGTCATGAATCTTGACAAATTGAGATTTGCTGAT





GGAAGCATAAGAACATCGGAACTGCGACTCAGC





ATGCAGAAGTCAATGCAAAATCATGCTGCCGTG





TTCCGTGTGGGAAGCGTGTTGCAAGAAGGTTGT





GGGAAAATCAGCAAGCTCTATGGAGACCTAAAG





CACCTGAAGACGTTCGACCGGGGAATGGTCTGG





AACACAGACCTGGTGGAGACCCTGGAGCTGCAG





AACCTGATGCTGTGTGCGCTGCAGACCATCTACG





GAGCAGAGGCGCGGAAGGAGTCACGGGGCGCG





CATGCCAGGGAAGACTACAAGGTGCGGATTGAT





GAGTACGATTACTCCAAGCCCATCCAGGGGCAA





CAGAAGAAGCCCTTTGAGGAGCACTGGAGGAAG





CACACCCTGTCCTTTGTGGACGTTGGCACTGGGA





AGGTCACTCTGGAATATAGACCCGTAATCGACA





AAACTTTGAACGAGGCTGACTGTGCCACCATCC





CGCCAGCCATTCGCTCCTACTGATGAGACAAGA





TGTGGTGATGACAGAATCAGCTTTTGTAATTATG





TATAATAGCTCATGCATGTGTCCATGTCATAACT





GTCTTCATACGCTTCTGCACTCTGGGGAAGAAGG





AGTACATTGAAGGGAGATTGGCACCTAGTGGCT





GGGAGCTTGCCAGGAACCCAGTGGCCAGGGAGC





GTGGCACTTACCTTTGTCCCTTGCTTCATTCTTGT





GAGATGATAAAACTGGGCACAGCTCTTAAATAA





AATATAAATGAG






STK11IP
NM_052902.2
GATAGGCGCCGGGCAGCTGAGCTGGTAGGAGGA
39




CCAGACGGGGATGTTCGGCTCCGCCCCCCAGCG





TCCCGTGGCCATGACGACCGCTCAGAGGGACTC





CCTGTTGTGGAAGCTCGCGGGGTTGCTGCGGGA





GTCCGGGGATGTGGTCCTGTCTGGCTGTAGCACC





CTGAGCCTGCTGACTCCCACACTGCAACAGCTG





AACCACGTATTTGAGCTGCACCTGGGGCCATGG





GGCCCTGGCCAGACAGGCTTTGTGGCTCTGCCCT





CCCATCCTGCCGACTCCCCTGTTATTCTTCAGCTT





CAGTTTCTCTTCGATGTGCTGCAGAAAACACTTT





CACTCAAGCTGGTCCATGTTGCTGGTCCTGGCCC





CACAGGGCCCATCAAGATTTTCCCCTTCAAATCC





CTTCGGCACCTGGAGCTCCGAGGTGTTCCCCTCC





ACTGTCTGCATGGCCTCCGAGGCATCTACTCCCA





GCTGGAGACCCTGATTTGCAGCAGGAGCCTCCA





GGCATTAGAGGAGCTCCTCTCAGCCTGCGGCGG





CGACTTCTGCTCTGCCCTCCCTTGGCTGGCTCTG





CTTTCTGCCAACTTCAGCTACAATGCACTGACCG





CCTTAGACAGCTCCCTGCGCCTCTTGTCAGCTCT





GCGTTTCTTGAACCTAAGCCACAATCAAGTCCAG





GACTGTCAGGGATTCCTGATGGATTTGTGTGAGC





TCCACCATCTGGACATCTCCTATAATCGCCTGCA





TTTGGTGCCAAGAATGGGACCCTCAGGGGCTGC





TCTGGGGGTCCTGATACTGCGAGGCAATGAGCT





TCGGAGCCTGCATGGCCTAGAGCAGCTGAGGAA





TCTGCGGCACCTGGATTTGGCATACAACCTGCTG





GAAGGACACCGGGAGCTGTCACCACTGTGGCTG





CTGGCTGAGCTCCGCAAGCTCTACCTGGAGGGG





AACCCTCTTTGGTTCCACCCTGAGCACCGAGCAG





CCACTGCCCAGTACTTGTCACCCCGGGCCAGGG





ATGCTGCTACTGGCTTCCTTCTCGATGGCAAGGT





CTTGTCACTGACAGATTTTCAGACTCACACATCC





TTGGGGCTCAGCCCCATGGGCCCACCTTTGCCCT





GGCCAGTGGGGAGTACTCCTGAAACCTCAGGTG





GCCCTGACCTGAGTGACAGCCTCTCCTCAGGGG





GTGTTGTGACCCAGCCCCTGCTTCATAAGGTTAA





GAGCCGAGTCCGTGTGAGGCGGGCAAGCATCTC





TGAACCCAGTGATACGGACCCGGAGCCCCGAAC





TCTGAACCCCTCTCCGGCTGGATGGTTCGTGCAG





CAGCACCCGGAGCTGGAGCTCATGAGCAGCTTC





CGGGAACGGTTCGGCCGCAACTGGCTGCAGTAC





AGGAGTCACCTGGAGCCCTCCGGAAACCCTCTG





CCGGCCACCCCCACTACTTCTGCACCCAGTGCAC





CTCCAGCCAGCTCCCAGGGCCCCGACACTGCAC





CCAGACCTTCACCCCCGCAGGAGGAAGCCAGAG





GCCCCCAGGAGTCACCACAGAAAATGTCAGAGG





AGGTCAGGGCGGAGCCACAGGAGGAGGAAGAG





GAGAAGGAGGGGAAGGAGGAGAAGGAGGAGGG





GGAGATGGTGGAACAGGGAGAAGAGGAGGCAG





GAGAGGAGGAAGAAGAGGAGCAGGACCAGAAG





GAAGTGGAAGCGGAACTCTGTCGCCCCTTGTTG





GTGTGTCCCCTGGAGGGGCCTGAGGGCGTACGG





GGCAGGGAATGCTTTCTCAGGGTCACTTCTGCCC





ACCTGTTTGAGGTGGAACTCCAAGCAGCTCGCA





CCTTGGAGCGACTGGAGCTCCAGAGTCTGGAGG





CAGCTGAGATAGAGCCGGAGGCCCAGGCCCAGA





GGTCGCCCAGGCCCACGGGCTCAGATCTGCTCC





CTGGAGCCCCCATCCTCAGTCTGCGCTTCTCCTA





CATCTGCCCTGACCGGCAGTTGCGTCGCTATTTG





GTGCTGGAGCCTGATGCCCACGCAGCTGTCCAG





GAGCTGCTTGCCGTGTTGACCCCAGTCACCAATG





TGGCTCGGGAACAGCTTGGGGAGGCCAGGGACC





TCCTGCTGGGTAGATTCCAGTGTCTACGCTGTGG





CCATGAGTTCAAGCCAGAGGAGCCCAGGATGGG





ATTAGACAGTGAGGAAGGCTGGAGGCCTCTGTT





CCAAAAGACAGAATCTCCTGCTGTGTGTCCTAAC





TGTGGTAGTGACCACGTGGTTCTCCTCGCTGTGT





CTCGGGGAACCCCCAACAGGGAGCGGAAACAG





GGAGAGCAGTCTCTGGCTCCTTCTCCGTCTGCCA





GCCCTGTCTGCCACCCTCCTGGCCATGGTGACCA





CCTTGACAGGGCCAAGAACAGCCCACCTCAGGC





ACCGAGCACCCGTGACCATGGTAGTTGGAGCCT





CAGTCCCCCCCCTGAGCGCTGTGGCCTCCGCTCT





GTGGACCACCGACTCCGGCTCTTCCTGGATGTTG





AGGTGTTCAGCGATGCCCAGGAGGAGTTCCAGT





GCTGCCTCAAGGTGCCAGTGGCATTGGCAGGCC





ACACTGGGGAGTTCATGTGCCTTGTGGTTGTGTC





TGACCGCAGGCTGTACCTGTTGAAGGTGACTGG





GGAGATGCGTGAGCCTCCAGCTAGCTGGCTGCA





GCTGACCCTGGCTGTTCCCCTGCAGGATCTGAGT





GGCATAGAGCTGGGCCTGGCAGGCCAGAGCCTG





CGGCTAGAGTGGGCAGCTGGGGGGGGCCGCTGT





GTGCTGCTGCCCCGAGATGCCAGGCATTGCCGG





GCCTTCCTAGAGGAGCTCCTTGATGTCTTGCAGT





CTCTGCCCCCTGCCTGGAGGAACTGTGTCAGTGC





CACAGAGGAGGAGGTCACCCCCCAGCACCGGCT





CTGGCCATTGCTGGAAAAAGACTCATCCTTGGA





GGCTCGCCAGTTCTTCTACCTTCGGGCGTTCCTG





GTTGAAGGCCCTTCCACCTGCCTCGTATCCCTGT





TGCTGACTCCGTCCACCCTGTTCCTGTTAGATGA





GGATGCTGCAGGGTCCCCGGCAGAGCCCTCTCC





TCCAGCAGCATCTGGCGAAGCCTCTGAGAAGGT





GCCTCCCTCGGGGCCGGGCCCTGCTGTGCGTGTC





AGGGAGCAGCAGCCACTCAGCAGCCTGAGCTCC





GTGCTGCTCTACCGCTCAGCCCCTGAGGACTTGC





GGCTGCTCTTCTACGATGAGGTGTCCCGGCTGGA





GAGCTTTTGGGCACTCCGTGTGGTGTGTCAGGAG





CAGCTGACAGCCCTGCTTGCCTGGATCCGGGAA





CCATGGGAGGAGCTGTTTTCCATCGGACTCCGG





ACAGTGATCCAAGAGGCGCTGGCCCTTGACCGA





TGAGGGTCCCACGCTGACCTTGGCCCTGACCTCA





GGAGCCACGCTGTAGACATTCCCTCTCCTGGTCT





CTGGGTCTGGCTTCCAGGCTCTGGCTGTGGATGT





CTTCAGCCTCTGGGTGCTGGCCAGTGAGGTCCCA





AATGACCCAGGGCTTAAGGGAGAGGCGAGAGA





ATGATCTGGCCTCAGGGGACAGGCCACCTGGTC





AGGAGGAATATTTTTCCTGCACTTTTTCTCAGGT





ATCAATAAAGTTGTTTCCAACTCATAA






TBC1D10B
NM_015527.3
GAGGGGCGGCCCGCGGCCATGGAGACGGGCAC
40




GGCGCCCCTGGTGGCCCCGCCGCGCCGTCATGG





CGCCCCCGCGGCCCCCTCGCCGCCGCCCCGGGG





TTCCCGGGCCGGGCCCGTCGTGGTGGTGGCTCCG





GGACCTCCAGTGACTACGGCCACTTCGGCCCCC





GTCACCCTGGTGGCCCCCGGGGAGGCGCGGCCC





GCCTGGGTCCCGGGGTCGGCCGAGACCTCTGCT





CCGGCCCCGGCCCCAGCCCCGGCCCCAGCCCCG





GCTGTCACGGGCAGCACGGTGGTGGTGCTGACC





CTGGAGGCCTCGCCCGAAGCCCCAAAGCCGCAG





CTCCCCTCCGGCCCGGAATCCCCAGAGCCCGCG





GCAGTGGCTGGAGTTGAGACATCGAGGGCTCTG





GCCGCAGGGGCAGACTCGCCGAAGACAGAGGA





GGCTCGACCCTCACCCGCCCCAGGACCAGGGAC





CCCCACCGGGACCCCTACCAGGACCCCTTCCAG





AACGGCTCCTGGTGCCCTGACCGCCAAACCCCC





GCTTGCCCCCAAGCCGGGAACCACAGTGGCCTC





AGGAGTGACTGCACGGAGTGCATCAGGACAAGT





GACAGGTGGGCATGGAGCTGCCGCAGCAACATC





