GENE EXPRESSION ASSAY FOR MEASUREMENT OF DNA MISMATCH REPAIR DEFICIENCY

Information

  • Patent Application
  • 20210198748
  • Publication Number
    20210198748
  • Date Filed
    November 02, 2020
    4 years ago
  • Date Published
    July 01, 2021
    3 years ago
Abstract
The present disclosure relates to methods using gene expression measurements to identify mismatch repair deficiency, microsatellite instability and hypermutation in a subject.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Nov. 2, 2020, is named “NATE-038_C01US_SeqList.txt” and is about 168 KB in size.


BACKGROUND OF THE INVENTION

There are currently a variety of methods for identifying mismatch repair deficiency, microsatellite instability and hypermutation in tumor samples from a subject. Current methods rely on PCR and immunohistochemistry. These methods require a large tumor sample, are costly, and are time-intensive. Importantly, whether a subject will respond to and receive a clinical benefit from checkpoint inhibitors, e.g. drugs that target PD-1 or PD-L1, can be predicted based on the presence of mismatch repair deficiency, microsatellite instability and hypermutation. Thus, there is a need in the art for methods of identifying mismatch repair deficiency, microsatellite instability and hypermutation that are rapid, specific, and accurate, and that require smaller tumor samples. The present disclosure addresses these needs.


SUMMARY OF THE INVENTION

The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three gene are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) comparing the MLS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and e) producing a report identifying the presence of mismatch repair deficiency in the subject when the MLS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the MLS score is less than the predetermined cutoff value.


The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three gene are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) comparing the MLS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and e) identifying the presence of mismatch repair deficiency in the subject when the MLS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the MLS score is less than the predetermined cutoff value.


The predetermined cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99%. Alternatively, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. The predetermined cutoff value can be 1.645, 2.326, or 2.576.


The at least one gene in step (a) can comprise MLH1. Alternatively, the at least one gene in step (a) can comprise each of MLH1, MSH2, MSH6 and PMS2.


The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; b) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) comparing the HPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and d) producing a report identifying the presence of mismatch repair deficiency in the subject when the HPS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the HPS score is less than the predetermined cutoff value.


The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; b) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) comparing the HPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and d) identifying the presence of mismatch repair deficiency in the subject when the HPS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the HPS score is less than the predetermined cutoff value.


The prespecified weight for gene i, wi, in step (b) can be:
















Gene
Weight



















EPM2AIP1
−0.31218



TTC30A
−0.19894



SMAP1
−0.1835



RNLS
−0.19023



WNT11
−0.11515



SFXN1
0.214676



SREBF1
0.194835



TYMS
0.206972



EIF5AL1
0.194935



WDR76
0.188582










The predetermined cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99%. Alternatively, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. The cutoff value can be 1.645, 2.326, or 2.576.


The at least one gene in step (a) can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, and WDR76.


The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three genes are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; e) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; f) determining a score MPS wherein MPS=(max(HPS,0)2+min(MLS,0)2)1/2; g) comparing the MPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and h) producing a report identifying the presence of mismatch repair deficiency in the subject when the MPS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the MPS score is less than the predetermined cutoff value.


The present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three genes are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; e) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; f) determining a score MPS wherein MPS=(max(HPS,0)2+min(MLS,0)2)1/2; g) comparing the MPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and h) identifying the presence of mismatch repair deficiency in the subject when the MPS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the MPS score is less than the predetermined cutoff value.


The prespecified weight for gene i, wi, in step (e) can be
















Gene
Weight



















EPM2AIP1
−0.31218



TTC30A
−0.19894



SMAP1
−0.1835



RNLS
−0.19023



WNT11
−0.11515



SFXN1
0.214676



SREBF1
0.194835



TYMS
0.206972



EIF5AL1
0.194935



WDR76
0.188582










The predetermined cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99%. Alternatively, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. The cutoff value can be 2.058, 2.699, or 2.939.


The at least one gene in step (a) can comprise MLH1. Alternatively, the at least one gene in step (a) can comprise each of MLH1, MSH2, MSH6 and PMS2.


The at least one gene in step (d) can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76.


The at least one gene in step (a) can comprise MLH1 and the at least one gene in step (d) can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76. Alternatively, the at least one gene in step (a) can comprise each of MLH1, MSH2, MSH6 and PMS2 and the at least one gene in step (d) can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76.


A subject can be diagnosed with cancer.


A report identifying mismatch repair deficiency can further identify the subject as having cancer.


A report identifying the presence of mismatch repair deficiency can further identify the subject for treatment with an anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. A treatment can comprise administering to the subject checkpoint inhibitors. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. The CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


The methods of the present disclosure can further comprise determining a tumor inflammation signature score.


Any of the above aspects can be combined with any other aspect.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In the Specification, the singular forms also include the plural unless the context clearly dictates otherwise; as examples, the terms “a,” “an,” and “the” are understood to be singular or plural and the term “or” is understood to be inclusive. By way of example, “an element” means one or more element. Throughout the specification the word “comprising,” or variations such as “comprises” or “comprising,” will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%,1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from the context, all numerical values provided herein are modified by the term “about.”


Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. The references cited herein are not admitted to be prior art to the claimed invention. In the case of conflict, the present Specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting. Other features and advantages of the disclosure will be apparent from the following detailed description and claim.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further features will be more clearly appreciated from the following detailed description when taken in conjunction with the accompanying drawings.



FIG. 1 is a series of graphs that shows the expression level of certain mismatch repair genes plotted against mutation load and microsatellite instability status in four different cancer types.



FIG. 2 is a series of volcano plots that shows that particular genes are positively and negatively associated with hypermutation in three different cancer types.



FIG. 3 is a series of graphs that shows the methods of the present disclosure can accurately predict microsatellite instability status in a tumor sample.



FIG. 4 is a series of box plots that shows the relationship between the expression of four mismatch repair genes and microsatellite instability in validation samples of two different cancer types.



FIG. 5 is a series of graphs that shows the performance of the methods of the present disclosure in determining microsatellite instability status in validation samples of two different cancer types.



FIG. 6 is a series of graphs showing the results of the methods of the present disclosure plotted against tumor inflammation signature score and microsatellite instability status.





DETAILED DESCRIPTION OF THE INVENTION

The present disclosure provides methods that identify mismatch repair deficiency, hypermutation, and microsatellite instability in a subject using gene expression measurements.


The clinical benefit of checkpoint inhibitors varies widely between patients and only a small subset experience durable disease remission upon treatment. Response to checkpoint inhibition is associated with two biological axes: tumor foreignness, typically measured by tumor mutation burden or microsatellite instability (MSI), and the presence of an adaptive anti-tumor immune response, typically measured by gene expression signatures of inflammation or immunohistochemistry. Because tumor foreignness and the magnitude of the adaptive immune response in the tumor microenvironment are only weakly correlated, more accurate predictions of immunotherapy response should be possible by measuring and integrating both variables together. However, in a clinical setting, performing multiple assays is often impractical due to more tissue requirement, increased turn-around time, and cost. Here, the ability of gene expression to predict tumor MSI was investigated, and a single assay that enables measurement of tumor foreignness and tumor inflammation was developed.


DNA mismatch repair deficiency (MMRd) has been observed in most cancer types in The Cancer Genome Atlas (TCGA), and occurs in more than 5% of adrenal, rectal, colon, stomach, and uterine tumors. Tumors with this phenotype develop both point and frameshift mutations at an increased rate and are often described as hypermutated. The failure of mismatch repair (MMR) to correct replication errors at short repeated DNA sequences can lead to the phenomenon of high-level MSI (MSI-H). MSI-H cancers have distinct clinical behavior, which has led to widespread MSI testing in cancers where MSI-H is common. In colorectal cancer, the MSI-H phenotype demonstrates association with proximal tumor localization, a dense local lymphocyte infiltration, and a low frequency of distant organ metastasis. Moreover, MSI-H colorectal cancers have a better prognosis than their microsatellite-stable (MSS) counterparts. Diminished responsiveness of MSI-H colorectal cancer patients towards chemotherapy has been shown in several studies. In the era of immunotherapy, MMRd has gained greater relevance as a cause of hypermutation potentiating anti-tumor immune responses which may be augmented by checkpoint inhibition. Importantly, the frame-shift mutations that accrue in MMRd tumors lead to highly abnormal peptides that may be more immunogenic. Thus, the high pan-cancer clinical efficacy of checkpoint inhibitors in MMRd tumors may arise more from their high rate of frameshift mutations than from their total tumor mutation burden.


MMRd often arises from loss of protein expression of 1 of 4 genes essential for MMR: MLH1, MSH2, MSH6, and PMS2. Lost expression of these proteins can arise from mutations in their coding regions, either from acquired somatic mutations or from germline mutations associated with Lynch syndrome. In tumors with intact sequences for these genes, loss of protein expression can follow loss of mRNA expression. A common cause of lost mRNA expression in these genes is the CpG island methylator phenotype (CIMP), which is associated with widespread methylation across the genome and frequently silences DNA repair genes. Loss of MMR activity due to microRNA-induced downregulation of MSH2 has also been observed in colorectal tumors. MMRd can be detected by measuring either its cause or its effect. Immunohistochemistry (IHC) is used to measure loss of expression of proteins essential to the MMR machinery, and PCR and sequencing are used to measure MSI, the genomic “scarring” which occurs as a consequence of MMRd.


The biology underlying MMRd provides two opportunities for capturing MMRd with gene expression data. First, loss of expression of MMR genes may be used to detect cases of MMRd resulting from transcriptional silencing. Second, if it is assumed that MMRd and CIMP exert broad and consistent influence on the transcriptome, then a data-driven predictor of hypermutation based on RNA expression patterns may also be possible.


Various methods of the present disclosure are described in full detail herein.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three gene are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) comparing the MLS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and e) producing a report identifying the presence of mismatch repair deficiency in the subject when the MLS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the MLS score is less than the predetermined cutoff value.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three gene are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) comparing the MLS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and e) identifying the presence of mismatch repair deficiency in the subject when the MLS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the MLS score is less than the predetermined cutoff value.


In some aspects, the preceding methods can further comprise administering at least one treatment to a subject identified as having mismatch repair deficiency. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three gene are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) comparing the MLS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and e) administering at least one treatment to the subject when the MLS score is equal to or greater than the predetermined cutoff value. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In some aspects of the preceding methods, determining μ1 in step (b), wherein μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding method; 2) determining for each of the at least one gene the log-transformed normalized expression; and 3) determining for each of the at least one gene the mean of the log 2-transformed expression from step (2).


In some aspects of the preceding methods, determining σ1 in step (b), wherein σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding method; 2) determining for each of the at least one gene the log-transformed normalized expression; and 3) determining for each of the at least one gene the standard deviation of the log 2-transformed expression from step (2).


In some aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method. In some aspects of the preceding method, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same apparatus. In preferred aspects of the preceding method, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method and apparatus.


In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of 99%. In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 99%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of at least 99.5%.


In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 91%, or at least 92%, or at least 93%, or at least 94%, or at least 95%, or at least 96%, or at least 97% or at least 98%.


In some aspects of the preceding methods, the predetermined cutoff value of the preceding method that identifies mismatch repair deficiency in a subject can be 1.645. Alternatively, the predetermined cutoff value can be 2.326. Alternatively still, the predetermined cutoff value can be 2.576.


In some aspects, the at least one gene in step (a) of the preceding methods can comprise MLH1. Alternatively, the at least one gene in step (a) can comprise each of MLH1, MSH2, MSH6 and PMS2.


In some aspects, step (a) of the preceding methods can comprise measuring the gene expression level of at least two genes, or at least three genes or at least four genes comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject.


In some aspects, when the tumor sample is a colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD) or uterine corpus endometrial carcinoma (UCEC) tumor sample, σ1 in step (b) of the preceding methods can be:


















MLH1
MSH2
MSH6
PMS2






















COAD
0.3241
0.4108
0.4198
0.3259



ESCA
0.5221
0.6602
0.7347
0.4927



STAD
0.4245
0.6020
0.4814
0.4314



UCEC
0.4543
0.7312
0.6158
0.4217










Table 1 shows the sequences of the at least one gene from step (a) of the preceding method.









TABLE 1







Gene sequences used in the methods of the present invention











GenBank

SEQ


Gene
Accession No.
Sequence
ID NO.





MLH1
NM_000249.2
ATTGGCTGAAGGCACTTCCGTTGAGCATCTAGA
 1




CGTTTCCTTGGCTCTTCTGGCGCCAAAATGTCG





TTCGTGGCAGGGGTTATTCGGCGGCTGGACGAG





ACAGTGGTGAACCGCATCGCGGCGGGGGAAGTT





ATCCAGCGGCCAGCTAATGCTATCAAAGAGATG





ATTGAGAACTGTTTAGATGCAAAATCCACAAGT





ATTCAAGTGATTGTTAAAGAGGGAGGCCTGAAG





TTGATTCAGATCCAAGACAATGGCACCGGGATC





AGGAAAGAAGATCTGGATATTGTATGTGAAAGG





TTCACTACTAGTAAACTGCAGTCCTTTGAGGAT





TTAGCCAGTATTTCTACCTATGGCTTTCGAGGT





GAGGCTTTGGCCAGCATAAGCCATGTGGCTCAT





GTTACTATTACAACGAAAACAGCTGATGGAAAG





TGTGCATACAGAGCAAGTTACTCAGATGGAAAA





CTGAAAGCCCCTCCTAAACCATGTGCTGGCAAT





CAAGGGACCCAGATCACGGTGGAGGACCTTTTT





TACAACATAGCCACGAGGAGAAAAGCTTTAAAA





AATCCAAGTGAAGAATATGGGAAAATTTTGGAA





GTTGTTGGCAGGTATTCAGTACACAATGCAGGC





ATTAGTTTCTCAGTTAAAAAACAAGGAGAGACA





GTAGCTGATGTTAGGACACTACCCAATGCCTCA





ACCGTGGACAATATTCGCTCCATCTTTGGAAAT





GCTGTTAGTCGAGAACTGATAGAAATTGGATGT





GAGGATAAAACCCTAGCCTTCAAAATGAATGGT





TACATATCCAATGCAAACTACTCAGTGAAGAAG





TGCATCTTCTTACTCTTCATCAACCATCGTCTG





GTAGAATCAACTTCCTTGAGAAAAGCCATAGAA





ACAGTGTATGCAGCCTATTTGCCCAAAAACACA





CACCCATTCCTGTACCTCAGTTTAGAAATCAGT





CCCCAGAATGTGGATGTTAATGTGCACCCCACA





AAGCATGAAGTTCACTTCCTGCACGAGGAGAGC





ATCCTGGAGCGGGTGCAGCAGCACATCGAGAGC





AAGCTCCTGGGCTCCAATTCCTCCAGGATGTAC





TTCACCCAGACTTTGCTACCAGGACTTGCTGGC





CCCTCTGGGGAGATGGTTAAATCCACAACAAGT





CTGACCTCGTCTTCTACTTCTGGAAGTAGTGAT





AAGGTCTATGCCCACCAGATGGTTCGTACAGAT





TCCCGGGAACAGAAGCTTGATGCATTTCTGCAG





CCTCTGAGCAAACCCCTGTCCAGTCAGCCCCAG





GCCATTGTCACAGAGGATAAGACAGATATTTCT





AGTGGCAGGGCTAGGCAGCAAGATGAGGAGATG





CTTGAACTCCCAGCCCCTGCTGAAGTGGCTGCC





AAAAATCAGAGCTTGGAGGGGGATACAACAAAG





GGGACTTCAGAAATGTCAGAGAAGAGAGGACCT





ACTTCCAGCAACCCCAGAAAGAGACATCGGGAA





GATTCTGATGTGGAAATGGTGGAAGATGATTCC





CGAAAGGAAATGACTGCAGCTTGTACCCCCCGG





AGAAGGATCATTAACCTCACTAGTGTTTTGAGT





CTCCAGGAAGAAATTAATGAGCAGGGACATGAG





GTTCTCCGGGAGATGTTGCATAACCACTCCTTC





GTGGGCTGTGTGAATCCTCAGTGGGCCTTGGCA





CAGCATCAAACCAAGTTATACCTTCTCAACACC





ACCAAGCTTAGTGAAGAACTGTTCTACCAGATA





CTCATTTATGATTTTGCCAATTTTGGTGTTCTC





AGGTTATCGGAGCCAGCACCGCTCTTTGACCTT





GCCATGCTTGCCTTAGATAGTCCAGAGAGTGGC





TGGACAGAGGAAGATGGTCCCAAAGAAGGACTT





GCTGAATACATTGTTGAGTTTCTGAAGAAGAAG





GCTGAGATGCTTGCAGACTATTTCTCTTTGGAA





ATTGATGAGGAAGGGAACCTGATTGGATTACCC





CTTCTGATTGACAACTATGTGCCCCCTTTGGAG





GGACTGCCTATCTTCATTCTTCGACTAGCCACT





GAGGTGAATTGGGACGAAGAAAAGGAATGTTTT





GAAAGCCTCAGTAAAGAATGCGCTATGTTCTAT





TCCATCCGGAAGCAGTACATATCTGAGGAGTCG





ACCCTCTCAGGCCAGCAGAGTGAAGTGCCTGGC





TCCATTCCAAACTCCTGGAAGTGGACTGTGGAA





CACATTGTCTATAAAGCCTTGCGCTCACACATT





CTGCCTCCTAAACATTTCACAGAAGATGGAAAT





ATCCTGCAGCTTGCTAACCTGCCTGATCTATAC





AAAGTCTTTGAGAGGTGTTAAATATGGTTATTT





ATGCACTGTGGGATGTGTTCTTCTTTCTCTGTA





TTCCGATACAAAGTGTTGTATCAAAGTGTGATA





TACAAAGTGTACCAACATAAGTGTTGGTAGCAC





TTAAGACTTATACTTGCCTTCTGATAGTATTCC





TTTATACACAGTGGATTGATTATAAATAAATAG





ATGTGTCTTAACATAA






MSH2
NM_000251.1
GGCGGGAAACAGCTTAGTGGGTGTGGGGTCGCG
 2




CATTTTCTTCAACCAGGAGGTGAGGAGGTTTCG





ACATGGCGGTGCAGCCGAAGGAGACGCTGCAGT





TGGAGAGCGCGGCCGAGGTCGGCTTCGTGCGCT





TCTTTCAGGGCATGCCGGAGAAGCCGACCACCA





CAGTGCGCCTTTTCGACCGGGGCGACTTCTATA





CGGCGCACGGCGAGGACGCGCTGCTGGCCGCCC





GGGAGGTGTTCAAGACCCAGGGGGTGATCAAGT





ACATGGGGCCGGCAGGAGCAAAGAATCTGCAGA





GTGTTGTGCTTAGTAAAATGAATTTTGAATCTT





TTGTAAAAGATCTTCTTCTGGTTCGTCAGTATA





GAGTTGAAGTTTATAAGAATAGAGCTGGAAATA





AGGCATCCAAGGAGAATGATTGGTATTTGGCAT





ATAAGGCTTCTCCTGGCAATCTCTCTCAGTTTG





AAGACATTCTCTTTGGTAACAATGATATGTCAG





CTTCCATTGGTGTTGTGGGTGTTAAAATGTCCG





CAGTTGATGGCCAGAGACAGGTTGGAGTTGGGT





ATGTGGATTCCATACAGAGGAAACTAGGACTGT





GTGAATTCCCTGATAATGATCAGTTCTCCAATC





TTGAGGCTCTCCTCATCCAGATTGGACCAAAGG





AATGTGTTTTACCCGGAGGAGAGACTGCTGGAG





ACATGGGGAAACTGAGACAGATAATTCAAAGAG





GAGGAATTCTGATCACAGAAAGAAAAAAAGCTG





ACTTTTCCACAAAAGACATTTATCAGGACCTCA





ACCGGTTGTTGAAAGGCAAAAAGGGAGAGCAGA





TGAATAGTGCTGTATTGCCAGAAATGGAGAATC





AGGTTGCAGTTTCATCACTGTCTGCGGTAATCA





AGTTTTTAGAACTCTTATCAGATGATTCCAACT





TTGGACAGTTTGAACTGACTACTTTTGACTTCA





GCCAGTATATGAAATTGGATATTGCAGCAGTCA





GAGCCCTTAACCTTTTTCAGGGTTCTGTTGAAG





ATACCACTGGCTCTCAGTCTCTGGCTGCCTTGC





TGAATAAGTGTAAAACCCCTCAAGGACAAAGAC





TTGTTAACCAGTGGATTAAGCAGCCTCTCATGG





ATAAGAACAGAATAGAGGAGAGATTGAATTTAG





TGGAAGCTTTTGTAGAAGATGCAGAATTGAGGC





AGACTTTACAAGAAGATTTACTTCGTCGATTCC





CAGATCTTAACCGACTTGCCAAGAAGTTTCAAA





GACAAGCAGCAAACTTACAAGATTGTTACCGAC





TCTATCAGGGTATAAATCAACTACCTAATGTTA





TACAGGCTCTGGAAAAACATGAAGGAAAACACC





AGAAATTATTGTTGGCAGTTTTTGTGACTCCTC





TTACTGATCTTCGTTCTGACTTCTCCAAGTTTC





AGGAAATGATAGAAACAACTTTAGATATGGATC





AGGTGGAAAACCATGAATTCCTTGTAAAACCTT





CATTTGATCCTAATCTCAGTGAATTAAGAGAAA





TAATGAATGACTTGGAAAAGAAGATGCAGTCAA





CATTAATAAGTGCAGCCAGAGATCTTGGCTTGG





ACCCTGGCAAACAGATTAAACTGGATTCCAGTG





CACAGTTTGGATATTACTTTCGTGTAACCTGTA





AGGAAGAAAAAGTCCTTCGTAACAATAAAAACT





TTAGTACTGTAGATATCCAGAAGAATGGTGTTA





AATTTACCAACAGCAAATTGACTTCTTTAAATG





AAGAGTATACCAAAAATAAAACAGAATATGAAG





AAGCCCAGGATGCCATTGTTAAAGAAATTGTCA





ATATTTCTTCAGGCTATGTAGAACCAATGCAGA





CACTCAATGATGTGTTAGCTCAGCTAGATGCTG





TTGTCAGCTTTGCTCACGTGTCAAATGGAGCAC





CTGTTCCATATGTACGACCAGCCATTTTGGAGA





AAGGACAAGGAAGAATTATATTAAAAGCATCCA





GGCATGCTTGTGTTGAAGTTCAAGATGAAATTG





CATTTATTCCTAATGACGTATACTTTGAAAAAG





ATAAACAGATGTTCCACATCATTACTGGCCCCA





ATATGGGAGGTAAATCAACATATATTCGACAAA





CTGGGGTGATAGTACTCATGGCCCAAATTGGGT





GTTTTGTGCCATGTGAGTCAGCAGAAGTGTCCA





TTGTGGACTGCATCTTAGCCCGAGTAGGGGCTG





GTGACAGTCAATTGAAAGGAGTCTCCACGTTCA





TGGCTGAAATGTTGGAAACTGCTTCTATCCTCA





GGTCTGCAACCAAAGATTCATTAATAATCATAG





ATGAATTGGGAAGAGGAACTTCTACCTACGATG





GATTTGGGTTAGCATGGGCTATATCAGAATACA





TTGCAACAAAGATTGGTGCTTTTTGCATGTTTG





CAACCCATTTTCATGAACTTACTGCCTTGGCCA





ATCAGATACCAACTGTTAATAATCTACATGTCA





CAGCACTCACCACTGAAGAGACCTTAACTATGC





TTTATCAGGTGAAGAAAGGTGTCTGTGATCAAA





GTTTTGGGATTCATGTTGCAGAGCTTGCTAATT





TCCCTAAGCATGTAATAGAGTGTGCTAAACAGA





AAGCCCTGGAACTTGAGGAGTTTCAGTATATTG





GAGAATCGCAAGGATATGATATCATGGAACCAG





CAGCAAAGAAGTGCTATCTGGAAAGAGAGCAAG





GTGAAAAAATTATTCAGGAGTTCCTGTCCAAGG





TGAAACAAATGCCCTTTACTGAAATGTCAGAAG





AAAACATCACAATAAAGTTAAAACAGCTAAAAG





CTGAAGTAATAGCAAAGAATAATAGCTTTGTAA





ATGAAATCATTTCACGAATAAAAGTTACTACGT





GAAAAATCCCAGTAATGGAATGAAGGTAATATT





GATAAGCTATTGTCTGTAATAGTTTTATATTGT





TTTATATTAACCCTTTTTCCATAGTGTTAACTG





TCAGTGCCCATGGGCTATCAACTTAATAAGATA





TTTAGTAATATTTTACTTTGAGGACATTTTCAA





AGATTTTTATTTTGAAAAATGAGAGCTGTAACT





GAGGACTGTTTGCAATTGACATAGGCAATAATA





AGTGATGTGCTGAATTTTATAAATAAAATCATG





TAGTTTGTGG






MSH6
NM_000179.2
GGCGAGGCGCCTGTTGATTGGCCACTGGGGCCC
 3




GGGTTCCTCCGGCGGAGCGCGCCTCCCCCCAGA





TTTCCCGCCAGCAGGAGCCGCGCGGTAGATGCG





GTGCTTTTAGGAGCTCCGTCCGACAGAACGGTT





GGGCCTTGCCGGCTGTCGGTATGTCGCGACAGA





GCACCCTGTACAGCTTCTTCCCCAAGTCTCCGG





CGCTGAGTGATGCCAACAAGGCCTCGGCCAGGG





CCTCACGCGAAGGCGGCCGTGCCGCCGCTGCCC





CCGGGGCCTCTCCTTCCCCAGGCGGGGATGCGG





CCTGGAGCGAGGCTGGGCCTGGGCCCAGGCCCT





TGGCGCGCTCCGCGTCACCGCCCAAGGCGAAGA





ACCTCAACGGAGGGCTGCGGAGATCGGTAGCGC





CTGCTGCCCCCACCAGTTGTGACTTCTCACCAG





GAGATTTGGTTTGGGCCAAGATGGAGGGTTACC





CCTGGTGGCCTTGTCTGGTTTACAACCACCCCT





TTGATGGAACATTCATCCGCGAGAAAGGGAAAT





CAGTCCGTGTTCATGTACAGTTTTTTGATGACA





GCCCAACAAGGGGCTGGGTTAGCAAAAGGCTTT





TAAAGCCATATACAGGTTCAAAATCAAAGGAAG





CCCAGAAGGGAGGTCATTTTTACAGTGCAAAGC





CTGAAATACTGAGAGCAATGCAACGTGCAGATG





AAGCCTTAAATAAAGACAAGATTAAGAGGCTTG





AATTGGCAGTTTGTGATGAGCCCTCAGAGCCAG





AAGAGGAAGAAGAGATGGAGGTAGGCACAACTT





ACGTAACAGATAAGAGTGAAGAAGATAATGAAA





TTGAGAGTGAAGAGGAAGTACAGCCTAAGACAC





AAGGATCTAGGCGAAGTAGCCGCCAAATAAAAA





AACGAAGGGTCATATCAGATTCTGAGAGTGACA





TTGGTGGCTCTGATGTGGAATTTAAGCCAGACA





CTAAGGAGGAAGGAAGCAGTGATGAAATAAGCA





GTGGAGTGGGGGATAGTGAGAGTGAAGGCCTGA





ACAGCCCTGTCAAAGTTGCTCGAAAGCGGAAGA





GAATGGTGACTGGAAATGGCTCTCTTAAAAGGA





AAAGCTCTAGGAAGGAAACGCCCTCAGCCACCA





AACAAGCAACTAGCATTTCATCAGAAACCAAGA





ATACTTTGAGAGCTTTCTCTGCCCCTCAAAATT





CTGAATCCCAAGCCCACGTTAGTGGAGGTGGTG





ATGACAGTAGTCGCCCTACTGTTTGGTATCATG





AAACTTTAGAATGGCTTAAGGAGGAAAAGAGAA





GAGATGAGCACAGGAGGAGGCCTGATCACCCCG





ATTTTGATGCATCTACACTCTATGTGCCTGAGG





ATTTCCTCAATTCTTGTACTCCTGGGATGAGGA





AGTGGTGGCAGATTAAGTCTCAGAACTTTGATC





TTGTCATCTGTTACAAGGTGGGGAAATTTTATG





AGCTGTACCACATGGATGCTCTTATTGGAGTCA





GTGAACTGGGGCTGGTATTCATGAAAGGCAACT





GGGCCCATTCTGGCTTTCCTGAAATTGCATTTG





GCCGTTATTCAGATTCCCTGGTGCAGAAGGGCT





ATAAAGTAGCACGAGTGGAACAGACTGAGACTC





CAGAAATGATGGAGGCACGATGTAGAAAGATGG





CACATATATCCAAGTATGATAGAGTGGTGAGGA





GGGAGATCTGTAGGATCATTACCAAGGGTACAC





AGACTTACAGTGTGCTGGAAGGTGATCCCTCTG





AGAACTACAGTAAGTATCTTCTTAGCCTCAAAG





AAAAAGAGGAAGATTCTTCTGGCCATACTCGTG





CATATGGTGTGTGCTTTGTTGATACTTCACTGG





GAAAGTTTTTCATAGGTCAGTTTTCAGATGATC





GCCATTGTTCGAGATTTAGGACTCTAGTGGCAC





ACTATCCCCCAGTACAAGTTTTATTTGAAAAAG





GAAATCTCTCAAAGGAAACTAAAACAATTCTAA





AGAGTTCATTGTCCTGTTCTCTTCAGGAAGGTC





TGATACCCGGCTCCCAGTTTTGGGATGCATCCA





AAACTTTGAGAACTCTCCTTGAGGAAGAATATT





TTAGGGAAAAGCTAAGTGATGGCATTGGGGTGA





TGTTACCCCAGGTGCTTAAAGGTATGACTTCAG





AGTCTGATTCCATTGGGTTGACACCAGGAGAGA





AAAGTGAATTGGCCCTCTCTGCTCTAGGTGGTT





GTGTCTTCTACCTCAAAAAATGCCTTATTGATC





AGGAGCTTTTATCAATGGCTAATTTTGAAGAAT





ATATTCCCTTGGATTCTGACACAGTCAGCACTA





CAAGATCTGGTGCTATCTTCACCAAAGCCTATC





AACGAATGGTGCTAGATGCAGTGACATTAAACA





ACTTGGAGATTTTTCTGAATGGAACAAATGGTT





CTACTGAAGGAACCCTACTAGAGAGGGTTGATA





CTTGCCATACTCCTTTTGGTAAGCGGCTCCTAA





AGCAATGGCTTTGTGCCCCACTCTGTAACCATT





ATGCTATTAATGATCGTCTAGATGCCATAGAAG





ACCTCATGGTTGTGCCTGACAAAATCTCCGAAG





TTGTAGAGCTTCTAAAGAAGCTTCCAGATCTTG





AGAGGCTACTCAGTAAAATTCATAATGTTGGGT





CTCCCCTGAAGAGTCAGAACCACCCAGACAGCA





GGGCTATAATGTATGAAGAAACTACATACAGCA





AGAAGAAGATTATTGATTTTCTTTCTGCTCTGG





AAGGATTCAAAGTAATGTGTAAAATTATAGGGA





TCATGGAAGAAGTTGCTGATGGTTTTAAGTCTA





AAATCCTTAAGCAGGTCATCTCTCTGCAGACAA





AAAATCCTGAAGGTCGTTTTCCTGATTTGACTG





TAGAATTGAACCGATGGGATACAGCCTTTGACC





ATGAAAAGGCTCGAAAGACTGGACTTATTACTC





CCAAAGCAGGCTTTGACTCTGATTATGACCAAG





CTCTTGCTGACATAAGAGAAAATGAACAGAGCC





TCCTGGAATACCTAGAGAAACAGCGCAACAGAA





TTGGCTGTAGGACCATAGTCTATTGGGGGATTG





GTAGGAACCGTTACCAGCTGGAAATTCCTGAGA





ATTTCACCACTCGCAATTTGCCAGAAGAATACG





AGTTGAAATCTACCAAGAAGGGCTGTAAACGAT





ACTGGACCAAAACTATTGAAAAGAAGTTGGCTA





ATCTCATAAATGCTGAAGAACGGAGGGATGTAT





CATTGAAGGACTGCATGCGGCGACTGTTCTATA





ACTTTGATAAAAATTACAAGGACTGGCAGTCTG





CTGTAGAGTGTATCGCAGTGTTGGATGTTTTAC





TGTGCCTGGCTAACTATAGTCGAGGGGGTGATG





GTCCTATGTGTCGCCCAGTAATTCTGTTGCCGG





AAGATACCCCCCCCTTCTTAGAGCTTAAAGGAT





CACGCCATCCTTGCATTACGAAGACTTTTTTTG





GAGATGATTTTATTCCTAATGACATTCTAATAG





GCTGTGAGGAAGAGGAGCAGGAAAATGGCAAAG





CCTATTGTGTGCTTGTTACTGGACCAAATATGG





GGGGCAAGTCTACGCTTATGAGACAGGCTGGCT





TATTAGCTGTAATGGCCCAGATGGGTTGTTACG





TCCCTGCTGAAGTGTGCAGGCTCACACCAATTG





ATAGAGTGTTTACTAGACTTGGTGCCTCAGACA





GAATAATGTCAGGTGAAAGTACATTTTTTGTTG





AATTAAGTGAAACTGCCAGCATACTCATGCATG





CAACAGCACATTCTCTGGTGCTTGTGGATGAAT





TAGGAAGAGGTACTGCAACATTTGATGGGACGG





CAATAGCAAATGCAGTTGTTAAAGAACTTGCTG





AGACTATAAAATGTCGTACATTATTTTCAACTC





ACTACCATTCATTAGTAGAAGATTATTCTCAAA





ATGTTGCTGTGCGCCTAGGACATATGGCATGCA





TGGTAGAAAATGAATGTGAAGACCCCAGCCAGG





AGACTATTACGTTCCTCTATAAATTCATTAAGG





GAGCTTGTCCTAAAAGCTATGGCTTTAATGCAG





CAAGGCTTGCTAATCTCCCAGAGGAAGTTATTC





AAAAGGGACATAGAAAAGCAAGAGAATTTGAGA





AGATGAATCAGTCACTACGATTATTTCGGGAAG





TTTGCCTGGCTAGTGAAAGGTCAACTGTAGATG





CTGAAGCTGTCCATAAATTGCTGACTTTGATTA





AGGAATTATAGACTGACTACATTGGAAGCTTTG





AGTTGACTTCTGACAAAGGTGGTAAATTCAGAC





AACATTATGATCTAATAAACTTTATTTTTTAAA





AATGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAA






PMS2
NM_000535.6
AGCCAATGGGAGTTCAGGAGGCGGAGCGCCTGT
 4




GGGAGCCCTGGAGGGAACTTTCCCAGTCCCCGA





GGCGGATCGGGTGTTGCATCCATGGAGCGAGCT





GAGAGCTCGAGTACAGAACCTGCTAAGGCCATC





AAACCTATTGATCGGAAGTCAGTCCATCAGATT





TGCTCTGGGCAGGTGGTACTGAGTCTAAGCACT





GCGGTAAAGGAGTTAGTAGAAAACAGTCTGGAT





GCTGGTGCCACTAATATTGATCTAAAGCTTAAG





GACTATGGAGTGGATCTTATTGAAGTTTCAGAC





AATGGATGTGGGGTAGAAGAAGAAAACTTCGAA





GGCTTAACTCTGAAACATCACACATCTAAGATT





CAAGAGTTTGCCGACCTAACTCAGGTTGAAACT





TTTGGCTTTCGGGGGGAAGCTCTGAGCTCACTT





TGTGCACTGAGCGATGTCACCATTTCTACCTGC





CACGCATCGGCGAAGGTTGGAACTCGACTGATG





TTTGATCACAATGGGAAAATTATCCAGAAAACC





CCCTACCCCCGCCCCAGAGGGACCACAGTCAGC





GTGCAGCAGTTATTTTCCACACTACCTGTGCGC





CATAAGGAATTTCAAAGGAATATTAAGAAGGAG





TATGCCAAAATGGTCCAGGTCTTACATGCATAC





TGTATCATTTCAGCAGGCATCCGTGTAAGTTGC





ACCAATCAGCTTGGACAAGGAAAACGACAGCCT





GTGGTATGCACAGGTGGAAGCCCCAGCATAAAG





GAAAATATCGGCTCTGTGTTTGGGCAGAAGCAG





TTGCAAAGCCTCATTCCTTTTGTTCAGCTGCCC





CCTAGTGACTCCGTGTGTGAAGAGTACGGTTTG





AGCTGTTCCGATGCTCTGCATAATCTTTTTTAC





ATCTCAGGTTTCATTTCACAATGCACGCATGGA





GTTGGAAGGAGTTCAACAGACAGACAGTTTTTC





TTTATCAACCGGCGGCCTTGTGACCCAGCAAAG





GTCTGCAGACTCGTGAATGAGGTCTACCACATG





TATAATCGACACCAGTATCCATTTGTTGTTCTT





AACATTTCTGTTGATTCAGAATGCGTTGATATC





AATGTTACTCCAGATAAAAGGCAAATTTTGCTA





CAAGAGGAAAAGCTTTTGTTGGCAGTTTTAAAG





ACCTCTTTGATAGGAATGTTTGATAGTGATGTC





AACAAGCTAAATGTCAGTCAGCAGCCACTGCTG





GATGTTGAAGGTAACTTAATAAAAATGCATGCA





GCGGATTTGGAAAAGCCCATGGTAGAAAAGCAG





GATCAATCCCCTTCATTAAGGACTGGAGAAGAA





AAAAAAGACGTGTCCATTTCCAGACTGCGAGAG





GCCTTTTCTCTTCGTCACACAACAGAGAACAAG





CCTCACAGCCCAAAGACTCCAGAACCAAGAAGG





AGCCCTCTAGGACAGAAAAGGGGTATGCTGTCT





TCTAGCACTTCAGGTGCCATCTCTGACAAAGGC





GTCCTGAGACCTCAGAAAGAGGCAGTGAGTTCC





AGTCACGGACCCAGTGACCCTACGGACAGAGCG





GAGGTGGAGAAGGACTCGGGGCACGGCAGCACT





TCCGTGGATTCTGAGGGGTTCAGCATCCCAGAC





ACGGGCAGTCACTGCAGCAGCGAGTATGCGGCC





AGCTCCCCAGGGGACAGGGGCTCGCAGGAACAT





GTGGACTCTCAGGAGAAAGCGCCTAAAACTGAC





GACTCTTTTTCAGATGTGGACTGCCATTCAAAC





CAGGAAGATACCGGATGTAAATTTCGAGTTTTG





CCTCAGCCAACTAATCTCGCAACCCCAAACACA





AAGCGTTTTAAAAAAGAAGAAATTCTTTCCAGT





TCTGACATTTGTCAAAAGTTAGTAAATACTCAG





GACATGTCAGCCTCTCAGGTTGATGTAGCTGTG





AAAATTAATAAGAAAGTTGTGCCCCTGGACTTT





TCTATGAGTTCTTTAGCTAAACGAATAAAGCAG





TTACATCATGAAGCACAGCAAAGTGAAGGGGAA





CAGAATTACAGGAAGTTTAGGGCAAAGATTTGT





CCTGGAGAAAATCAAGCAGCCGAAGATGAACTA





AGAAAAGAGATAAGTAAAACGATGTTTGCAGAA





ATGGAAATCATTGGTCAGTTTAACCTGGGATTT





ATAATAACCAAACTGAATGAGGATATCTTCATA





GTGGACCAGCATGCCACGGACGAGAAGTATAAC





TTCGAGATGCTGCAGCAGCACACCGTGCTCCAG





GGGCAGAGGCTCATAGCACCTCAGACTCTCAAC





TTAACTGCTGTTAATGAAGCTGTTCTGATAGAA





AATCTGGAAATATTTAGAAAGAATGGCTTTGAT





TTTGTTATCGATGAAAATGCTCCAGTCACTGAA





AGGGCTAAACTGATTTCCTTGCCAACTAGTAAA





AACTGGACCTTCGGACCCCAGGACGTCGATGAA





CTGATCTTCATGCTGAGCGACAGCCCTGGGGTC





ATGTGCCGGCCTTCCCGAGTCAAGCAGATGTTT





GCCTCCAGAGCCTGCCGGAAGTCGGTGATGATT





GGGACTGCTCTTAACACAAGCGAGATGAAGAAA





CTGATCACCCACATGGGGGAGATGGACCACCCC





TGGAACTGTCCCCATGGAAGGCCAACCATGAGA





CACATCGCCAACCTGGGTGTCATTTCTCAGAAC





TGACCGTAGTCACTGTATGGAATAATTGGTTTT





ATCGCAGATTTTTATGTTTTGAAAGACAGAGTC





TTCACTAACCTTTTTTGTTTTAAAATGAACCTG





CTACTTAAAAAAAATACACATCACACCCATTTA





AAAGTGATCTTGAGAACCTTTTCAAACCAGATG





GAGCATTGCTTGCAAATTTTTTTTCTCTATGTT





TGCATGCGCTCGTGTGTGTGTGTCCAGGCAAGA





ACACATTTTATAAAAATAAGAACACTTGGGCTG





GGCATGGTGGCTCATGCCTGTGATCGCAGCACT





TTGGGAGGCCGAGGCCGGCGGATCACCTGAGAT





CAGAAGTTCGAGACCAGCCTGACCAACATGGAG





AAACCCTGCCTCTACTAAAAATACAAAATTAGC





CAGGTGTGCTGGCGCATGCCTGTAATCCCCGCT





ACCCAGGAGGCTGAGGCAGGAGAATCGCTTGAA





CCCGGGAGACGGAGGTTGCAGTGAACCGAGATT





GCGCCACTGCGCTCCAGCCTGGGTGAGATAGAA





CAAGACTGTGTCTCAAAAAACAAAACAAAACAA





AACAAAAAAAAAAAAACCAAACCACTTTGGAAG





TTACTCAGGCCTCTGCTCTGGCTGGACATAGTT





TAGTCTATAACTTTCAACCCTTAATGATAATTA





AATTCATCTTTGTTTAATTTCATAAATTTAAAA





GTAGGGTCCTTTTCAGTTAGTGATTCTCAGCCC





TGATTCACATTAAATTTTTAAACACGGGGGATT





CTCTGCCCGGCTGGAAGAAAATGACTGGATGGG





ACAGGGGTCACTATTTGAAACATTCCTCTGTGC





GGCCAAGGTCGCAAAATGCTGTCCTCGCAGGGG





AACAAAAAGAGTTTGATTTCCCATAATTTGATG





CTGTGATTTGGTTTCCTCAGGATGTGAACTGTA





GAACATTCCAGTTACTGGCCTTGAATGGTTCTG





GGAATATAAGAATCCCTGTCTGTCTTTTCAAAT





AGTTTTCATGGAACCTTGTCCTGTTTGAACTTG





GCTGAAAATGGAAGTAAAGATGCCCTCTTGGGG





GCCCAGAGATGACAGATGTGGCTCCCCCTGCTG





CCCCCACCCCTTCTCCAGACTGTGGGCGGCTCC





CCTTCCTGCTTTAGAATCCCTCAGATGGAGGAG





GCAGTACAGTAGTCACTGTGCCATCGTGTCTGG





CACTGTGCTGGCGTGGTCTGCAGGATCCCACTT





ATGAACTCTCCAGATTGGGAGCTGTGGCAGGAT





AACAGCCCCCAAGACAGCTGTGTCCTAATCCCC





AGAACCTGTGACCACGCTGCCTCACGTGGCAGA





AGGGACTCGGCAGGTGTGATTGAGTGAAGGATC





TTTTTTTTTTTTTTCTTTGAGATGAAGTTTCGC





TCTTGTTGCCCAGGCTGGAGTTCAATAGCATGA





TCTCAGCTCACTGCAGCCTCTGCCTCCCAGGTT





CAAGTGATTCTCCCACCTCAGCCTCCCGAGTAG





CTGGGATTACAGGTGTCCAGAACCATACTGGCT





AATTTTTGTATTTTTAGTAGAGACAGGGTTTCA





CCATGTTGACCAGGCTGGTCTCGAACTCCTGAC





CTCAGGTGATCCGACCGCCTCGGCCTCCCAAAG





TGCTGGGATTACAGGTGTGAGCCATCATGCCTG





GCTGAGTTAAGGATCTTGCAACAGAGAGATTAT





CCTGGATTGTCTGGGTGGGCCCAGTCCATTGGG





TGAGTCCTTCAAAGGTGGAGACCTTTCCCTGCT





GGCCAGAGAGAGGCTGTCTTGCTGGTTTTGGAG





ATGGAAGGAGGTACCACTAGTCAAGGATTGCAA





GCAGTCTCTAGAACAGGGATTCCAACACTCCGG





ACACAGACCAGTAGTGGTCCATGGCCTATTAGG





AAGTGGGGTGCACAGCAGGTTAGGGGCCGGCAA





GCCAGCGAAGCTTCATCTGTATTTATAGCCACT





CCCCGTCGCTGGCGTTACCACCCGAGCTCCGCC





TCCTGTCACATCAGCGGTGGGCATTAGATTCTC





ATAGCAGCACGAGCCCTATTGTGAACTGCACAC





ACGAGGGATGTAGGTTGCACGCTCCTTATGAGA





ATCTGATGCCTGATGATCTGTCACTGTCTCCCG





TCACCCCCAGATGGGGCTGTCTAGTTGCAGGAA





AACAAGCTCAGGGCTCCCACTGAGTCTCTGTGA





TGGTGAGTTGTAGAATTATTTAATTATATGTTA





CAATGTAATAATAGTAGAAATAAAGTGCACAAT





AAATGCAATGCACTTGAATCGTCCTGAAACCAT





CCCTCCCCGACCCCAATCCATGGAAAAATTGTG





TTCCGCGAAACCGGTCTCTGGTGCCAAAAAGGT





TGGGGACCGCTTCTGGAAAAGCTGGAAAAGGCA





AGAAAACGCATTCTCTCCCTCAGCCTCTGGAAG





GAACCAGCACTGTGGGACTAATTTACATACTGT





AGGGTAATAAATTTGTGTTGCTTCGAACCACTA





AAAAAAAA






EPM2AIP1
NM_014805.3
GCTTGCGCGTTAGAGATCGCTGTCCGCTCTTCC
 5




TATTGGTTCGTTTTTAGGAGCTCGGGGAATACG





AAATATCCAGCCAATAGGAGCAGAGATGCCGGA





ACCGGGCTTGTGTGCCTCTGCTGAGGTGATCTG





GCGCAGAGCGGAGGAGGTGCTTGGCGCTTCTCA





GGCTCCTCCTCTCCCCTTGCGGCCTTTCTAACG





TTGGCCCTGCTCTTGTGGCCTCCCGCAGAATGT





GGATGACGCCCAAAAGAAGCAAGATGGAAGTCG





ACGAGGCTCTAGTTTTCCGGCCCGAGTGGACCC





AGCGTTATTTGGTGGTGGAGCCTCCGGAGGGCG





ATGGGGCCCTGTGCCTGGTCTGTCGCCGCCTCA





TCGTAGCTACCCGCGAACGCGACGTCAGGCGCC





ACTACGAGGCTGAGCACGAATACTACGAGCGGT





ATGTGGCGGACGGCGAGCGCGCGGCCCTGGTGG





AGCGTCTGCGTCAGGGCGACTTGCCCGTGGCCT





CCTTCACTCCTGAAGAGAGAGCTGCTCGTGCAG





GCCTCGGGCTCTGCCGCCTCTTGGCCTTGAAGG





GTCGCGGCTGGGGTGAGGGGGACTTTGTATACC





AGTGCATGGAGGTGTTGCTGAGAGAGGTACTGC





CCGAGCATGTAAGCGTCCTGCAAGGCGTTGACT





TATCTCCAGATATCACAAGGCAGAGGATCCTGA





GCATTGACAGGAATCTACGCAACCAGCTTTTTA





ACCGAGCCAGGGACTTTAAAGCCTATTCTCTTG





CCTTGGACGACCAGGCTTTTGTGGCCTATGAGA





ACTACCTCCTGGTCTTTATCCGCGGTGTAGGCC





CTGAGTTGGAGGTGCAAGAAGATCTTCTGACCA





TAATCAACCTGACTCATCATTTCAGTGTTGGTG





CGCTCATGTCGGCAATCCTAGAGTCCCTGCAGA





CAGCAGGGCTTAGCTTGCAGAGAATGGTTGGAC





TGACCACGACCCATACTTTGAGGATGATTGGTG





AGAACTCAGGACTCGTCTCATACATGAGAGAAA





AGGCCGTAAGCCCCAACTGTTGGAATGTCATTC





ATTATTCAGGATTTCTTCACTTGGAACTGTTGA





GCTCCTATGATGTAGATGTTAATCAGATCATAA





ATACCATATCCGAATGGATAGTTTTGATTAAGA





CCAGAGGCGTTAGGCGACCTGAATTTCAGACTT





TACTAACGGAATCTGAATCAGAGCATGGTGAAA





GGGTTAATGGACGATGTCTGAACAATTGGCTTA





GGAGAGGGAAAACTTTAAAACTAATATTCTCTC





TAAGAAAAGAAATGGAAGCGTTCTTGGTTTCAG





TAGGGGCAACAACAGTCCACTTCTCAGACAAAC





AATGGCTTTGTGACTTTGGCTTCTTGGTGGACA





TTATGGAACACCTTCGAGAACTCAGTGAAGAAT





TACGAGTTAGTAAAGTCTTTGCTGCTGCTGCCT





TTGACCATATTTGTACTTTCGAAGTTAAGCTGA





ATTTATTTCAAAGACATATTGAGGAAAAAAATC





TAACAGACTTTCCTGCCCTCAGAGAAGTTGTTG





ATGAGCTAAAACAGCAAAATAAGGAAGATGAAA





AAATATTTGATCCTGATAGGTATCAAATGGTGA





TCTGTCGTCTCCAAAAAGAATTTGAGAGACATT





TTAAGGACCTCAGGTTCATTAAAAAGGACTTAG





AACTTTTTTCAAATCCATTTAACTTTAAACCTG





AATATGCACCTATTTCAGTGAGGGTGGAGCTAA





CAAAACTTCAGGCAAACACTAATCTTTGGAATG





AATACAGAATCAAAGACTTGGGGCAGTTTTATG





CTGGATTGTCTGCTGAATCCTACCCAATTATCA





AAGGGGTTGCCTGTAAGGTGGCATCCTTGTTTG





ATAGTAACCAAATCTGTGAAAAGGCTTTTTCAT





ATTTGACTCGAAACCAACACACTTTGAGTCAGC





CATTAACAGATGAGCATCTCCAAGCCCTGTTTC





GGGTTGCCACAACTGAAATGGAGCCCGGTTGGG





ATGACCTTGTGAGAGAAAGAAATGAATCTAATC





CATAAGGCTTTGTAGTACAAGATTGAAAAACTC





AACAAGAATTTAATTCTAAAAGCAAAAATTGGT





TTGAGTTTTCAAGTTTACTAATTTGGATTGTGA





GAAAGTACCAAGTACCAGCCGTCCAAACTGATC





ACAATTAAAATTCTGACAGTTGCCTTTTTTTTC





ATCTCAAATGGCAGCATGGGACTGAAACATGAG





AATGCCACCTTTTTTAAAACTTAGTTTAGTGAC





AAAGTCATTGTCTTTTATGATATAGTTAATTTT





AAAGAGATTTAGTATTAATGTGAGTTGAATTTG





CAGTCTGTTTTTTAGGTGTTCTGAAGATAAATG





CCAAAAATTTCAGCTCTTATTTTAATGGAGTGT





TAAAATTCTGATTCATATAGTCTTAAATTATCA





ACTCCTTAAATGTGCTTTTGAACCAATTTGCAG





AAGCTCACATAGCAAGTTCATAAGTTTCCAAAA





AGGAAGCCCATACATAACAGTGGAGGTGTTTTG