AGCATCAGCAGGACAGGCTCCTGAGGACCCCTC





AGGCCCTGGCACAGGCCCCTCTGGGACTTGTGA





GGCTCCGGTAGCTGTCGTGACCGTGACCCCAGCT





CCGGAGCCTGCTGAAAACTCTCAAGACCTGGGC





TCCACGTCCAGCCTGGGACCTGGCATCTCTGGGC





CTCGAGGGCAGGCCCCGGACACGCTGAGTTACT





TGGACTCCGTGAGCCTCATGTCTGGGACCTTGGA





GTCCTTGGCGGATGATGTGAGCTCCATGGGCTCA





GATTCAGAGATAAACGGGCTGGCCCTGCGCAAG





ACGGACAAGTATGGCTTCCTTGGGGGCAGCCAG





TACTCGGGCAGCCTAGAGAGCTCCATTCCCGTG





GACGTGGCTCGGCAGCGGGAGCTCAAATGGCTG





GACATGTTCAGTAACTGGGATAAGTGGCTGTCA





CGGCGATTCCAGAAGGTGAAGCTGCGCTGCCGG





AAGGGGATCCCCTCCTCTCTCAGAGCCAAAGCC





TGGCAGTACCTGTCTAATAGCAAGGAACTTCTG





GAGCAGAACCCAGGAAAGTTTGAGGAGCTGGAA





CGGGCTCCTGGGGACCCCAAGTGGCTGGATGTG





ATTGAGAAGGACCTGCACCGCCAGTTCCCTTTCC





ACGAGATGTTTGCTGCTCGAGGGGGGCATGGGC





AACAGGACCTGTACCGAATCCTGAAGGCCTACA





CCATCTACCGGCCTGACGAGGGTTACTGCCAGG





CCCAGGCCCCCGTGGCTGCGGTCCTGCTCATGCA





CATGCCTGCGGAGCAAGCCTTTTGGTGCCTGGTG





CAGATCTGCGACAAGTACCTCCCAGGTTACTAC





AGTGCAGGGCTGGAGGCCATTCAGCTGGACGGG





GAGATCTTTTTTGCACTCCTGCGCCGGGCCTCCC





CGCTGGCGCATCGCCACCTGCGGCGGCAGCGCA





TTGACCCTGTGCTCTACATGACGGAGTGGTTCAT





GTGCATCTTCGCCCGCACCCTGCCCTGGGCGTCG





GTGCTGCGTGTCTGGGACATGTTTTTCTGTGAAG





GCGTTAAGATCATCTTCCGGGTGGCCCTGGTCCT





GCTGCGCCACACGCTGGGCTCAGTGGAGAAGCT





GCGCTCCTGCCAAGGCATGTATGAGACCATGGA





GCAGCTGCGTAACCTGCCCCAGCAGTGCATGCA





GGAAGACTTCCTGGTGCATGAGGTGACCAATCT





GCCGGTGACAGAAGCACTGATTGAGCGGGAGAA





TGCAGCCCAGCTCAAGAAGTGGCGGGAAACGCG





GGGGGAGCTGCAGTATCGGCCCTCACGGCGACT





GCATGGGTCCCGGGCCATCCACGAGGAGCGCCG





GCGGCAACAGCCACCCCTGGGCCCCTCCTCCAG





CCTCCTCAGCCTCCCTGGCCTCAAGAGCCGAGGC





TCCCGGGCAGCTGGAGGGGCCCCGTCCCCGCCG





CCCCCCGTCCGCAGAGCCAGTGCTGGGCCTGCC





CCAGGGCCTGTGGTCACTGCTGAGGGACTGCAT





CCATCCCTTCCCTCACCCACTGGCAATAGCACCC





CCTTGGGTTCCAGCAAGGAGACCCGGAAGCAGG





AGAAGGAGCGGCAGAAACAGGAGAAGGAGCGG





CAGAAACAGGAGAAGGAGCGGGAGAAGGAGCG





GCAGAAGCAGGAGAAAGAGCGAGAGAAGCAGG





AAAAGGAGCGAGAGAAGCAGGAGAAGGAGCGG





CAGAAGCAGGAGAAGAAGGCTCAAGGCCGGAA





GCTTTCGCTGCGTCGAAAGGCAGATGGGCCCCC





AGGCCCCCATGATGGTGGGGACAGGCCCTCAGC





CGAGGCCCGGCAGGACGCTTACTTCTGACCTCTG





CCCTGGGGCTGGACTGCATGGCCCCCCTCTTTCC





CTCAGCCAAGAACAGGCCTGGCCCAAGGTGCCA





CCCCCTAGCACCTTGTCAGGCTGTCCCTTGCTGG





GGAAAGTGGCTTGGTTCCCCATCTCCTCGCCAGC





TGCTGATCCCTACACGGGCAGGACAGATGGGCA





GCTGCAAATGAGTCTGGAGCCTCTCATCTCCCAT





GAGGCTCAGCTGGGGTCTCTGTCGCTCCTGCCCC





AGTTCCCTCTGGGTCCCCTCCTAGGTGCTGTCCT





GAATGGCCCGTTGTCATCCCAGGGGTGACTCCTG





GTGATGGGAGTCAGCAGTTTCAGATTCTTACACT





CCATAGCTCCCCTTACCATGAGGTGGAGCTGGCT





TCCTTTTCCCTGTCTTCAGCCCTCCCTGTCTCCCC





CACTTCCTGGCCAGGGCTCTCATTCTGGACCTGT





GTTGTAATTGTGTACAGAGGATGGCGTTGGCCTG





GGGTGGGGGTGCTCGCTTTGTCTTCTGTCCTTTG





GTTCTCCTTCCATAATGCTCCTGTACCCAGTTTAT





TTAAGGGGACATGCACTGGAATAGGAAATGTCC





CCCATCTCCCTTCCTGCACCCTGCTGTGCTCCCTC





CAAACCCACCTTGCTCTGTGTTCTCAGGCCCCCC





TGCTTTTGTCTCACCAGGACCCATACCTTTCACC





TTGTTCCCTTCCACCCCTCCAGTTAGTCCCTATCT





GGGTAAGGGTCTTCCCTTGAGCTCCAGGGGGTG





GAACCCAATGTTTACATTCTCTTCTGTCTCTGCC





CCCACCCCATGCAGCGCTTTGAGGAATTGGAAA





AGAACCTGCTGTTGTACCTGGGAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAA






TBP
NM_001172085.1
GGCGGAAGTGACATTATCAACGCGCGCCAGGGG
41




TTCAGTGAGGTCGGGCAGGTTCGCTGTGGCGGG





CGCCTGGGCCGCCGGCTGTTTAACTTCGCTTCCG





CTGGCCCATAGTGATCTTTGCAGTGACCCAGGGT





GCCATGACTCCCGGAATCCCTATCTTTAGTCCAA





TGATGCCTTATGGCACTGGACTGACCCCACAGCC





TATTCAGAACACCAATAGTCTGTCTATTTTGGAA





GAGCAACAAAGGCAGCAGCAGCAACAACAACA





GCAGCAGCAGCAGCAGCAGCAGCAACAGCAAC





AGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG





CAGCAGCAGCAGCAGCAGCAGCAGCAACAGGC





AGTGGCAGCTGCAGCCGTTCAGCAGTCAACGTC





CCAGCAGGCAACACAGGGAACCTCAGGCCAGGC





ACCACAGCTCTTCCACTCACAGACTCTCACAACT





GCACCCTTGCCGGGCACCACTCCACTGTATCCCT





CCCCCATGACTCCCATGACCCCCATCACTCCTGC





CACGCCAGCTTCGGAGAGTTCTGGGATTGTACC





GCAGCTGCAAAATATTGTATCCACAGTGAATCTT





GGTTGTAAACTTGACCTAAAGACCATTGCACTTC





GTGCCCGAAACGCCGAATATAATCCCAAGCGGT





TTGCTGCGGTAATCATGAGGATAAGAGAGCCAC





GAACCACGGCACTGATTTTCAGTTCTGGGAAAA





TGGTGTGCACAGGAGCCAAGAGTGAAGAACAGT





CCAGACTGGCAGCAAGAAAATATGCTAGAGTTG





TACAGAAGTTGGGTTTTCCAGCTAAGTTCTTGGA





CTTCAAGATTCAGAATATGGTGGGGAGCTGTGA





TGTGAAGTTTCCTATAAGGTTAGAAGGCCTTGTG





CTCACCCACCAACAATTTAGTAGTTATGAGCCAG





AGTTATTTCCTGGTTTAATCTACAGAATGATCAA





ACCCAGAATTGTTCTCCTTATTTTTGTTTCTGGAA





AAGTTGTATTAACAGGTGCTAAAGTCAGAGCAG





AAATTTATGAAGCATTTGAAAACATCTACCCTAT





TCTAAAGGGATTCAGGAAGACGACGTAATGGCT





CTCATGTACCCTTGCCTCCCCCACCCCCTTCTTTT





TTTTTTTTTAAACAAATCAGTTTGTTTTGGTACCT





TTAAATGGTGGTGTTGTGAGAAGATGGATGTTG





AGTTGCAGGGTGTGGCACCAGGTGATGCCCTTCT





GTAAGTGCCCACCGCGGGATGCCGGGAAGGGGC





ATTATTTGTGCACTGAGAACACCGCGCAGCGTG





ACTGTGAGTTGCTCATACCGTGCTGCTATCTGGG





CAGCGCTGCCCATTTATTTATATGTAGATTTTAA





ACACTGCTGTTGACAAGTTGGTTTGAGGGAGAA





AACTTTAAGTGTTAAAGCCACCTCTATAATTGAT





TGGACTTTTTAATTTTAATGTTTTTCCCCATGAAC





CACAGTTTTTATATTTCTACCAGAAAAGTAAAAA





TCTTTTTTAAAAGTGTTGTTTTTCTAATTTATAAC





TCCTAGGGGTTATTTCTGTGCCAGACACATTCCA





CCTCTCCAGTATTGCAGGACAGAATATATGTGTT





AATGAAAATGAATGGCTGTACATATTTTTTTCTT





TCTTCAGAGTACTCTGTACAATAAATGCAGTTTA





TAAAAGTGTTAGATTGTTGTTAAAAAAAAAAAA





AAAAAA






UBB
NM_018955.2
CACTCGTTGCATAAATTTGCGCTCCGCCAGCCCG
42




GAGCATTTAGGGGCGGTTGGCTTTGTTGGGTGA





GCTTGTTTGTGTCCCTGTGGGTGGACGTGGTTGG





TGATTGGCAGGATCCTGGTATCCGCTAACAGGTC





AAAATGCAGATCTTCGTGAAAACCCTTACCGGC





AAGACCATCACCCTTGAGGTGGAGCCCAGTGAC





ACCATCGAAAATGTGAAGGCCAAGATCCAGGAT





AAGGAAGGCATTCCCCCCGACCAGCAGAGGCTC





ATCTTTGCAGGCAAGCAGCTGGAAGATGGCCGT





ACTCTTTCTGACTACAACATCCAGAAGGAGTCG





ACCCTGCACCTGGTCCTGCGTCTGAGAGGTGGTA





TGCAGATCTTCGTGAAGACCCTGACCGGCAAGA





CCATCACCCTGGAAGTGGAGCCCAGTGACACCA





TCGAAAATGTGAAGGCCAAGATCCAGGATAAAG





AAGGCATCCCTCCCGACCAGCAGAGGCTCATCT





TTGCAGGCAAGCAGCTGGAAGATGGCCGCACTC





TTTCTGACTACAACATCCAGAAGGAGTCGACCCT