TCTAACCATCAAAATGTTTGAGACTTTTTTTTA





AACATTTCTGAGTTCGAAGGTAATACTGACAGA





TTTCTTCCCTCTTCCCTCCCCATCACCCACCTC





AGTGATAACACATTACTGATAGAGGAAGTCATT





AGAATCATTTTTAAGTTTCAGATATAGGAGACT





TCATGCAATTTGGAGATAAGACTAATTATTGGG





GGTTTTCCTTGGATTTTTTTTTTAATAACTGGG





GGCTATTTTATCAGCTTGCCTATTAAAGGACTA





TGGTAAGTATAGAATCTTAATGGTTGCCAGTTA





GTAATTCTTTTTTTTTTTTTTTTTACTGTAGAC





ACAAGTTTGGCCCTATCAAAAACGATGAGGAAA





AAAGATTGCACTCCAGGATTAGGAGGTGTGAGA





TATTTTAGCTTTTTTGTCTTATCTGCGTGGGTA





TTGCTGCTTTATTTTAAAAAATCCTGCCTAAAG





TAAACACTTTGTTTTAAAATGATACAGTATCAG





ATTTTGTTAGATGCTAGAAATGGATTTATTCTA





AAATTTGGAACTGTCGTACACATTCTATATGTA





AGATAGCACACAAGTAGAAATATTTAAAAGCAG





TCTTATTCACAGATTGCAGTAATTCTGTATTTC





TACTAAGATAATCTGCTTTGTGCCAAAACAGTA





ATTTCCAAACTTCTGTTCACCATGAAAAGGCAA





TCTTAAAGTTCATTATGTAAAACTAATTATAAA





CAGGACCCAATTTATATTCATAGATCCTCTCAA





GTATTATACAATTTAAAAACTCTTGTTCCAAAG





TCCTGTCTTAACTATTGAAACACCTTAATCTGT





GGTTACTAATCCAGCAAATTCAAGGAACCAGGC





TATGACTAAGAATTTAGGTGGAATTGATGTCTG





GGCAATTAAAATAAATGGCATAAGAGCTTAAAA





ACCAAAGTTGTGCCAGTGGCTTTCAACTAGAGG





CAGTAACCTGTCATTCCAGAGGATGCTGAGAAA





TGTGTAGGGGCACTTTTTTGGTTGTCATATTTA





CTAGGGGCTTCTGTTGGCATTTAAGCCTAAAGA





CACTCACCCCTGCAGTGCATGGGACAGCCTGGC





ACAATGAAGAATTAGCCCTCCCAAAATGTAGAT





TATTTTATTTCAAGGGATAGGGCAGATTACCAT





TAGAAGCAAAATTAAAAGTACAAGCTGGGCAAA





CTGACAGAATACTAGATAGGAGAGACTAATTCC





AACCTTCTAAATTTGGCTAGTAAAGTGCAATAA





AGGCATTGATAAGTTCTGTTAGCTCACCATAGC





ACTTGTAAATCAGGAATTAATAATTGAATCAGA





TTTAAGGGCTCTGTCCTGTTATACATATTTAAG





GCAGAAAAAAAGTTACATGTCGATTAGGTACTT





ATCAAGAATGGTCAAGCTGAGATTTTGGTTAAT





AGAGTAAGCTTACATATCTAGAGAAACAACATA





GTGGAAAACCGAAAAAAAAAAACAGAAAAATCT





ACCGGTAATTTCCCAATAGCTTTGAATATTCAC





AGCAGAGCTTTATTACTTGAGAGAAAGACTGGA





AGACCTGAAAGCCACTTCTGCTTTCTAACCCCA





GTTCCTTAAATATTGAAATCTTGTACATTTTGT





GAAATTCCAGTATGTTTTGCTTAAGGTGTTAAT





AAAATTAGTTTGCATCATGTAGTCATTGAGTGA





GGGGGAGATATAAGCCAAGGATTTTAAATTGAC





CCTTAGCTATAGAGAATTTGCTATAAGCTAGTC





TTGTTTGTAAAAAAAAAAAAAAAAAAAGAAAAA





GAAAAAAGTGTATTTTACTGTTTTCTGTATTAA





GTAATTCTGTAACTGCATGGCAGTCTTTTTTTT





TTTAAATAAATATAGTTGTTACTGGTCCTGTTG





TAGCAGTGAATATAGTTAAAATACGTACATTAA





AAAAAAAATTATTAGGTCCTTACCAGTTACTGT





CCTATAGCTCATTCCTACTAGTTTTCTTGACAG





ATTTGTATTCCCAGTGTCCCGTATTGCCACTCA





AATTGCTCTACTATGCTAAGTCCTTGTTAATAG





TCTTACCCTCCTTGAAACACTTGAACACTTGAT





GACTTTAGCTTTGAGGAGATACCATCTCCAGGT





GTGCTTTCTTAGTCTTTGCAGGCACCTCTTCCC





TTCAATATCTGTTCTTCGTATTTTTAAAAAAAT





TTGTTTTAGACTGCCTTGTTCTGTGTCAGCTCG





CTAGCTGATCTCATTTCCTTCCATGGTTTCCTT





ACCATTTATATGCAAATGACTGTCAGATTCATA





TCTCCTTTCTAGATCTTCCCTAATTGATGTATC





TAATTGCTAACAAATGCTCTTTGCTGTCTCAGG





CACTACATGTCATTGATCTTGCCCCCAATCCTG





CTCCTCCTCTCATGTTTCCTCTTTGACTAAATG





GCATTACCACTACCAACCATTCATTTGTCCTTT





TTACCAATTCTCCAATGCTGCCATTTTAATTCA





GGCCATCAACCTACCTAAATTATAGCAACAGCC





TCCTTATTAGTCTCCCTGTTTTTTATTTTTATT





CCTTTCTACACTACAACCAAATTGCTCCAAAAG





ACTTACTGATCATGTCACTGCATTGCTTTCACC





ATTGCTCTTAGGGTACAATACAAATTTATCTTC





ATCTTTAAGGTCTCAGTATGCCACTTCATCTAG





GAAACCTTCATTGATGCCCTCTAGATTAGGTGC





CCTTACTATCCATTCCCTATACACCCTGTTCTT





TCCCAGACATACACTTGGCACACTTTATTGTTA





CTGCTTATTGATCACTGCTAGACTGTAAGCTTT





GTAAGGGCAGGGACCATATAAGCCTTGTTCACT





GTTATATCTCTAGTGCTTAGCACAATGCCTGGC





ATTTCAATAAATGTTTGGACAAACGAATATTTG





TGTAGTGTTTTACAATTTTTGAAGCTCTTTCAC





AGTCTTATTTGACCTTCACAGTCATTCTGCCTT





AGACTGTCCATTGGGTAACTTTTATCCACATAT





TACTAATTGAAAAATGAAGACAAGTTCTTTGTA





ACTAGGGACCTCGTTGTATTCTCAGAATTTAGT





GTAGTGCTTAGCATGTGACTTAAATATGTATTA





TGTGACTGTTAAACAAATTGTGGTTTTCTCTGT





TGTATGAAAGGAGAGAAGGATAACAAATTGCGG





TTTTCCCTGGTAAACACAGTAAGTAGTAAACTC





AGGATTCAAAACCAAATATACACACCAAATCCA





CTATGTAATATTAAGTTTGCATATCCATGTATA





GAATCTTATTTTTTTTTACCCTTTGTAAACAGT





GTCATATATATATATATATTTTTTTTTTTTTTT





TAAATTTCCAAAGGAACCTACATATAGAGGGAA





AAGATTAGACAACTACTTAGTGAACTAAAACAA





TATGTTTTTACTAAATGTTACATTTAGTATTGG





AAAAAGATAATGCCGCCTAAGAGTTAATAATCA





TTTTTCCTTTTGTAGGCATCAACACTAGGAGAA





AATGGCATGCTATTTACTTGCTACTTTCCTTTA





CAGATGATTTTTGGCTCTTCTGGGATTTAAAAG





TAAGTAAATTTAACAAAGTAGAAGACTGACTCA





GCCCTTCTGGTCACTATATATTCAGTTCACTTG





TTTTTACACCTGCAGAATGTCCTTATCACCCAA





AGGGAGATGACCCAAAAGTGACATCTAGTTAAT





GTATACTTCTAAAGTTTGCTGTATTCCTTTGCC





TTCTTGTTCCCATGCCTCTCTGAACTTAATTTC





TGGGTAACTGAGGCTTTTCAGGCTTAGGTGGGA





AAGCCACACCCTTAGTCTGTTTCCTTAAGCCAT





TTTGACCAATTTATGGGATTAACTAGTATAATC





TTAGTTGGAGTTTTAGTCTGAGGCATATTAAGT





CATTCAGAGATCTTAACAGTAGGTGTCATAGTC





ATCCAGTGATTTGGTGCTTGCTGCAAAACTGGC





TTTTTTTTTTTTTTTTTTTTTTGAGGCGGGGTC





TCACTTTGTCACCCAGGCTGGAGTGCAGAGGTA





CAATCTCAGCTCAATGCAATCTCTGCCTTCCTG





GCTCAAGCAATTCTCCCACTGCAGCCTCCTAAG





TAGCTGGGAATACAGGTATACACGAGTACACCC





AGCTAATTTTTGTATTTTTATGTGGAGACAGGG





TCTTGCTGTATTCCCCAGGCTAGTCTCGAATTC





CTGGACTCAAGCAGTCCGCCCGCCTCGGGCTCC





CAAAATGTTGGTGTTATACGTGTGAGCCTCTGC





ACCCGGCGGCAAAACTGGCTTTTAATCAACCTT





TTGGCTAAAGGATTTCTCTTTTTATTTATTTGT





AAAAGGATTTCCCATTTTTATCTTTCTTTTTGA





TATTAAAATGTTGCCTCATCCTACCCAGTAAGT





ACTTGAATTTGAATTCTCTTCCTTTTCATTTTT





GCCTGCAAACTGACCAGTCTTTTCTGAGTTCAT





CTCTTCTGTACGTTTTGTCAAGTGCAGTGAACA





GCAACTACAAAATATTTTGTTTTTCTGTCTTTT





TCTTTAGTAAAGGGTAGATGATCTGCCTTTCAG





GTTATCTCAAGGGGCAGTTTCACCTTTCCATAA





TATAAATTACCCTTGTGTAAGTTATTTCTTCCA





TCTTCTGATAGCAATTTCCTGAATGCCTGCCAG





CTAACCATTAAGCCAGTGTTCAGTATTTTAGCA





TTTTAAAAAACAAGGGACCAATTTCTGTGTCAG





CATGGGCTAGCTTGCCATTGAATAACAAAGGCA





AAATCTCACTGTCTCACACAACTTTTCTATTGC





AACTTGCCTAGGGACTTTGGTTTAGATCATAGG





TTGGCCATGATCAAACTATGGTCCATGGGCAAA





ATCTGTCTAGCTCCTTATTTATCTAAATAAAGT





TTTACTGGAATATA






TTC30A
NM_152275.3
GCGGCGCCACAGGAACGATGCATGCCGGGACCG
 6




GGAAGATTCAGTCTCTGAACGGCCCGGAGTAGT





CGTCTTTCCCCTTCTGACTGCCGCCACGCTGCA





GTCCAGAATATTTGAAGATCAAACCGAACTTGA





GAGACTAACGAGAACGGTCCCTTTTTATTCCTA





ACAGATTCCTTCCGTGGCAAAGTAACCCGTCGT





CTTCCGTTTCCGGTTGCCCGGTTGCCCTGTTGC





CGTGGTAACCGCACGCATAACAGCCGTGGTGGT





TATGGCTGGTCTGAGCGGCGCGCAGATCCCCGA





CGGGGAGTTTACCGCGCTAGTGTACCGGCTCAT





CCGCGATGCCCGCTACGCCGAGGCGGTGCAGCT





GCTGGGCCGAGAACTGCAGCGGAGCCCCAGGAG





CCGTGCCGGCCTGTCGCTGCTAGGCTACTGCTA





CTACCGCCTGCAGGAGTTCGCGCTGGCGGCCGA





GTGCTATGAGCAGCTGGGCCAGCTGCACCCGGA





ACTGGAGCAGTACCGCCTGTACCAGGCCCAGGC





CCTGTACAAGGCCTGCCTTTATCCGGAGGCCAC





TCGGGTCGCCTTCCTTCTCCTGGATAACCCCGC





CTACCACAGCCGGGTCCTCCGCCTGCAAGCTGC





CATCAAGTATAGCGAGGGCGATCTGCCAGGGTC





CAGGAGCCTGGTGGAGCAGCTGCTGAGTGGGGA





AGGGGGAGAAGAAAGTGGAGGCGACAATGAGAC





CGATGGCCAGGTCAACCTGGGTTGTTTGCTCTA





CAAGGAGGGACAGTATGAAGCTGCATGCTCCAA





GTTTTCTGCCACACTGCAGGCCTCGGGCTACCA





GCCTGACCTTTCCTACAACCTGGCTTTGGCCTA





TTACAGCAGCCGACAGTATGCCTCAGCACTGAA





GCATATCGCTGAGATTATTGAGCGTGGCATCCG





CCAGCATCCTGAGCTAGGTGTGGGCATGACCAC





CGAGGGCTTTGATGTTCGCAGTGTTGGCAACAC





CTTAGTTCTCCATCAGACTGCTCTGGTGGAAGC





CTTCAACCTTAAGGCAGCCATAGAATACCAACT





GAGAAACTATGAGGTAGCTCAAGAAACCCTCAC





CGACATGCCACCCAGGGCAGAGGAAGAGTTGGA





CCCTGTGACCCTGCACAACCAGGCACTAATGAA





CATGGATGCCAGGCCTACAGAAGGGTTTGAAAA





GCTACAGTTTTTGCTCCAACAGAATCCCTTTCC





TCCAGAGACTTTTGGCAACCTGTTGCTGCTCTA





CTGTAAATATGAGTATTTTGACCTGGCAGCAGA





TGTCCTGGCAGAAAATGCCCATTTGACGTATAA





GTTCCTCACACCCTATCTCTATGACTTCTTAGA





TGCCCTGATCACTTGCCAGACAGCTCCTGAAGA





GGCTTTCATTAAGCTTGATGGGCTAGCAGGGAT





GCTGACTGAGCAGCTTCGGAGACTCACCAAGCA





AGTACAGGAAGCAAGACACAACAGAGATGATGA





AGCTATCAAAAAGGCAGTGAATGAATATGATGA





AACCATGGAGAAATACATTCCTGTGTTGATGGC





TCAGGCAAAAATCTACTGGAATCTTGAAAATTA





TCCAATGGTGGAAAAGGTCTTCCGCAAATCTGT





GGAATTCTGTAACGACCATGATGTGTGGAAGTT





GAATGTGGCTCATGTTCTGTTCATGCAGGAAAA





CAAATACAAAGAAGCCATTGGTTTCTATGAACC





CATAGTCAAGAAGCATTATGATAACATCCTGAA





TGTCAGTGCTATTGTACTGGCTAATCTCTGTGT





TTCCTATATTATGACAAGTCAAAATGAAGAAGC





AGAGGAGTTGATGAGGAAGATTGAAAAGGAGGA





AGAGCAGCTCTCTTATGATGACCCAAATCGGAA





AATGTACCATCTCTGCATTGTGAATTTGGTGAT





AGGAACTCTTTATTGTGCCAAAGGAAACTATGA





GTTTGGTATTTCTCGAGTTATCAAAAGCTTGGA





GCCTTATAATAAAAAGCTGGGAACAGATACCTG





GTATTATGCCAAAAGATGCTTCCTGTCCTTGTT





AGAAAACATGTCAAAACACATGATAGTCATTCA





TGACAGTGTTATTCAAGAATGTGTCCAGTTTTT





AGGACACTGTGAACTTTATGGCACAAACATACC





TGCTGTTATTGAACAACCCCTCGAAGAAGAAAG





AATGCATGTTGGGAAGAATACAGTCACAGATGA





GTCCAGACAATTGAAAGCTTTGATTTATGAGAT





TATAGGATGGAATAAGTAGTTATGACTGATAGT





GGCTTTTTTCAAAATGGCTTTCTTACGTACCAC





ACTTTTTTTTATCTGTATTTAGCCTTGGCATCT





TTATATTTGTCTTATTTTGAATCTTATCCACTT





TGTAAGAACAAGTTTATGTTTGAGCAACTTTTT





CATTTAATCCAGAAGGGTAGGGACTATGCAGTG





TAAGCTGCATCACTTCTGCTTTCTTCCTACTAG





TGACAATCATCTGGTCTTGCCCTCAAGCAACAA





TTGCTAGAGTAACATCTTTGTATAAGCAAGTAA





CCCCAGATAGAGTTGACGTTTCAGCTTTGGGCT





GTCAAAAGGGTATGTCATGGACCAAAGCACTGT





TAGTACGGGTATGTTTGCATTTGGTCACTGATA





TGTAAATGACTGCTAGCCCACGGCTGGACCACT





TCTCAATCAGCAAATAAAGCCATGTCTATTTTG





CTATCTCAGCATAGACTATGCTGTCTGATAAAT





CTAATTCTTAACTCTATTTCTCCAGTTTTTTAG





TCCTTTAACTTTCTGGATTGCAACGAAGTCTAG





TTTAGACCTCTAAGCCCTTTTAGAAGTACAAGT





ATAATGGGAATTTCTTTTCTTGGTTCTTTTCAG





GTTATGAGGTTTGGTCAGTGACAAAATTTTTTT





TCATAATTTGGTTGATTGGTTGCTTCTTAAGTT





TTATAATAAACGTTTTTCTTCATGTTCTATTTT





TGATTTTACAGAAATGATTTTGCCTCCTTGTGG





ATACTGACATATATTAAGTGTGGAAGCTTATTA





ATATTTTTGGTTTTTTAAAAACTGAAATTTTTA





ATTTTTACTTTTTAATTTTTTAGGAAAAAATAA





GCACTGAACTGAGAATGAGAAGAATAAAAGTAT





GAGTTCCATACCTTCTAATTTTAGGCTGTCAGA





AATTCCTTTATTCTTTGGGATTTCACAATCATT





TGAACTATCAGAAGCCTTTACAATTACTTTTAG





CTGTAACATCCGATTCTGTATAAGCCACATAGA





AAAAAGTTGCCTTTCTTTTTTTATGACCTGGAT





ATATAAGCAAATCAGCTAGGAAATATATAATTG





TATTTTATATTAATGTTTTCTAGGATTTTGGCT





TACAGTAAATGTTAACCCCTATGGTAAGTGATT





GTTATTGTTGGATGTTATACTGATTATTAATAA





GAAATTTGGATTTTTGCCTTTTTACCTGGAATT





TTTGCTTACAGCCGTAGCTATGAATATATATAG





GGTGGTCCCCAGTCTCTGTTATGGTTGCGCATA





AATTAATAATTTTATAAGTATTTAGAAATGGTA





TAATTCTCTTAACTTCCTCTTTCAGTTTTTGTA





CTAATGTTTGTTTTTGTTCGGGAAGAGGAGATT





TGCTTTTAATCCTTCCAAAAAATGATGAACCAC





CGTTCCATTCAGTAGTTTGACAAGCTGTTATAA





TGTGTATTTTTTCCTCAATTATTCTTGAAATAT





TTAGAGCCTCTCCTGCTTCTAACATGAAGGCCT





TTAGATGCCAGTCTGCCAGAAATCTGGAAACAG





AGGAACCGGTGAAGTGAAGATGTAATGGAGATT





TAGCTAATGATGTACTTCACAATCCACCTTGGA





TCTCCTGCATGTCCAAATCTCAGTAGTTAATCA





AGTGTCTGCTGCCATTAACAGAACAGAAGTAAT





GGATAACAGAATGGAAATAAGAGATGCCAGAAC





TACTTCCATAACTAACTCACCAAATCAAATCAT





CAGTCCTCATATTCTTGTTTTATTTAATACAAG





GAGAAGAGGCCATGCACTTTCCAAAAGGTCAAA





GCCACATAGAATAGGAAGGCAATCTCTAGTTTA





AAGCTTTCTCTTGGAGTGTTTTCTCCCCCTGTC





TTCAAAGGGTCTACTTGAGAGATAGTGGTGTTT





ACTGCTGCAGCATGTATCACAAGATAAGAAATG





AAAAATCAATCTTTCTTACCACCCTGTTCTCTT





TCCCTTTTTTATCTTTTCCCTTTTGTCAATTAT





AGAATTATAGGGACATTTTTCTCTGATAGCTGG





AAGTTGAACCTCAACCAGGTATAAAAGATGCAT





AACAACCTTTTAGCAGTAAGTGTCAAGTGAGTG





AGCACTATGATTATCAAGGTGACTTTGGAAACC





TTTTAAAAATGCATTTTTGCAAAACAAGATAAC





ATATATTGATAAAAAGTGACTCTCAGATTGGTA





ATGCCAGAAAAAATTTTAAGAGGACTCACCAAA





AGTACTAGATCTATGTAAGTTGTAGAATAGAGT





GAAGTTTTTTTATATATTTGTGGTAGCCTCCAT





CTTTTAAACTTTTTGAACTCAGTAGAAAAACAG





ACTGAAATTTTAAAGACATGCAGTATTTGTATC





ATTTTAAATTCTGTAACACTGGGAATTAAATAT





ACTCAACTTTAGAGGAAAAAAAAAAAAAAAAAA






SMAP1
NM_001044305.2
GACCCAGTCCCCCTCCCCCTCCCCTCGCCGGCT
 7




AGGGTGGTGCGTGCCGGCAGGCCGGTCAAGGAG





GCGGGACACGTCGGCGCTACCACCGCCACCGCC





GCCGCCGCCCCTCCTCCCGTTCCAGCTGCCGCT





GCCGCTTCCTGGGCTGAGTCCGCCCGCGGTCCC





GGCGGCGCCAGGTGCGTTCACTCTGCCCGGCTC





CAGCCAGCGTCCGCCGCCGCCGTAGCTGCCCCA





GGCTCCCCGCCCCGCTGCCGAGATGGCGACGCG





CTCCTGTCGGGAGAAGGCTCAGAAGCTGAACGA





GCAGCACCAGCTCATCCTATCCAAGCTTCTGAG





GGAGGAGGACAACAAGTACTGCGCCGACTGCGA





GGCCAAAGGTCCTCGATGGGCTTCCTGGAATAT





TGGTGTGTTTATTTGCATCAGATGTGCTGGAAT





TCATAGAAATCTTGGGGTTCATATATCCAGGGT





CAAATCAGTCAACCTAGACCAATGGACAGCAGA





ACAGATACAGTGCATGCAAGATATGGGAAATAC





TAAAGCAAGACTACTCTATGAAGCCAATCTTCC





AGAGAACTTTCGAAGACCACAGACAGATCAAGC





AGTGGAATTTTTCATCAGAGATAAATATGAAAA





GAAGAAATACTACGATAAAAATGCCATAGCTAT





TACAAATATTTCCTCCTCTGATGCTCCTCTTCA





GCCTTTGGTATCCTCTCCTTCTCTGCAAGCTGC





TGTTGACAAAAATAAATTGGAGAAAGAAAAGGA





AAAAAAAAAGGAAGAGAAAAAGAGAGAAAAGGA





GCCAGAAAAGCCGGCAAAACCACTTACAGCTGA





AAAGCTGCAGAAGAAAGATCAGCAACTGGAGCC





TAAAAAAAGTACCAGCCCTAAAAAAGCTGCGGA





GCCCACTGTGGATCTTTTAGGACTTGATGGCCC





TGCTGTGGCACCAGTGACCAACGGGAACACAAC





GGTGCCACCCCTGAACGATGATCTGGACATCTT





TGGACCGATGATTTCTAATCCCTTACCTGCAAC





TGTCATGCCCCCAGCTCAGGGGACACCCTCTGC





ACCAGCAGCTGCAACCCTGTCTACAGTAACATC





TGGGGATCTAGATTTATTCACTGAGCAAACTAC





AAAATCAGAAGAAGTGGCAAAGAAACAACTTTC





CAAAGACTCCATCTTATCTCTGTATGGCACAGG





AACCATTCAACAGCAAAGTACTCCTGGTGTATT





TATGGGACCCACAAATATACCATTTACCTCACA





AGCACCAGCTGCATTTCAGGGCTTTCCATCGAT





GGGCGTGCCTGTGCCTGCAGCTCCTGGCCTTAT





AGGAAATGTGATGGGACAGAGTCCAAGCATGAT





GGTGGGCATGCCCATGCCCAATGGGTTTATGGG





AAATGCACAAACTGGTGTGATGCCACTTCCTCA





GAACGTTGTTGGCCCCCAAGGAGGAATGGTGGG





ACAAATGGGTGCACCCCAGAGTAAGTTTGGCCT





GCCGCAAGCTCAGCAGCCCCAGTGGAGCCTCTC





ACAGATGAATCAGCAGATGGCTGGCATGAGTAT





CAGTAGTGCAACCCCTACTGCAGGTTTTGGCCA





GCCCTCCAGCACAACAGCAGGATGGTCTGGAAG





CTCATCAGGTCAGACTCTCAGCACACAACTGTG





GAAATGAAAACTGCAATACAAGTTTCATCCAGA





ACTACCACCTGACATTCCTTGCTGAAACGCATC





TAGTTCCCCTGTTTATTCATATGCATATTTTTT





TTCTTTTTACCCATTTGTTCATATTAAGAATGA





TCTGATTGACCGTGTTGGTCTGTACTGATTCAA





TTTGATGTGGTGAAAAGCAGGTTGATAAATCAT





TTTATGTCAAGGGCAGCTTTGCTCATATTTCCC





ATGATTTCATGTACTGCATTATTTGAGAAGCTG





CTCAACTTGCAAAATCAGTTTTCCTCTCAATAA





AATTATAGCTCTAATGTTTGCATATAAGGGAAG





TAGTTATCATGTTAGTAATACCTCTAATAGTAT





AAACCCCACCCCAAAATTAGCCAGTAATCCTGT





AGGAAGGTACTGTATGATCAAATGTTTAATCAT





ATAAATAGAATGTAAATGTCTCACTGAGCACTG





TTTTCTAGTGTATCAAAATGCTCTTATTTCATC





ATTCACTTCACTGTGCTGTTGTTATGATGTGCT





TAACAGGGAACGTGATTAGTGAAAGGAAGATAA





ACGTGGATGTTACTCCAAAACTTCGTTTAATGA





ATGCTTAAAGAATTCAAATTTTATCTGCCTCTC





TTGTAATTTGGATCTCTTCTTAATGTACATAGT





GCTAACATGAAGACCTTTTTCTGCACTATATGC





AAACAGGGTAACTAACTAAAACAAAGCCACTTT





CAATCTTCAATCCTTGAAGGTATATCTAGGTTT





ATGACAGTAATTGTGTTTACATTTTATGGTGCC





TAGTATTGACAAAATGTTATTTCCCTACATTAA





ACATGACTCCATAGACCTTTTCATTTGTGGGTT





TTTATTTCCTATGATGTATACTGCCACTAACCT





TCCAAAAATTACTTAGTATTGCAAAGTCAGGAA





TCATCAGGAACGTTTAGCTGACAAAATACTTGT





CTGTTTTAAAAACCTGTTCAAGTCTACCAACCT





GTTCAAGTCTACCAATTATAAGGGCAAATTGGA





GAAAAAGAAAAAATATATACTCAAGAGTGGTAT





CTTGCAGTATCGGCACTGTACAAAAAAATCTTC





CAATTTAGTTGTTGTAGAGAAAACATGCAGAAC





AAATGAAGACAAAACATACATTTTGTACCAACC





ATCCAATTAGCTTATGTTAACTGACAAGCTCCA





TTTAAACAGATGTCCATCAGATGACAAGAAAGG





CTGCTGTACTGAAGTAAAACAAACAATACCTGA





ATGCTCTGTAGCCTAAACTCCAAACATCCTCTT





CCATATGGATCCACTGGCTGGACAAACTGCACC





AGTTGCTGCTTCAATTTATACCTCAATTTTCAC





TGTGTCCAGGTGGTACTTTGGCTCGTTGGCTAG





ATTAACCTTCTCTGTCCGAGTGTGCCACACGAG





AACCTGAAGGGGAAGGAAATAGCTTGGGTAGCG





CACTCTTCATGGTGACACTCGAGGTCGGGCAGC





ACAAGTGTAATGAATACCTTAGTGCAGTTATTT





GCTTTCGGTTCCAGTTCTTCGACTGTTGTTATC





TGTTTGAGAAAGTCAGATTCTTGCATCCCTGGC





TGGGATCCACGACGCTTAAATACAGCTTTTGGA





TTGGACAAAATGACTTGAAGACTTACAGCAAAT





CCTTTGTGAAAAATAAAAAAAAAAAAGAGACTT





TAAAAAAAAAAAAAAA






RNLS
NM_001031709.2
AAAGCTCAGGGCCCAGGTCGGCCCAGGGAGCAC
 8




GGAACCAAAGAGCGCTAGCGCCGGTTCGGCCGC





CTTTCCAGAAAGCCCGGGCCGAACGGCCCCGCC





GCAGAGACTCAGCGCGGATCGCTGCTCCCTCTC





GCCATGGCGCAGGTGCTGATCGTGGGCGCCGGG





ATGACAGGAAGCTTGTGCGCTGCGCTGCTGAGG





AGGCAGACGTCCGGTCCCTTGTACCTTGCTGTG





TGGGACAAGGCTGAGGACTCAGGGGGAAGAATG





ACTACAGCCTGCAGTCCTCATAATCCTCAGTGC





ACAGCTGACTTGGGTGCTCAGTACATCACCTGC





ACTCCTCATTATGCCAAAAAACACCAACGTTTT





TATGATGAACTGTTAGCCTATGGCGTTTTGAGG





CCTCTAAGCTCGCCTATTGAAGGAATGGTGATG





AAAGAAGGAGACTGTAACTTTGTGGCACCTCAA





GGAATTTCTTCAATTATTAAGCATTACTTGAAA





GAATCAGGTGCAGAAGTCTACTTCAGACATCGT





GTGACACAGATCAACCTAAGAGATGACAAATGG





GAAGTATCCAAACAAACAGGCTCCCCTGAGCAG





TTTGATCTTATTGTTCTCACAATGCCAGTTCCT





GAGATTCTGCAGCTTCAAGGTGACATCACCACC





TTAATTAGTGAATGCCAAAGGCAGCAACTGGAG





GCTGTGAGCTACTCCTCTCGATATGCTCTGGGC





CTCTTTTATGAAGCTGGTACGAAGATTGATGTC





CCTTGGGCTGGGCAGTACATCACCAGTAATCCC





TGCATACGCTTCGTCTCCATTGATAATAAGAAG





CGCAATATAGAGTCATCAGAAATTGGGCCTTCC





CTCGTGATTCACACCACTGTCCCATTTGGAGTT





ACATACTTGGAACACAGCATTGAGGATGTGCAA





GAGTTAGTCTTCCAGCAGCTGGAAAACATTTTG





CCGGGTTTGCCTCAGCCAATTGCTACCAAATGC





CAAAAATGGAGACATTCACAGGTTACAAATGCT





GCTGCCAACTGTCCTGGCCAAATGACTCTGCAT





CACAAACCTTTCCTTGCATGTGGAGGGGATGGA





TTTACTCAGTCCAACTTTGATGGCTGCATCACT





TCTGCCCTATGTGTTCTGGAAGCTTTAAAGAAT





TATATTTAGTGCCTATATCCTTATTCTCTACAT





GTGTATTGGGTTTTTATTTTCACAATTTTCTGT





TATTGATTATTTTGTTTTCTATTTTGCTAAGAA





AAATTACTGGAAAATTGTTCTTCACTTATTATC





ATTTTTCATGTGGAGTATAAAATCAATTTTGTA





ATTTTGATAGTTACAACCCATGCTAGAATGGAA





ATTCCTCACACCTTGCACCTTCCCTACTTTTCT





GAATTGCTATGACTACTCCTTGTTGGAGGAAAA





GTGGTACTTAAAAAATAACAAACGACTCTCTCA





AAAAAATTACATTAAATCACAATAACAGTTTGT





GTGCCAAAAACTTGATTATCCTTATGAAAATTT





CAATTCTGAATAAAGAATAATCACATTATCAAA





GCCCCATCTTAAGTCTTCGGATGTGTCCTTGAA





TCAATATTTTTGCAAATTATACAAAACAAGATT





TTTCCAAAATGTAGGTAACAGAGTGTAATTCTT





ATTTCTCATTTATCCCCCAAGTTATTAAGTGAT





CCTGAATTGTAGGTCATATATGTCATCATCTTA





GTGTGGAGGGCAACTTGACTGATAAAGAGACCT





TCCTTCAGATTTTCAGAAAGTATAAGATTCCAC





ATGATTTTCCCAGCCACACAGTACTTTTTAACT





TTCAAACAAATTCCAGTCCTAATATGAAAGATA





AAAATTAAATAGAAACAGAGAGAAAGTATATCG





ATCCTTACCTTTTGCTATATTTTATAGCTGTTG





CTGTTACTTTATGGGTTCTCCAGTATGTGCTGT





GGCATTTAGACTGTGTCGAGTTTAATGAATTTA





ACACAACAAAAAATTTACTGAACCAGAAAATAG





ATGCACTTAAAATAGTTCAATATTTGCCAAGTT





GGTGGTTCAGCATATCACCCACATGCTTCAGTG





ACCTGACCCCACGACTTGCTAGCTGGAGAGAAA





TCAATCTCCAGCCTTCCAAACCAGCTACCTGTT





GCTAATTTGAAAAGCAAAATGATGAGTTCTATT





TCAGCATTTTGAAAGGAGAAAAATCATTGCAGC





CTCTCAAACTAACAAAAGTTCAACAAAAGACTT





CTTACTGTAATAGTGTTTAAAGTTTCACACTTA





CATGTCCACTGTCATACATACACATACACAGGC





ACAGGCAGAACTTGCTTCTATAGCTGCAAAGTG





GGTTTTATGACCCTATAGCATATTATTATATGT





TTCCTCTTAGCAATAAATTGGTGAAAAACTTAA





ATGCCAAAAAA






WNT11
XM_011545241.2
CCGGGCCTTTGCCGACATGCGCTGGAACTGCTC
 9




CTCCATTGAGCTCGCCCCCAACTATTTGCTTGA





CCTGGAGAGAGGACACCAGCCACTGGCCTAGGG





CCCACCCTGATCCGGTATGACCTCGTCTCAGCC





CCATTACATCTGCAAAGACCCCACTTCGTCATA





AGATTATGCTCACAGGGACCCGGGAGTCGGCCT





TCGTGTATGCGCTGTCGGCCGCCGCCATCAGCC





ACGCCATCGCCCGGGCCTGCACCTCCGGCGACC





TGCCCGGCTGCTCCTGCGGCCCCGTCCCAGGTG





AGCCACCCGGGCCCGGGAACCGCTGGGGAGGAT





GTGCGGACAACCTCAGCTACGGGCTCCTCATGG





GGGCCAAGTTTTCCGATGCTCCTATGAAGGTGA





AAAAAACAGGATCCCAAGCCAATAAACTGATGC





GTCTACACAACAGTGAAGTGGGGAGACAGGCTC





TGCGCGCCTCTCTGGAAATGAAGTGTAAGTGCC





ATGGGGTGTCTGGCTCCTGCTCCATCCGCACCT





GCTGGAAGGGGCTGCAGGAGCTGCAGGATGTGG





CTGCTGACCTCAAGACCCGATACCTGTCGGCCA





CCAAGGTAGTGCACCGACCCATGGGCACCCGCA





AGCACCTGGTGCCCAAGGACCTGGATATCCGGC





CTGTGAAGGACTCGGAACTCGTCTATCTGCAGA





GCTCACCTGACTTCTGCATGAAGAATGAGAAGG





TGGGCTCCCACGGGACACAAGACAGGCAGTGCA





ACAAGACATCCAACGGAAGCGACAGCTGCGACC





TTATGTGCTGCGGGCGTGGCTACAACCCCTACA





CAGACCGCGTGGTCGAGCGGTGCCACTGTAAGT





ACCACTGGTGCTGCTACGTCACCTGCCGCAGGT





GTGAGCGTACCGTGGAGCGCTATGTCTGCAAGT





GAGGCCCTGCCCTCCGCCCCACGCAGGAGCGAG





GACTCTGCTCAAGGACCCTCAGCAACTGGGGCC





AGGGGCCTGGAGACACTCCATGGAGCTCTGCTT





GTGAATTCCAGATGCCAGGCATGGGAGGCGGCT





TGTGCTTTGCCTTCACTTGGAAGCCACCAGGAA





CAGAAGGTCTGGCCACCCTGGAAGGAGGGCAGG





ACATCAAAGGAAACCGACAAGATTAAAAATAAC





TTGGCAGCCTGAGGCTCTGGAGTGCCCACAGGC





TGGTGTAAGGAGCGGGGCTTGGGATCGGTGAGA





CTGATACAGACTTGACCTTTCAGGGCCACAGAG





ACCAGCCTCCGGGAAGGGGTCTGCCCGCCTTCT





TCAGAATGTTCTGCGGGACCCCCTGGCCCACCC





TGGGGTCTGAGCCTGCTGGGCCCACCACATGGA





ATCACTAGCTTGGGTTGTAAATGTTTTCTTTTG





TTTTTTGCTTTTTCTTCCTTTGGGATGTGGAAG





CTACAGAAATATTTATAAAACATAGCTTTTTCT





TTGGGGTGGCACTTCTCAATTCCTCTTTATATA





TTTTATATATATAAATATATATGTATATATATA





ATGATCTCTATTTTAAAACTAGCTTTTTAAGCA





GCTGTATGAAATAAATGCTGAGTGAGCCCCAGC





CCGCCCCTGCA






SFXN1
NM_001322977.1
CGGACGCGCGCTCACAGGCGCGCGCGAGGACGC
10




GCTCCGGGGACGCGCGAGGACGCCGTGGCGGGA





GAAGCGTTTCCGGTGGCGGCGGAGGCTGCACTG





AGCGGGACCTGCGAGCAGCGCGGGCGGCAGCCC





GGGGGAAGCGGTGAGTCGCGGGCGGCAGGCCCA





GCCAGTCCGGGACCATGTCTGGAGAACTACCAC





CAAACATTAACATCAAGGAACCTCGATGGGATC





AAAGCACTTTCATTGGACGAGCCAATCATTTCT





TCACTGTAACTGACCCCAGGAACATTCTGTTAA





CCAACGAACAACTCGAGAGTGCGAGAAAAATAG





TACATGATTACAGGCAAGGAATTGTTCCTCCTG





GTCTTACAGAAAATGAATTGTGGAGAGCAAAGT





ACATCTATGATTCAGCTTTTCATCCTGACACTG





GTGAGAAGATGATTTTGATAGGAAGAATGTCAG





CCCAGGTTCCCATGAACATGACCATCACAGGTT





GTATGATGACGTTTTACAGGACTACGCCGGCTG





TGCTGTTCTGGCAGTGGATTAACCAGTCCTTCA





ATGCCGTCGTCAATTACACCAACAGAAGTGGAG





ACGCACCCCTCACTGTCAATGAGTTGGGAACAG





CTTACGTTTCTGCAACAACTGGTGCCGTAGCAA





CAGCTCTAGGACTCAATGCATTGACCAAGCATG





TCTCACCACTGATAGGACGTTTTGTTCCCTTTG





CTGCCGTAGCTGCTGCTAATTGCATTAATATTC





CATTAATGAGGCAAAGGGAACTCAAAGTTGGCA