GCACCTGGTCCTGCGTCTGAGAGGTGGTATGCA





GATCTTCGTGAAGACCCTGACCGGCAAGACCAT





CACTCTGGAGGTGGAGCCCAGTGACACCATCGA





AAATGTGAAGGCCAAGATCCAAGATAAAGAAG





GCATCCCCCCCGACCAGCAGAGGCTCATCTTTGC





AGGCAAGCAGCTGGAAGATGGCCGCACTCTTTC





TGACTACAACATCCAGAAAGAGTCGACCCTGCA





CCTGGTCCTGCGCCTGAGGGGTGGCTGTTAATTC





TTCAGTCATGGCATTCGCAGTGCCCAGTGATGGC





ATTACTCTGCACTATAGCCATTTGCCCCAACTTA





AGTTTAGAAATTACAAGTTTCAGTAATAGCTGA





ACCTGTTCAAAATGTTAATAAAGGTTTCGTTGCA





TGGTA






ZBTB34
NM_001099270.1
CGGGGACTGGCCTGGCGCCGGCGGCGGCGGAGG
43




GGGCGCCGCGGGCGGGCGATGTGAGCGCGGCGC





TCTGGACAGAGTACGCTTCATGTCAGTAGAAAT





GGACAGCAGCAGTTTTATTCAGTTTGATGTGCCC





GAGTACAGCAGCACCGTTCTGAGCCAGCTAAAC





GAACTCCGCCTGCAGGGGAAACTATGTGACATC





ATTGTACACATTCAGGGTCAGCCATTCCGAGCCC





ACAAAGCAGTCCTTGCTGCCAGCTCCCCATATTT





CCGGGACCATTCAGCGTTAAGTACCATGAGTGG





CTTGTCAATATCAGTGATTAAAAATCCCAATGTG





TTTGAGCAGTTGCTTTCTTTTTGTTACACTGGAA





GAATGTCCTTGCAGCTGAAGGATGTTGTCAGTTT





TCTGACTGCAGCCAGCTTTCTTCAGATGCAGTGT





GTCATTGACAAGTGCACGCAGATCCTAGAGAGC





ATCCATTCCAAAATCAGCGTTGGAGATGTTGACT





CTGTTACCGTCGGTGCTGAAGAGAATCCCGAGA





GTCGAAACGGAGTGAAAGACAGCAGCTTCTTTG





CCAACCCAGTGGAGATCTCTCCTCCATATTGCTC





TCAGGGACGGCAGCCCACCGCAAGCAGTGACCT





CCGGATGGAGACGACCCCCAGCAAAGCTTTGCG





CAGCCGCTTACAGGAGGAGGGGCACTCAGACCG





CGGGAGCAGTGGGAGCGTTTCTGAATATGAGAT





TCAGATAGAGGGAGACCATGAGCAAGGAGACCT





ATTGGTGAGGGAGAGCCAGATCACCGAGGTGAA





AGTGAAGATGGAGAAGTCCGACCGGCCCAGCTG





TTCCGACAGCTCCTCCCTGGGTGACGATGGGTAC





CACACCGAGATGGTTGATGGGGAACAAGTTGTG





GCAGTGAATGTGGGCTCCTATGGTTCTGTGCTCC





AGCACGCATACTCCTATTCCCAAGCAGCCTCACA





GCCAACCAATGTATCAGAAGCTTTTGGAAGTTTG





AGTAATTCCAGCCCATCCAGGTCCATGCTGAGCT





GTTTCCGAGGAGGGCGTGCCCGCCAGAAGCGGG





CTTTGTCTGTCCACCTGCACAGTGACCTGCAGGG





CCTGGTGCAGGGCTCTGACAGTGAAGCCATGAT





GAACAACCCCGGGTATGAGAGCAGTCCCCGGGA





GAGGAGTGCGAGAGGGCATTGGTACCCGTACAA





TGAGAGGTTGATCTGTATTTACTGTGGAAAGTCC





TTCAACCAGAAAGGAAGCCTTGATAGGCACATG





CGACTCCATATGGGAATCACCCCCTTTGTGTGCA





AGTTCTGTGGGAAGAAGTACACACGGAAGGACC





AACTGGAGTACCACATCCGGGGCCATACAGATG





ATAAACCATTCCGCTGTGAGATCTGCGGGAAGT





GCTTTCCATTCCAAGGTACCCTCAACCAGCACTT





GCGGAAAAACCACCCAGGCGTTGCTGAAGTCAG





GAGTCGCATTGAGTCCCCCGAGAGAACAGATGT





GTACGTGGAACAGAAACTAGAAAATGACGCATC





GGCCTCAGAGATGGGCCTAGATTCCCGGATGGA





AATTCACACAGTGTCTGATGCTCCCGATTAAGAT





GGTAAAGAAGTGCACCCAAACAAAGCACATTAA





TCAATGCATATTTGTGATTTGCTTTGTTGTAATCT





TTGGTTTTCCCAACCATCTGGAAATCTCTTGGTC





TCTTGGCAGTTTTTCTAAAGTTTCTGGATGGAAC





ACTTCGTTGTGTTTATCCTTTCCCCTGCCCTCCCT





CCCCGAAGGAGCTCAAAGCATGAAGGGCAACGC





ATCCAGGGAAAACACAGGCTGACAGTATTCCTC





TTTGGCTGAACTCTTAATCCAAAATCTGCCAGTG





ATTTAGCTATGCCAACTGGTTGACCCTCCATTCT





CTGCCAAGAGGCATACTCTTTCTCATTGTGTGCG





CTGGCAGCAGTGCACTTCCACGGAGGGAGATTA





GGATGCCGTCAGCTGATACAAATGGGTAACCTT





TTCTAATTTAAAATTCCTTTTAGGGGGTAGTTAG





ACAATTTATATATATATATAATAAAACTATTATT





ATATATATAGTATATATACATTTTCAAATTTGAT





TTTATTCTGGTTGAGGTGAATGTAAGAGGAATAT





ATAATTTAATACAATGTGAACAGGGCTTCTGAGT





CTATCTCATCCCTACCTAATATGTTAGGGTTTTG





CCCCTTCATTTCCCTTACAAAAGAATGTTAGTAG





GTTTATATTAATCATTGTGTCCAAAAGCAAGCAA





AGCAAATCACAGTGTTCACAGCTCTGCTTCATAA





CAAATACATAAACCAAATGCCATAAAATTTCTTC





AACTCTAGTTGGAAACCGTTTGGAATTTTTGTTA





GTTGTCCAGCAGGTAAGCTGGATGACCTGTGGT





GCTGACCTTTTTACATAGTGTAGTGTTATATTAG





CCAACCCCAAAGGAGCAGTGGTTTTCAAGGTTTT





TACTGGCCTACAAATCTACCTTCATTCCGTACTG





TAGAAACATACATACCAGGTAACTAAATCGAAT





CACTCTCTATCATGAGTTAGTACTCACTCGCACT





TAAGGAAAGGGATTTGTAGTTCTGTCTACAAAA





TTCTCCAAGCAGTGTTGTGGTTTTTTTTGTTTTTG





TTTTTTTTCTTTCTCTTTTCAAACAGCCAGTTCAG





GTGCACAGCAACTTTTTCTACATGCAGTTCCCAG





GGAAACTGCAGAACTTAGAATTTGTACTTTTTGT





AAAGCTATACTCTATGGGAATTGCAAGCAATAT





ATCTATCTTAGTATTGTGTGTGCTAATGAGAGCC





TCAGTGGCTCCCCCACTCTCTCAGTGTTTCCTGC





TTAAAGAACCAACAGTTTAAAAGCCCTCTAAGA





TACTCTGTGTGTCACCAAATCTGTGTGTCACCAT





TTTTTGGTCATGTGGTGCTATTTTTGTTAAGTGTC





TTTTTAGGTCAGTATAGTTGTAGAAAATGTGAAA





TCTGATGGTAATAATGAATTATAATTGTTTTCCT





CTCTTGAGTTCATAGCTTGAAAAGAGACCTCAA





AAGCATGTGCTGGCAAACACGTTACTGTATGAA





AACATACCTGAGTCCATTTGAATAATGTTTTATT





AGTACTTTCGGAAATGTCTTCAGTTCTGTATTGT





GTTCACATACACAAACAGGCTTTACAAGATTGCT





TCGGTACTGTAAACTCTGGCAGAGAGTAATTTTG





TAGGCAGTTTGGTGGTGAGTTTGTGCTGCAGGCT





GCCTGTGGGATGTCAGCGTTCTGGTATCTGCCTG





AGAACCTGGGCTCTGAGACGCACAACCAGTGCA





CCTCCATAGGAGAACAGTGCAGCCACCTAAAAG





AAAAACGAACGAAGGACCAGCCTCAGAGGCTA





GAAGTTAAAGGAATACAGAATTAGATGTTTGCT





GGTTTTCTGTGCTTTTTTGGCTCCTAAAATACCA





ATGGTGGATTTGTTTTTGTTTTTGTTTTTTGTTTT





GAGAAATAAAAAGTCATTCAAGCCCTTTGTGTG





TAATAGCCCCCAGGGGTGGCAGCTGTGCAGTCG





CATCTCTTTGGCACACAGGATCTGTTCACGTGTG





AACTGCTGCGCTACACATCAGTGTTAACTCCCTA





CAGATTACACTCTAATCCCGCTGCTCCCGAGGAG





CGGCTTTGCTAAATCGGGTATATAGTATATGCCT





TTTTCCTCGTCAAACTGCCTAAGTAGGGGTTCGT





TCTCTCCCTGAAGCACTTGTTCAACTCCTGTTAA





AGCCGCGTGCCTCAAGGGGAGGCTGGACCCCAA





GTGTTTACCCACTTAAATATGTTCTGGGGTTTCA





GGTAAATGTTTGTGGGTTTTTTTTTCCTTACATGA





ATAAGTTTGGTTTTGATTTTTTTTTAATTGAATGC





AAAAAATTTGTGTTGTGATACAAATTAAGTTTGT





GACAAGAAATGCCCAAATCCAAGGACATAAGAG





GTCAAGCTCAGGGAAGGAACCTCCTTTTCACTCA





GGCTTGGGGCCTCCAGCGAGGTTTCCAGAGCAT





TCCATGGTATGAGAGACAGTGAGGAGGGAGGGC





ACCTGGCGCGGGCACTTCCAGCGTCCTGGCTCTT





GGCATTGTCCGTCTTAACCTTATTTACATGGAGT





TCTTTGTATTTGTGAATCTGTTTAACTGGTTTGAG





TTTACCAAAGAGTGACTTATCCAAAATTGTCTTT





GACAAAAATATCCATTGCTTTGATTGTACAGTTC





AGGTTCAAACATTGTAATGGGACTGTTAAGGGG





CAGAAAATTGATTGAGTTTCTCTCTAAGAATCAT





GATTCCACATTTTGCAAGTTCCACTTGCTCCCAT





TCGTGTTGCTAACACTTTACCCTTTCCACTGCTC





GCAGTGTTAAGAATGAATTCTCAAGCCATAACA





CAGTACTGTAAAGTTCCGCAGGGCTTCGAGGGA





GGCAGCGCCTAGGCCAGCACGGAGCTGTGTAGC





CTCTCTGAGCGTTCGCACTGTCATGCTTCCCAGG





GGTGTGACTGGTGAGAGATTAACTCCATTCAGA





TCGGGCAGCAGCAATTAATTGTGCCTTGCCGCAT





GAGGATGTGTCAGGAGGATTAACATGACCACAG