TTCCCGTCACGGATGAGAATGGGAACCGCTTGG





GGGAGTCGGCGAACGCTGCGAAACAAGCCATCA





CGCAAGTTGTCGTGTCCAGGATTCTCATGGCAG





CCCCTGGCATGGCCATCCCTCCATTCATTATGA





ACACTTTGGAAAAGAAAGCCTTTTTGAAGAGGT





TCCCATGGATGAGTGCACCCATTCAAGTTGGGT





TAGTTGGCTTCTGTTTGGTGTTTGCTACACCCC





TGTGTTGTGCCCTGTTTCCTCAGAAAAGTTCCA





TGTCTGTGACAAGCTTGGAGGCCGAGTTGCAAG





CTAAGATCCAAGAGAGCCATCCTGAATTGCGAC





GCGTGTACTTCAATAAGGGATTGTAAAGCAGGG





AGGAAACCTCTGCAGCTCATTCTGCCACTGCAA





AGCTGGTGTAGCCATGCTGGTGAGAAAAATCCT





GTTCAACCTGGGTTCTCCCAGTTACGGAAACCT





TTTAAAGATCCACATTAGCCTTTTAGAATAAAG





CTGCTACTTTAACAGAGCACCTGGCGTGGGCCA





AGTGCCTGATACTCCCTTACACTGAATCATGTT





ATGATTTATAGAAATACCTTTCCTGTAGCTTTT





ATAGTCATTGTTTTTCAAAGACGATATACCAGC





CCTCACCCAGGTTTTAAAAAAGCACTGGTAGGC





ATAGAATAGGTGCTCAGTATATGGTCAGTAAAT





GTTCTATTGATTATCAATCAGTGAAAAAAGAAA





TCTGTTTAAAATACTGAATTTTCATCTCACTCC





CATTGCAAATCAAGGAGATCTCAGCAGTGAACT





GGGAAAATACAAAAGCTCTGGGCTAATCTATAA





AAACTTACCCTGAAATATTAAGGGCAGTTTGCT





TCTAGTTTGGGGATTGCGCTAGCCCAATGAAGG





TGATGAAGCTTTTGGATTTGGAGGGTAAAAGCT





CCTTCACACCCCTTCCAAAAGTCAGTCACAGAC





CACTGCAACATGCCTTCCCTGCTGGATCATTAT





ATACATTCAGATTGTGAGTGGATTGCCTTGGTT





GACTTTTAATTTATTGTTTTTTGTTCTTATAAA





GATGATAATCTTACCTTGCAGTTATTGACTTTA





TATTCAATTATTTACATCAAATAATGAAATAAC





TGAAATGTACAAATGTCAAATTTTGGAAGTATA





TTCAATACCAATGCTGTATGAGTGGGCTGAATC





CAGTTCATTGTTTTTTTTTTGGTAAGAAGTGAG





ACTACAGTTCCAGCTACCTACATGTCTTTTCTT





GTCATCCTTATAGATCTCTTTGGCTTTCAGAAA





GATACAGTGATAATGTGTGTATGAATCAGTCAC





AATGAATTTTACTTGAATATTGTATGTTGCATT





CCACTTCATTTGAAAATAATGAAACCATGTACC





ACTGTTTACATCATCTGTAGTGATTTCATAGAT





AATATATTTAATATGACAGATTATGTTTCAACT





CTGTAGATGTTTAACGTCATAGACAGTTGGCCC





TCTGTATCCGTGAGCTCTATATCTGTGAATTCA





ACCAAGTTTGGATGGAAAATTTTTTTTTTTTTT





TTTTTTTTGAGACGGAGTCTCGCTCTGTCACCC





AGGCTGGAGTGCAGTGGCGTAGTCTCGGCTCAC





TGCAAGCTCCGCCTCCCGGGTTCACGCCGTTCT





CCTGCCTCAGCCTCTCTGAGAAGCTGGGACTAC





AGGCGCCCGCCACCACGCCCGGCTAATTTTTTT





GTATTTTTAGTAGAGACGGGGTTTCACTGTGGT





CTCGATCTCCTGACCTCGTGATCCGCCCGCCTT





GGCCTCCCAAGGTGCTGGGATTACAAGCGTGAG





CCACCGCACCCGGCCTGAAAATATTTTCTAAAA





AGATAAAAAATATACATAACGATGAAAAATAAT





ACAAATTTAAAAACCAATACAGTATAACAACTA





TTTACATAGTGCTTACATTGTATTAGGTGTTAT





AAGCAATCTAGAGATGATTTAGCAAGTATACAG





GAGGATGTGCCTAGGTTATATGCAAATACTGTG





CCATTTTATATCAGGAACTTGAGCATCTGCAGA





TATTGGTATCGGAGGGCGGTCCTGGAACCAAGC





ATCCACGGATACTGAGGGGTGACATTTCATGAA





GTGTAGATCATTGTATTCAGAGATTGTAAATGA





AAAAAATATAGAAACTATTTAGTTTTGGTAGAT





TTTTTTTCTGACAATGTGACCAGACTGAATTTC





CTCATAAAGAAAAAATGGCGTGCCTTGTGTCTG





TGTTTCTCTTTTCTCTGAAAGGATTAATAGATC





TGAAGCTTTGGGCCACTCAGAGCCTTCCTTGAT





GCTGCCAGAGTCTTCTTATTTAGATTTTCTGTC





TTAAACCATTGGAAGCAAAACGGTTTTCCCATG





ACATTCTGGCCTTGGACAGATTCTGTTGTCCTC





GACGCGTCTCTTTATAAAGTGGTAAAAGCCTGA





AATTCAGGGCAGCTCTCCATGAGGTGCTGAAGG





GCTCTTTTCATAAGAAGCTAAGGCACTGCTGCC





TGCCCCAGGTGTCCCGCTCCTCTCAGAGTCCTC





CCCCTACCAGGTAGTGTGTAGCTCCATTTCAGA





ATGTTAACCTCCAGTGAAGAGCTAATGACTGGT





TAGAAGATTGACAAACTAACCAAAATTTTACAC





ACTCCGGTTATGTGTGTGAAAGGTTATAAAAGG





AATGGCCGGGTGCGGTGGCTCACCCCTGTAATC





CCAGCACTTTGGGAGGCCGAGGCGGGTGGATCA





CCTGAGGTCAGGAGTTTGAGACCAGCCTGGCCA





ACATGGAGAAACCCCGCCTCTACTAAAAATACA





AAAAATTAGCCAGGCATGGAGGCACATGCCTAT





AATCCCAGCTACTCGGGAGGCTGAGGTAGGAGA





ATCGCTTGAATCCGGGAGCTGGAGGTTGCAGTG





AGCCAAGATCGCACCATTGCACTCCAGCCTGGG





CAACAAGAGCGAAACTCCATCTCAAAAAAAAAA





AAAAGAGATTATAAAAGGGATGATGAACATGGA





GCTGCATCTTTTTAAACGTTGTTTTTTGATGCT





TCAGACTCTTAATGCTTTTATATAAAGCTATCA





ACTGTATGTTGATCACAGTTTATAAGAAAGAAC





AAATCAAGATTGGCAATCCTTGCCGATCTTTTA





GAAATACCTTTTCTGGAGAAAAAAAAATCCACA





TGAAGTGCAATAAGCTTATAAAGCTAAGTAGTT





ATTAATATTTCTATTAACATGATACAAAGGATG





ATGATTGTAAGTGTTTACTGACTGGCAGCTTTT





ATTTCAGTATTAGCACAGCGTCTTGCCAGTGTT





GGAGGCCATGTATTATTTCAGTTCAACTGGATG





AAATGTTAAATAAACTCAGAATGAAAATAAA






SREBF1
NM_001005291.1
AGCAGAGCTGCGGCCGGGGGAACCCAGTTTCCG
11




AGGAACTTTTCGCCGGCGCCGGGCCGCCTCTGA





GGCCAGGGCAGGACACGAACGCGCGGAGCGGCG





GCGGCGACTGAGAGCCGGGGCCGCGGCGGCGCT





CCCTAGGAAGGGCCGTACGAGGCGGCGGGCCCG





GCGGGCCTCCCGGAGGAGGCGGCTGCGCCATGG





ACGAGCCACCCTTCAGCGAGGCGGCTTTGGAGC





AGGCGCTGGGCGAGCCGTGCGATCTGGACGCGG





CGCTGCTGACCGACATCGAAGGTGAAGTCGGCG





CGGGGAGGGGTAGGGCCAACGGCCTGGACGCCC





CAAGGGCGGGCGCAGATCGCGGAGCCATGGATT





GCACTTTCGAAGACATGCTTCAGCTTATCAACA





ACCAAGACAGTGACTTCCCTGGCCTATTTGACC





CACCCTATGCTGGGAGTGGGGCAGGGGGCACAG





ACCCTGCCAGCCCCGATACCAGCTCCCCAGGCA





GCTTGTCTCCACCTCCTGCCACATTGAGCTCCT





CTCTTGAAGCCTTCCTGAGCGGGCCGCAGGCAG





CGCCCTCACCCCTGTCCCCTCCCCAGCCTGCAC





CCACTCCATTGAAGATGTACCCGTCCATGCCCG





CTTTCTCCCCTGGGCCTGGTATCAAGGAAGAGT





CAGTGCCACTGAGCATCCTGCAGACCCCCACCC





CACAGCCCCTGCCAGGGGCCCTCCTGCCACAGA





GCTTCCCAGCCCCAGCCCCACCGCAGTTCAGCT





CCACCCCTGTGTTAGGCTACCCCAGCCCTCCGG





GAGGCTTCTCTACAGGAAGCCCTCCCGGGAACA





CCCAGCAGCCGCTGCCTGGCCTGCCACTGGCTT





CCCCGCCAGGGGTCCCGCCCGTCTCCTTGCACA





CCCAGGTCCAGAGTGTGGTCCCCCAGCAGCTAC





TGACAGTCACAGCTGCCCCCACGGCAGCCCCTG





TAACGACCACTGTGACCTCGCAGATCCAGCAGG





TCCCGGTCCTGCTGCAGCCCCACTTCATCAAGG





CAGACTCGCTGCTTCTGACAGCCATGAAGACAG





ACGGAGCCACTGTGAAGGCGGCAGGTCTCAGTC





CCCTGGTCTCTGGCACCACTGTGCAGACAGGGC





CTTTGCCGACCCTGGTGAGTGGCGGAACCATCT





TGGCAACAGTCCCACTGGTCGTAGATGCGGAGA





AGCTGCCTATCAACCGGCTCGCAGCTGGCAGCA





AGGCCCCGGCCTCTGCCCAGAGCCGTGGAGAGA





AGCGCACAGCCCACAACGCCATTGAGAAGCGCT





ACCGCTCCTCCATCAATGACAAAATCATTGAGC





TCAAGGATCTGGTGGTGGGCACTGAGGCAAAGC





TGAATAAATCTGCTGTCTTGCGCAAGGCCATCG





ACTACATTCGCTTTCTGCAACACAGCAACCAGA





AACTCAAGCAGGAGAACCTAAGTCTGCGCACTG





CTGTCCACAAAAGCAAATCTCTGAAGGATCTGG





TGTCGGCCTGTGGCAGTGGAGGGAACACAGACG





TGCTCATGGAGGGCGTGAAGACTGAGGTGGAGG





ACACACTGACCCCACCCCCCTCGGATGCTGGCT





CACCTTTCCAGAGCAGCCCCTTGTCCCTTGGCA





GCAGGGGCAGTGGCAGCGGTGGCAGTGGCAGTG





ACTCGGAGCCTGACAGCCCAGTCTTTGAGGACA





GCAAGGCAAAGCCAGAGCAGCGGCCGTCTCTGC





ACAGCCGGGGCATGCTGGACCGCTCCCGCCTGG





CCCTGTGCACGCTCGTCTTCCTCTGCCTGTCCT





GCAACCCCTTGGCCTCCTTGCTGGGGGCCCGGG





GGCTTCCCAGCCCCTCAGATACCACCAGCGTCT





ACCATAGCCCTGGGCGCAACGTGCTGGGCACCG





AGAGCAGAGATGGCCCTGGCTGGGCCCAGTGGC





TGCTGCCCCCAGTGGTCTGGCTGCTCAATGGGC





TGTTGGTGCTCGTCTCCTTGGTGCTTCTCTTTG





TCTACGGTGAGCCAGTCACACGGCCCCACTCAG





GCCCCGCCGTGTACTTCTGGAGGCATCGCAAGC





AGGCTGACCTGGACCTGGCCCGGGGAGACTTTG





CCCAGGCTGCCCAGCAGCTGTGGCTGGCCCTGC





GGGCACTGGGCCGGCCCCTGCCCACCTCCCACC





TGGACCTGGCTTGTAGCCTCCTCTGGAACCTCA





TCCGTCACCTGCTGCAGCGTCTCTGGGTGGGCC





GCTGGCTGGCAGGCCGGGCAGGGGGCCTGCAGC





AGGACTGTGCTCTGCGAGTGGATGCTAGCGCCA





GCGCCCGAGACGCAGCCCTGGTCTACCATAAGC





TGCACCAGCTGCACACCATGGGGAAGCACACAG





GCGGGCACCTCACTGCCACCAACCTGGCGCTGA





GTGCCCTGAACCTGGCAGAGTGTGCAGGGGATG





CCGTGTCTGTGGCGACGCTGGCCGAGATCTATG





TGGCGGCTGCATTGAGAGTGAAGACCAGTCTCC





CACGGGCCTTGCATTTTCTGACACGCTTCTTCC





TGAGCAGTGCCCGCCAGGCCTGCCTGGCACAGA





GTGGCTCAGTGCCTCCTGCCATGCAGTGGCTCT





GCCACCCCGTGGGCCACCGTTTCTTCGTGGATG





GGGACTGGTCCGTGCTCAGTACCCCATGGGAGA





GCCTGTACAGCTTGGCCGGGAACCCAGTGGACC





CCCTGGCCCAGGTGACTCAGCTATTCCGGGAAC





ATCTCTTAGAGCGAGCACTGAACTGTGTGACCC





AGCCCAACCCCAGCCCTGGGTCAGCTGATGGGG





ACAAGGAATTCTCGGATGCCCTCGGGTACCTGC





AGCTGCTGAACAGCTGTTCTGATGCTGCGGGGG





CTCCTGCCTACAGCTTCTCCATCAGTTCCAGCA





TGGCCACCACCACCGGCGTAGACCCGGTGGCCA





AGTGGTGGGCCTCTCTGACAGCTGTGGTGATCC





ACTGGCTGCGGCGGGATGAGGAGGCGGCTGAGC





GGCTGTGCCCGCTGGTGGAGCACCTGCCCCGGG





TGCTGCAGGAGTCTGAGAGACCCCTGCCCAGGG





CAGCTCTGCACTCCTTCAAGGCTGCCCGGGCCC





TGCTGGGCTGTGCCAAGGCAGAGTCTGGTCCAG





CCAGCCTGACCATCTGTGAGAAGGCCAGTGGGT





ACCTGCAGGACAGCCTGGCTACCACACCAGCCA





GCAGCTCCATTGACAAGGCCGTGCAGCTGTTCC





TGTGTGACCTGCTTCTTGTGGTGCGCACCAGCC





TGTGGCGGCAGCAGCAGCCCCCGGCCCCGGCCC





CAGCAGCCCAGGGCACCAGCAGCAGGCCCCAGG





CTTCCGCCCTTGAGCTGCGTGGCTTCCAACGGG





ACCTGAGCAGCCTGAGGCGGCTGGCACAGAGCT





TCCGGCCCGCCATGCGGAGGGTGTTCCTACATG





AGGCCACGGCCCGGCTGATGGCGGGGGCCAGCC





CCACACGGACACACCAGCTCCTCGACCGCAGTC





TGAGGCGGCGGGCAGGCCCCGGTGGCAAAGGAG





GCGCGGTGGCGGAGCTGGAGCCGCGGCCCACGC





GGCGGGAGCACGCGGAGGCCTTGCTGCTGGCCT





CCTGCTACCTGCCCCCCGGCTTCCTGTCGGCGC





CCGGGCAGCGCGTGGGCATGCTGGCTGAGGCGG





CGCGCACACTCGAGAAGCTTGGCGATCGCCGGC





TGCTGCACGACTGTCAGCAGATGCTCATGCGCC





TGGGCGGTGGGACCACTGTCACTTCCAGCTAGA





CCCCGTGTCCCCGGCCTCAGCACCCCTGTCTCT





AGCCACTTTGGTCCCGTGCAGCTTCTGTCCTGC





GTCGAAGCTTTGAAGGCCGAAGGCAGTGCAAGA





GACTCTGGCCTCCACAGTTCGACCTGCGGCTGC





TGTGTGCCTTCGCGGTGGAAGGCCCGAGGGGCG





CGATCTTGACCCTAAGACCGGCGGCCATGATGG





TGCTGACCTCTGGTGGCCGATCGGGGCACTGCA





GGGGCCGAGCCATTTTGGGGGGCCCCCCTCCTT





GCTCTGCAGGCACCTTAGTGGCTTTTTTCCTCC





TGTGTACAGGGAAGAGAGGGGTACATTTCCCTG





TGCTGACGGAAGCCAACTTGGCTTTCCCGGACT





GCAAGCAGGGCTCTGCCCCAGAGGCCTCTCTCT





CCGTCGTGGGAGAGAGACGTGTACATAGTGTAG





GTCAGCGTGCTTAGCCTCCTGACCTGAGGCTCC





TGTGCTACTTTGCCTTTTGCAAACTTTATTTTC





ATAGATTGAGAAGTTTTGTACAGAGAATTAAAA





ATGAAATTATTTATAATCTGGAAAAAA






TYMS
NM_001071.1
GGGGGGGGGGGGACCACTTGGCCTGCCTCCGTC
12




CCGCCGCGCCACTTGGCCTGCCTCCGTCCCGCC





GCGCCACTTCGCCTGCCTCCGTCCCCCGCCCGC





CGCGCCATGCCTGTGGCCGGCTCGGAGCTGCCG





CGCCGGCCCTTGCCCCCCGCCGCACAGGAGCGG





GACGCCGAGCCGCGTCCGCCGCACGGGGAGCTG





CAGTACCTGGGGCAGATCCAACACATCCTCCGC





TGCGGCGTCAGGAAGGACGACCGCACGGGCACC





GGCACCCTGTCGGTATTCGGCATGCAGGCGCGC





TACAGCCTGAGAGATGAATTCCCTCTGCTGACA





ACCAAACGTGTGTTCTGGAAGGGTGTTTTGGAG





GAGTTGCTGTGGTTTATCAAGGGATCCACAAAT





GCTAAAGAGCTGTCTTCCAAGGGAGTGAAAATC





TGGGATGCCAATGGATCCCGAGACTTTTTGGAC





AGCCTGGGATTCTCCACCAGAGAAGAAGGGGAC





TTGGGCCCAGTTTATGGCTTCCAGTGGAGGCAT





TTTGGGGCAGAATACAGAGATATGGAATCAGAT





TATTCAGGACAGGGAGTTGACCAACTGCAAAGA





GTGATTGACACCATCAAAACCAACCCTGACGAC





AGAAGAATCATCATGTGCGCTTGGAATCCAAGA





GATCTTCCTCTGATGGCGCTGCCTCCATGCCAT





GCCCTCTGCCAGTTCTATGTGGTGAACAGTGAG





CTGTCCTGCCAGCTGTACCAGAGATCGGGAGAC





ATGGGCCTCGGTGTGCCTTTCAACATCGCCAGC





TACGCCCTGCTCACGTACATGATTGCGCACATC





ACGGGCCTGAAGCCAGGTGACTTTATACACACT





TTGGGAGATGCACATATTTACCTGAATCACATC





GAGCCACTGAAAATTCAGCTTCAGCGAGAACCC





AGACCTTTCCCAAAGCTCAGGATTCTTCGAAAA





GTTGAGAAAATTGATGACTTCAAAGCTGAAGAC





TTTCAGATTGAAGGGTACAATCCGCATCCAACT





ATTAAAATGGAAATGGCTGTTTAGGGTGCTTTC





AAAGGAGCTTGAAGGATATTGTCAGTCTTTAGG





GGTTGGGCTGGATGCCGAGGTAAAAGTTCTTTT





TGCTCTAAAAGAAAAAGGAACTAGGTCAAAAAT





CTGTCCGTGACCTATCAGTTATTAATTTTTAAG





GATGTTGCCACTGGCAAATGTAACTGTGCCAGT





TCTTTCCATAATAAAAGGCTTTGAGTTAACTCA





CTGAGGGTATCTGACAATGCTGAGGTTATGAAC





AAAGTGAGGAGAATGAAATGTATGTGCTCTTAG





CAAAAACATGTATGTGCATTTCAATCCCACGTA





CTTATAAAGAAGGTTGGTGAATTTCACAAGCTA





TTTTTGGAATATTTTTAGAATATTTTAAGAATT





TCACAAGCTATTCCCTCAAATCTGAGGGAGCTG





AGTAACACCATCGATCATGATGTAGAGTGTGGT





TATGAACTTTATAGTTGTTTTATATGTTGCTAT





AATAAAGAAGTGTTCTGC






EIF5AL1
NM_001099692.1
GGGGTCGAGTCAGTGCCGTTTGCGCCAGTTGGA
13




ATCGAAGCCTCTTAAAATGGCAGATGATTTGGA





CTTCGAGACAGGAGATGCAGGGGCCTCAGCCAC





CTTCCCAATGCAGTGCTCAGCATTACGTAAGAA





TGGCTTTGTGGTGCTCAAAGGCTGGCCATGTAA





GATCGTGGAGATGTCTGCTTCGAAGACTGGCAA





GCACGGCCACGCCAAGGTCCATCTGGTTGGTAT





TGACATCTTTACTGGGAAGAAATATGAAGATAT





CTGCCCGTCAACTCATAATATGGATGTCCCCAA





CATCAAAAGGAATGACTTCCAGCTGATTGGCAT





CCAGGATGGGTACCTATCACTGCTCCAGGACAG





CGGGGAGGTACCAGAGGACCTTCGTCTCCCTGA





GGGAGACCTTGGCAAGGAGATTGAGCAGAAGTA





CGACTGTGGAGAAGAGATCCTGATCACGGTGCT





GTCTGCCATGACAGAGGAGGCAGCTGTTGCAAT





CAAGGCCATGGCAAAATAACTGGCTCCCAAGGT





GGCAGTGGTGGCAGCAGTGATCCTCCGAACCTG





CAGAGGCCCCCTCCCCCAGCCTGGCCTGGCTCT





GGCCTGGTCCTAGGTTGGACTCCTCCTACACAA





TTTATTTGACGTTTTATTTTGGTTTTCCCCACC





CCCTCAATCTGTCAGGGAGCCCCTGCCCTTCAC





CTAGCTCCCTTGGCCAGGAGCGAGCGAAGCCAT





GGCCTTGGTGAAGCTGCCCTCCTCTTCTCCCCT





CACACTACAGCCCTGGTGGGGGAGAAGGGGGTG





GGTGCTGCTTGTGGTTTAGTCTTTTTTTTTTTT





TTAAATTCAATCTGGAATCAGAAAGCGGTGGAT





TCTGGCAAATGGTCCTTGTGCCCTCCCCACTCA





TCCTTGGTCTGGTCCCCTGTTGCCCATAGCCCT





TTACCCTGAGCACCACCCAACAGACTGGGGACC





AGCCCCCTCGCCTGCCTGTGTCTCTCCCCAAAC





CCCTTTAGATGGGGAGGGAAGAAGAGGAGAGGG





GAGGGGACCTGCCCCCTCCTCAGGCATCTGGGA





AGGGCCTGCCCCCATGGGCTTTACCCTTCCCTG





CGGGCTCTCTCCCCGACACATTTGTTAAAATCA





AACCTGAATAAAACTACAAGTTTAATATGAAAA





AAAAAAAAAAAGAAAGAAAGACGTGTAAAATGC





CAAGAACTCTAGGAAACAGGGACAAAAACACTT





CAAAGAGAAAGTTCATGCACTTGTTTCTGACCA





CCCAGGGCACCCTTCAGCACACGCTGTCTGGAG





TGGCCTGAAGCAAGGAGTGTCTTGTGAGGTGCA





GAGGATGCAATGGGAGCAGGGTCCTGTCCCCAC





CCTAAAGGAGTTCACAGTTTAACGCAAATGAGA





AGCCAGTGAGGACATCACTACTCCTGCTGTGAA





CTTGGGAACTAGAAACACAAAACCTGAGTCTGG





AGGGAAGCTAAGGAAGCATTCTGCTCTGGAGTA





GACATGAGTGCGTGTGAAGCTTCTGATCTCCCA





TGAGAGCAATGGGGACATGGGGCAGAATCTAAA





ACCCATGACTGAAAGCACCAAATTGCTAAAATG





GCAATAAAGAGACATGAGGCCAAGATGGAGAAG





AAGGAACCCAGGACGAGGGTCAGCCTCACATTT





GGGGCTCATTTCCCTCAGTTTCCTCACTGAATT





TCAGAAGGGACTAACTGAGATGCAAAGAAGCAG





AGCAGCTTTTGCACCATGTGGAGGACTAGATGG





AAAACAAGTAGACTGAGGGTCTGCTAGTGAAGG





TGACCCCTACTGAAGTCCACTGGCTTTGGTTGG





GACCCAGAAGAGTCACACGCCAGGAATAGAGGT





GGACAGGAAACACCCTGACTTTTGTAGGGACTG





AACCTCACTGATAACCTCAATTGCGGATGGTAT





GGAGGGTGTCTAGGTGTGCTAGGACCCCTGCCC





ATTCCCCAGAAATAGACTCCCATCTTTTCTACA





GCAAGATAACGTGCTAGTAGGCCTCAATTCATT





GCTAAATATTTTTAACGAGTGTCTTACATTTAG





CCAAAAAGACTAGTCATGTGGCAGGAAAAATAC





AATGTCATATGACCAAAAGCTAAAAGACTGTGA





AAATGAATCCAGAGGTGACCCAAGCATTGAATT





TAACAATGCCAGTACCTGGACCTCCGCTTGCCC





CTAAAACATTACAATCAAGAATGTAGGAAGGGA





AAGGAAACACGAAGATTAATCAAGCAGGAAGGA





CAAGCTCAGTTTTGCACCCACTGAATTTGCCAC





AAATATTGTGGAAAATATTCTCGGGGACATTGC





AGTTGTCTACTTTGGTTGGCACATGGTTCATAC





AACAGTGTTTGTGTCAGTGAACATCTTACTCTT





CCTCGGCAGTCTTTCTTTGCCCAGAGATTTCGC





AATGACTGTTGACCTTCATCATCACCTTTTGGA





CTTTGGCTTGCACTTTAGCTTCTGTAGATCTCC





ATGATGTAAAGAAGTATTTTAGGTCCATTTTAA





TTCCTGCAAAGGATAAAATCCTTCTATTTGTGT





GCATATAAGTGGACCTGAGCCCTTGGTTAGGGT





GTAGAGAGGAGAAGGGGAGAAACCTGAGGGCCA





GAAGCTGTTCTTTCCCTTAAAAGGGCAAACTCA





TTTCCACACTATGGGGACTCTGACAGATAGCAT





ACCTTCCTGTCTATGGCTATTGGACCTGCAGGC





TTTCCCCTGTAAATCCGTGTTCTGTCATTGACA





TTTTGTGACTGTAAGACAGACTTGAGATAAGAC





ATCTAGAAAACAATAATTGAACAATGATGTGAA





TATATTTCACACAACTGAACTGTACATTTCAAC





AAGGTTAAGATGGTAATTATCACGTTATACATT





TTTTACCGCAGGTTAAAATGTTTCACAGGTTGA





AAGGAAAGCAACTACCTTCAGTTCTCTGAGTTC





AAGAATTTGTAACATTTCACCCCCTGCTCCTTC





CTGATCTTCTGTGGAGCATCTTTTTTCCATCCA





TGCTCTACTCAGAGCCCACTTTCCCTTCCCTGA





CACCAGCTTCACTGAGGCTGGTTGGAACCTAAC





ACAAAACATTCTCAGTAATGACTGAATTCCCAC





AAAGAATTCCATATAGACTGCATATGAGTTGAA





TCTTCTAAGACATGAAATATTTGTTCTCTTCTT





GGCTAATATGCAATGCAAATCCTGTTGCAGATG





TACGTCATATACCTCTGAAATTCCTGATGTATT





CAATGAAATAACATCTTTAAAGTTCTGTGTAGA





ATGTTTTTTTTCTGATTTCTTCACATACGATAG





AAAAAAAAACCCAAAAAAACATGTACTAGGATT





TCAATAGAAGCAATGGGTGATCTAAAAAGATGA





AAGAGCAACCGCATGCGCCCTACAGCTACCGCT





AGATTTTATGGGGAAAGCAGCTGGCCCAGTTTG





CAGCTAGGAGAAATGTCAAACACATGAAGAAAT





GAGAAGCAAAGAAAAACCATGAGGCATGAACAT





TTCATGGCAATCACGATGTCCTGGTTTGTGAGA





TAATGGGATAGAGGAGTAGAAAACAAGGAGAAA





GATGAGAAGGTACAAAGTGGTTCAAGTCAAACA





GCTCAACTGAACTTTTCTTAATGGAATATTTAA





AAAGTGGTACATTAAAAAACTTCCCCCAGTTCA





CATCAAAAATTCTCTCTTCAGGACTAAGTTGGG





TAGAGACTGTTCAATGTGCCTAGATATCTTCAG





AACTTATATATTTTCTGTTTTCTACGTATGTTG





AAGGGCAGTGCCAAATGATGTGTAATTATCTAG





GTTGTAAAAATAAAACATACTCCCCCTTCCCTT





GAGGATAAAAAAAAAAAAAAA






WDR76
NM_024908.3
CTGCTCTGGCGCTGCGGCCGCTGGGGATCTGAG
14




TGGGCTCCGCCCCGCCTCGGACCCGCCCCTCCC





GGCCTCCCGCCGCAATCTTGGCGGGAAGGCGCC





GGCCGCTAAGAAGCCGAAAGATGTCCAGGTCGG





GCGCGGCGGCTGAGAAGGCGGACTCCAGACAGC





GACCCCAGATGAAGGTAAATGAATATAAAGAAA





ATCAAAACATCGCTTATGTGTCTCTGAGACCAG





CACAGACTACAGTTTTAATAAAAACAGCTAAGG





TCTATCTTGCCCCCTTTTCACTCAGTAATTACC





AGCTAGACCAGCTTATGTGCCCCAAATCCCTAT





CAGAAAAGAATTCTAACAATGAAGTGGCGTGTA





AGAAGACTAAAATAAAGAAAACTTGCAGAAGGA





TTATACCTCCAAAGATGAAAAACACATCTTCCA





AGGCAGAATCCACGCTGCAAAATTCATCCTCAG





CTGTTCATACTGAAAGTAACAAGCTACAACCCA





AGAGAACGGCAGATGCGATGAATCTCAGTGTTG





ATGTGGAAAGTAGTCAGGATGGAGACAGTGATG





AAGATACCACACCATCCCTGGATTTTTCGGGAT





TGTCACCCTACGAAAGGAAGAGACTGAAGAACA





TATCAGAAAACGCAGACTTTTTTGCTTCTCTTC





AGTTGTCTGAGTCTGCTGCAAGACTCCGTGAAA





TGATAGAGAAGAGACAGCCTCCTAAATCCAAAA





GAAAGAAGCCTAAGAGAGAAAATGGGATTGGAT





GTAGAAGGTCAATGCGATTACTAAAAGTTGATC





CTTCGGGAGTTTCATTACCAGCAGCTCCAACAC





CGCCGACATTAGTAGCAGATGAAACTCCTTTGT





TACCTCCTGGGCCTTTAGAAATGACTTCTGAAA





ATCAAGAAGACAACAATGAACGATTTAAAGGAT





TTCTGCACACATGGGCAGGAATGAGCAAGCCAA





GTAGTAAGAACACTGAGAAGGGATTATCTAGCA





TTAAAAGCTACAAAGCCAATTTAAATGGCATGG





TCATTAGTGAAGATACCGTTTACAAAGTTACCA





CAGGCCCAATATTCTCTATGGCTCTCCATCCAT





CAGAAACTAGAACTTTGGTAGCAGTTGGGGCCA





AATTTGGGCAAGTTGGACTTTGTGATTTGACCC





AGCAACCTAAAGAAGATGGAGTTTATGTTTTTC





ATCCCCATAGTCAGCCAGTTAGCTGTCTTTACT





TCTCACCCGCCAATCCGGCCCACATACTGTCAC





TGAGCTATGATGGCACGTTACGCTGTGGGGATT





TTTCCAGGGCTATTTTTGAAGAGGTGTATAGAA





ATGAAAGAAGTAGCTTTTCCTCCTTCGACTTCT





TGGCAGAAGATGCCTCCACTTTAATAGTAGGAC





ACTGGGATGGAAATATGTCACTGGTGGATAGAC





GGACACCTGGAACTTCTTATGAGAAACTTACCA





GTTCTTCTATGGGAAAAATAAGAACTGTTCATG





TCCACCCAGTGCATAGACAGTATTTTATCACTG





CCGGATTGAGGGATACTCATATTTATGATGCAA





GGCGATTGAATTCCAGGAGAAGTCAGCCTTTGA





TTTCTTTGACTGAACATACAAAGAGCATTGCTT





CCGCCTATTTTTCACCTCTTACTGGTAACAGAG





TGGTGACCACATGTGCTGATTGTAATCTGAGAA





TTTTTGACAGCAGCTGTATATCTTCTAAGATTC





CGCTCCTCACCACCATCAGGCACAACACTTTCA





CTGGGCGATGGCTGACCAGGTTCCAAGCCATGT





GGGATCCTAAACAAGAAGACTGTGTCATAGTTG





GCAGCATGGCCCATCCACGACGGGTAGAAATCT





TCCATGAGACAGGAAAGAGGGTGCATTCGTTTG





GTGGAGAATACCTTGTCTCTGTGTGTTCCATCA





ATGCCATGCACCCAACTCGGTATATTTTGGCTG





GAGGTAATTCCAGCGGGAAGATACATGTTTTTA





TGAATGAAAAAAGCTGCTGAGTTTTTGGTTTAG





GAACATCAATTTGTTCAAATTGACCACTGTCTA





AGGAGCCTAGTAATCGGCGTGCCTTAGTGTGTT





TATGTGGTAATGTGTTACATTTAGCAATTATAA





CATTGTTTTATTAATAAGACTATAAGAAGAGTG





TACTTTTAGTAAGGGAGAAGTCTTGGAGGGTTG





CTTCTGCAGGACGGGGAGGGAATTTGAGGGGAG





GCTGAGGTGCCGTCAGGACTTTTTTTTTTTTTT





TTTTTTTGAGATGGAGTTTTGCTCTTGTTGCCC





AGGCTGGAGTGCAATAGCGCGATCTTGGCTCAC





CGCAACCTCCGCCTCCCAGGTTCAAGCGATTCT





CCTGCCTCAGACTCCTAAGTAGCTGGGATTACA





GGCACCTGCCACCACGCCTGGCTATTTTTTTGT





ATTTTTAGTAGAGATGGGGTTTCATCATGTTGG





CCAGGCTGGTCTCGAGCTCCTGACCTCAGGTGA





TCTGCCCGCCTCGGCCTCCAAAAGTGCTGGAAT





TACAGGCGTGAGCCACCATGCCTGGCCATCAGA





ACTTGTAATCAAGACAGTATGTTGAGAAATTCT





AACATTATAAATTACAAAGCTTTGACTATTAAA





GTTTTTGTGATCTAATGATACAGTTTTGATTCT





ATAGTAATTTGTGGCTTATTTTATAGTTTATAA





TGAATACTTATTTCTAGACTCATACACTGGAAG





GGGACCCGGAAAGGTAATGTAACTCAGTGATTT





TAAAACTTGATTTTTTTAACTGAGAACTTTTTT





TGCCCCCTGCCTGTAGGTTAAGTCTTACGTGAA





ATGCCAAGATAATTGCTGAGCAGCTTTGGTTAC





CCAGGGCGGGGTCTGGGTCTGTCTGTACTTTGC





CTTTACTCTAGATGGCTCCTGAGACACAGGCAG





GACTCCCAAGCACCGGGTTGGGATCTGCCCTGG





TCCCGGCATTCCAGTATAAGATTGCCTCAGACC





TGTGTTTTTCAGACTGGGTTTTTGCTCTTCACA





TGAAATCAAGTTAGATGACAATGACTGGTGTTG





AAAAAAATGAAAAGGAAAGAATTTGTAAAGAAC





AGAAAATATATTTGAGTAAGTATTGTTTGGTAA





AACTTAGTTACATATGCATATATATTTGTTAGG





TATATATGTTTATGTGTATTCTGATGTAAAATA





TATATATATATATATTTTATTACTATAGTACCA





TGGGTAATGGATAAAGAAGTTAAAGCTACTGCT





TAGAATGAAGAAGGCCCCAGGCTTACCTGTCCC





GATCTTTAAACTGTCCGAAGGAAATTCAATAGC





CTGTTAAGTGAATACCTTCATTCTTACTTGTAT





TTGGGGGAATATTATGAAATACTCACCACTTTT





GGTATTTTATGAAAATGTTTTCTTTTCAGAAGT





TATGGTAATTTCAATGTGTTTGTTGTTGGGAGG





GGAGCTGCCAAATCAGTTACTAATATTACTGTG





TGACATCTATCCAACTTTTTTCATTATTCTTCA





TTGCCAAATACTGAAAGACTTGTAAATGGCTTT





GGCAATATGTTTGAATTCTAAGAGGAAATATTT





TCCCATAATTGTATATCAGAGAAATATAGTGAT





ATACAATTTCCTTGAAAACCAATTTCTAAATAA





TTTTCTTCTCTGTAATCTAAGTGTAAAAAGGTT





TAGTTTTTTAATAGGTTTAGGTGTTTATAAGCA





ATAGTTCTCTATTTTCTAGTTGATATAAGTAGA





AGAATTGACAAGTGAGATGGAAATGTTAATTTA





TAAAGGGAAAGAAAAGCTAGGTGAGGTTGAGTT





ATAATTAAACTGTTCAGGAAACATCGTAAAGGC





TTTAGGCTCCCTTTTTCATTTCTATACCAATTA





ATCTCATGGGTTCTAGAGTGGTTAGTTCTACGG





GAATTGTTTTTGTTTTTGTTTTTAAAGATGCTG





AAAACTACTCTCAATCAAATTAGTACCATCATT





TAAGCTTTGAATACTTGGCAGTAATTGCCTGGG





CTCGTCAATAAATGTTAGCAAATTCTTGATGTT





CAAAAAAAAAA









In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; b) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) comparing the HPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and d) producing a report identifying the presence of mismatch repair deficiency in the subject when the HPS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the HPS score is less than the predetermined cutoff value.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; b) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) comparing the HPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and d) identifying the presence of mismatch repair deficiency in the subject when the HPS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the HPS score is less than the predetermined cutoff value.


In some aspects, the preceding methods can further comprise administering at least one treatment to a subject identified as having mismatch repair deficiency. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; b) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) comparing the HPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and d) administering at least one treatment to the subject when the HPS score is equal to or greater than the predetermined cutoff value. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In some aspects of the preceding methods, determining μ2 in step (b), wherein μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining z, wherein z=Σi=110ziwi, wherein zi is the log-transformed normalized expression of the at least one gene i from step (1) and wi is the prespecified weight for gene i; and 3) determining for each of the at least one gene the mean of z from step (2).


In some aspects of the preceding methods, determining σ2 in step (b), wherein 62 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining z, wherein z=Σi=110ziwi, wherein zi is the log-transformed normalized expression of the at least one gene i from step (1) and wi is the prespecified weight for gene i; and 3) determining for each of the at least one gene the standard deviation of z from step (2).


In some aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method. In some aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same apparatus. In preferred aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method and apparatus.


In some aspects, the prespecified weight for gene i, wi, in step (b) of the preceding methods can be:
















Gene
Weight



















EPM2AIP1
−0.31218



TTC30A
−0.19894



SMAP1
−0.1835



RNLS
−0.19023



WNT11
−0.11515



SFXN1
0.214676



SREBF1
0.194835



TYMS
0.206972



EIF5AL1
0.194935



WDR76
0.188582










In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of 99%. In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 99%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of at least 99.5%.


In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 91%, or at least 92%, or at least 93%, or at least 94%, or at least 95%, or at least 96%, or at least 97% or at least 98%.


In some aspects, the predetermined cutoff value of the preceding methods that identifies mismatch repair deficiency in a subject can be 1.645. Alternatively, the predetermined cutoff value can be 2.326. Alternatively still, the predetermined cutoff value can be 2.576.


The at least one gene in step (a) of the preceding methods can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, and WDR76.


In some aspects, step (a) of the preceding methods can comprise measuring the gene expression level of at least two genes, or at least three genes, or at least four genes, or at least five genes, or at least six genes, or at least seven genes, or at least eight genes, or at least nine genes or at least 10 genes comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, and WDR76.


In some aspects, when the tumor sample is a colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD) or uterine corpus endometrial carcinoma (UCEC) tumor sample, σ2, the standard deviation of the linear combination of the log transformed gene expression of the at least one gene in non-hypermutated samples, in step (b) of the preceding methods can be:
















Tumor Type
σ2









COAD
0.6604



ESCA
0.7617



STAD
0.8153



UCEC
0.7027










Table 1 shows the sequences of the at least one gene from step (a) of the preceding methods.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three genes are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; e) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; f) determining a score MPS wherein MPS=(max(HPS,0)2+min(MLS,0)2)1/2; g) comparing the MPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and h) producing a report identifying the presence of mismatch repair deficiency in the subject when the MPS score is equal to or greater than the predetermined cutoff value or producing a report identifying the absence of mismatch repair deficiency in the subject when the MPS score is less than the predetermined cutoff value.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three genes are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; e) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; f) determining a score MPS wherein MPS=(max(HPS,0)2+min(MLS,0)2)1/2; g) comparing the MPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and h) identifying the presence of mismatch repair deficiency in the subject when the MPS score is equal to or greater than the predetermined cutoff value or identifying the absence of mismatch repair deficiency in the subject when the MPS score is less than the predetermined cutoff value.


In some aspects, the preceding methods can further comprise administering at least one treatment to a subject identified as having mismatch repair deficiency. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In one aspect, the present disclosure provides a method of identifying mismatch repair deficiency in a subject comprising: a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject; b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used, c1 is 0.56 and c2 is 0.83 when two genes are used, c1 is 0.85 and c2 is 0.75 when three genes are used, or c1 is 1.03 and c2 is 0.70 when four genes are used; d) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject; e) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples; f) determining a score MPS wherein MPS=(max(HPS,0)2+min(MLS,0)2)1/2; g) comparing the MPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; and h) administering at least one treatment to the subject when the MPS score is equal to or greater than the predetermined cutoff value. A treatment can comprise anti-cancer therapy. A treatment can comprise administering to the subject immunotherapy. The at least one treatment can comprise administering to the subject at least one checkpoint inhibitor. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. A CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In some aspects of the preceding methods, determining μ1 in step (b), wherein μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining for each of the at least one gene the log-transformed normalized expression; and 3) determining for each of the at least one gene the mean of the log 2-transformed expression from step (2).


In some aspects of the preceding methods, determining σ1 in step (b), wherein σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining for each of the at least one gene the log-transformed normalized expression; and 3) determining for each of the at least one gene the standard deviation of the log 2-transformed expression from step (2).


In some aspects of the preceding methods, determining μ2 in step (e), wherein μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining z, wherein z=Σi=110ziwi, wherein zi is the log-transformed normalized expression of the at least one gene i from step (1) and wi is the prespecified weight for gene i; and 3) determining for each of the at least one gene the mean of z from step (2).


In some aspects of the preceding methods, determining σ2 in step (e), wherein 62 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, comprises: 1) measuring the gene expression level of the at least one gene in a plurality of analogous, non-hypermutated tumor samples from at least one subject, wherein at least one sample in the plurality of analogous, non-hypermutated samples originates from the same tissue as the tumor sample in step (a) of the preceding methods; 2) determining z, wherein z=Σi=110ziwi, wherein zi is the log-transformed normalized expression of the at least one gene i from step (1) and wi is the prespecified weight for gene i; and 3) determining for each of the at least one gene the standard deviation of z from step (2).


In some aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method. In some aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same apparatus. In preferred aspects of the preceding methods, measuring the gene expression of the at least one gene in a tumor sample from the subject and measuring the gene expression of the at least one gene in a plurality of analogous non-hypermutated tumor samples is performed using the same method and apparatus.


In some aspects, the prespecified weight for gene i, wi, in step (e) of the preceding methods can be:
















Gene
Weight



















EPM2AIP1
−0.31218



TTC30A
−0.19894



SMAP1
−0.1835



RNLS
−0.19023



WNT11
−0.11515



SFXN1
0.214676



SREBF1
0.194835



TYMS
0.206972



EIF5AL1
0.194935



WDR76
0.188582










In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of 99%. In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 99%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of 99.5%. In preferred aspects, the cutoff value that identifies mismatch repair deficiency in a subject can have a specificity of at least 99.5%.


In some aspects, the predetermined cutoff value in the preceding methods that identifies mismatch repair deficiency in a subject can have a specificity of at least 70%, or at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 91%, or at least 92%, or at least 93%, or at least 94%, or at least 95%, or at least 96%, or at least 97% or at least 98%.


In some aspects, the predetermined cutoff value of the preceding methods that identifies mismatch repair deficiency in a subject can be 2.058. Alternatively, the predetermined cutoff value can be 2.699. Alternatively still, the predetermined cutoff value can be 2.939.


The at least one gene in step (a) of the preceding methods can comprise MLH1. Alternatively, the at least one gene in step (a) can comprise each of MLH1, MSH2, MSH6 and PMS2.


The at least one gene in step (d) of the preceding can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76.


The at least one gene in step (a) of the preceding can comprise MLH1 and the at least one gene in step (d) of the preceding can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76. Alternatively, the at least one gene in step (a) of the preceding can comprise each of MLH1, MSH2, MSH6 and PMS2 and the at least one gene in step (d) of the preceding can comprise each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76.


In some aspects, step (a) of the preceding methods can comprise measuring the gene expression level of at least two genes, or at least three genes or at least four genes comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject.


In some aspects, step (d) of the preceding methods can comprise measuring the gene expression level of at least two genes, or at least three genes, or at least four genes, or at least five genes, or at least six genes, or at least seven genes, or at least eight genes, or at least nine genes or at least 10 genes comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, and WDR76.


In some aspects, when the tumor sample is a colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD) or uterine corpus endometrial carcinoma (UCEC) tumor sample, σ1, the standard deviation of the expression of the at least one gene in non-hypermutated samples, in step (b) of the preceding methods can be


















MLH1
MSH2
MSH6
PMS2






















COAD
0.3241
0.4108
0.4198
0.3259



ESCA
0.5221
0.6602
0.7347
0.4927



STAD
0.4245
0.6020
0.4814
0.4314



UCEC
0.4543
0.7312
0.6158
0.4217










In some aspects, when the tumor sample is a colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD) or uterine corpus endometrial carcinoma (UCEC) tumor sample, σ2, the standard deviation of the linear combination of the log transformed gene expression of the at least one gene in non-hypermutated samples, in step (e) of the preceding methods can be
















Tumor Type
σ2









COAD
0.6604



ESCA
0.7617



STAD
0.8153



UCEC
0.7027










Table 1 shows the sequences of the at least one gene from step (a) and the at least one gene from step (d) of the preceding methods.


In some aspects, a subject can be diagnosed with cancer.


In some aspects, a report of the preceding methods identifying mismatch repair deficiency can further identify the subject as having cancer. In some aspects of the methods of the present disclosure, identifying mismatch repair deficiency in a subject can further identify the subject as having cancer.


In some aspects, a report of the preceding method that identifies the presence of mismatch repair deficiency in a subject can further identify the subject for treatment with an anti-cancer therapy. In some aspects of the methods of the present disclosure, identifying the presence of mismatch repair deficiency in a subject can further identify the subject for treatment with anti-cancer therapy.


In some aspects, a treatment with an anti-cancer therapy can comprise administering a treatment to a subject identified as having mismatch repair deficiency. A treatment can comprise administering to the subject immunotherapy. A treatment can also comprise administering to the subject checkpoint inhibitors. A treatment can comprise administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI680, PDR001, CT-001 or a combination thereof. A treatment can comprise administering to the subject a CTLA4 antibody. The CTLA4 antibody can comprise ipilimumab, tremelimumab or a combination thereof.


In aspects of the methods of the present disclosure, gene expression is measured using methods known in the art. In preferred aspects, the methods are enzyme free methods e.g. US2003/0013091, US2007/0166708, US2010/0015607, US2010/0261026, US2010/0262374, US2010/0112710, US2010/0047924, and US2014/0371088, each of which is incorporated herein by reference in its entirety. Preferably, nCounter® probes, systems, and methods from NanoString Technologies®, as described in US2003/0013091, US2007/0166708, US2010/0015607, US2010/0261026, US2010/0262374, US2010/0112710, US2010/0047924, US2014/0371088, US2014/0017688, and US2011/0086774) are a preferred means for measuring gene expression. nCounter® probes, systems, and methods from NanoString Technologies® allow simultaneous multiplexed identification a plurality (800 or more) distinct target proteins and/or target nucleic acids. Each of the above-mentioned patent publications is incorporated herein by reference in its entirety. The above-mentioned nCounter® probes, systems, and methods from NanoString Technologies® can be combined with any aspect or embodiment described herein.


In one aspect, the present disclosure provides a method of determining a tumor inflammation signature score in a subject comprising: a) measuring the raw RNA level of at least one gene comprising CCL5, CD27, CD274, CD276, CD8A, CMKRLR1, CXCL9, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCD1LG2, PSMB10, STAT1 and TIGIT; b) measuring the raw RNA level of at least one gene comprising ABCF1, C14ORF102, G6PD, OAZ1, POLR2A, SDHA, STK11IP, TBC1D10B, TBP, UBB and ZBTB34; c) normalizing the measured raw RNA level of the at least one gene from step (a) using the measured raw RNA levels of the at least one gene from step (b); and d) generating a tumor inflammation signature score (TIS) wherein TIS=Σi=118qiwi, wherein qi is the normalized raw RNA level of the at least one gene i from step (c), and w, is a prespecified weight for gene i.


A more detailed description for determining a tumor inflammation signature score in a subject is disclosed in PCT/US2015/064445 (WO2016/094377), which is incorporated by reference in its entirety. See also Ayers M et al. The Journal of clinical investigation. 2017 Aug. 1; 127(8):2930-40.


In some aspects, the prespecified weight for gene i, wi, in step (d) of the preceding method can be
















Gene
Weight



















CCL5
0.008346



CD27
0.072293



CD274
0.042853



CD276
−0.0239



CD8A
0.031021



CMKRLR1
0.151253



CXCL9
0.074135



CXCR6
0.004313



HLA-DQA1
0.020091



HLA-DRB1
0.058806



HLA-E
0.07175



IDO1
0.060679



LAG3
0.123895



NKG7
0.075524



PDCD1LG2
0.003734



PSMB10
0.032999



STAT1
0.250229



TIGIT
0.084767










In alternative aspects of the preceding method, step (a) comprises measuring the raw RNA level of at least two genes, or at least three genes, or at least four genes, or at least five genes, or at least six genes, or at least seven genes, or at least eight genes, or at least nine genes, or at least 10 genes, or at least 11 genes, or at least 12 genes, or at least 13 genes, or at least 14 genes, or at least 15 genes, or at least 16 genes, at least 17 genes comprising CCL5, CD27, CD274, CD276, CD8A, CMKRLR1, CXCL9, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCD1LG2, PSMB10, STAT1 and TIGIT. In a preferred aspect, step (a) comprises measuring the raw RNA level of at least 18 genes comprising each of CCL5, CD27, CD274, CD276, CD8A, CMKRLR1, CXCL9, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCD1LG2, PSMB10, STAT1 and TIGIT.


In alternative aspects of the preceding method, step (b) comprises measuring the raw RNA level of at least two genes, or at least three genes, or at least four genes, or at least five genes, or at least six genes, or at least seven genes, or at least eight genes, or at least nine genes, or at least 10 genes or at least 11 genes comprising ABCF1, C14ORF102, G6PD, OAZ1, POLR2A, SDHA, STK11IP, TBC1D10B, TBP, UBB and ZBTB34. In a preferred aspect, step (b) comprises measuring the raw RNA level of at least 11 genes comprising each of ABCF1, C14ORF102, G6PD, OAZ1, POLR2A, SDHA, STK11IP, TBC1D10B, TBP, UBB and ZBTB34.


Table 2 shows the sequences of the at least one gene from step (a) and the at least one gene from step (b) of the preceding method.









TABLE 2







Sequences of genes measured for determining


tumor inflammation signature score











GenBank

SEQ


Gene
Accession No.
Sequence
ID No.