AACCGAAACATTCTCTCCCTGAAGTTCACTTCAC





GTCTCCGCAGACGAAGTACGCTGTGTAACTCCTT





AGAGCAACTCTTTTTGGAAAGCAAAGTCCCTATT





TCTGTACAGTTTTAGGTTAGGTGTTTCATTTATA





ACAGATGCAGAAATCAATTAAGATAAAGTGATA





TGTGAAGAAATCTTTTACAGTAAAATATATCCTG





AATTCATATAGGCTTGTTCATAATTGAGTCTCTT





CTTGAGCTACCTTTTCAATATTAGACAATGTGAA





GACAGTGACAGCGTCCTTTTCTAGAGATATTTAG





CCTGTTATTACAAACTGTGAAGACAAAGAATTTT





ATACTTTTACTAATGTTTGTGGTTTTAAACAGTT





ATTTTCATTCTAATCAGTTCTCTACCCTCTAATTT





CTACTAAAGCTGTAAATACATTTAGAAATTATAT





TTGTAAATACAGTATATGGAGACAAGTTAATTTT





TTGGTCAGTGGAAAAAGCCTCCCAACCAATTGG





CCCTGCCTTGGCAGTTGTGTTTTTTGTTGTTGTTG





TTGTTGTTTTAGTTTAGTTTTTTTTTTTAAACAGC





AGAAAGGATACTGTCGGTTCACTGTTGAGCAGA





ATATACTGTAGAACGAAAATGATAATTTTTAAAT





CTTCCAGAGCATGAGTAAATGTCTTTTCTAATGA





TAGCAAATATAACCAACTCTTTGTTTTTCCCTTA





GCCCAGACCATATAGACCTGCGTATTTTGTGTGT





GGTTTTGTTTTTATTTTTGTTCTTACAGCCTAGAC





CCTAGGAAAAATTTGCAGGAACACGAAACAAGG





GCTGGGGGGAAAATCATCTATGTGAATGAGCTT





TACTTTAAAGAGATCAATGTATTTTATTTTATCA





ACTTTTTCTCTTAGTTACTGTGATTTTTGTTGTTG





TTGTCCTCGTTATTGTTAAATTCTGTAATGGTTTC





CTGTGAAGCCTCCACTGAAAGGGACTCAAATAT





GCAACACCTAAACTATTTTCCAAGGGCACATGC





CCCTTGAATGGTGCTTCTAGACTGGTCAGGGTTA





TTTATTAAATTTTATATATGAAAGTATTGGGGAA





TTATGTAAATTCTTTATATGAAACTATCTAGTTC





ATAAATCATAGATTTCATATTACTCAGTGCAACT





GAACTAAAAGTTCAGAAAAGTCATTCACATTGT





TCCAAATTTGTAATGGTTGTCACATGTCACATGC





GTCTTTTTCAGTAAGTGCCAGAGTGTTCCCACTG





TTTCTGCCCAGTGCTTGACTTCTCGGCCCGGAAG





AGAACCTGCTTTCTCTGGTTTCCTTCCTGAGTCT





GGCACAGACGGGGCTATTGTAGTTCTTGATCAA





GTCCTGGAGTCAGCCTTGCCTGGCTCTCCTTGTA





GCAGATTCAGTCCACAGACCTCTTGCTGCCCCTC





AGTGACAAGTATGCTGTGAATTCAACCTTTGGAC





TTGCTGCCCAAGCCTTTGGTTGCTGCCCTGACTA





TTGTAAGAGGTAAACTTACCTGGTTTGTTTGAGA





ATGACCATTTTCCTAATGTGAAAACCATCTCTCT





CACCACTTTTATTAGTAGGGCTAACATTTTTTTC





CGTTATAAATGGTTGAGCAATTTGAATGACTTAA





CACAGTGTCATTATCTTGCAATATAAACTGGTAA





CCTCACAACTCCACACTTCATCACCATATGAAGT





AAATGAAGCTAGCTAAGCGGATGCTGTATCAAC





TAGTAACTTGCCATTAAGGATTATTTTATAGCAT





GAATTTAAGACTATTTATTCAAATGATATTTTAC





TCTTGTATTCACTTTGTTTTAGATTTGTGACATGA





ATATTTCAGTGCTGCTTAATTTTGTTCTGAATTCT





TGTTTCTTGCTTGTAAATGGCTTTTTTATGGTATA





AATAAAGTCAATGGACATTGCTGTTTGTAAATA





AAAATGCTGCTAGAGCAAAAAAAAAAAAAAAA









In aspects of the methods of the present disclosure, gene expression is measured using methods known in the art that utilize probes targeting the genes of interest. The genes and exemplary target regions of those genes useful for determining gene expression in the methods of identifying mismatch repair deficiency in a subject disclosed herein are shown in Table 3.









TABLE 3







Exemplary Gene Targets for Determining Gene Expression













Exemplary

SEQ.



GenBank
Target

ID


Gene
Accession No.
Region
Target Sequence
NO.





MLH1
NM_000249.2
1606-1705
CAGGGACATGAGGTTCTCCGGGAGATGTT
44





GCATAACCACTCCTTCGTGGGCTGTGTGA






ATCCTCAGTGGGCCTTGGCACAGCATCAA






ACCAAGTTATACC






MSH2
NM_000251.1
2515-2614
AGGTGAAGAAAGGTGTCTGTGATCAAAGT
45





TTTGGGATTCATGTTGCAGAGCTTGCTAAT






TTCCCTAAGCATGTAATAGAGTGTGCTAA






ACAGAAAGCCCT






MSH6
NM_000179.2
1016-1115
AGGCCTGAACAGCCCTGTCAAAGTTGCTC
46





GAAAGCGGAAGAGAATGGTGACTGGAAA






TGGCTCTCTTAAAAGGAAAAGCTCTAGGA






AGGAAACGCCCTCA






PMS2
NM_000535.6
895-994
TCAGGTTTCATTTCACAATGCACGCATGGA
47





GTTGGAAGGAGTTCAACAGACAGACAGTT






TTTCTTTATCAACCGGCGGCCTTGTGACCC






AGCAAAGGTCT






EPM2AIP1
NM_014805.3
1323-1422
GGGGCAACAACAGTCCACTTCTCAGACAA
48





ACAATGGCTTTGTGACTTTGGCTTCTTGGT






GGACATTATGGAACACCTTCGAGAACTCA






GTGAAGAATTAC






TTC30A
NM_152275.3
2493-2592
TGCCCTCAAGCAACAATTGCTAGAGTAAC
49





ATCTTTGTATAAGCAAGTAACCCCAGATA






GAGTTGACGTTTCAGCTTTGGGCTGTCAAA






AGGGTATGTCAT






SMAP1
NM_001044305.2
824-923
GAAAAGCTGCAGAAGAAAGATCAGCAAC
50





TGGAGCCTAAAAAAAGTACCAGCCCTAAA






AAAGCTGCGGAGCCCACTGTGGATCTTTT






AGGACTTGATGGCC






RNLS
NM_001031709.2
727-826
CTCTTTTATGAAGCTGGTACGAAGATTGAT
51





GTCCCTTGGGCTGGGCAGTACATCACCAG






TAATCCCTGCATACGCTTCGTCTCCATTGA






TAATAAGAAGC






WNT11
XM_011545241.2
1016-1115
CTCTGCTTGTGAATTCCAGATGCCAGGCAT
52





GGGAGGCGGCTTGTGCTTTGCCTTCACTTG






GAAGCCACCAGGAACAGAAGGTCTGGCCA






CCCTGGAAGGA






SFXN1
NM_001322977.1
192-291
CTACCACCAAACATTAACATCAAGGAACC
53





TCGATGGGATCAAAGCACTTTCATTGGAC






GAGCCAATCATTTCTTCACTGTAACTGACC






CCAGGAACATTC






SREBF1
NM_001005291.1
1393-1492
TTCGCTTTCTGCAACACAGCAACCAGAAA
54





CTCAAGCAGGAGAACCTAAGTCTGCGCAC






TGCTGTCCACAAAAGCAAATCTCTGAAGG






ATCTGGTGTCGGC






TYMS
NM_001071.1
396-495
TGCTAAAGAGCTGTCTTCCAAGGGAGTGA
55





AAATCTGGGATGCCAATGATCCCGAGACT






TTTTGGACAGCCTGGGATTCTCCACCAGA






GAAGAAGGGGAC






EIF5AL1
NM_001099692.1
2211-2310
AAAGGAAACACGAAGATTAATCAAGCAG
56





GAAGGACAAGCTCAGTTTTGCACCCACTG






AATTTGCCACAAATATTGTGGAAAATATT






CTCGGGGACATTGC






WDR76
NM_024908.3
1876-1975
CGTTTGGTGGAGAATACCTTGTCTCTGTGT
57





GTTCCATCAATGCCATGCACCCAACTCGGT






ATATTTTGGCTGGAGGTAATTCCAGCGGG






AAGATACATGT









Definitions

The terms “non-hypermutated” and “non-hypermutated samples” refer to tumor samples that have a mutation rate of less than 7 mutations in every 106 bases, or have a mutation rate of less than 8 mutations in every 106 bases, or have a mutation rate of less than 9 mutations in every 106 bases, or have a mutation rate of less than 10 mutations in every 106 bases, or have a mutation rate of less than 11 mutations in every 106 bases, or have a mutation rate of less than 12 mutations in every 106 bases.


The terms “hypermutated” and “hypermutated samples” refer to tumor samples that have a mutation rate of more than 12 mutations in every 106 bases, or have a mutation rate of more than 13 mutations in every 106 bases, or have a mutation rate of more than 14 mutations in every 106 bases, or have a mutation rate of more than 15 mutations in every 106 bases.


The term “mismatch repair deficiency” (MMRd), refers to the loss of function of at least one gene involved in DNA mismatch repair due to biallelic inactivation of the at least one gene. The biallelic inactivation can be caused by a variety of factors, including, but not limited to, somatic or germline mutations within the coding region of the at least one gene, methylation of the promoter of the at least one gene, leading to silencing of that promoter through a mechanism referred to as the CpG island methylator phenotype (CpG), and/or microRNA-induced downregulation of the expression of the at least one gene. The current state of the art for determining whether a sample displays mismatch repair deficiency is through the use of immunohistochemistry to visualize the expression of genes involved in DNA mismatch repair. The at least one gene involved in DNA mismatch repair can comprise MLH1, MSH2, MSH6 and PMS2. Mismatch repair deficiency causes hypermutation and microsatellite instability. Thus, determining that a tumor is mismatch repair deficient also indicates that the tumor is hypermutated and that the tumor is microsatellite instable.


The term “microsatellite instability” refers to length variations at short, repetitive DNA sequences, known as microsatellites (MS), within the genome. Tumors that are said to be microsatellite instable are tumors that display higher variations in the length of these short, repetitive DNA sequences as compared to normal, non-cancerous cells. Microsatellite instability can be caused by mismatch repair deficiency. In clinical settings, detection of MSI is customarily profiling the Bethesda markers, which often include two mononucleotide (BAT25 and BAT26) and three dinucleotide (D5S346, D2S123 and D17S250) MS loci. Colorectal tumors unstable at >40% of the Bethesda markers are considered high level microsatellite instable (MSI-H) and are known to have a better prognosis and to be less prone to metastasis than microsatellite stable (MSS) tumors. More recent guidelines suggest analyzing the length of four mononucleotide repeat loci comprising BAT25, BAT26, BAT40, and transforming growth factor receptor type II and three dinucleotide repeat loci comprising D2S123, D5S346 and D17S250 to determine the MSI status of a tumor sample. The length of these loci in a tumor sample is compared to the length of these loci in a non-tumor sample of the same tissue or mononuclear blood cells using multiplex-fluorescent labeled PCR and capillary electrophoresis. Tumors are classified as microsatellite stable (MSS) if none of the loci show a change in size in the tumor sample as compared to the non-tumor and blood cell sample. Tumors are classified as low level microsatellite instable (MSI-L) if one or two of the loci show a change in size in the tumor sample as compared to the non-tumor and blood cell sample. Tumors are classified as high level microsatellite instable (MSI-H) if three or more loci show a change in size in the tumor sample as compared to the non-tumor and blood cell sample.


As described in the preceding, the methods of the present disclosure can be used to identify mismatch repair deficiency in a subject using gene expression data in a tumor sample from a subject. The sample can be a biological sample. As will be appreciated by those in the art, the sample may comprise any number of things, including, but not limited to: cells (including both primary cells and cultured cell lines) and tissues (including cultured or explanted). In aspects, a tissue sample (fixed or unfixed) is embedded, serially sectioned, and immobilized onto a microscope slide. As is well known, a pair of serial sections will include at least one cell that is present in both serial sections. Structures and cell types, located on a first serial section will have a similar location on an adjacent serial section. The sample can be cultured cells or dissociated cells (fixed or unfixed) that have been immobilized onto a slide.


In aspects, a tissue sample is a biopsied tumor or a portion thereof, i.e., a clinically-relevant tissue sample. For example, the tumor may be from a breast cancer. The sample may be an excised lymph node.


The sample can be obtained from virtually any organism including multicellular organisms, e.g., of the plant, fungus, and animal kingdoms; preferably, the sample is obtained from an animal, e.g., a mammal. Human samples are particularly preferred.


In some aspects, the preceding methods are used in the diagnosis of a condition. As used herein the term diagnose or diagnosis of a condition includes predicting or diagnosing the condition, determining predisposition to the condition, monitoring treatment of the condition, diagnosing a therapeutic response of the disease, and prognosis of the condition, condition progression, and response to particular treatment of the condition. For example, a tissue sample can be assayed according to any of the methods described herein to determine the presence and/or quantity of markers of a disease or malignant cell type in the sample (relative to the non-diseased condition), thereby diagnosing or staging a disease or a cancer.


The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Included in this definition are benign and malignant cancers. Examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include adrenocortical carcinoma, bladder urothelial carcinoma, breast invasive carcinoma, cervical squamous cell carcinoma, endocervical adenocarcinoma, cholangiocarcinoma, colon adenocarcinoma, lymphoid neoplasm diffuse large B-cell lymphoma, esophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, kidney chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, acute myeloid leukemia, brain lower grade glioma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, mesothelioma, ovarian serous cystadenocarcinoma, pancreatic adenocarcinoma, pheochromocytoma, paraganglioma, prostate adenocarcinoma, rectum adenocarcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma, testicular germ cell tumors, thyroid carcinoma, thymoma, uterine carcinosarcoma, uveal melanoma. Other examples include breast cancer, lung cancer, lymphoma, melanoma, liver cancer, colorectal cancer, ovarian cancer, bladder cancer, renal cancer or gastric cancer. Further examples of cancer include neuroendocrine cancer, non-small cell lung cancer (NSCLC), small cell lung cancer, thyroid cancer, endometrial cancer, biliary cancer, esophageal cancer, anal cancer, salivary, cancer, vulvar cancer or cervical cancer.


The term “tumor” refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. The terms “cancer,” “cancerous,” “cell proliferative disorder,” “proliferative disorder” and “tumor” are not mutually exclusive as referred to herein.


Any of the above aspects and embodiments can be combined with any other aspect or embodiment as disclosed here in the Summary and/or Detailed Description sections.


The term “immunotherapy” can refer to activating immunotherapy or suppressing immunotherapy. As will be appreciated by those in the art, activating immunotherapy refers to the use of a therapeutic agent that induces, enhances, or promotes an immune response, including, e.g., a T cell response while suppressing immunotherapy refers to the use of a therapeutic agent that interferes with, suppresses, or inhibits an immune response, including, e.g., a T cell response.


As will be appreciated by those in the art, activating immunotherapy may comprise the use of checkpoint inhibitors. Checkpoint inhibitors are readily available in the art and include, but are not limited to, a PD-1 inhibitor, PD-L1 inhibitor, PD-L2 inhibitor, or a combination thereof. Checkpoint inhibitors can comprise antibodies. These antibodies can include, but are not limited to anti-PD1 antibodies, anti-PDL1 antibodies, or anti-CTLA4 antibodies. Anti-PD1 antibodies and anti-PD-L1 antibodies can include, but are not limited to, pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001 and CT-001. Anti-CTLA4 antibodies can include but are not limited to ipilimumab and tremelimumab.


Additionally, the immunotherapy that is provided to a patient in need thereof according to the methods of the present invention comprises providing a cytokine agonist or cytokine antagonist, that is an agonist or antagonist of interferon, IL-2, GMCSF, IL-17E, IL-6, IL-Ia, IL-12, TFGB2, IL-15, IL-3, IL-13, IL-2R, IL-21, IL-4R, IL-7, M-CSF, MIF, myostatin, Il-10, 11-24, CEA, IL-11, IL-9, IL-15, IL-2Ra, TNF or a combination thereof.


The term “antibody” herein is used in the broadest sense and encompasses various antibody structures, including but not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired antigen-binding activity. An antibody that binds to a target refers to an antibody that is capable of binding the target with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting the target. In one embodiment, the extent of binding of an anti-target antibody to an unrelated, non-target protein is less than about 10% of the binding of the antibody to target as measured, e.g., by a radioimmunoassay (RIA) or biacore assay. In certain embodiments, an antibody that binds to a target has a dissociation constant (Kd) of <1 μM, <100 nM, <10 nM, <1 nM, <0.1 nM, <0.01 nM, or <0.001 nM (e.g. 108 M or less, e.g. from 108 M to 1013 M, e.g., from 109 M to 1013 M). In certain embodiments, an anti-target antibody binds to an epitope of a target that is conserved among different species.


A “blocking antibody” or an “antagonist antibody” is one that partially or fully blocks, inhibits, interferes, or neutralizes a normal biological activity of the antigen it binds. For example, an antagonist antibody may block signaling through an immune cell receptor (e.g., a T cell receptor) so as to restore a functional response by T cells (e.g., proliferation, cytokine production, target cell killing) from a dysfunctional state to antigen stimulation.


An “agonist antibody” or “activating antibody” is one that mimics, promotes, stimulates, or enhances a normal biological activity of the antigen it binds. Agonist antibodies can also enhance or initiate signaling by the antigen to which it binds. In some embodiments, agonist antibodies cause or activate signaling without the presence of the natural ligand. For example, an agonist antibody may increase memory T cell proliferation, increase cytokine production by memory T cells, inhibit regulatory T cell function, and/or inhibit regulatory T cell suppression of effector T cell function, such as effector T cell proliferation and/or cytokine production.


An “antibody fragment” refers to a molecule other than an intact antibody that comprises a portion of an intact antibody that binds the antigen to which the intact antibody binds. Examples of antibody fragments include but are not limited to Fv, Fab, Fab′, Fab′-SH, F(ab′)2; diabodies; linear antibodies; single-chain antibody molecules (e.g. scFv); and multispecific antibodies formed from antibody fragments.


The term “benefit” is used in the broadest sense and refers to any desirable effect and specifically includes clinical benefit as defined herein. Clinical benefit can be measured by assessing various endpoints, e.g., inhibition, to some extent, of disease progression, including slowing down and complete arrest; reduction in the number of disease episodes and/or symptoms; reduction in lesion size; inhibition (i.e., reduction, slowing down or complete stopping) of disease cell infiltration into adjacent peripheral organs and/or tissues; inhibition (i.e. reduction, slowing down or complete stopping) of disease spread; decrease of auto-immune response, which may, but does not have to, result in the regression or ablation of the disease lesion; relief, to some extent, of one or more symptoms associated with the disorder; increase in the length of disease-free presentation following treatment, e.g., progression-free survival; increased overall survival; higher response rate; and/or decreased mortality at a given point of time following treatment.


As used in this Specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise.


Unless specifically stated or obvious from context, as used herein, the term “or” is understood to be inclusive and covers both “or” and “and”.


Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from the context, all numerical values provided herein are modified by the term “about.”


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although other probes, compositions, methods, and kits similar, or equivalent, to those described herein can be used in the practice of the present disclosure, the preferred materials and methods are described herein. It is to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting.


EXAMPLES
Example 1—Loss of Mismatch Repair Gene Expression Predicts Microsatellite Instability and Hypermutation

Because loss of protein expression for any of the mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2 is sufficient to identify tumors with microsatellite instability, it is plausible that loss of mRNA expression in these genes can provide a surrogate measurement of tumor microsatellite instability (MSI). FIG. 1 shows a series of graphs in which MMR gene expression is plotted against mutation burden and MSI status in colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD) and uterine corpus endometrial carcinoma (UCEC) tumors. FIG. 1 reveals the strong association between these three phenomena, and it shows that loss of MMR gene expression predicts MSI and hypermutation with high specificity.