CCL5
NM_002985.2
GCTGCAGAGGATTCCTGCAGAGGATCAAGACAG
15




CACGTGGACCTCGCACAGCCTCTCCCACAGGTA





CCATGAAGGTCTCCGCGGCAGCCCTCGCTGTCA





TCCTCATTGCTACTGCCCTCTGCGCTCCTGCAT





CTGCCTCCCCATATTCCTCGGACACCACACCCT





GCTGCTTTGCCTACATTGCCCGCCCACTGCCCC





GTGCCCACATCAAGGAGTATTTCTACACCAGTG





GCAAGTGCTCCAACCCAGCAGTCGTCTTTGTCA





CCCGAAAGAACCGCCAAGTGTGTGCCAACCCAG





AGAAGAAATGGGTTCGGGAGTACATCAACTCTT





TGGAGATGAGCTAGGATGGAGAGTCCTTGAACC





TGAACTTACACAAATTTGCCTGTTTCTGCTTGC





TCTTGTCCTAGCTTGGGAGGCTTCCCCTCACTA





TCCTACCCCACCCGCTCCTTGAAGGGCCCAGAT





TCTACCACACAGCAGCAGTTACAAAAACCTTCC





CCAGGCTGGACGTGGTGGCTCACGCCTGTAATC





CCAGCACTTTGGGAGGCCAAGGTGGGTGGATCA





CTTGAGGTCAGGAGTTCGAGACCAGCCTGGCCA





ACATGATGAAACCCCATCTCTACTAAAAATACA





AAAAATTAGCCGGGCGTGGTAGCGGGCGCCTGT





AGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGA





ATGGCGTGAACCCGGGAGGCGGAGCTTGCAGTG





AGCCGAGATCGCGCCACTGCACTCCAGCCTGGG





CGACAGAGCGAGACTCCGTCTCAAAAAAAAAAA





AAAAAAAAAAAATACAAAAATTAGCCGGGCGTG





GTGGCCCACGCCTGTAATCCCAGCTACTCGGGA





GGCTAAGGCAGGAAAATTGTTTGAACCCAGGAG





GTGGAGGCTGCAGTGAGCTGAGATTGTGCCACT





TCACTCCAGCCTGGGTGACAAAGTGAGACTCCG





TCACAACAACAACAACAAAAAGCTTCCCCAACT





AAAGCCTAGAAGAGCTTCTGAGGCGCTGCTTTG





TCAAAAGGAAGTCTCTAGGTTCTGAGCTCTGGC





TTTGCCTTGGCTTTGCCAGGGCTCTGTGACCAG





GAAGGAAGTCAGCATGCCTCTAGAGGCAAGGAG





GGGAGGAACACTGCACTCTTAAGCTTCCGCCGT





CTCAACCCCTCACAGGAGCTTACTGGCAAACAT





GAAAAATCGGCTTACCATTAAAGTTCTCAATGC





AACCATAAAAAAAAAA






CD27
NM_001242.4
CGGAAGGGGAAGGGGGTGGAGGTTGCTGCTATG
16




AGAGAGAAAAAAAAAACAGCCACAATAGAGATT





CTGCCTTCAAAGGTTGGCTTGCCACCTGAAGCA





GCCACTGCCCAGGGGGTGCAAAGAAGAGACAGC





AGCGCCCAGCTTGGAGGTGCTAACTCCAGAGGC





CAGCATCAGCAACTGGGCACAGAAAGGAGCCGC





CTGGGCAGGGACCATGGCACGGCCACATCCCTG





GTGGCTGTGCGTTCTGGGGACCCTGGTGGGGCT





CTCAGCTACTCCAGCCCCCAAGAGCTGCCCAGA





GAGGCACTACTGGGCTCAGGGAAAGCTGTGCTG





CCAGATGTGTGAGCCAGGAACATTCCTCGTGAA





GGACTGTGACCAGCATAGAAAGGCTGCTCAGTG





TGATCCTTGCATACCGGGGGTCTCCTTCTCTCC





TGACCACCACACCCGGCCCCACTGTGAGAGCTG





TCGGCACTGTAACTCTGGTCTTCTCGTTCGCAA





CTGCACCATCACTGCCAATGCTGAGTGTGCCTG





TCGCAATGGCTGGCAGTGCAGGGACAAGGAGTG





CACCGAGTGTGATCCTCTTCCAAACCCTTCGCT





GACCGCTCGGTCGTCTCAGGCCCTGAGCCCACA





CCCTCAGCCCACCCACTTACCTTATGTCAGTGA





GATGCTGGAGGCCAGGACAGCTGGGCACATGCA





GACTCTGGCTGACTTCAGGCAGCTGCCTGCCCG





GACTCTCTCTACCCACTGGCCACCCCAAAGATC





CCTGTGCAGCTCCGATTTTATTCGCATCCTTGT





GATCTTCTCTGGAATGTTCCTTGTTTTCACCCT





GGCCGGGGCCCTGTTCCTCCATCAACGAAGGAA





ATATAGATCAAACAAAGGAGAAAGTCCTGTGGA





GCCTGCAGAGCCTTGTCGTTACAGCTGCCCCAG





GGAGGAGGAGGGCAGCACCATCCCCATCCAGGA





GGATTACCGAAAACCGGAGCCTGCCTGCTCCCC





CTGAGCCAGCACCTGCGGGAGCTGCACTACAGC





CCTGGCCTCCACCCCCACCCCGCCGACCATCCA





AGGGAGAGTGAGACCTGGCAGCCACAACTGCAG





TCCCATCCTCTTGTCAGGGCCCTTTCCTGTGTA





CACGTGACAGAGTGCCTTTTCGAGACTGGCAGG





GACGAGGACAAATATGGATGAGGTGGAGAGTGG





GAAGCAGGAGCCCAGCCAGCTGCGCCTGCGCTG





CAGGAGGGCGGGGGCTCTGGTTGTAAAACACAC





TTCCTGCTGCGAAAGACCCACATGCTACAAGAC





GGGCAAAATAAAGTGACAGATGACCACCCTGCA






CD274
NM_014143.3
GGCGCAACGCTGAGCAGCTGGCGCGTCCCGCGC
17




GGCCCCAGTTCTGCGCAGCTTCCCGAGGCTCCG





CACCAGCCGCGCTTCTGTCCGCCTGCAGGGCAT





TCCAGAAAGATGAGGATATTTGCTGTCTTTATA





TTCATGACCTACTGGCATTTGCTGAACGCATTT





ACTGTCACGGTTCCCAAGGACCTATATGTGGTA





GAGTATGGTAGCAATATGACAATTGAATGCAAA





TTCCCAGTAGAAAAACAATTAGACCTGGCTGCA





CTAATTGTCTATTGGGAAATGGAGGATAAGAAC





ATTATTCAATTTGTGCATGGAGAGGAAGACCTG





AAGGTTCAGCATAGTAGCTACAGACAGAGGGCC





CGGCTGTTGAAGGACCAGCTCTCCCTGGGAAAT





GCTGCACTTCAGATCACAGATGTGAAATTGCAG





GATGCAGGGGTGTACCGCTGCATGATCAGCTAT





GGTGGTGCCGACTACAAGCGAATTACTGTGAAA





GTCAATGCCCCATACAACAAAATCAACCAAAGA





ATTTTGGTTGTGGATCCAGTCACCTCTGAACAT





GAACTGACATGTCAGGCTGAGGGCTACCCCAAG





GCCGAAGTCATCTGGACAAGCAGTGACCATCAA





GTCCTGAGTGGTAAGACCACCACCACCAATTCC





AAGAGAGAGGAGAAGCTTTTCAATGTGACCAGC





ACACTGAGAATCAACACAACAACTAATGAGATT





TTCTACTGCACTTTTAGGAGATTAGATCCTGAG





GAAAACCATACAGCTGAATTGGTCATCCCAGAA





CTACCTCTGGCACATCCTCCAAATGAAAGGACT





CACTTGGTAATTCTGGGAGCCATCTTATTATGC





CTTGGTGTAGCACTGACATTCATCTTCCGTTTA





AGAAAAGGGAGAATGATGGATGTGAAAAAATGT





GGCATCCAAGATACAAACTCAAAGAAGCAAAGT





GATACACATTTGGAGGAGACGTAATCCAGCATT





GGAACTTCTGATCTTCAAGCAGGGATTCTCAAC





CTGTGGTTTAGGGGTTCATCGGGGCTGAGCGTG





ACAAGAGGAAGGAATGGGCCCGTGGGATGCAGG





CAATGTGGGACTTAAAAGGCCCAAGCACTGAAA





ATGGAACCTGGCGAAAGCAGAGGAGGAGAATGA





AGAAAGATGGAGTCAAACAGGGAGCCTGGAGGG





AGACCTTGATACTTTCAAATGCCTGAGGGGCTC





ATCGACGCCTGTGACAGGGAGAAAGGATACTTC





TGAACAAGGAGCCTCCAAGCAAATCATCCATTG





CTCATCCTAGGAAGACGGGTTGAGAATCCCTAA





TTTGAGGGTCAGTTCCTGCAGAAGTGCCCTTTG





CCTCCACTCAATGCCTCAATTTGTTTTCTGCAT





GACTGAGAGTCTCAGTGTTGGAACGGGACAGTA





TTTATGTATGAGTTTTTCCTATTTATTTTGAGT





CTGTGAGGTCTTCTTGTCATGTGAGTGTGGTTG





TGAATGATTTCTTTTGAAGATATATTGTAGTAG





ATGTTACAATTTTGTCGCCAAACTAAACTTGCT





GCTTAATGATTTGCTCACATCTAGTAAAACATG





GAGTATTTGTAAGGTGCTTGGTCTCCTCTATAA





CTACAAGTATACATTGGAAGCATAAAGATCAAA





CCGTTGGTTGCATAGGATGTCACCTTTATTTAA





CCCATTAATACTCTGGTTGACCTAATCTTATTC





TCAGACCTCAAGTGTCTGTGCAGTATCTGTTCC





ATTTAAATATCAGCTTTACAATTATGTGGTAGC





CTACACACATAATCTCATTTCATCGCTGTAACC





ACCCTGTTGTGATAACCACTATTATTTTACCCA





TCGTACAGCTGAGGAAGCAAACAGATTAAGTAA





CTTGCCCAAACCAGTAAATAGCAGACCTCAGAC





TGCCACCCACTGTCCTTTTATAATACAATTTAC





AGCTATATTTTACTTTAAGCAATTCTTTTATTC





AAAAACCATTTATTAAGTGCCCTTGCAATATCA





ATCGCTGTGCCAGGCATTGAATCTACAGATGTG





AGCAAGACAAAGTACCTGTCCTCAAGGAGCTCA





TAGTATAATGAGGAGATTAACAAGAAAATGTAT





TATTACAATTTAGTCCAGTGTCATAGCATAAGG





ATGATGCGAGGGGAAAACCCGAGCAGTGTTGCC





AAGAGGAGGAAATAGGCCAATGTGGTCTGGGAC





GGTTGGATATACTTAAACATCTTAATAATCAGA





GTAATTTTCATTTACAAAGAGAGGTCGGTACTT





AAAATAACCCTGAAAAATAACACTGGAATTCCT





TTTCTAGCATTATATTTATTCCTGATTTGCCTT





TGCCATATAATCTAATGCTTGTTTATATAGTGT





CTGGTATTGTTTAACAGTTCTGTCTTTTCTATT





TAAATGCCACTAAATTTTAAATTCATACCTTTC





CATGATTCAAAATTCAAAAGATCCCATGGGAGA





TGGTTGGAAAATCTCCACTTCATCCTCCAAGCC





ATTCAAGTTTCCTTTCCAGAAGCAACTGCTACT





GCCTTTCATTCATATGTTCTTCTAAAGATAGTC





TACATTTGGAAATGTATGTTAAAAGCACGTATT





TTTAAAATTTTTTTCCTAAATAGTAACACATTG





TATGTCTGCTGTGTACTTTGCTATTTTTATTTA





TTTTAGTGTTTCTTATATAGCAGATGGAATGAA





TTTGAAGTTCCCAGGGCTGAGGATCCATGCCTT





CTTTGTTTCTAAGTTATCTTTCCCATAGCTTTT





CATTATCTTTCATATGATCCAGTATATGTTAAA





TATGTCCTACATATACATTTAGACAACCACCAT





TTGTTAAGTATTTGCTCTAGGACAGAGTTTGGA





TTTGTTTATGTTTGCTCAAAAGGAGACCCATGG





GCTCTCCAGGGTGCACTGAGTCAATCTAGTCCT





AAAAAGCAATCTTATTATTAACTCTGTATGACA





GAATCATGTCTGGAACTTTTGTTTTCTGCTTTC





TGTCAAGTATAAACTTCACTTTGATGCTGTACT





TGCAAAATCACATTTTCTTTCTGGAAATTCCGG





CAGTGTACCTTGACTGCTAGCTACCCTGTGCCA





GAAAAGCCTCATTCGTTGTGCTTGAACCCTTGA





ATGCCACCAGCTGTCATCACTACACAGCCCTCC





TAAGAGGCTTCCTGGAGGTTTCGAGATTCAGAT





GCCCTGGGAGATCCCAGAGTTTCCTTTCCCTCT





TGGCCATATTCTGGTGTCAATGACAAGGAGTAC





CTTGGCTTTGCCACATGTCAAGGCTGAAGAAAC





AGTGTCTCCAACAGAGCTCCTTGTGTTATCTGT





TTGTACATGTGCATTTGTACAGTAATTGGTGTG





ACAGTGTTCTTTGTGTGAATTACAGGCAAGAAT





TGTGGCTGAGCAAGGCACATAGTCTACTCAGTC





TATTCCTAAGTCCTAACTCCTCCTTGTGGTGTT





GGATTTGTAAGGCACTTTATCCCTTTTGTCTCA





TGTTTCATCGTAAATGGCATAGGCAGAGATGAT





ACCTAATTCTGCATTTGATTGTCACTTTTTGTA





CCTGCATTAATTTAATAAAATATTCTTATTTAT





TTTGTTACTTGGTACACCAGCATGTCCATTTTC





TTGTTTATTTTGTGTTTAATAAAATGTTCAGTT





TAACATCCCAGTGGAGAAAGTTAAAAAA






CD276
NM_001024736.1
CCGGCCTCAGGGACGCACCGGAGCCGCCTTTCC
18




GGGCCTCAGGCGGATTCTCCGGCGCGGCCCGCC





CCGCCCCTCGGACTCCCCGGGCCGCCCCCGGCC





CCCATTCGGGCCGGGCCTCGCTGCGGCGGCGAC





TGAGCCAGGCTGGGCCGCGTCCCTGAGTCCCAG





AGTCGGCGCGGCGCGGCAGGGGCAGCCTTCCAC





CACGGGGAGCCCAGCTGTCAGCCGCCTCACAGG





AAGATGCTGCGTCGGCGGGGCAGCCCTGGCATG





GGTGTGCATGTGGGTGCAGCCCTGGGAGCACTG





TGGTTCTGCCTCACAGGAGCCCTGGAGGTCCAG





GTCCCTGAAGACCCAGTGGTGGCACTGGTGGGC





ACCGATGCCACCCTGTGCTGCTCCTTCTCCCCT





GAGCCTGGCTTCAGCCTGGCACAGCTCAACCTC





ATCTGGCAGCTGACAGATACCAAACAGCTGGTG





CACAGCTTTGCTGAGGGCCAGGACCAGGGCAGC





GCCTATGCCAACCGCACGGCCCTCTTCCCGGAC





CTGCTGGCACAGGGCAACGCATCCCTGAGGCTG





CAGCGCGTGCGTGTGGCGGACGAGGGCAGCTTC





ACCTGCTTCGTGAGCATCCGGGATTTCGGCAGC





GCTGCCGTCAGCCTGCAGGTGGCCGCTCCCTAC





TCGAAGCCCAGCATGACCCTGGAGCCCAACAAG





GACCTGCGGCCAGGGGACACGGTGACCATCACG





TGCTCCAGCTACCAGGGCTACCCTGAGGCTGAG





GTGTTCTGGCAGGATGGGCAGGGTGTGCCCCTG





ACTGGCAACGTGACCACGTCGCAGATGGCCAAC





GAGCAGGGCTTGTTTGATGTGCACAGCATCCTG





CGGGTGGTGCTGGGTGCAAATGGCACCTACAGC





TGCCTGGTGCGCAACCCCGTGCTGCAGCAGGAT





GCGCACAGCTCTGTCACCATCACACCCCAGAGA





AGCCCCACAGGAGCCGTGGAGGTCCAGGTCCCT





GAGGACCCGGTGGTGGCCCTAGTGGGCACCGAT





GCCACCCTGCGCTGCTCCTTCTCCCCCGAGCCT





GGCTTCAGCCTGGCACAGCTCAACCTCATCTGG





CAGCTGACAGACACCAAACAGCTGGTGCACAGT





TTCACCGAAGGCCGGGACCAGGGCAGCGCCTAT





GCCAACCGCACGGCCCTCTTCCCGGACCTGCTG





GCACAAGGCAATGCATCCCTGAGGCTGCAGCGC





GTGCGTGTGGCGGACGAGGGCAGCTTCACCTGC





TTCGTGAGCATCCGGGATTTCGGCAGCGCTGCC





GTCAGCCTGCAGGTGGCCGCTCCCTACTCGAAG





CCCAGCATGACCCTGGAGCCCAACAAGGACCTG





CGGCCAGGGGACACGGTGACCATCACGTGCTCC





AGCTACCGGGGCTACCCTGAGGCTGAGGTGTTC





TGGCAGGATGGGCAGGGTGTGCCCCTGACTGGC





AACGTGACCACGTCGCAGATGGCCAACGAGCAG





GGCTTGTTTGATGTGCACAGCGTCCTGCGGGTG





GTGCTGGGTGCGAATGGCACCTACAGCTGCCTG





GTGCGCAACCCCGTGCTGCAGCAGGATGCGCAC





GGCTCTGTCACCATCACAGGGCAGCCTATGACA





TTCCCCCCAGAGGCCCTGTGGGTGACCGTGGGG





CTGTCTGTCTGTCTCATTGCACTGCTGGTGGCC





CTGGCTTTCGTGTGCTGGAGAAAGATCAAACAG





AGCTGTGAGGAGGAGAATGCAGGAGCTGAGGAC





CAGGATGGGGAGGGAGAAGGCTCCAAGACAGCC





CTGCAGCCTCTGAAACACTCTGACAGCAAAGAA





GATGATGGACAAGAAATAGCCTGACCATGAGGA





CCAGGGAGCTGCTACCCCTCCCTACAGCTCCTA





CCCTCTGGCTGCAATGGGGCTGCACTGTGAGCC





CTGCCCCCAACAGATGCATCCTGCTCTGACAGG





TGGGCTCCTTCTCCAAAGGATGCGATACACAGA





CCACTGTGCAGCCTTATTTCTCCAATGGACATG





ATTCCCAAGTCATCCTGCTGCCTTTTTTCTTAT





AGACACAATGAACAGACCACCCACAACCTTAGT





TCTCTAAGTCATCCTGCCTGCTGCCTTATTTCA





CAGTACATACATTTCTTAGGGACACAGTACACT





GACCACATCACCACCCTCTTCTTCCAGTGCTGC





GTGGACCATCTGGCTGCCTTTTTTCTCCAAAAG





ATGCAATATTCAGACTGACTGACCCCCTGCCTT





ATTTCACCAAAGACACGATGCATAGTCACCCCG





GCCTTGTTTCTCCAATGGCCGTGATACACTAGT





GATCATGTTCAGCCCTGCTTCCACCTGCATAGA





ATCTTTTCTTCTCAGACAGGGACAGTGCGGCCT





CAACATCTCCTGGAGTCTAGAAGCTGTTTCCTT





TCCCCTCCTTCCTCCTCTTGCTCTAGCCTTAAT





ACTGGCCTTTTCCCTCCCTGCCCCAAGTGAAGA





CAGGGCACTCTGCGCCCACCACATGCACAGCTG





TGCATGGAGACCTGCAGGTGCACGTGCTGGAAC





ACGTGTGGTTCCCCCCTGGCCCAGCCTCCTCTG





CAGTGCCCCTCTCCCCTGCCCATCCTCCCCACG





GAAGCATGTGCTGGTCACACTGGTTCTCCAGGG





GTCTGTGATGGGGCCCCTGGGGGTCAGCTTCTG





TCCCTCTGCCTTCTCACCTCTTTGTTCCTTTCT





TTTCATGTATCCATTCAGTTGATGTTTATTGAG





CAACTACAGATGTCAGCACTGTGTTAGGTGCTG





GGGGCCCTGCGTGGGAAGATAAAGTTCCTCCCT





CAAGGACTCCCCATCCAGCTGGGAGACAGACAA





CTAACTACACTGCACCCTGCGGTTTGCAGGGGG





CTCCTGCCTGGCTCCCTGCTCCACACCTCCTCT





GTGGCTCAAGGCTTCCTGGATACCTCACCCCCA





TCCCACCCATAATTCTTACCCAGAGCATGGGGT





TGGGGCGGAAACCTGGAGAGAGGGACATAGCCC





CTCGCCACGGCTAGAGAATCTGGTGGTGTCCAA





AATGTCTGTCCAGGTGTGGGCAGGTGGGCAGGC





ACCAAGGCCCTCTGGACCTTTCATAGCAGCAGA





AAAGGCAGAGCCTGGGGCAGGGCAGGGCCAGGA





ATGCTTTGGGGACACCGAGGGGACTGCCCCCCA





CCCCCACCATGGTGCTATTCTGGGGCTGGGGCA





GTCTTTTCCTGGCTTGCCTCTGGCCAGCTCCTG





GCCTCTGGTAGAGTGAGACTTCAGACGTTCTGA





TGCCTTCCGGATGTCATCTCTCCCTGCCCCAGG





AATGGAAGATGTGAGGACTTCTAATTTAAATGT





GGGACTCGGAGGGATTTTGTAAACTGGGGGTAT





ATTTTGGGGAAAATAAATGTCTTTGTAAAAAGC





TTAAAAAAAAAAAAAAAAAA






CD8A
NM_001768.5
CGAAAAGGAGGGTGACTCTCCTCGGCGGGGGCT
19




TCGGGTGACATCACATCCTCCAAATGCGAAATC





AGGCTCCGGGCCGGCCGAAGGGCGCAACTTTCC





CCCCTCGGCGCCCCACCGGCTCCCGCGCGCCTC





CCCTCGCGCCCGAGCTTCGAGCCAAGCAGCGTC





CTGGGGAGCGCGTCATGGCCTTACCAGTGACCG





CCTTGCTCCTGCCGCTGGCCTTGCTGCTCCACG





CCGCCAGGCCGAGCCAGTTCCGGGTGTCGCCGC





TGGATCGGACCTGGAACCTGGGCGAGACAGTGG





AGCTGAAGTGCCAGGTGCTGCTGTCCAACCCGA





CGTCGGGCTGCTCGTGGCTCTTCCAGCCGCGCG





GCGCCGCCGCCAGTCCCACCTTCCTCCTATACC





TCTCCCAAAACAAGCCCAAGGCGGCCGAGGGGC





TGGACACCCAGCGGTTCTCGGGCAAGAGGTTGG





GGGACACCTTCGTCCTCACCCTGAGCGACTTCC





GCCGAGAGAACGAGGGCTACTATTTCTGCTCGG





CCCTGAGCAACTCCATCATGTACTTCAGCCACT





TCGTGCCGGTCTTCCTGCCAGCGAAGCCCACCA





CGACGCCAGCGCCGCGACCACCAACACCGGCGC





CCACCATCGCGTCGCAGCCCCTGTCCCTGCGCC





CAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAG





TGCACACGAGGGGGCTGGACTTCGCCTGTGATA





TCTACATCTGGGCGCCCTTGGCCGGGACTTGTG





GGGTCCTTCTCCTGTCACTGGTTATCACCCTTT





ACTGCAACCACAGGAACCGAAGACGTGTTTGCA





AATGTCCCCGGCCTGTGGTCAAATCGGGAGACA





AGCCCAGCCTTTCGGCGAGATACGTCTAACCCT





GTGCAACAGCCACTACATTACTTCAAACTGAGA





TCCTTCCTTTTGAGGGAGCAAGTCCTTCCCTTT





CATTTTTTCCAGTCTTCCTCCCTGTGTATTCAT





TCTCATGATTATTATTTTAGTGGGGGCGGGGTG





GGAAAGATTACTTTTTCTTTATGTGTTTGACGG





GAAACAAAACTAGGTAAAATCTACAGTACACCA





CAAGGGTCACAATACTGTTGTGCGCACATCGCG





GTAGGGCGTGGAAAGGGGCAGGCCAGAGCTACC





CGCAGAGTTCTCAGAATCATGCTGAGAGAGCTG





GAGGCACCCATGCCATCTCAACCTCTTCCCCGC





CCGTTTTACAAAGGGGGAGGCTAAAGCCCAGAG





ACAGCTTGATCAAAGGCACACAGCAAGTCAGGG





TTGGAGCAGTAGCTGGAGGGACCTTGTCTCCCA





GCTCAGGGCTCTTTCCTCCACACCATTCAGGTC





TTTCTTTCCGAGGCCCCTGTCTCAGGGTGAGGT





GCTTGAGTCTCCAACGGCAAGGGAACAAGTACT





TCTTGATACCTGGGATACTGTGCCCAGAGCCTC





GAGGAGGTAATGAATTAAAGAAGAGAACTGCCT





TTGGCAGAGTTCTATAATGTAAACAATATCAGA





CTTTTTTTTTTTATAATCAAGCCTAAAATTGTA





TAGACCTAAAATAAAATGAAGTGGTGAGCTTAA





CCCTGGAAAATGAATCCCTCTATCTCTAAAGAA





AATCTCTGTGAAACCCCTATGTGGAGGCGGAAT





TGCTCTCCCAGCCCTTGCATTGCAGAGGGGCCC





ATGAAAGAGGACAGGCTACCCCTTTACAAATAG





AATTTGAGCATCAGTGAGGTTAAACTAAGGCCC





TCTTGAATCTCTGAATTTGAGATACAAACATGT





TCCTGGGATCACTGATGACTTTTTATACTTTGT





AAAGACAATTGTTGGAGAGCCCCTCACACAGCC





CTGGCCTCTGCTCAACTAGCAGATACAGGGATG





AGGCAGACCTGACTCTCTTAAGGAGGCTGAGAG





CCCAAACTGCTGTCCCAAACATGCACTTCCTTG





CTTAAGGTATGGTACAAGCAATGCCTGCCCATT





GGAGAGAAAAAACTTAAGTAGATAAGGAAATAA





GAACCACTCATAATTCTTCACCTTAGGAATAAT





CTCCTGTTAATATGGTGTACATTCTTCCTGATT





ATTTTCTACACATACATGTAAAATATGTCTTTC





TTTTTTAAATAGGGTTGTACTATGCTGTTATGA





GTGGCTTTAATGAATAAACATTTGTAGCATCCT





CTTTAATGGGTAAACAGCATCCGAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAA






CMKRLR1
NM_004072.1
GAATTCGGCACGAGTCAGGGAAGCAGCCCCGGC
20




GGCCAGCAGGGAGCTCAGGACAGAGCAGGCTCC





CTGGGAAGCCTCCGGGTGATAGGGGTGTTCCAG





CTGCGGCGCTCTGGGGGTTCAGAGGGGGATCTT





GAATGAACAAATGAATGAACTGCTTTCTGGGCA





AACAGCCACAGCCAGAGGAGCCTGTGATTGGCA





GAAAGAAGCCAGGGTGTGCAAGTCTCCCCAACA





GCCTCGAGTGGCCTGCAGTCACAGGGAACCCTC





AGGAAGACCTTCCGGGCAGAGACCAGAGGGAAG





CCCATCTCTCCAGCAGAACTGCTTGGATTTTTC





TACCAGGAGGCTCAGGGCTCTGCAACAATGATA





GCAGAAGCTGATGGCATCTAGAGATCTAGGCTG





GGACTAGCACAGCATCACTTCTACCACTTTCTG





TTGGTCACAGCAACTCACCATGCCAGTGCAGAT





TCAAGGGGAGGAGAAATAGAGTCCACTTCTTGA





TGGGAGGCGTGACATAGAATGGAGGATGAAGAT





TACAACACTTCCATCAGTTACGGTGATGAATAC





CCTGATTATTTAGACTCCATTGTGGTTTTGGAG





GACTTATCCCCCTTGGAAGCCAGGGTGACCAGG





ATCTTCCTGGTGGTGGTCTACAGCATCGTCTGC





TTCCTCGGGATTCTGGGCAATGGTCTGGTGATC





ATCATTGCCACCTTCAAGATGAAGAAGACAGTG





AACATGGTCTGGTTCCTCAACCTGGCAGTGGCA





GATTTCCTGTTCAACGTCTTCCTCCCAATCCAT





ATCACCTATGCCGCCATGGACTACCACTGGGTT





TTCGGGACAGCCATGTGCAAGATCAGCAACTTC





CTTCTCATCCACAACATGTTCACCAGCGTCTTC





CTGCTGACCATCATCAGCTCTGACCGCTGCATC





TCTGTGCTCCTCCCTGTCTGGTCCCAGAACCAC





CGCAGCGTTCGCCTGGCTTACATGGCCTGCATG





GTCATCTGGGTCCTGGCTTTCTTCTTGAGTTCC





CCATCTCTCGTCTTCCGGGACACAGCCAACCTG





CATGGGAAAATATCCTGCTTCAACAACTTCAGC





CTGTCCACACCTGGGTCTTCCTCGTGGCCCACT





CACTCCCAAATGGACCCTGTGGGGTATAGCCGG





CACATGGTGGTGACTGTCACCCGCTTCCTCTGT





GGCTTCCTGGTCCCAGTCCTCATCATCACAGCT





TGCTACCTCACCATCGTGTGCAAACTGCAGCGC





AACCGCCTGGCCAAGACCAAGAAGCCCTTCAAG





ATTATTGTGACCATCATCATTACCTTCTTCCTC





TGCTGGTGCCCCTACCACACACTCAACCTCCTA





GAGCTCCACCACACTGCCATGCCTGGCTCTGTC





TTCAGCCTGGGTTTGCCCCTGGCCACTGCCCTT





GCCATTGCCAACAGCTGCATGAACCCCATTCTG





TATGTTTTCATGGGTCAGGACTTCAAGAAGTTC





AAGGTGGCCCTCTTCTCTCGCCTGGTCAATGCT





CTAAGTGAAGATACAGGCCACTCTTCCTACCCC





AGCCATAGAAGCTTTACCAAGATGTCATCAATG





AATGAGAGGACTTCTATGAATGAGAGGGAGACC





GGCATGCTTTGATCCTCACTGTGGAACCCCTCA





ATGGACTCTCTCAACCCAGGGACACCCAAGGAT





ATGTCTTCTGAAGATCAAGGCAAGAACCTCTTT





AGCATCCACCAATTTTCACTGCATTTTGCATGG





GATGAACAGTGTTTTATGCTGGGAATCTAGGGC





CTGGAACCCCTTTCTTCTAGTGGACAGAACATG





CTGTGTTCCATACAGCCTTGGACTAGCAATTTA





TGCTTCTTGGGAGGCCAGCCTTGACTGACTCAA





AGCAAAAAAGGAAGAATTC






CXCL9
NM_002416.1
ATCCAATACAGGAGTGACTTGGAACTCCATTCT
21




ATCACTATGAAGAAAAGTGGTGTTCTTTTCCTC





TTGGGCATCATCTTGCTGGTTCTGATTGGAGTG





CAAGGAACCCCAGTAGTGAGAAAGGGTCGCTGT





TCCTGCATCAGCACCAACCAAGGGACTATCCAC





CTACAATCCTTGAAAGACCTTAAACAATTTGCC





CCAAGCCCTTCCTGCGAGAAAATTGAAATCATT





GCTACACTGAAGAATGGAGTTCAAACATGTCTA





AACCCAGATTCAGCAGATGTGAAGGAACTGATT





AAAAAGTGGGAGAAACAGGTCAGCCAAAAGAAA





AAGCAAAAGAATGGGAAAAAACATCAAAAAAAG





AAAGTTCTGAAAGTTCGAAAATCTCAACGTTCT





CGTCAAAAGAAGACTACATAAGAGACCACTTCA





CCAATAAGTATTCTGTGTTAAAAATGTTCTATT





TTAATTATACCGCTATCATTCCAAAGGAGGATG





GCATATAATACAAAGGCTTATTAATTTGACTAG





AAAATTTAAAACATTACTCTGAAATTGTAACTA





AAGTTAGAAAGTTGATTTTAAGAATCCAAACGT





TAAGAATTGTTAAAGGCTATGATTGTCTTTGTT





CTTCTACCACCCACCAGTTGAATTTCATCATGC





TTAAGGCCATGATTTTAGCAATACCCATGTCTA





CACAGATGTTCACCCAACCACATCCCACTCACA





ACAGCTGCCTGGAAGAGCAGCCCTAGGCTTCCA





CGTACTGCAGCCTCCAGAGAGTATCTGAGGCAC





ATGTCAGCAAGTCCTAAGCCTGTTAGCATGCTG





GTGAGCCAAGCAGTTTGAAATTGAGCTGGACCT





CACCAAGCTGCTGTGGCCATCAACCTCTGTATT





TGAATCAGCCTACAGGCCTCACACACAATGTGT





CTGAGAGATTCATGCTGATTGTTATTGGGTATC





ACCACTGGAGATCACCAGTGTGTGGCTTTCAGA





GCCTCCTTTCTGGCTTTGGAAGCCATGTGATTC





CATCTTGCCCGCTCAGGCTGACCACTTTATTTC





TTTTTGTTCCCCTTTGCTTCATTCAAGTCAGCT





CTTCTCCATCCTACCACAATGCAGTGCCTTTCT





TCTCTCCAGTGCACCTGTCATATGCTCTGATTT





ATCTGAGTCAACTCCTTTCTCATCTTGTCCCCA





ACACCCCACAGAAGTGCTTTCTTCTCCCAATTC





ATCCTCACTCAGTCCAGCTTAGTTCAAGTCCTG





CCTCTTAAATAAACCTTTTTGGACACACAAATT





ATCTTAAAACTCCTGTTTCACTTGGTTCAGTAC





CACATGGGTGAACACTCAATGGTTAACTAATTC





TTGGGTGTTTATCCTATCTCTCCAACCAGATTG





TCAGCTCCTTGAGGGCAAGAGCCACAGTATATT





TCCCTGTTTCTTCCACAGTGCCTAATAATACTG





TGGAACTAGGTTTTAATAATTTTTTAATTGATG





TTGTTATGGGCAGGATGGCAACCAGACCATTGT





CTCAGAGCAGGTGCTGGCTCTTTCCTGGCTACT





CCATGTTGGCTAGCCTCTGGTAACCTCTTACTT





ATTATCTTCAGGACACTCACTACAGGGACCAGG





GATGATGCAACATCCTTGTCTTTTTATGACAGG





ATGTTTGCTCAGCTTCTCCAACAATAAGAAGCA





CGTGGTAAAACACTTGCGGATATTCTGGACTGT





TTTTAAAAAATATACAGTTTACCGAAAATCATA





TAATCTTACAATGAAAAGGACTTTATAGATCAG





CCAGTGACCAACCTTTTCCCAACCATACAAAAA





TTCCTTTTCCCGAAGGAAAAGGGCTTTCTCAAT





AAGCCTCAGCTTTCTAAGATCTAACAAGATAGC





CACCGAGATCCTTATCGAAACTCATTTTAGGCA





AATATGAGTTTTATTGTCCGTTTACTTGTTTCA





GAGTTTGTATTGTGATTATCAATTACCACACCA





TCTCCCATGAAGAAAGGGAACGGTGAAGTACTA





AGCGCTAGAGGAAGCAGCCAAGTCGGTTAGTGG





AAGCATGATTGGTGCCCAGTTAGCCTCTGCAGG





ATGTGGAAACCTCCTTCCAGGGGAGGTTCAGTG





AATTGTGTAGGAGAGGTTGTCTGTGGCCAGAAT





TTAAACCTATACTCACTTTCCCAAATTGAATCA





CTGCTCACACTGCTGATGATTTAGAGTGCTGTC





CGGTGGAGATCCCACCCGAACGTCTTATCTAAT





CATGAAACTCCCTAGTTCCTTCATGTAACTTCC