In all 4 tumor types (colon, esophageal, stomach, and uterine), a cluster of hypermutated tumors is easily visible, with the subtype being relatively abundant in the colon, stomach, and uterine cancer The Cancer Genome Atlas (TCGA) data sets and rare in esophageal cancers. In all four datasets, these hypermutated tumors are strongly enriched for MSI. In colon, stomach, and uterine cancers, a small third cluster of tumors with an even higher mutation burden is apparent. These ultramutated tumors are often MSS or low-level MSI (MSI-L) in the TCGA datasets. Instead, these tumors have a mutation in one of the polymerase genes POLE or POLD1, consistent with a mechanism in which defective polymerase leads to widespread errors in DNA replication. A small fraction of each cancer type is minimally mutated. Furthermore, the average mutation burden within a given cluster is not preserved across tumor types; for example, non-hypermutated (typical) esophageal cancers have 3.8 times the mutation rate of non-hypermutated colon cancers.


MSI-H status as determined by PCR occurs in most (67%-86%) of the hypermutated tumors in these cancers types and in a smaller fraction of the ultramutated tumors. MSI-H occurs in less than 1.4% of non-hypermutated tumors in each dataset. MSI-L status occurs primarily (>92%) in non-hypermutated tumors in the colon, esophageal, and stomach datasets, while in the uterine dataset MSI-L status occurs with approximately equal frequency across non-hypermutated, hypermutated, and ultramutated tumors.



FIG. 1 also shows that loss of expression of the four MMR genes, observed as low-expression outliers, are also apparent within each cancer type. MLH1 is by far the most frequently under-expressed of these genes. In TCGA, MLH1 expression loss occurs in 16% of colon cancers, 3% of esophageal cancers, 20% of stomach cancers, and 29% of uterine cancers. MLH1 loss on its own is a surprisingly sensitive biomarker, detecting two thirds or more of the hypermutation cases in each of these cancer types. Expression loss in the other three MMR genes detects a small number of additional hypermutated/MSI samples not captured by MLH1: MSH2 loss detects 5 additional MSI-H tumors in these 4 datasets, MSH6 loss detects 2, and PMS2 loss detects none. These loss of expression events are highly specific predictors of both MSI and hypermutation, occurring almost exclusively within hypermutated and MSI-H tumors. However, a subset of less than 10% of MSI tumors display normal expression levels of these 4 genes, indicating MMR dysfunction arising from a cause other than loss of mRNA expression.


Example 2—Hypermutated Tumors Share Common Transcriptional Patterns in Colon, Stomach, and Uterine Cancers

Approximately one third of hypermutation or ultramutation events as measured by next-generation sequencing cannot be detected by loss of MMR gene expression. In such cases, transcriptomic events downstream of mismatch repair deficiency (MMRd) might enable detection of hypermutation independent of the expression levels of the classic MMR genes. In cancers where hypermutation has a common origin in MMRd, and possibly in CpG island methylator phenotype (CIMP), it is plausible that hypermutated tumors will display common transcriptional patterns across tumor types. To evaluate whether broader expression patterns could predict MSI and hypermutation, univariate linear models testing the association of hypermutation status with each gene in the TCGA whole transcriptome RNA-Seq datasets were run. These models were fit separately within the colon, stomach, and uterine cancer datasets, omitting esophageal cancer because the presence of only 4 hypermutated tumors in that dataset limited statistical power.


A great deal of the transcriptome had significant association with hypermutation status in these datasets: a Benjamini-Hochberg false discovery rate (FDR)<0.05 was achieved by 7800 genes in colon adenocarcinomas, 9337 genes in stomach adenocarcinomas, and 3848 genes in uterine carcinomas. FIG. 2 is a series of volcano plots that show genes' associations with hypermutation in COAD, STAD and UCEC tumors. FIG. 2 shows that a number of these genes behaved similarly across all 3 cancer types: 420 genes had a FDR<0.05 and a positive association with hypermutation in all 3 datasets, and 672 genes had a FDR<0.05 and a negative association with hypermutation in all 3 cancer types.


Some consistent biology emerges from this comparison, in that gene sets relating to DNA replication machinery and metabolism are highly enriched for genes with consistent positive associations with hypermutation. Table 4 shows the proportion of the genes in each gene set that are consistently down-regulated and consistently up-regulated with hypermutation across COAD, STAD and UCEC datasets, where “consistently up-regulated” is taken to mean “false discover rate<0.05 and a positive association with hypermutation in all 3 datasets. For Table 4, Kyoto Encyclopedia of Genes and Genomes (KEGG), Biocarta, and Reactome gene sets were downloaded from the Molecular Signatures Database (MSigDB).









TABLE 4







Genes down-regulated and up-regulated in cancer datasets










Proportion
Proportion



down in
up in



COAD,
COAD,



STAD,
STAD,



and
and



UCEC
UCEC












BIOCARTA_KREB_PATHWAY
0
0.38


REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX
0
0.33


REACTOME_G1_S_SPECIFIC_TRANSCRIPTION
0
0.31


REACTOME_PROCESSIVE_SYNTHESIS_ON_THE_LAGGING_STRAND
0
0.27


REACTOME_UNWINDING_OF_DNA
0
0.27


REACTOME_E2F_MEDIATED_REGULATION_OF_DNA_REPLICATION
0
0.26


BIOCARTA_MCM_PATHWAY
0
0.25


REACTOME_ASSOCIATION_OF_LICENSING_FACTORS_WITH_THE_PRE_R
0
0.25


REACTOME_DNA_STRAND_ELONGATION
0
0.23


REACTOME_CITRIC_ACID_CYCLE_TCA_CYCLE
0
0.21


REACTOME_LAGGING_STRAND_SYNTHESIS
0
0.21


BIOCARTA_DNAFRAGMENT_PATHWAY
0
0.2


BIOCARTA_GLYCOLYSIS_PATHWAY
0
0.2


REACTOME_CDC6_ASSOCIATION_WITH_THE_ORC_ORIGIN_COMPLEX
0
0.2


REACTOME_REMOVAL_OF_THE_FLAP_INTERMEDIATE_FROM_THE_C_STRAND
0
0.2


KEGG_GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM
0
0.19


KEGG_DNA_REPLICATION
0
0.19


REACTOME_HOMOLOGOUS_RECOMBINATION_REPAIR_OF_REPLS
0.06
0.19









This study demonstrates that numerous genes display strong differential expression with hypermutation across all cancer types and suggests that a data-driven predictor of hypermutation could prove informative.


Example 3—Gene Expression Algorithms for Predicting MMRd, Hypermutation, and MSI

Based on the results from examples 1 and 2, three gene expression algorithms for predicting MMRd, hypermutation, and MSI were trained. The “MMR Loss” algorithm uses the results from FIG. 1 to measure loss of expression of the four MMR genes (MLH1, MSH2, MSH6, and PMS2). The “Hypermutation Predictor” algorithm relies on the results from FIG. 2, using genes differentially expressed in hypermutated tumors to predict a tumor's hypermutation status. Finally, to attain the most powerful prediction with all available information, the “MSI Predictor” algorithm combines the MMR Loss and Hypermutation Predictor algorithms in a single score designed to predict MSI status. FIG. 3 is a series of graphs that show how the three algorithms relate to each other. The curved lines in FIG. 3 show the show the decision boundaries corresponding, from top-left to bottom-right, to MSI predictor score p-value cutoffs of 0.05, 0.01, and 0.00. The derivations of these algorithms are described in the materials and methods section below.


Results

The ability of the MSI Predictor algorithm and its 2 component algorithms to predict tumor MSI was evaluated. Table 5 shows that the MMR Loss (also referred to herein as MLS score) and Hypermutation Predictor (also referred to herein as HPS score) algorithms were each accurate predictors of MSI, with the MSI Predictor (also referred to herein as MPS score) algorithm showing higher accuracy as measured by True Positive Rate (TPR; the proportion of MSI-high cases detected by each algorithm) and False Positive Rate (FPR; the proportion of non-hypermutated cases falsely called hypermutated by the gene expression algorithms). A p-value threshold of 0.01 was used for all gene expression algorithms. Numbers in the parentheses in Table 5 give 95% confidence intervals calculated by the Wilson method.









TABLE 5







MMR loss and hypermutation predictor performance












COAD
ESCA
STAD
UCEC


















TPR MMR
0.9
(0.76-0.96)
1
(0.34-1)
0.92
(0.82-0.96)
0.94
(0.86-0.98)


loss score










TPR
0.74
(0.59-0.85)
1
(0.34-1)
0.8
(0.68-0.88)
0.94
(0.86-0.98)


Hypermutation










Predictor score










TPR MSI
0.9
(0.76-0.96)
1
(0.34-1)
0.9
(0.8-0.95)
0.93
(0.84-0.97)


Predictor score










FPR MMR loss
0.26
(0.2-0.32)
0.08
(0.04-0.17)
0.3
(0.24-0.36)
0.36
(0.3-0.43)


score










FPR
0.17
(0.12-0.23)
0.04
(0.01-0.12)
0.23
(0.18-0.29)
0.37
(0.31-0.43)


Hypermutation










Predictor score










FPR MSI
0.21
(0.16-0.28)
0.03
(0.01-0.1)
0.25
(0.19-0.31)
0.3
(0.24-0.36)


Predictor score









However, because the Hypermutation Predictor algorithm was trained from these samples it is subject to overfitting. Therefore, its performance, as well as the performance of the MSI Predictor algorithm, may be exaggerated in this data. In contrast, the MMR Loss algorithm was developed using a minimal training procedure that only required estimates of the mean and interquartile range of each gene in non-hypermutated samples; as such, this algorithm's performance is more likely to be reproduced in new datasets.


Table 6 shows that the gene expression algorithms predicted hypermutation in TCGA datasets almost as well as they predicted MSI. TCGA's PCR-based MSI assay was a slightly more powerful predictor of hypermutation, though this advantage was generally not statistically significant.









TABLE 6







Prediction of hypermutation using gene expression algorithms












COAD
ESCA
STAD
UCEC


















TPR MMR loss
0.77
(0.62-0.87)
0.75
(0.3-0.95)
0.8
(0.69-0.88)
0.73
(0.63-0.81)


score










TPR
0.65
(0.5-0.78)
0.75
(0.3-0.95)
0.74
(0.63-0.83)
0.83
(0.74-0.9)


Hypermutation










Predictor score










TPR MSI
0.79
(0.65-0.89)
0.75
(0.3-0.95)
0.79
(0.67-0.87)
0.74
(0.65-0.82)


Predictor score










TPR MSI status
0.86
(0.73-0.93)
0.67
(0.21-0.94)
0.88
(0.78-0.94)
0.74
(0.65-0.82)


FPR MMR loss
0.1
(0.06-0.15)
0.06
(0.03-0.11)
0.11
(0.07-0.16)
0.13
(0.08-0.19)


score










FPR
0.02
(0.01-0.05)
0.03
(0.01-0.06)
0.04
(0.02-0.08)
0.12
(0.08-0.18)


Hypermutation










Predictor score










FPR MSI
0.04
(0.02-0.08)
0.02
(0.01-0.05)
0.03
(0.02-0.07)
0.03
(0.01-0.07)


Predictor score










FPR MSI status
0.01
(0-0.04)
0
(0-0.04)
0
(0-0.03)
0.01
(0-0.05)









Materials and Methods

Development and Validation of the MMR Loss Algorithm for Calling MSI Status from Loss of MMR Genes



FIG. 1 suggests that low gene expression values in MLH1, MSH2, MSH6, and PMS2 could be used to detect hypermutation and MSI. Therefore, an algorithm for predicting MSI by detecting loss of expression in these genes was developed. To do so, the uncharacteristically low expression of any one of these genes for a MSS tumor was investigated.