CTGAAAAATCTAAGTGTTTCATAAATTTGAGAG





TCTGTGACCCACTTACCTTGCATCTCACAGGTA





GACAGTATATAACTAACAACCAAAGACTACATA





TTGTCACTGACACACACGTTATAATCATTTATC





ATATATATACATACATGCATACACTCTCAAAGC





AAATAATTTTTCACTTCAAAACAGTATTGACTT





GTATACCTTGTAATTTGAAATATTTTCTTTGTT





AAAATAGAATGGTATCAATAAATAGACCATTAA





TCAG






CXCR6
NM_006564.1
GCAGACCTTGCTTCATGAGCAAGCTCATCTCTG
22




GAACAAACTGGCAAAGCATCTCTGCTGGTGTTC





ATCAGAACAGACACCATGGCAGAGCATGATTAC





CATGAAGACTATGGGTTCAGCAGTTTCAATGAC





AGCAGCCAGGAGGAGCATCAAGACTTCCTGCAG





TTCAGCAAGGTCTTTCTGCCCTGCATGTACCTG





GTGGTGTTTGTCTGTGGTCTGGTGGGGAACTCT





CTGGTGCTGGTCATATCCATCTTCTACCATAAG





TTGCAGAGCCTGACGGATGTGTTCCTGGTGAAC





CTACCCCTGGCTGACCTGGTGTTTGTCTGCACT





CTGCCCTTCTGGGCCTATGCAGGCATCCATGAA





TGGGTGTTTGGCCAGGTCATGTGCAAGAGCCTA





CTGGGCATCTACACTATTAACTTCTACACGTCC





ATGCTCATCCTCACCTGCATCACTGTGGATCGT





TTCATTGTAGTGGTTAAGGCCACCAAGGCCTAC





AACCAGCAAGCCAAGAGGATGACCTGGGGCAAG





GTCACCAGCTTGCTCATCTGGGTGATATCCCTG





CTGGTTTCCTTGCCCCAAATTATCTATGGCAAT





GTCTTTAATCTCGACAAGCTCATATGTGGTTAC





CATGACGAGGCAATTTCCACTGTGGTTCTTGCC





ACCCAGATGACACTGGGGTTCTTCTTGCCACTG





CTCACCATGATTGTCTGCTATTCAGTCATAATC





AAAACACTGCTTCATGCTGGAGGCTTCCAGAAG





CACAGATCTCTAAAGATCATCTTCCTGGTGATG





GCTGTGTTCCTGCTGACCCAGATGCCCTTCAAC





CTCATGAAGTTCATCCGCAGCACACACTGGGAA





TACTATGCCATGACCAGCTTTCACTACACCATC





ATGGTGACAGAGGCCATCGCATACCTGAGGGCC





TGCCTTAACCCTGTGCTCTATGCCTTTGTCAGC





CTGAAGTTTCGAAAGAACTTCTGGAAACTTGTG





AAGGACATTGGTTGCCTCCCTTACCTTGGGGTC





TCACATCAATGGAAATCTTCTGAGGACAATTCC





AAGACTTTTTCTGCCTCCCACAATGTGGAGGCC





ACCAGCATGTTCCAGTTATAGGCCTTGCCAGGG





TTTCGAGAAGCTGCTCTGGAATTTGCAAGTCAT





GGCTGTGCCCTCTTGATGTGGTGAGGCAGGCTT





TGTTTATAGCTTGCGCATTCTCATGGAGAAGTT





ATCAGACACTCTGGCTGGTTTGGAATGCTTCTT





CTCAGGCATGAACATGTACTGTTCTCTTCTTGA





ACACTCATGCTGAAAGCCCAAGTAGGGGGTCTA





AAATTTTTAAGGACTTTCCTTCCTCCATCTCCA





AGAATGCTGAAACCAAGGGGGATGACATGTGAC





TCCTATGATCTCAGGTTCTCCTTGATTGGGACT





GGGGCTGAAGGTTGAAGAGGTGAGCACGGCCAA





CAAAGCTGTTGATGGTAGGTGGCACACTGGGTG





CCCAAGCTCAGAAGGCTCTTCTGACTACTGGGC





AAAGAGTGTAGATCAGAGCAGCAGTGAAAACAA





GTGCTGGCACCACCAGGCACCTCACAGAAATGA





GATCAGGCTCTGCCTCACCTTGGGGCTTGACTT





TTGTATAGGTAGATGTTCAGATTGCTTTGATTA





ATCCAGAATAACTAGCACCAGGGACTATGAATG





GGCAAAACTGAATTATAAGAGGCTGATAATTCC





AGTGGTCCATGGAATGCTTGAAAAATGTGCAAA





ACAGCGTTTAAGACTGTAATGAATCTAAGCAGC





ATTTCTGAAGTGGACTCTTTGGTGGCTTTGCAT





TTTAAAAATGAAATTTTCCAATGTCTGCCACAC





AAACGTATGTAAATGTATATACCCACACACATA





CACACATATGTCATATATTACTAGCATATGAGT





TTCATAGCTAAGAAATAAAACTGTTAAAGTCTC





CAAACT






HLA-DQA1
NM_002122.3
ACAATTACTCTACAGCTCAGAACACCAACTGCT
23




GAGGCTGCCTTGGGAAGAGGATGATCCTAAACA





AAGCTCTGCTGCTGGGGGCCCTCGCTCTGACCA





CCGTGATGAGCCCCTGTGGAGGTGAAGACATTG





TGGCTGACCACGTTGCCTCTTGTGGTGTAAACT





TGTACCAGTTTTACGGTCCCTCTGGCCAGTACA





CCCATGAATTTGATGGAGATGAGCAGTTCTACG





TGGACCTGGAGAGGAAGGAGACTGCCTGGCGGT





GGCCTGAGTTCAGCAAATTTGGAGGTTTTGACC





CGCAGGGTGCACTGAGAAACATGGCTGTGGCAA





AACACAACTTGAACATCATGATTAAACGCTACA





ACTCTACCGCTGCTACCAATGAGGTTCCTGAGG





TCACAGTGTTTTCCAAGTCTCCCGTGACACTGG





GTCAGCCCAACACCCTCATTTGTCTTGTGGACA





ACATCTTTCCTCCTGTGGTCAACATCACATGGC





TGAGCAATGGGCAGTCAGTCACAGAAGGTGTTT





CTGAGACCAGCTTCCTCTCCAAGAGTGATCATT





CCTTCTTCAAGATCAGTTACCTCACCTTCCTCC





CTTCTGCTGATGAGATTTATGACTGCAAGGTGG





AGCACTGGGGCCTGGACCAGCCTCTTCTGAAAC





ACTGGGAGCCTGAGATTCCAGCCCCTATGTCAG





AGCTCACAGAGACTGTGGTCTGTGCCCTGGGGT





TGTCTGTGGGCCTCATGGGCATTGTGGTGGGCA





CTGTCTTCATCATCCAAGGCCTGCGTTCAGTTG





GTGCTTCCAGACACCAAGGGCCATTGTGAATCC





CATCCTGGAAGGGAAGGTGCATCGCCATCTACA





GGAGCAGAAGAATGGACTTGCTAAATGACCTAG





CACTATTCTCTGGCCCGATTTATCATATCCCTT





TTCTCCTCCAAATATTTCTCCTCTCACCTTTTC





TCTGGGACTTAAGCTGCTATATCCCCTCAGAGC





TCACAAATGCCTTTACATTCTTTCCCTGACCTC





CTGATTTTTTTTTTCTTTTCTCAAATGTTACCT





ACAAAGACATGCCTGGGGTAAGCCACCCGGCTA





CCTAATTCCTCAGTAACCTCCATCTAAAATCTC





CAAGGAAGCAATAAATTCCTTTTATGAGATCTA





TGTCAAATTTTTCCATCTTTCATCCAGGGCTGA





CTGAAACTATGGCTAATAATTGGGGTACTCTTA





TGTTTCAATCCAATTTAACCTCATTTCCCAGAT





CATTTTTCATGTCCAGTAACACAGAAGCCACCA





AGTACAGTATAGCCTGATAATATGTTGATTTCT





TAGCTGACATTAATATTTCTTGCTTCCTTGTGT





TCCCACCCTTGGCACTGCCACCCACCCCTCAAT





TCAGGCAACAATGAAATTAATGGATACCGTCTG





CCCTTGGCCCAGAATTGTTATAGCAAAAATTTT





AGAACCAAAAAATAAGTCTGTACTAATTTCAAT





GTGGCTTTTAAAAGTATGACAGAGAAATAAGTT





AGGATAAAGGAAATTTGAATCTCA






HLA-DRB1
NM_002124.1
TAGTTCTCCCTGAGTGAGACTTGCCTGCTTCTC
24




TGGCCCCTGGTCCTGTCCTGTTCTCCAGCATGG





TGTGTCTGAAGCTCCCTGGAGGCTCCTGCATGA





CAGCGCTGACAGTGACACTGATGGTGCTGAGCT





CCCCACTGGCTTTGGCTGGGGACACCCGACCAC





GTTTCTTGTGGCAGCTTAAGTTTGAATGTCATT





TCTTCAATGGGACGGAGCGGGTGCGGTTGCTGG





AAAGATGCATCTATAACCAAGAGGAGTCCGTGC





GCTTCGACAGCGACGTGGGGGAGTACCGGGCGG





TGACGGAGCTGGGGCGGCCTGATGCCGAGTACT





GGAACAGCCAGAAGGACCTCCTGGAGCAGAGGC





GGGCCGCGGTGGACACCTACTGCAGACACAACT





ACGGGGTTGGTGAGAGCTTCACAGTGCAGCGGC





GAGTTGAGCCTAAGGTGACTGTGTATCCTTCAA





AGACCCAGCCCCTGCAGCACCACAACCTCCTGG





TCTGCTCTGTGAGTGGTTTCTATCCAGGCAGCA





TTGAAGTCAGGTGGTTCCGGAACGGCCAGGAAG





AGAAGGCTGGGGTGGTGTCCACAGGCCTGATCC





AGAATGGAGATTGGACCTTCCAGACCCTGGTGA





TGCTGGAAACAGTTCCTCGGAGTGGAGAGGTTT





ACACCTGCCAAGTGGAGCACCCAAGTGTGACGA





GCCCTCTCACAGTGGAATGGAGAGCACGGTCTG





AATCTGCACAGAGCAAGATGCTGAGTGGAGTCG





GGGGCTTCGTGCTGGGCCTGCTCTTCCTTGGGG





CCGGGCTGTTCATCTACTTCAGGAATCAGAAAG





GACACTCTGGACTTCAGCCAACAGGATTCCTGA





GCTGAAATGCAGATGACCACATTCAAGGAAGAA





CCTTCTGTCCCAGCTTTGCAGAATGAAAAGCTT





TCCTGCTTGGCAGTTATTCTTCCACAAGAGAGG





GCTTTCTCAGGACCTGGTTGCTACTGGTTCGGC





AACTGCAGAAAATGTCCTCCCTTGTGGCTTCCT





CAGCTCCTGCCCTTGGCCTGAAGTCCCAGCATT





GATGACAGCGCCTCATCTTCAACTTTTGTGCTC





CCCTTTGCCTAAACCGTATGGCCTCCCGTGCAT





CTGTACTCACCCTGTACGACAAACACATTACAT





TATTAAATGTTTCTCAAAGATGGAGTT






HLA-E
NM_005516.4
CGGACTCAAGAAGTTCTCAGGACTCAGAGGCTG
25




GGATCATGGTAGATGGAACCCTCCTTTTACTCC





TCTCGGAGGCCCTGGCCCTTACCCAGACCTGGG





CGGGCTCCCACTCCTTGAAGTATTTCCACACTT





CCGTGTCCCGGCCCGGCCGCGGGGAGCCCCGCT





TCATCTCTGTGGGCTACGTGGACGACACCCAGT





TCGTGCGCTTCGACAACGACGCCGCGAGTCCGA





GGATGGTGCCGCGGGCGCCGTGGATGGAGCAGG





AGGGGTCAGAGTATTGGGACCGGGAGACACGGA





GCGCCAGGGACACCGCACAGATTTTCCGAGTGA





ACCTGCGGACGCTGCGCGGCTACTACAATCAGA





GCGAGGCCGGGTCTCACACCCTGCAGTGGATGC





ATGGCTGCGAGCTGGGGCCCGACGGGCGCTTCC





TCCGCGGGTATGAACAGTTCGCCTACGACGGCA





AGGATTATCTCACCCTGAATGAGGACCTGCGCT





CCTGGACCGCGGTGGACACGGCGGCTCAGATCT





CCGAGCAAAAGTCAAATGATGCCTCTGAGGCGG





AGCACCAGAGAGCCTACCTGGAAGACACATGCG





TGGAGTGGCTCCACAAATACCTGGAGAAGGGGA





AGGAGACGCTGCTTCACCTGGAGCCCCCAAAGA





CACACGTGACTCACCACCCCATCTCTGACCATG





AGGCCACCCTGAGGTGCTGGGCCCTGGGCTTCT





ACCCTGCGGAGATCACACTGACCTGGCAGCAGG





ATGGGGAGGGCCATACCCAGGACACGGAGCTCG





TGGAGACCAGGCCTGCAGGGGATGGAACCTTCC





AGAAGTGGGCAGCTGTGGTGGTGCCTTCTGGAG





AGGAGCAGAGATACACGTGCCATGTGCAGCATG





AGGGGCTACCCGAGCCCGTCACCCTGAGATGGA





AGCCGGCTTCCCAGCCCACCATCCCCATCGTGG





GCATCATTGCTGGCCTGGTTCTCCTTGGATCTG





TGGTCTCTGGAGCTGTGGTTGCTGCTGTGATAT





GGAGGAAGAAGAGCTCAGGTGGAAAAGGAGGGA





GCTACTCTAAGGCTGAGTGGAGCGACAGTGCCC





AGGGGTCTGAGTCTCACAGCTTGTAAAGCCTGA





GACAGCTGCCTTGTGTGCGACTGAGATGCACAG





CTGCCTTGTGTGCGACTGAGATGCAGGATTTCC





TCACGCCTCCCCTATGTGTCTTAGGGGACTCTG





GCTTCTCTTTTTGCAAGGGCCTCTGAATCTGTC





TGTGTCCCTGTTAGCACAATGTGAGGAGGTAGA





GAAACAGTCCACCTCTGTGTCTACCATGACCCC





CTTCCTCACACTGACCTGTGTTCCTTCCCTGTT





CTCTTTTCTATTAAAAATAAGAACCTGGGCAGA





GTGCGGCAGCTCATGCCTGTAATCCCAGCACTT





AGGGAGGCCGAGGAGGGCAGATCACGAGGTCAG





GAGATCGAAACCATCCTGGCTAACACGGTGAAA





CCCCGTCTCTACTAAAAAATACAAAAAATTAGC





TGGGCGCAGAGGCACGGGCCTGTAGTCCCAGCT





ACTCAGGAGGCGGAGGCAGGAGAATGGCGTCAA





CCCGGGAGGCGGAGGTTGCAGTGAGCCAGGATT





GTGCGACTGCACTCCAGCCTGGGTGACAGGGTG





AAACGCCATCTCAAAAAATAAAAATTGAAAAAT





AAAAAAAAAAAAAAAAAA






IDO1
NM_002164.3
AATTTCTCACTGCCCCTGTGATAAACTGTGGTC
26




ACTGGCTGTGGCAGCAACTATTATAAGATGCTC





TGAAAACTCTTCAGACACTGAGGGGCACCAGAG





GAGCAGACTACAAGAATGGCACACGCTATGGAA





AACTCCTGGACAATCAGTAAAGAGTACCATATT





GATGAAGAAGTGGGCTTTGCTCTGCCAAATCCA





CAGGAAAATCTACCTGATTTTTATAATGACTGG





ATGTTCATTGCTAAACATCTGCCTGATCTCATA





GAGTCTGGCCAGCTTCGAGAAAGAGTTGAGAAG





TTAAACATGCTCAGCATTGATCATCTCACAGAC





CACAAGTCACAGCGCCTTGCACGTCTAGTTCTG





GGATGCATCACCATGGCATATGTGTGGGGCAAA





GGTCATGGAGATGTCCGTAAGGTCTTGCCAAGA





AATATTGCTGTTCCTTACTGCCAACTCTCCAAG





AAACTGGAACTGCCTCCTATTTTGGTTTATGCA





GACTGTGTCTTGGCAAACTGGAAGAAAAAGGAT





CCTAATAAGCCCCTGACTTATGAGAACATGGAC





GTTTTGTTCTCATTTCGTGATGGAGACTGCAGT





AAAGGATTCTTCCTGGTCTCTCTATTGGTGGAA





ATAGCAGCTGCTTCTGCAATCAAAGTAATTCCT





ACTGTATTCAAGGCAATGCAAATGCAAGAACGG





GACACTTTGCTAAAGGCGCTGTTGGAAATAGCT





TCTTGCTTGGAGAAAGCCCTTCAAGTGTTTCAC





CAAATCCACGATCATGTGAACCCAAAAGCATTT





TTCAGTGTTCTTCGCATATATTTGTCTGGCTGG





AAAGGCAACCCCCAGCTATCAGACGGTCTGGTG





TATGAAGGGTTCTGGGAAGACCCAAAGGAGTTT





GCAGGGGGCAGTGCAGGCCAAAGCAGCGTCTTT





CAGTGCTTTGACGTCCTGCTGGGCATCCAGCAG





ACTGCTGGTGGAGGACATGCTGCTCAGTTCCTC





CAGGACATGAGAAGATATATGCCACCAGCTCAC





AGGAACTTCCTGTGCTCATTAGAGTCAAATCCC





TCAGTCCGTGAGTTTGTCCTTTCAAAAGGTGAT





GCTGGCCTGCGGGAAGCTTATGACGCCTGTGTG





AAAGCTCTGGTCTCCCTGAGGAGCTACCATCTG





CAAATCGTGACTAAGTACATCCTGATTCCTGCA





AGCCAGCAGCCAAAGGAGAATAAGACCTCTGAA





GACCCTTCAAAACTGGAAGCCAAAGGAACTGGA





GGCACTGATTTAATGAATTTCCTGAAGACTGTA





AGAAGTACAACTGAGAAATCCCTTTTGAAGGAA





GGTTAATGTAACCCAACAAGAGCACATTTTATC





ATAGCAGAGACATCTGTATGCATTCCTGTCATT





ACCCATTGTAACAGAGCCACAAACTAATACTAT





GCAATGTTTTACCAATAATGCAATACAAAAGAC





CTCAAAATACCTGTGCATTTCTTGTAGGAAAAC





AACAAAAGGTAATTATGTGTAATTATACTAGAA





GTTTTGTAATCTGTATCTTATCATTGGAATAAA





ATGACATTCAATAAATAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAA






LAG3
NM_002286.5
ACAGGGGTGAAGGCCCAGAGACCAGCAGAACGG
27




CATCCCAGCCACGACGGCCACTTTGCTCTGTCT





GCTCTCCGCCACGGCCCTGCTCTGTTCCCTGGG





ACACCCCCGCCCCCACCTCCTCAGGCTGCCTGA





TCTGCCCAGCTTTCCAGCTTTCCTCTGGATTCC





GGCCTCTGGTCATCCCTCCCCACCCTCTCTCCA





AGGCCCTCTCCTGGTCTCCCTTCTTCTAGAACC





CCTTCCTCCACCTCCCTCTCTGCAGAACTTCTC





CTTTACCCCCCACCCCCCACCACTGCCCCCTTT





CCTTTTCTGACCTCCTTTTGGAGGGCTCAGCGC





TGCCCAGACCATAGGAGAGATGTGGGAGGCTCA





GTTCCTGGGCTTGCTGTTTCTGCAGCCGCTTTG





GGTGGCTCCAGTGAAGCCTCTCCAGCCAGGGGC





TGAGGTCCCGGTGGTGTGGGCCCAGGAGGGGGC





TCCTGCCCAGCTCCCCTGCAGCCCCACAATCCC





CCTCCAGGATCTCAGCCTTCTGCGAAGAGCAGG





GGTCACTTGGCAGCATCAGCCAGACAGTGGCCC





GCCCGCTGCCGCCCCCGGCCATCCCCTGGCCCC





CGGCCCTCACCCGGCGGCGCCCTCCTCCTGGGG





GCCCAGGCCCCGCCGCTACACGGTGCTGAGCGT





GGGTCCCGGAGGCCTGCGCAGCGGGAGGCTGCC





CCTGCAGCCCCGCGTCCAGCTGGATGAGCGCGG





CCGGCAGCGCGGGGACTTCTCGCTATGGCTGCG





CCCAGCCCGGCGCGCGGACGCCGGCGAGTACCG





CGCCGCGGTGCACCTCAGGGACCGCGCCCTCTC





CTGCCGCCTCCGTCTGCGCCTGGGCCAGGCCTC





GATGACTGCCAGCCCCCCAGGATCTCTCAGAGC





CTCCGACTGGGTCATTTTGAACTGCTCCTTCAG





CCGCCCTGACCGCCCAGCCTCTGTGCATTGGTT





CCGGAACCGGGGCCAGGGCCGAGTCCCTGTCCG





GGAGTCCCCCCATCACCACTTAGCGGAAAGCTT





CCTCTTCCTGCCCCAAGTCAGCCCCATGGACTC





TGGGCCCTGGGGCTGCATCCTCACCTACAGAGA





TGGCTTCAACGTCTCCATCATGTATAACCTCAC





TGTTCTGGGTCTGGAGCCCCCAACTCCCTTGAC





AGTGTACGCTGGAGCAGGTTCCAGGGTGGGGCT





GCCCTGCCGCCTGCCTGCTGGTGTGGGGACCCG





GTCTTTCCTCACTGCCAAGTGGACTCCTCCTGG





GGGAGGCCCTGACCTCCTGGTGACTGGAGACAA





TGGCGACTTTACCCTTCGACTAGAGGATGTGAG





CCAGGCCCAGGCTGGGACCTACACCTGCCATAT





CCATCTGCAGGAACAGCAGCTCAATGCCACTGT





CACATTGGCAATCATCACAGTGACTCCCAAATC





CTTTGGGTCACCTGGATCCCTGGGGAAGCTGCT





TTGTGAGGTGACTCCAGTATCTGGACAAGAACG





CTTTGTGTGGAGCTCTCTGGACACCCCATCCCA





GAGGAGTTTCTCAGGACCTTGGCTGGAGGCACA





GGAGGCCCAGCTCCTTTCCCAGCCTTGGCAATG





CCAGCTGTACCAGGGGGAGAGGCTTCTTGGAGC





AGCAGTGTACTTCACAGAGCTGTCTAGCCCAGG





TGCCCAACGCTCTGGGAGAGCCCCAGGTGCCCT





CCCAGCAGGCCACCTCCTGCTGTTTCTCATCCT





TGGTGTCCTTTCTCTGCTCCTTTTGGTGACTGG





AGCCTTTGGCTTTCACCTTTGGAGAAGACAGTG





GCGACCAAGACGATTTTCTGCCTTAGAGCAAGG





GATTCACCCTCCGCAGGCTCAGAGCAAGATAGA





GGAGCTGGAGCAAGAACCGGAGCCGGAGCCGGA





GCCGGAACCGGAGCCCGAGCCCGAGCCCGAGCC





GGAGCAGCTCTGACCTGGAGCTGAGGCAGCCAG





CAGATCTCAGCAGCCCAGTCCAAATAAACTCCC





TGTCAGCAGCAAAAA






NKG7
NM_005601.3
TCATGTGACAAAGCGCAGGACCCCTCACTGCCC
28




CAACTGCTTGCTGTTCTCTCTTTCTTGGGCTCT





AAGGACCCAGGAGTCTGGGTGCACAGCCTCCTT





CTCTCTGAGATTCAAGAGTCTGATCAGCAGCCT





CTTCCTCCTCCAGGACCCAGAAGCCCTGAGCTT





ATCCCCATGGAGCTCTGCCGGTCCCTGGCCCTG





CTGGGGGGCTCCCTGGGCCTGATGTTCTGCCTG





ATTGCTTTGAGCACCGATTTCTGGTTTGAGGCT





GTGGGTCCCACCCACTCAGCTCACTCGGGCCTC





TGGCCAACAGGGCATGGGGACATCATATCAGGC





TACATCCACGTGACGCAGACCTTCAGCATTATG





GCTGTTCTGTGGGCCCTGGTGTCCGTGAGCTTC





CTGGTCCTGTCCTGCTTCCCCTCACTGTTCCCC





CCAGGCCACGGCCCGCTTGTCTCAACCACCGCA





GCCTTTGCTGCAGCCATCTCCATGGTGGTGGCC





ATGGCGGTGTACACCAGCGAGCGGTGGGACCAG





CCTCCACACCCCCAGATCCAGACCTTCTTCTCC





TGGTCCTTCTACCTGGGCTGGGTCTCAGCTATC





CTCTTGCTCTGTACAGGTGCCCTGAGCCTGGGT





GCTCACTGTGGCGGTCCCCGTCCTGGCTATGAA





ACCTTGTGAGCAGAAGGCAAGAGCGGCAAGATG





AGTTTTGAGCGTTGTATTCCAAAGGCCTCATCT





GGAGCCTCGGGAAAGTCTGGTCCCACATCTGCC





CGCCCTTCCAGCCCTTCCCCAGCCCCTCCTCTT





GTTTCTTCATTCATTCAACAAAATTTGGCTGGA





A



PDCD1LG2
NM_025239.3
GCAAACCTTAAGCTGAATGAACAACTTTTCTTC
29




TCTTGAATATATCTTAACGCCAAATTTTGAGTG





CTTTTTTGTTACCCATCCTCATATGTCCCAGCT





AGAAAGAATCCTGGGTTGGAGCTACTGCATGTT





GATTGTTTTGTTTTTCCTTTTGGCTGTTCATTT





TGGTGGCTACTATAAGGAAATCTAACACAAACA





GCAACTGTTTTTTGTTGTTTACTTTTGCATCTT





TACTTGTGGAGCTGTGGCAAGTCCTCATATCAA





ATACAGAACATGATCTTCCTCCTGCTAATGTTG





AGCCTGGAATTGCAGCTTCACCAGATAGCAGCT





TTATTCACAGTGACAGTCCCTAAGGAACTGTAC





ATAATAGAGCATGGCAGCAATGTGACCCTGGAA





TGCAACTTTGACACTGGAAGTCATGTGAACCTT





GGAGCAATAACAGCCAGTTTGCAAAAGGTGGAA





AATGATACATCCCCACACCGTGAAAGAGCCACT





TTGCTGGAGGAGCAGCTGCCCCTAGGGAAGGCC





TCGTTCCACATACCTCAAGTCCAAGTGAGGGAC





GAAGGACAGTACCAATGCATAATCATCTATGGG





GTCGCCTGGGACTACAAGTACCTGACTCTGAAA





GTCAAAGCTTCCTACAGGAAAATAAACACTCAC





ATCCTAAAGGTTCCAGAAACAGATGAGGTAGAG





CTCACCTGCCAGGCTACAGGTTATCCTCTGGCA





GAAGTATCCTGGCCAAACGTCAGCGTTCCTGCC





AACACCAGCCACTCCAGGACCCCTGAAGGCCTC





TACCAGGTCACCAGTGTTCTGCGCCTAAAGCCA





CCCCCTGGCAGAAACTTCAGCTGTGTGTTCTGG





AATACTCACGTGAGGGAACTTACTTTGGCCAGC





ATTGACCTTCAAAGTCAGATGGAACCCAGGACC





CATCCAACTTGGCTGCTTCACATTTTCATCCCC





TTCTGCATCATTGCTTTCATTTTCATAGCCACA





GTGATAGCCCTAAGAAAACAACTCTGTCAAAAG





CTGTATTCTTCAAAAGACACAACAAAAAGACCT





GTCACCACAACAAAGAGGGAAGTGAACAGTGCT





ATCTGAACCTGTGGTCTTGGGAGCCAGGGTGAC





CTGATATGACATCTAAAGAAGCTTCTGGACTCT





GAACAAGAATTCGGTGGCCTGCAGAGCTTGCCA





TTTGCACTTTTCAAATGCCTTTGGATGACCCAG





CACTTTAATCTGAAACCTGCAACAAGACTAGCC





AACACCTGGCCATGAAACTTGCCCCTTCACTGA





TCTGGACTCACCTCTGGAGCCTATGGCTTTAAG





CAAGCACTACTGCACTTTACAGAATTACCCCAC





TGGATCCTGGACCCACAGAATTCCTTCAGGATC





CTTCTTGCTGCCAGACTGAAAGCAAAAGGAATT





ATTTCCCCTCAAGTTTTCTAAGTGATTTCCAAA





AGCAGAGGTGTGTGGAAATTTCCAGTAACAGAA





ACAGATGGGTTGCCAATAGAGTTATTTTTTATC





TATAGCTTCCTCTGGGTACTAGAAGAGGCTATT





GAGACTATGAGCTCACAGACAGGGCTTCGCACA





AACTCAAATCATAATTGACATGTTTTATGGATT





ACTGGAATCTTGATAGCATAATGAAGTTGTTCT





AATTAACAGAGAGCATTTAAATATACACTAAGT





GCACAAATTGTGGAGTAAAGTCATCAAGCTCTG





TTTTTGAGGTCTAAGTCACAAAGCATTTGTTTT





AACCTGTAATGGCACCATGTTTAATGGTGGTTT





TTTTTTTGAACTACATCTTTCCTTTAAAAATTA





TTGGTTTCTTTTTATTTGTTTTTACCTTAGAAA





TCAATTATATACAGTCAAAAATATTTGATATGC





TCATACGTTGTATCTGCAGCAATTTCAGATAAG





TAGCTAAAATGGCCAAAGCCCCAAACTAAGCCT





CCTTTTCTGGCCCTCAATATGACTTTAAATTTG





ACTTTTCAGTGCCTCAGTTTGCACATCTGTAAT





ACAGCAATGCTAAGTAGTCAAGGCCTTTGATAA





TTGGCACTATGGAAATCCTGCAAGATCCCACTA





CATATGTGTGGAGCAGAAGGGTAACTCGGCTAC





AGTAACAGCTTAATTTTGTTAAATTTGTTCTTT





ATACTGGAGCCATGAAGCTCAGAGCATTAGCTG





ACCCTTGAACTATTCAAATGGGCACATTAGCTA





GTATAACAGACTTACATAGGTGGGCCTAAAGCA





AGCTCCTTAACTGAGCAAAATTTGGGGCTTATG





AGAATGAAAGGGTGTGAAATTGACTAACAGACA





AATCATACATCTCAGTTTCTCAATTCTCATGTA





AATCAGAGAATGCCTTTAAAGAATAAAACTCAA





TTGTTATTCTTCAACGTTCTTTATATATTCTAC





TTTTGGGTA






PSMB10
NM_002801.2
AGACGTGAAGCCTAGCAGAGGACTTTTTAGCTG
30




CTCACTGGCCCCGCTTGTCTGGCCGACTCATCC





GCCCGCGACCCCTAATCCCCTCTGCCTGCCCCA





AGATGCTGAAGCCAGCCCTGGAGCCCCGAGGGG





GCTTCTCCTTCGAGAACTGCCAAAGAAATGCAT





CATTGGAACGCGTCCTCCCGGGGCTCAAGGTCC





CTCACGCACGCAAGACCGGGACCACCATCGCGG





GCCTGGTGTTCCAAGACGGGGTCATTCTGGGCG





CCGATACGCGAGCCACTAACGATTCGGTCGTGG





CGGACAAGAGCTGCGAGAAGATCCACTTCATCG





CCCCCAAAATCTACTGCTGTGGGGCTGGAGTAG





CCGCGGACGCCGAGATGACCACACGGATGGTGG





CGTCCAAGATGGAGCTACACGCGTTATCTACGG





GCCGCGAGCCCCGCGTGGCCACGGTCACTCGCA





TCCTGCGCCAGACGCTCTTCAGGTACCAGGGCC





ACGTGGGTGCATCGCTGATCGTGGGCGGCGTAG





ACCTGACTGGACCGCAGCTCTACGGCGTGCATC





CCCATGGCTCCTACAGCCGTCTGCCCTTCACAG





CCCTGGGCTCTGGTCAGGACGCGGCCCTGGCGG





TGCTAGAAGACCGGTTCCAGCCGAACATGACGC





TGGAGGCTGCTCAGGGGCTGCTGGTGGAAGCCG





TCACCGCCGGGATCTTGGGTGACCTGGGCTCCG





GGGGCAATGTGGACGCATGTGTGATCACAAAGA





CTGGCGCCAAGCTGCTGCGGACACTGAGCTCAC





CCACAGAGCCCGTGAAGAGGTCTGGCCGCTACC





ACTTTGTGCCTGGAACCACAGCTGTCCTGACCC





AGACAGTGAAGCCACTAACCCTGGAGCTAGTGG





AGGAAACTGTGCAGGCTATGGAGGTGGAGTAAG





CTGAGGCTTAGAGCTTGGAACAAGGGGGAATAA





ACCCAGAAAATACAGTTAAACAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAA






STAT1
NM_007315.2
AGCGGGGCGGGGCGCCAGCGCTGCCTTTTCTCC
31




TGCCGGGTAGTTTCGCTTTCCTGCGCAGAGTCT





GCGGAGGGGCTCGGCTGCACCGGGGGGATCGCG





CCTGGCAGACCCCAGACCGAGCAGAGGCGACCC





AGCGCGCTCGGGAGAGGCTGCACCGCCGCGCCC





CCGCCTAGCCCTTCCGGATCCTGCGCGCAGAAA





AGTTTCATTTGCTGTATGCCATCCTCGAGAGCT





GTCTAGGTTAACGTTCGCACTCTGTGTATATAA





CCTCGACAGTCTTGGCACCTAACGTGCTGTGCG





TAGCTGCTCCTTTGGTTGAATCCCCAGGCCCTT





GTTGGGGCACAAGGTGGCAGGATGTCTCAGTGG





TACGAACTTCAGCAGCTTGACTCAAAATTCCTG





GAGCAGGTTCACCAGCTTTATGATGACAGTTTT





CCCATGGAAATCAGACAGTACCTGGCACAGTGG





TTAGAAAAGCAAGACTGGGAGCACGCTGCCAAT





GATGTTTCATTTGCCACCATCCGTTTTCATGAC





CTCCTGTCACAGCTGGATGATCAATATAGTCGC





TTTTCTTTGGAGAATAACTTCTTGCTACAGCAT





AACATAAGGAAAAGCAAGCGTAATCTTCAGGAT





AATTTTCAGGAAGACCCAATCCAGATGTCTATG





ATCATTTACAGCTGTCTGAAGGAAGAAAGGAAA





ATTCTGGAAAACGCCCAGAGATTTAATCAGGCT





CAGTCGGGGAATATTCAGAGCACAGTGATGTTA





GACAAACAGAAAGAGCTTGACAGTAAAGTCAGA





AATGTGAAGGACAAGGTTATGTGTATAGAGCAT





GAAATCAAGAGCCTGGAAGATTTACAAGATGAA





TATGACTTCAAATGCAAAACCTTGCAGAACAGA





GAACACGAGACCAATGGTGTGGCAAAGAGTGAT





CAGAAACAAGAACAGCTGTTACTCAAGAAGATG





TATTTAATGCTTGACAATAAGAGAAAGGAAGTA





GTTCACAAAATAATAGAGTTGCTGAATGTCACT





GAACTTACCCAGAATGCCCTGATTAATGATGAA





CTAGTGGAGTGGAAGCGGAGACAGCAGAGCGCC





TGTATTGGGGGGCCGCCCAATGCTTGCTTGGAT





CAGCTGCAGAACTGGTTCACTATAGTTGCGGAG





AGTCTGCAGCAAGTTCGGCAGCAGCTTAAAAAG





TTGGAGGAATTGGAACAGAAATACACCTACGAA





CATGACCCTATCACAAAAAACAAACAAGTGTTA





TGGGACCGCACCTTCAGTCTTTTCCAGCAGCTC





ATTCAGAGCTCGTTTGTGGTGGAAAGACAGCCC





TGCATGCCAACGCACCCTCAGAGGCCGCTGGTC





TTGAAGACAGGGGTCCAGTTCACTGTGAAGTTG





AGACTGTTGGTGAAATTGCAAGAGCTGAATTAT





AATTTGAAAGTCAAAGTCTTATTTGATAAAGAT





GTGAATGAGAGAAATACAGTAAAAGGATTTAGG