To quantify how atypically low a gene's expression is, knowledge of its mean expression and standard deviation in MSS samples was required. Both of these quantities will vary between cancer types, so the mean and standard deviation were estimated separately for each tumor dataset. A gene's mean expression in MSS samples will vary with platform and batch effects. Therefore, this parameter must be estimated anew when deploying this algorithm on a new platform. To ensure an unbiased procedure, this mean parameter was estimated without reference to known mutation or MSI status, either by taking each gene's median expression across a whole dataset (under the assumption that most cases are MSS) or by fitting a Gaussian mixture model with 2 clusters and taking the mean of the higher cluster. If this algorithm were to be applied in a locked assay, each gene's mean in non-hypermutated samples could be estimated directly and fixed.


The standard deviation of a gene's log-scale expression should be platform-agnostic, as platform effects are generally well-modelled as unique scaling factors applied to each gene, amounting to additive constants on the log-scale. Therefore, this parameter can be estimated in TCGA and applied it to future datasets without further calibration. In colon, stomach, and uterine cancers, each MMR gene's standard deviation in the MSS/non-hypermutated subtype was estimated using the cases where MSS status was known. In the esophageal dataset, in which many MSI calls were missing, samples with unknown MSI were included in this analysis, as MSI is rare in this indication, with only 4 cases in TCGA. These standard deviation estimates are reported Table 7.









TABLE 7







Standard deviations of each mismatch repair gene in microsatellite


stable samples in The Cancer Genome Atlas












MLH1
MSH2
MSH6
PMS2














COAD
0.3241
0.4108
0.4198
0.3259


ESCA
0.5221
0.6602
0.7347
0.4927


STAD
0.4245
0.6020
0.4814
0.4314


UCEC
0.4543
0.7312
0.6158
0.4217









Upon calculation of means and standard deviations, the remainder of the algorithm was simple to execute. Each gene was Z-scored, and the minimum of the four Z-scores was taken for each sample. To place the score on a familiar scale, this minimum Z score was then rescaled by the theoretical mean and standard deviation of the minimum of four standard normal random variables, attaining a final “MMR Loss” score with a mean of 0 and standard deviation of 1 in non-hypermutated samples.


A concise description of the procedure for calculating MMR Loss score is as follows. The below algorithm is proposed for calling hypermutation events resulting from loss of expression of 1 of the 4 key MMR genes (MLH1, MSH2, MSH6, or PMS2).

    • 1. Normalize the gene expression dataset using a sensible method.
    • 2. For each gene, estimate μ, the gene's mean expression in non-hypermutated samples. If a low rate of hypermutation is expected in the dataset, each gene's median expression provides a good estimate. If hypermutation is expected to be common, a Gaussian mixture model with two clusters can be fit to each gene's expression data, and the mean of the higher expression cluster should be taken as μ. For single sample applications, μ must be pre-defined using a training dataset run on the same assay.
    • 3. For each gene, look up its standard deviation (σ) in non-hypermutated tumors of the appropriate cancer type in TCGA. Examples of the 4 MMR genes' a values are provided in Table 7.
    • 4. For each sample, score each gene relative to its expected value in non-hypermutated samples as [Z=(x−μ)/σ], where x is the gene's normalized log 2 expression value.
    • 5. For each sample, call Zm the minimum Z score from the 4 genes. Calculate the final MMR Loss score, [MLS=(Zm+1.03)/0.69], where 1.03 and 0.69 are the theoretical expectation and standard deviation of the minimum of 4 standard normal random variables.
    • 6. Calculate a p-value for each sample: [p=Φ(MLS)], where Φ is the standard normal distribution function. Choose a stringent p-value threshold for calling loss events, at least as strict as 0.01. Most loss of expression events are substantial enough that they are easily detected, so p-values between 0.05 and 0.01 will often result in false positives.


      Development and Validation of the Hypermutation Predictor Algorithm for Calling MSI Status from Genes Differentially Expressed in Hypermutated Tumors


Given an abundance of genes with consistent and highly significant associations with hypermutation, the derivation of a data-driven predictor of hypermutation was sought. 10 genes with good performance across all 3 datasets were selected. Selection was based on multiple considerations, including effect size in the linear models described above and effect size in models fit to subsets of the data (e.g. models excluding ultramutated tumors or hypermutated tumors without MMR gene expression loss). Table 8 shows the genes selected for this process.









TABLE 8







Genes used in the hypermutation predictor score and false


discovery rates (FDR) for various cancer types













COAD
STAD
UCEC


Gene
Weight
FDR
FDR
FDR














EPM2AIP1
−0.31218
2.13E−19
1.49E−35
6.80E−24


TTC30A
−0.19894
1.54E−13
5.22E−17
2.59E−07


SMAP1
−0.1835
7.96E−18
2.57E−13
0.001251


RNLS
−0.19023
2.23E−14
0.000156
4.52E−18


WNT11
−0.11515
1.52E−08
0.036791
7.02E−06


SFXN1
0.214676
1.22E−15
1.11E−16
0.000229


SREBF1
0.194835
8.58E−11
5.48E−14
8.62E−06


TYMS
0.206972
2.08E−17
2.73E−14
0.001611


EIF5AL1
0.194935
5.99E−13
2.86E−13
9.06E−05


WDR76
0.188582
4.26E−12
3.80E−09
2.67E−07









Using the 10 selected genes, a linear predictor score was derived. Each gene was given a weight equal to its mean t-statistic across the 3 datasets and each sample's score was calculated as the sum of its weighted log 2-transformed gene expression values. As the positive and negative weights were nearly balanced, weights were rescaled such that they summed to 0, achieving a score that is invariant to any normalization scheme that adjusts each sample by a scaling constant (i.e., a sample's score was the same under any housekeeping gene normalization regimen, or even in unnormalized data. As a final step, the score was centered and scaled by its mean and standard deviation in MSS samples. Similar to the MMR Loss algorithm, the mean score was estimated in MSS samples anew on each platform. Model-based clustering was again used to estimate this parameter without reference to known MSI status. Also similar to the MMR Loss algorithm, the score's standard deviation in MSS samples in each TCGA dataset was estimated and this parameter was fixed for all future datasets. In the TCGA data from which it was trained, the Hypermutation Predictor score predicts MSI and hypermutation almost as well as the MMR Loss score.


A concise description of the algorithm for calculating Hypermutation Predictor score is as follows. The below algorithm for calling hypermutation events from genes that are differentially expressed between hypermutated/tumors with microsatellite instability (MSI) and non-hypermutated/MSS tumors is proposed.

    • 1. For a given sample, Log 2-transform the expression data for each of the genes in Table 8, multiply each gene by its given weight, and take the sum of these weighted expression values. Call this value x.
    • 2. If applying the assay to a new platform, calibrate the mean parameter for the dataset: fit a Gaussian mixture model with two classes to the data, and take the lower of the two mean parameters. If the mean parameter for the platform has been previously estimated, use that value instead. Call the mean parameter p.
    • 3. Look up the score's standard deviation (a) in non-hypermutated tumors of the appropriate cancer type in TCGA. The 4 datasets' a values are provided in Table 9.









TABLE 9







Standard deviations of the Hypermutation Predictor score in


microsatellite stable samples in The Cancer Genome Atlas








Tumor



Type
σ











COAD
0.6604


ESCA
0.7617


STAD
0.8153


UCEC
0.7027











    • 4. Z-transform the score to have a mean of 0 and standard deviation of 1 in non-hypermutated sample: calculate the Hypermutation Predictor score [HPS=(x−μ)/σ].

    • 5. For each sample: [p=Φ(HPS)], where Φ is the standard normal distribution function. Choose a stringent p-value threshold for calling loss events, at least as strict as 0.01.


      Development and Validation of the MSI Predictor Algorithm for Calling MSI Status from Combined Information in the MMR Loss and Hypermutation Predictor Scores





Ultimately, a single procedure for calling tumors' MSI status was required. The MSI predictor algorithm described below combines the information in the MMR Loss and Hypermutation Predictor scores into a single score for predicting MSI status. First, it was observed that both the MMR Loss and Hypermutation Predictor scores were approximately Gaussian with a mean of 0 and standard deviation of 1 in MSS samples. Furthermore, they appeared uncorrelated in MSS samples. These observations suggested a test that rejects the null hypothesis of MSS/non-hypermutation in samples that fall in extreme values of the joint distribution of these two scores, which could be reasonably approximated as a bivariate normal distribution.


However, a one-sided test was desired and the rejection of the null hypothesis of MSS/non-hypermutation (e.g., when MLH1 expression was extremely high) was unwanted. Additionally, allowing a null score from one test to counteract the evidence from an impressive score from the other test was unwanted (e.g., if the Hypermutation Predictor score suggested hypermutation but all the MMR genes were unusually high, letting the MMR genes' results counteract the evidence from the Hypermutation Predictor score was unwanted). Thus, both the MMR Loss score and the Hypermutation Predictor score were truncated at 0.


This truncation and the assumption of approximate bivariate normality lead to the following test statistic: MSI predictor score=[(max(HPS,mean(HPS))2+min(MLS,0)2)1/2], where HPS is the Hypermutation Predictor score and MLS is the MMR Loss score. Selected contours of this test score, or equivalently, decision boundaries it could delineate, are shown in FIG. 3. By assuming bivariate normality a p-value for the test statistic could be calculated, equal to the mass of a bivariate normal probability distribution falling above the decision boundary implied by the test statistic's value. Using numerical integration, it was found that p-values of 0.05, 0.01, 0.005, and 0.001 correspond to test statistics of 2.058, 2.699, 2.939, and 3.429, respectively.


A concise description of the algorithm for calculating MSI status from combined information in the MMR Loss and Hypermutation Predictor scores is as follows. The below algorithm for calling hypermutation events in a given sample is proposed:

    • 1. Calculate the MMR Loss and Hypermutation Predictor scores as described above. Call MLS the Z-score from the MMR Loss algorithm, and call HPS the Z-score from the Hypermutation Predictor algorithm.







2.

Calculate


the


final


score
:

MSI


Predictor


Score

=



[


(



max

(


H

P

S

,
0

)

2

+


min

(

MLS
,
0

)

2


)


1
/
2


]

.







    • 3. Compare the score to a pre-specified cutoff. A cutoff of 7.287 is suggested, which corresponds to a p=0.01 threshold for rejecting the null hypothesis of MSS/non-hypermutation.





Example 4—Validation of MSI Predictor Algorithm in Two Independent Sample Sets Using the NanoString nCounter System

To validate the algorithms trained in TCGA, the NanoString nCounter (NanoString Technologies, Inc., Seattle, Washington, USA) was used to profile two new sample sets for which results of the MMRd IHC assay were available (MSI assays were not run, but the MMRd IHC assay is commonly accepted as a surrogate for MSI). One sample set consisted of 30 MMR-proficient and 30 MMRd colorectal carcinoma samples. The other sample set was 5 MMR-proficient and 10 MMRd endometrial and neuroendocrine tumors, with MMRd status determined by IHC. Endometrial and neuroendocrine samples were combined in a single analysis because of the limited sample sizes.



FIG. 4 is a series of box plots that show that, like the phenomenon seen in TCGA, the validation datasets revealed loss of expression events in a majority of MSI samples. In the endometrial and neuroendocrine samples, losses were only observed for MLH1. PMS2 expression was not noticeably suppressed in 2 tumors with mutations in that gene and in 2 tumors with loss of nuclear PMS2 expression seen in IHC. In the colorectal samples, frequent MLH1 loss of expression was apparent, as were a single instance each of MSH2 and PMS2 loss. Loss of expression events occurred exclusively in MMRd tumors. FIG. 5 shows that the MMR loss score, which measures the evidence for loss in any of the four MMR genes, attained an area under the ROC curve (AUC) of 0.80 in endometrial samples and 0.87 in colorectal samples.



FIG. 5 also shows that the Hypermutation Predictor score, a linear combination of 10 genes, retained strong predictive performance in these independent datasets and outperformed the MMR Loss score (area under curve [AUC]=0.902 in endometrial samples and 0.932 in colorectal samples). The MSI Predictor score added negligible predictive power to the Hypermutation Predictor score. The majority of MMRd cases are unambiguously detected by the MSI Predictor score, and the score's overall predictive power was very high (area under curve [AUC]=0.940 in endometrial samples and 0.963 in colorectal samples).


The TCGA training did not map perfectly to the validation datasets. Examining the top row of FIG. 5, it appears that moving the score contours/decision boundaries left would capture more MMRd samples while incurring no false positives. These suboptimal decision boundaries of the Hypermutation Predictor score appear to result from a lower standard deviation in the validation MSS samples than in TCGA MSS samples. If the Hypermutation Predictor score's standard deviation in MSS samples were to be estimated anew in these datasets, it would shift the score contours/decision boundaries left and thereby achieve even better prediction. By implementing the MSI Predictor score using the pre-defined standard deviation estimates from TCGA, the differential score in MSI calling is underutilized and the results are unnecessarily conservative. The reason for the narrower distribution of Hypermutation Predictor scores in MSS samples in NanoString data is unclear. It could result from more precise gene expression measurements or from some unknown difference in the studies' sample preparation methods or clinical populations.


Materials and Methods
Calculation of Gene Expression Algorithms in NanoString Validation Datasets

Before the algorithms could be applied to data from a new platform, an up-front calibration step was required: for each of the 4 MMR genes and for the Hypermutation Predictor score, the mean value in non-hypermutated samples (or the “center”) had to be estimated. This calibration was performed using unsupervised techniques blind to the samples' MSI status as described in the methods sections for the respective algorithms.


MMRd Assay in Colorectal Carcinoma Samples

MSI-H and MSS/MSI-L colorectal cancer tumor samples in formalin-fixed paraffin-embedded (FFPE) blocks were purchased from iSpecimen (Lexington, Massachusetts, USA). MMR status was determined by the original clinical source using IHC for MLH1, MSH2, MSH6, and PMS2. Blocks were then sent to CellNetix (Seattle, Washington, USA) for pathology review and slide cutting.


MMRd Assay in Endometrial Samples

MMR status was determined by IHC performed at PhenoPath Laboratories, PLLC (Seattle, Washington, USA). Antibody clones used were MSH2 (mouse monoclonal FE11, catalog #M3639; Dako), MSH6 (rabbit monoclonal EP49, catalog #M3646; Dako), MLH1 (mouse monoclonal ES05, catalog #M3640; Dako) and PMS2 (rabbit monoclonal EP51, catalog #M3647; Dako) (Agilent Technologies, Inc., Santa Clara, California, USA). All samples were stained with hematoxylin and eosin to allow for morphological evaluation. MMR status was reviewed by a board-certified pathologist and reported as “no loss of expression” or “loss of expression.”


NanoString Assay and Normalization

Samples were run using the standard nCounter Gene Expression assay methodology (NanoString Technologies, Inc., Seattle, Washington, USA; see, e.g. Geiss G K et al. Nature biotechnology. 2008 Mar. 1; 26(3):317-25). Total RNA was extracted from each FFPE tumor sample using the Qiagen FFPE RNeasy kit (Qiagen, Inc., Hilden, Germany). A total of 100 ng of RNA was hybridized with the nCounter IO 360 gene expression panel (NanoString Technologies, Inc., Seattle, Washington, USA), with downstream processing and data collection following manufacturer's instructions.


Both NanoString datasets were normalized such that the mean log 2 expression of 10 housekeeping genes was constant across all samples. All analyses used log 2-transformed data.


Calculation of MSI Algorithms in NanoString Data

Platform differences prevented us from directly applying the TCGA-trained algorithms to NanoString data. Because gene expression platforms differ in the efficiency with which they measure each target sequence, platform effects can be well-modelled by a constant shift in each gene's log-scale normalized expression. Therefore, to apply the algorithms to NanoString data, these constant factors were estimated for each MMR gene and for the Hypermutation Predictor score. To preserve the integrity of this dataset as an unbiased test set for the algorithms, all of these calibration parameters were estimated using unsupervised methods without reference to the known MSI calls. The R library Mclust was used to fit a two-component Gaussian mixture model to each MMR gene's log 2-transformed, normalized expression and to the Hypermutation Predictor score. For the MMR genes, the mean of the higher of the two clusters was taken as the estimate of the mean expression level in non-hypermutated samples; for the Hypermutation Predictor score, the mean in the lower of the two clusters was used. Apart from these mean estimates, all other parameters needed to calculate algorithm scores were calculated from TCGA data without reference to the validation dataset.


Example 5—Association of MSI Status with Extent of Anti-Tumor Immunity as Measured by the Tumor Inflammation Signature

It is well-established that gene expression can predict immunotherapy response by measuring the inflamed microenvironment phenotype. In particular, the Tumor Inflammation Signature as disclosed in PCT/US2015/064445 (WO2016/094377), which is incorporated herein by reference in its entirety, uses 18 genes involved in adaptive anti-tumor immunity to predict response to the anti-PD-1 agent, pembrolizumab (also see e.g. Ayers M et al. The Journal of clinical investigation. 2017 Aug. 1; 127(8):2930-40). The motivation of this study was to enable gene expression to capture an additional, genotypic predictor of immunotherapy response: hypermutation. FIG. 6 compares these genotype and phenotype variables in TCGA, plotting the MSI Predictor score against the Tumor Inflammation Signature score. As a visual guide, thresholds for calling MSI or high immunity have been drawn.


Together, the Tumor Inflammation Signature and MSI scores measured in the same sample identify more potential responders than either test alone. Importantly, very few patients called MSI-H by standard techniques are missed by both the Tumor Inflammation Signature and MSI gene expression score. Interestingly, MSI scores in true MSI-H samples become attenuated in tumors with high Tumor Inflammation Signature scores. One explanation for this phenomenon is that in inflamed tumors, highly abundant immune cells contribute background expression of MLH1 and other MSI signature genes, clouding the otherwise clear signal of the tumor cells' mRNA. Importantly, nearly all MSI-H tumors missed by the MSI gene expression score have high Tumor Inflammation Signature scores, and their potential for anti-tumor immunity would be identified based on that variable alone.


Summary of Examples

In summary, the examples described herein demonstrate here that RNA expression can be used to identify MSI-H tumors with both high sensitivity and specificity. This discovery opens the possibility of using RNA expression profiling to identify multiple orthogonal biomarkers of checkpoint inhibitor efficacy in a single assay, thereby improving the ability to identify the best treatment option for every patient. Additionally, there are benefits to measuring both anti-tumor immune activity and MSI status using a single test. Rather than using multiple tissue samples and potentially sending those out to multiple laboratories for analysis, combining these two measurements into a single assay allows for conservation of biological material and simplification of personalized treatment decisions.


These findings should have broad applicability in gene expression studies of cancer types where MSI occurs. It is reasonable to posit that outlier low expression values of MHL1, MSH2, MSH6, and PMS2 will nearly always occur in tandem with MSI, regardless of tumor type.


Based on these results, MSI and immune status should together form the foundation of any analysis of immunotherapy in solid tumors. Because these variables are non-redundant, they promise to offer superior prediction together than either can alone. Responders missed by one of these variables may often be identified by the other. To more optimally guide treatment choices, drug efficacy should be evaluated separately in MSI-H/immune-high, MSI-H/immune-low, MSI-L/immune-high, and MSI-L/immune-low subsets.

Claims
  • 1. A method of identifying mismatch repair deficiency in a subject comprising a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject;b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples;c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used,c1 is 0.56 and c2 is 0.83 when two genes are used,c1 is 0.85 and c2 is 0.75 when three genes are used, orc1 is 1.03 and c2 is 0.70 when four genes are used;d) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject;e) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples;
  • 2. The method of claim 1, wherein the weight wi for the at least one gene is
  • 3. The method of claim 1, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 99% specificity.
  • 4. The method of claim 1, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 99.5% specificity.
  • 5. The method of claim 1, wherein the cutoff value is 2.058.
  • 6. The method of claim 3, wherein the cutoff value is 2.699.
  • 7. The method of claim 4, wherein the cutoff value is 2.939.
  • 8. The method of claim 1, wherein the at least one gene in a) comprises MLH1.
  • 9. The method of claim 1, wherein the at least one gene in a) comprises each of MLH1, MSH2, MSH6 and PMS2.
  • 10. The method of claim 1, wherein the at least one gene in d) comprises each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76
  • 11. The method of claim 1, wherein the at least one gene in a) comprises MLH1 and the at least one gene in d) comprises each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76.
  • 12. The method of claim 1, wherein the at least one gene in a) comprises each of MLH1, MSH2, MSH6 and PMS2 and the at least one gene in d) comprises each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76.
  • 13. The method of claim 1, wherein identifying the presence of mismatch repair deficiency further identifies the subject as having cancer.
  • 14. The method of claim 13, wherein identifying the presence of mismatch repair deficiency further identifies the subject for treatment with an anti-cancer therapy.
  • 15. The method of claim 14, further comprising administering a treatment to a subject identified as having mismatch repair deficiency.
  • 16. The method of claim 14, wherein the treatment comprises administering to the subject an immunotherapy.
  • 17. The method of claim 14, wherein the treatment comprises administering to the subject a checkpoint inhibitor therapy.
  • 18. The method of claim 14, wherein the treatment comprises administering to the subject an anti-PD1 antibody, an anti-PDL1 antibody, or an anti-CTLA4 antibody.
  • 19. The method of claim 18, wherein the anti-PD1 antibody or the anti-PDL1 antibody comprises pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, or CT-001.
  • 20. The method of claim 18, wherein the CTLA4 antibody comprises ipilimumab, tremelimumab, or a combination thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. application Ser. No. 17/086,842, now allowed, which is a continuation of International Patent Application No. PCT/US2019/030537, filed May 3, 2019, which claims priority to, and the benefit of, U.S. Provisional Application No. 62/666,870, filed May 4, 2018. The contents of each of the aforementioned patent applications are incorporated herein by reference in their entireties.

Provisional Applications (1)
Number Date Country
62666870 May 2018 US
Divisions (1)
Number Date Country
Parent 17086842 Nov 2020 US
Child 18743327 US
Continuations (1)
Number Date Country
Parent PCT/US2019/030537 May 2019 WO
Child 17086842 US