AAGTTCAACATTTTGGGCACGCACACAAAAGTG





ATGAACATGGAGGAGTCCACCAATGGCAGTCTG





GCGGCTGAATTTCGGCACCTGCAATTGAAAGAA





CAGAAAAATGCTGGCACCAGAACGAATGAGGGT





CCTCTCATCGTTACTGAAGAGCTTCACTCCCTT





AGTTTTGAAACCCAATTGTGCCAGCCTGGTTTG





GTAATTGACCTCGAGACGACCTCTCTGCCCGTT





GTGGTGATCTCCAACGTCAGCCAGCTCCCGAGC





GGTTGGGCCTCCATCCTTTGGTACAACATGCTG





GTGGCGGAACCCAGGAATCTGTCCTTCTTCCTG





ACTCCACCATGTGCACGATGGGCTCAGCTTTCA





GAAGTGCTGAGTTGGCAGTTTTCTTCTGTCACC





AAAAGAGGTCTCAATGTGGACCAGCTGAACATG





TTGGGAGAGAAGCTTCTTGGTCCTAACGCCAGC





CCCGATGGTCTCATTCCGTGGACGAGGTTTTGT





AAGGAAAATATAAATGATAAAAATTTTCCCTTC





TGGCTTTGGATTGAAAGCATCCTAGAACTCATT





AAAAAACACCTGCTCCCTCTCTGGAATGATGGG





TGCATCATGGGCTTCATCAGCAAGGAGCGAGAG





CGTGCCCTGTTGAAGGACCAGCAGCCGGGGACC





TTCCTGCTGCGGTTCAGTGAGAGCTCCCGGGAA





GGGGCCATCACATTCACATGGGTGGAGCGGTCC





CAGAACGGAGGCGAACCTGACTTCCATGCGGTT





GAACCCTACACGAAGAAAGAACTTTCTGCTGTT





ACTTTCCCTGACATCATTCGCAATTACAAAGTC





ATGGCTGCTGAGAATATTCCTGAGAATCCCCTG





AAGTATCTGTATCCAAATATTGACAAAGACCAT





GCCTTTGGAAAGTATTACTCCAGGCCAAAGGAA





GCACCAGAGCCAATGGAACTTGATGGCCCTAAA





GGAACTGGATATATCAAGACTGAGTTGATTTCT





GTGTCTGAAGTTCACCCTTCTAGACTTCAGACC





ACAGACAACCTGCTCCCCATGTCTCCTGAGGAG





TTTGACGAGGTGTCTCGGATAGTGGGCTCTGTA





GAATTCGACAGTATGATGAACACAGTATAGAGC





ATGAATTTTTTTCATCTTCTCTGGCGACAGTTT





TCCTTCTCATCTGTGATTCCCTCCTGCTACTCT





GTTCCTTCACATCCTGTGTTTCTAGGGAAATGA





AAGAAAGGCCAGCAAATTCGCTGCAACCTGTTG





ATAGCAAGTGAATTTTTCTCTAACTCAGAAACA





TCAGTTACTCTGAAGGGCATCATGCATCTTACT





GAAGGTAAAATTGAAAGGCATTCTCTGAAGAGT





GGGTTTCACAAGTGAAAAACATCCAGATACACC





CAAAGTATCAGGACGAGAATGAGGGTCCTTTGG





GAAAGGAGAAGTTAAGCAACATCTAGCAAATGT





TATGCATAAAGTCAGTGCCCAACTGTTATAGGT





TGTTGGATAAATCAGTGGTTATTTAGGGAACTG





CTTGACGTAGGAACGGTAAATTTCTGTGGGAGA





ATTCTTACATGTTTTCTTTGCTTTAAGTGTAAC





TGGCAGTTTTCCATTGGTTTACCTGTGAAATAG





TTCAAAGCCAAGTTTATATACAATTATATCAGT





CCTCTTTCAAAGGTAGCCATCATGGATCTGGTA





GGGGGAAAATGTGTATTTTATTACATCTTTCAC





ATTGGCTATTTAAAGACAAAGACAAATTCTGTT





TCTTGAGAAGAGAATATTAGCTTTACTGTTTGT





TATGGCTTAATGACACTAGCTAATATCAATAGA





AGGATGTACATTTCCAAATTCACAAGTTGTGTT





TGATATCCAAAGCTGAATACATTCTGCTTTCAT





CTTGGTCACATACAATTATTTTTACAGTTCTCC





CAAGGGAGTTAGGCTATTCACAACCACTCATTC





AAAAGTTGAAATTAACCATAGATGTAGATAAAC





TCAGAAATTTAATTCATGTTTCTTAAATGGGCT





ACTTTGTCCTTTTTGTTATTAGGGTGGTATTTA





GTCTATTAGCCACAAAATTGGGAAAGGAGTAGA





AAAAGCAGTAACTGACAACTTGAATAATACACC





AGAGATAATATGAGAATCAGATCATTTCAAAAC





TCATTTCCTATGTAACTGCATTGAGAACTGCAT





ATGTTTCGCTGATATATGTGTTTTTCACATTTG





CGAATGGTTCCATTCTCTCTCCTGTACTTTTTC





CAGACACTTTTTTGAGTGGATGATGTTTCGTGA





AGTATACTGTATTTTTACCTTTTTCCTTCCTTA





TCACTGACACAAAAAGTAGATTAAGAGATGGGT





TTGACAAGGTTCTTCCCTTTTACATACTGCTGT





CTATGTGGCTGTATCTTGTTTTTCCACTACTGC





TACCACAACTATATTATCATGCAAATGCTGTAT





TCTTCTTTGGTGGAGATAAAGATTTCTTGAGTT





TTGTTTTAAAATTAAAGCTAAAGTATCTGTATT





GCATTAAATATAATATGCACACAGTGCTTTCCG





TGGCACTGCATACAATCTGAGGCCTCCTCTCTC





AGTTTTTATATAGATGGCGAGAACCTAAGTTTC





AGTTGATTTTACAATTGAAATGACTAAAAAACA





AAGAAGACAACATTAAAACAATATTGTTTCTA






TIGIT
NM_173799.2
ACATCTGCTTCCTGTAGGCCCTCTGGGCAGAAG
32




CATGCGCTGGTGTCTCCTCCTGATCTGGGCCCA





GGGGCTGAGGCAGGCTCCCCTCGCCTCAGGAAT





GATGACAGGCACAATAGAAACAACGGGGAACAT





TTCTGCAGAGAAAGGTGGCTCTATCATCTTACA





ATGTCACCTCTCCTCCACCACGGCACAAGTGAC





CCAGGTCAACTGGGAGCAGCAGGACCAGCTTCT





GGCCATTTGTAATGCTGACTTGGGGTGGCACAT





CTCCCCATCCTTCAAGGATCGAGTGGCCCCAGG





TCCCGGCCTGGGCCTTACCCTCCAGTCGCTGAC





CGTGAACGATACAGGGGAGTACTTCTGCATCTA





TCACACCTACCCTGATGGGGCGTACACTGGGAG





AATCTTCCTGGAGGTCCTAGAAAGCTCAGTGGC





TGAGCACGGTGCCAGGTTCCAGATTCCATTGCT





TGGAGCCATGGCCGCGACGCTGGTGGTCATCTG





CACAGCAGTCATCGTGGTGGTCGCGTTGACTAG





AAAGAAGAAAGCCCTCAGAATCCATTCTGTGGA





AGGTGACCTCAGGAGAAAATCAGCTGGACAGGA





GGAATGGAGCCCCAGTGCTCCCTCACCCCCAGG





AAGCTGTGTCCAGGCAGAAGCTGCACCTGCTGG





GCTCTGTGGAGAGCAGCGGGGAGAGGACTGTGC





CGAGCTGCATGACTACTTCAATGTCCTGAGTTA





CAGAAGCCTGGGTAACTGCAGCTTCTTCACAGA





GACTGGTTAGCAACCAGAGGCATCTTCTGGAAG





ATACACTTTTGTCTTTGCTATTATAGATGAATA





TATAAGCAGCTGCACTCTCCATCAGTGCTGCGT





GTGTGTGTGTGTGTGTATGTGTGTGTGTGTTCA





GTTGAGTGAATAAATGTCATCCTCTTCTCCATC





TTCATTTCCTTGGCCTTTTCGTTCTATTCCATT





TTGCATTATGGCAGGCCTAGGGTGAGTAACGTG





GATCTTGATCATAAATGCAAAATTAAAAAATAT





CTTGACCTGGTTTTAAATCTGGCAGTTTGAGCA





GATCCTATGTCTCTGAGAGACACATTCCTCATA





ATGGCCAGCATTTTGGGCTACAAGGTTTTGTGG





TTGATGATGAGGATGGCATGACTGCAGAGCCAT





CCTCATCTCATTTTTTCACGTCATTTTCAGTAA





CTTTCACTCATTCAAAGGCAGGTTATAAGTAAG





TCCTGGTAGCAGCCTCTATGGGGAGATTTGAGA





GTGACTAAATCTTGGTATCTGCCCTCAAGAACT





TACAGTTAAATGGGGAGACAATGTTGTCATGAA





AAGGTATTATAGTAAGGAGAGAAGGAGACATAC





ACAGGCCTTCAGGAAGAGACGACAGTTTGGGGT





GAGGTAGTTGGCATAGGCTTATCTGTGATGAAG





TGGCCTGGGAGCACCAAGGGGATGTTGAGGCTA





GTCTGGGAGGAGCAGGAGTTTTGTCTAGGGAAC





TTGTAGGAAATTCTTGGAGCTGAAAGTCCCACA





AAGAAGGCCCTGGCACCAAGGGAGTCAGCAAAC





TTCAGATTTTATTCTCTGGGCAGGCATTTCAAG





TTTCCTTTTGCTGTGACATACTCATCCATTAGA





CAGCCTGATACAGGCCTGTAGCCTCTTCCGGCC





GTGTGTGCTGGGGAAGCCCCAGGAAACGCACAT





GCCCACACAGGGAGCCAAGTCGTAGCATTTGGG





CCTTGATCTACCTTTTCTGCATCAATACACTCT





TGAGCCTTTGAAAAAAGAACGTTTCCCACTAAA





AAGAAAATGTGGATTTTTAAAATAGGGACTCTT





CCTAGGGGAAAAAGGGGGGCTGGGAGTGATAGA





GGGTTTAAAAAATAAACACCTTCAAACTAACTT





CTTCGAACCCTTTTATTCACTCCCTGACGACTT





TGTGCTGGGGTTGGGGTAACTGAACTGCTTATT





TCTGTTTAATTGCATTCAGGCTGGATCTTAGAA





GACTTTTATCCTTCCACCATCTCTCTCAGAGGA





ATGAGCGGGGAGGTTGGATTTACTGGTGACTGA





TTTTCTTTCATGGGCCAAGGAACTGAAAGAGAA





TGTGAAGCAAGGTTGTGTCTTGCGCATGGTTAA





AAATAAAGCATTGTCCTGCTTCCTAAG






ABCF1
NM_001090.2
GCGCCAGCTTGGAGAGCCAGCCCCATCGGGGTT
33




CCCCGCCGCCGGAAGCGGAAATAGCACCGGGCG





CCGCCACAGTAGCTGTAACTGCCACCGCGATGC





CGAAGGCGCCCAAGCAGCAGCCGCCGGAGCCCG





AGTGGATCGGGGACGGAGAGAGCACGAGCCCAT





CAGACAAAGTGGTGAAGAAAGGGAAGAAGGACA





AGAAGATCAAAAAAACGTTCTTTGAAGAGCTGG





CAGTAGAAGATAAACAGGCTGGGGAAGAAGAGA





AAGTGCTCAAGGAGAAGGAGCAGCAGCAGCAGC





AACAGCAACAGCAGCAAAAAAAAAAGCGAGATA





CCCGAAAAGGCAGGCGGAAGAAGGATGTGGATG





ATGATGGAGAAGAGAAAGAGCTCATGGAGCGTC





TTAAGAAGCTCTCAGTGCCAACCAGTGATGAGG





AGGATGAAGTACCCGCCCCAAAACCCCGCGGAG





GGAAGAAAACCAAGGGTGGTAATGTTTTTGCAG





CCCTGATTCAGGATCAGAGTGAGGAAGAGGAGG





AGGAAGAAAAACATCCTCCTAAGCCTGCCAAGC





CGGAGAAGAATCGGATCAATAAGGCCGTATCTG





AGGAACAGCAGCCTGCACTCAAGGGCAAAAAGG





GAAAGGAAGAGAAGTCAAAAGGGAAGGCTAAGC





CTCAAAATAAATTCGCTGCTCTGGACAATGAAG





AGGAGGATAAAGAAGAAGAAATTATAAAGGAAA





AGGAGCCTCCCAAACAAGGGAAGGAGAAGGCCA





AGAAGGCAGAGCAGATGGAGTATGAGCGCCAAG





TGGCTTCATTAAAAGCAGCCAATGCAGCTGAAA





ATGACTTCTCCGTGTCCCAGGCGGAGATGTCCT





CCCGCCAAGCCATGTTAGAAAATGCATCTGACA





TCAAGCTGGAGAAGTTCAGCATCTCCGCTCATG





GCAAGGAGCTGTTCGTCAATGCAGACCTGTACA





TTGTAGCCGGCCGCCGCTACGGGCTGGTAGGAC





CCAATGGCAAGGGCAAGACCACACTCCTCAAGC





ACATTGCCAACCGAGCCCTGAGCATCCCTCCCA





ACATTGATGTGTTGCTGTGTGAGCAGGAGGTGG





TAGCAGATGAGACACCAGCAGTCCAGGCTGTTC





TTCGAGCTGACACCAAGCGATTGAAGCTGCTGG





AAGAGGAGCGGCGGCTTCAGGGACAGCTGGAAC





AAGGGGATGACACAGCTGCTGAGAGGCTAGAGA





AGGTGTATGAGGAATTGCGGGCCACTGGGGCGG





CAGCTGCAGAGGCCAAAGCACGGCGGATCCTGG





CTGGCCTGGGCTTTGACCCTGAAATGCAGAATC





GACCCACACAGAAGTTCTCAGGGGGCTGGCGCA





TGCGTGTCTCCCTGGCCAGGGCACTGTTCATGG





AGCCCACACTGCTGATGCTGGATGAGCCCACCA





ACCACCTGGACCTCAACGCTGTCATCTGGCTTA





ATAACTACCTCCAGGGCTGGCGGAAGACCTTGC





TGATCGTCTCCCATGACCAGGGCTTCTTGGATG





ATGTCTGCACTGATATCATCCACCTCGATGCCC





AGCGGCTCCACTACTATAGGGGCAATTACATGA





CCTTCAAAAAGATGTACCAGCAGAAGCAGAAAG





AACTGCTGAAACAGTATGAGAAGCAAGAGAAAA





AGCTGAAGGAGCTGAAGGCAGGCGGGAAGTCCA





CCAAGCAGGCGGAAAAACAAACGAAGGAAGCCC





TGACTCGGAAGCAGCAGAAATGCCGACGGAAAA





ACCAAGATGAGGAATCCCAGGAGGCCCCTGAGC





TCCTGAAGCGCCCTAAGGAGTACACTGTGCGCT





TCACTTTTCCAGACCCCCCACCACTCAGCCCTC





CAGTGCTGGGTCTGCATGGTGTGACATTCGGCT





ACCAGGGACAGAAACCACTCTTTAAGAACTTGG





ATTTTGGCATCGACATGGATTCAAGGATTTGCA





TTGTGGGCCCTAATGGTGTGGGGAAGAGTACGC





TACTCCTGCTGCTGACTGGCAAGCTGACACCGA





CCCATGGGGAAATGAGAAAGAACCACCGGCTGA





AAATTGGCTTCTTCAACCAGCAGTATGCAGAGC





AGCTGCGCATGGAGGAGACGCCCACTGAGTACC





TGCAGCGGGGCTTCAACCTGCCCTACCAGGATG





CCCGCAAGTGCCTGGGCCGCTTCGGCCTGGAGA





GTCACGCCCACACCATCCAGATCTGCAAACTCT





CTGGTGGTCAGAAGGCGCGAGTTGTGTTTGCTG





AGCTGGCCTGTCGGGAACCTGATGTCCTCATCT





TGGACGAGCCAACCAATAACCTGGACATAGAGT





CTATTGATGCTCTAGGGGAGGCCATCAATGAAT





ACAAGGGTGCTGTGATCGTTGTCAGCCATGATG





CCCGACTCATCACAGAAACCAATTGCCAGCTGT





GGGTGGTGGAGGAGCAGAGTGTTAGCCAAATCG





ATGGTGACTTTGAAGACTACAAGCGGGAGGTGT





TGGAGGCCCTGGGTGAAGTCATGGTCAGCCGGC





CCCGAGAGTGAGCTTTCCTTCCCAGAAGTCTCC





CGAGAGACATATTTGTGTGGCCTAGAAGTCCTC





TGTGGTCTCCCCTCCTCTGAAGACTGCCTCTGG





CCTGCAGCTGACCTGGCAACCATTCAGGCACAT





GAAGGTGGAGTGTGACCTTGATGTGACCGGGAT





CCCACTCTGATTGCATCCATTTCTCTGAAAGAC





TTGTTTGTTCTGCTTCTCTTCATATAACTGAGC





TGGCCTTATCCTTGGCATCCCCCTAAACAAACA





AGAGGTGACCACCTTATTGTGAGGTTCCATCCA





GCCAAGTTTATGTGGCCTATTGTCTCAGGACTC





TCATCACTCAGAAGCCTGCCTCTGATTTACCCT





ACAGCTTCAGGCCCAGCTGCCCCCCAGTCTTTG





GGTGGTGCTGTTCTTTTCTGGTGGATTTAATGC





TGACTCACTGGTACAAACAGCTGTTGAAGCTCA





GAGCTGGAGGTGAGCTTCTGAGGCCTTTGCCAT





TATCCAGCCCAAGATTTGGTGCCTGCAGCCTCT





TGTCTGGTTGAGGACTTGGGGCAGGAAAGGAAT





GCTGCTGAACTTGAATTTCCCTTTACAAGGGGA





AGAAATAAAGGAAAGGAGTTGCTGCCGACCTGT





CACTGTTTGGAGATTGATGGGAGTTGGAACTGT





TCTCAGTCTTGATTTGCTTTATTCAGTTTTCTA





GCAGCTTTTAATAGTCCCCTCTTCCCCACTAAA





TGGATCTTGTTTGCAGTCTTGCTGACAGTGTTT





GCTGTTTAAGGATCATAGGATTCCTTTCCCCCA





ACCCTTCACGCAAGGAAAAAGCAAAGTGATTCA





TACCTTCTATCTTGGAAAAAAAAAAAA






C140RF103
NM_017970.3
CCCCTTGGCCCCGCCCCACCCTGCTTTGCCCTG
34




CCTCTCCCTGCCCCGCCGCGCCCCAGTCCCTTG





ACGACCCTCCTCTCTGGGCCCCGCCCCTCCCGC





TTCGGGGTCAAGCCCCAGAGAGCGCCGCGAAAA





CCACATTTCCCAGAGTGCACCGCGACGGCAGGG





GTCCTCAGACCGGCGCTCGCTCGCCGGCGCCAT





CCCTATAGAGAAGAACGGAGGTACGGCCTGTGG





TCATGGCGCTGTTCCCAGCCTTTGCGGGGCTTA





GTGAGGCTCCCGATGGCGGGAGCTCCAGGAAAG





AGTTAGACTGGCTGAGCAACCCAAGCTTTTGTG





TTGGATCCATAACGTCCCTGAGCCAACAAACTG





AAGCAGCTCCAGCCCATGTTTCTGAAGGGTTAC





CGCTGACAAGGAGTCATCTGAAATCAGAGTCTT





CAGATGAAAGTGACACTAACAAAAAGCTCAAAC





AAACAAGTAGAAAAAAGAAGAAAGAGAAAAAGA





AAAAAAGGAAGCATCAGCATCATAAGAAAACAA





AGAGGAAGCATGGGCCGTCGAGTAGCAGCAGGT





CTGAGACAGACACCGATTCTGAAAAGGACAAAC





CTTCCAGAGGCGTTGGAGGCAGTAAAAAGGAAT





CTGAGGAACCGAATCAAGGAAATAATGCTGCAG





CTGATACTGGACATCGCTTTGTTTGGCTTGAGG





ACATTCAGGCTGTGACGGGAGAAACCTTCAGAA





CAGATAAGAAACCAGATCCTGCGAACTGGGAGT





ACAAGTCTCTCTACCGAGGGGATATAGCAAGAT





ACAAGAGGAAAGGAGACTCCTGCCTTGGCATTA





ACCCTAAGAAGCAGTGCATATCTTGGGAAGGGA





CTTCCACAGAGAAGAAGCATTCACGCAAGCAGG





TTGAACGCTATTTTACTAAGAAGAGTGTGGGAT





TAATGAACATCGATGGAGTTGCCATTAGCAGTA





AAACTGAACCTCCCTCATCTGAGCCCATCTCCT





TTATACCAGTGAAGGACTTGGAAGATGCGGCTC





CTGTTACAACCTGGTTGAATCCTCTGGGGATTT





ATGATCAGTCAACCACACATTGGCTACAAGGAC





AGGGTCCTCCAGAGCAGGAATCAAAGCAGCCAG





ACGCACAGCCAGACAGCGAGAGTGCGGCTCTCA





AGGCCAAGGTGGAGGAGTTTAACAGGAGGGTGC





GGGAGAATCCTCGGGATACGCAGCTGTGGATGG





CATTTGTTGCTTTTCAGGACGAGGTCATGAAAA





GTCCTGGCCTGTATGCCATCGAGGAAGGAGAGC





AGGAAAAGCGAAAGAGGTCCCTGAAGCTCATTC





TGGAGAAGAAGCTGGCCATTCTGGAGCGGGCCA





TTGAGAGCAACCAGAGCAGTGTGGATCTGAAAC





TGGCCAAGCTGAAGCTCTGCACAGAGTTCTGGG





AGCCCTCCACTCTGGTCAAAGAGTGGCAGAAAC





TGATATTTTTGCATCCCAATAATACAGCCCTTT





GGCAGAAATACCTTTTATTTTGCCAGAGCCAGT





TTAGTACCTTTTCGATATCAAAAATTCACAGTC





TTTATGGAAAATGCTTGAGCACTTTGTCTGCTG





TTAAGGACGGCAGCATCTTATCTCACCCTGCGT





TGCCTGGCACGGAAGAGGCCATGTTTGCACTCT





TTCTTCAGCAGTGCCACTTTCTGCGGCAGGCTG





GCCACTCTGAGAAGGCCATCTCATTGTTCCAGG





CCATGGTGGACTTCACCTTCTTCAAACCCGACA





GCGTGAAAGATCTGCCTACCAAAGGACAGGTGG





AATTCTTTGAACCCTTTTGGGACAGTGGAGAGC





CCCGGGCTGGGGAGAAGGGAGCCCGAGGCTGGA





AGGCGTGGATGCACCAGCAGGAACGAGGTGGCT





GGGTGGTCATCAACCCAGATGAGGATGACGATG





AACCAGAAGAGGATGACCAGGAAATAAAAGATA





AGACTCTGCCCAGGTGGCAGATCTGGCTTGCTG





CTGAGCGTTCCCGTGACCAGAGGCACTGGCGGC





CCTGGCGCCCTGATAAGACCAAGAAGCAAACCG





AGGAAGACTGTGAGGATCCCGAGAGACAGGTGT





TGTTTGATGATATTGGGCAATCTTTGATCAGAC





TTTCCAGCCATGATCTTCAGTTCCAGCTGGTGG





AGGCCTTCCTGCAGTTCTTGGGTGTGCCTTCTG





GCTTTACTCCTCCAGCCTCCTGTCTTTATCTGG





CCATGGATGAGAACAGCATCTTTGATAATGGAC





TTTATGATGAAAAGCCCTTGACTTTTTTCAACC





CTTTGTTTTCTGGGGCTAGCTGTGTTGGCCGCA





TGGATAGGTTGGGCTATCCTCGCTGGACCAGGG





GTCAGAACCGAGAGGGCGAGGAGTTCATCCGCA





ATGTCTTCCACCTTGTCATGCCTTTATTTTCAG





GCAAAGAGAAGTCCCAGCTCTGCTTCTCCTGGT





TACAGTATGAGATTGCAAAGGTCATTTGGTGCC





TGCACACTAAAAACAAGAAGAGATTAAAGTCTC





AAGGGAAGAACTGCAAAAAACTAGCCAAGAATC





TCCTTAAGGAGCCAGAAAACTGCAACAACTTTT





GCCTGTGGAAGCAGTATGCACATCTGGAGTGGT





TGCTTGGCAACACGGAGGATGCCAGAAAAGTTT





TTGACACAGCACTTGGCATGGCAGGAAGCAGAG





AACTGAAAGACTCTGACCTCTGTGAGCTCAGTC





TGCTCTATGCTGAGCTGGAGGTGGAGCTGTCGC





CAGAAGTGAGAAGGGCTGCCACAGCTCGAGCTG





TTCACATATTAACCAAGCTGACTGAGAGCAGCC





CCTATGGGCCCTACACTGGACAGGTGTTGGCTG





TTCACATTTTGAAAGCGCGAAAGGCTTATGAGC





ACGCACTGCAGGACTGTTTGGGTGACAGCTGTG





TCTCCAATCCAGCTCCCACCGATTCCTGTAGCC





GCCTAATTAGCCTGGCTAAATGCTTCATGCTCT





TCCAGTATTTGACCATAGGGATTGATGCTGCTG





TGCAGATATACGAACAGGTGTTTGCAAAACTGA





ACAGTTCTGTTTTCCCAGAAGGCTCTGGCGAGG





GGGACAGTGCCAGCTCCCAGAGTTGGACCAGTG





TTCTCGAAGCCATCACACTGATGCACACGAGCC





TGCTGAGATTCCACATGAAAGTGAGTGTTTACC





CGCTGGCCCCTCTGCGAGAGGCACTCTCACAGG





CTTTAAAGTTGTATCCAGGCAACCAGGTTCTTT





GGAGGTCCTATGTACAGATTCAGAATAAGTCCC





ACAGTGCCAGCAAAACCAGGAGATTTTTTGACA





CAATCACCAGGTCTGCCAAACCCTTGGAGCCTT





GGTTGTTTGCAATTGAAGCTGAGAAACTGAGGA





AGAGACTGGTGGAAACTGTCCAGAGGTTAGACG





GTAGAGAGATCCACGCCACAATTCCTGAGACCG





GCTTAATGCATCGGATCCAAGCCCTGTTTGAAA





ATGCCATGCGCAGCGACAGTGGCAGCCAGTGCC





CCTTGCTGTGGAGGATGTATTTGAACTTTCTGG





TTTCCTTAGGAAATAAAGAAAGAAGCAAAGGTG





TATTCTACAAAGCACTTCAGAATTGCCCTTGGG





CAAAGGTGTTGTACCTGGACGCCGTGGAGTATT





TCCCCGATGAGATGCAGGAGATCCTGGACCTGA





TGACTGAGAAGGAGCTCCGGGTGCGCCTGCCGC





TGGAGGAGCTGGAGCTGCTGCTGGAGGATTAGA





GAGCAGCGGGAAAACGGGCTGTGCCTGCGAGGC





CAAGTTGCCCACCCTGCGGAGCTAGGAGGCGCG





AGCAGAGAACGTGTGTGTTAGGAGAACTCGGCT





TTTGAAATGTTCTTTCTCGATAGTAATAATGTG





GGCTGCCAGCCTCTCACATCTTGCACACTTTTT





GGGTGTGTAAATGACACAAAAGTTATTTACATA





TTATATATGTGAATATGTGTATATATGTACATA





GCCAGAGAGTCATGCCACGTGGTCATTAAACCG





ATGATGATTGAGGCGTGAAAAAAAAAAAAAAAA






G6PD
NM_000402.2
AGGGACAGCCCAGAGGAGGCGTGGCCACGCTGC
35




CGGCGGAAGTGGAGCCCTCCGCGAGCGCGCGAG





GCCGCCGGGGCAGGCGGGGAAACCGGACAGTAG





GGGCGGGGCCGGGCCGGCGATGGGGATGCGGGA





GCACTACGCGGAGCTGCACCCGTGCCCGCCGGA





ATTGGGGATGCAGAGCAGCGGCAGCGGGTATGG





CAGGCAGCCGGCGGGCCGGCCTCCAGCGCAGGT





GCCCGAGAGGCAGGGGCTGGCCTGGGATGCGCG





CGCACCTGCCCTCGCCCCGCCCCGCCCGCACGA





GGGGTGGTGGCCGAGGCCCCGCCCCGCACGCCT





CGCCTGAGGCGGGTCCGCTCAGCCCAGGCGCCC





GCCCCCGCCCCCGCCGATTAAATGGGCCGGCGG





GGCTCAGCCCCCGGAAACGGTCGTAACTTCGGG





GCTGCGAGCGCGGAGGGCGACGACGACGAAGCG





CAGACAGCGTCATGGCAGAGCAGGTGGCCCTGA





GCCGGACCCAGGTGTGCGGGATCCTGCGGGAAG





AGCTTTTCCAGGGCGATGCCTTCCATCAGTCGG





ATACACACATATTCATCATCATGGGTGCATCGG





GTGACCTGGCCAAGAAGAAGATCTACCCCACCA





TCTGGTGGCTGTTCCGGGATGGCCTTCTGCCCG





AAAACACCTTCATCGTGGGCTATGCCCGTTCCC





GCCTCACAGTGGCTGACATCCGCAAACAGAGTG





AGCCCTTCTTCAAGGCCACCCCAGAGGAGAAGC





TCAAGCTGGAGGACTTCTTTGCCCGCAACTCCT





ATGTGGCTGGCCAGTACGATGATGCAGCCTCCT





ACCAGCGCCTCAACAGCCACATGGATGCCCTCC





ACCTGGGGTCACAGGCCAACCGCCTCTTCTACC





TGGCCTTGCCCCCGACCGTCTACGAGGCCGTCA





CCAAGAACATTCACGAGTCCTGCATGAGCCAGA





TAGGCTGGAACCGCATCATCGTGGAGAAGCCCT





TCGGGAGGGACCTGCAGAGCTCTGACCGGCTGT





CCAACCACATCTCCTCCCTGTTCCGTGAGGACC





AGATCTACCGCATCGACCACTACCTGGGCAAGG





AGATGGTGCAGAACCTCATGGTGCTGAGATTTG





CCAACAGGATCTTCGGCCCCATCTGGAACCGGG





ACAACATCGCCTGCGTTATCCTCACCTTCAAGG





AGCCCTTTGGCACTGAGGGTCGCGGGGGCTATT





TCGATGAATTTGGGATCATCCGGGACGTGATGC





AGAACCACCTACTGCAGATGCTGTGTCTGGTGG





CCATGGAGAAGCCCGCCTCCACCAACTCAGATG





ACGTCCGTGATGAGAAGGTCAAGGTGTTGAAAT





GCATCTCAGAGGTGCAGGCCAACAATGTGGTCC





TGGGCCAGTACGTGGGGAACCCCGATGGAGAGG





GCGAGGCCACCAAAGGGTACCTGGACGACCCCA





CGGTGCCCCGCGGGTCCACCACCGCCACTTTTG





CAGCCGTCGTCCTCTATGTGGAGAATGAGAGGT





GGGATGGGGTGCCCTTCATCCTGCGCTGCGGCA





AGGCCCTGAACGAGCGCAAGGCCGAGGTGAGGC





TGCAGTTCCATGATGTGGCCGGCGACATCTTCC





ACCAGCAGTGCAAGCGCAACGAGCTGGTGATCC





GCGTGCAGCCCAACGAGGCCGTGTACACCAAGA





TGATGACCAAGAAGCCGGGCATGTTCTTCAACC





CCGAGGAGTCGGAGCTGGACCTGACCTACGGCA





ACAGATACAAGAACGTGAAGCTCCCTGACGCCT





ACGAGCGCCTCATCCTGGACGTCTTCTGCGGGA





GCCAGATGCACTTCGTGCGCAGCGACGAGCTCC





GTGAGGCCTGGCGTATTTTCACCCCACTGCTGC





ACCAGATTGAGCTGGAGAAGCCCAAGCCCATCC





CCTATATTTATGGCAGCCGAGGCCCCACGGAGG





CAGACGAGCTGATGAAGAGAGTGGGTTTCCAGT





ATGAGGGCACCTACAAGTGGGTGAACCCCCACA





AGCTCTGAGCCCTGGGCACCCACCTCCACCCCC





GCCACGGCCACCCTCCTTCCCGCCGCCCGACCC





CGAGTCGGGAGGACTCCGGGACCATTGACCTCA





GCTGCACATTCCTGGCCCCGGGCTCTGGCCACC





CTGGCCCGCCCCTCGCTGCTGCTACTACCCGAG





CCCAGCTACATTCCTCAGCTGCCAAGCACTCGA





GACCATCCTGGCCCCTCCAGACCCTGCCTGAGC





CCAGGAGCTGAGTCACCTCCTCCACTCACTCCA





GCCCAACAGAAGGAAGGAGGAGGGCGCCCATTC





GTCTGTCCCAGAGCTTATTGGCCACTGGGTCTC





ACTCCTGAGTGGGGCCAGGGTGGGAGGGAGGGA





CAAGGGGGAGGAAAGGGGCGAGCACCCACGTGA





GAGAATCTGCCTGTGGCCTTGCCCGCCAGCCTC





AGTGCCACTTGACATTCCTTGTCACCAGCAACA





TCTCGAGCCCCCTGGATGTCCCCTGTCCCACCA





ACTCTGCACTCCATGGCCACCCCGTGCCACCCG





TAGGCAGCCTCTCTGCTATAAGAAAAGCAGACG





CAGCAGCTGGGACCCCTCCCAACCTCAATGCCC





TGCCATTAAATCCGCAAACAGCCAAAAAAAAAA





AAAAAAAAAA






OAZ1
NM_004152.2
TTTTGCGAACGGCGAGCAGCGGCGGCGGCGCGG
36




AGAGACGCAGCGGAGGTTTTCCTGGTTTCGGAC





CCCAGCGGCCGGATGGTGAAATCCTCCCTGCAG





CGGATCCTCAATAGCCACTGCTTCGCCAGAGAG





AAGGAAGGGGATAAACCCAGCGCCACCATCCAC





GCCAGCCGCACCATGCCGCTCCTAAGCCTGCAC





AGCCGCGGCGGCAGCAGCAGTGAGAGTTCCAGG





GTCTCCCTCCACTGCTGTAGTAACCCGGGTCCG





GGGCCTCGGTGGTGCTCCTGATGCCCCTCACCC





ACCCCTGAAGATCCCAGGTGGGCGAGGGAATAG





TCAGAGGGATCACAATCTTTCAGCTAACTTATT





CTACTCCGATGATCGGCTGAATGTAACAGAGGA





ACTAACGTCCAACGACAAGACGAGGATTCTCAA





CGTCCAGTCCAGGCTCACAGACGCCAAACGCAT





TAACTGGCGAACAGTGCTGAGTGGCGGCAGCCT





CTACATCGAGATCCCGGGCGGCGCGCTGCCCGA





GGGGAGCAAGGACAGCTTTGCAGTTCTCCTGGA





GTTCGCTGAGGAGCAGCTGCGAGCCGACCATGT





CTTCATTTGCTTCCACAAGAACCGCGAGGACAG





AGCCGCCTTGCTCCGAACCTTCAGCTTTTTGGG





CTTTGAGATTGTGAGACCGGGGCATCCCCTTGT





CCCCAAGAGACCCGACGCTTGCTTCATGGCCTA





CACGTTCGAGAGAGAGTCTTCGGGAGAGGAGGA





GGAGTAGGGCCGCCTCGGGGCTGGGCATCCGGC





CCCTGGGGCCACCCCTTGTCAGCCGGGTGGGTA





GGAACCGTAGACTCGCTCATCTCGCCTGGGTTT





GTCCGCATGTTGTAATCGTGCAAATAAACGCTC





ACTCCGAATTAGCGGTGTATTTCTTGAAGTTTA





ATATTGTGTTTGTGATACTGAAGTATTTGCTTT





AATTCTAAATAAAAATTTATATTTTACTTTTTT





ATTGCTGGTTTAAGATGATTCAGATTATCCTTG





TACTTTGAGGAGAAGTTTCTTATTTGGAGTCTT





TTGGAAACAGTCTTAGTCTTTTAACTTGGAAAG





ATGAGGTATTAATCCCCTCCATTGCTCTCCAAA





AGCCAATAAAGTGATTACACCCGA






POLR2A
NM_000937.2
GAGAGCGCGGCCGGGACGGTTGGAGAAGAAGGC
37




GGCTCCCCGGAAGGGGGAGAGACAAACTGCCGT





AACCTCTGCCGTTCAGGAACCCGGTTACTTATT





TATTCGTTACCCTTTTTCTTCTTCCTCCCCCAA





AAACCTTTTCCTTTTCCCTTCTTTTTTTTTCCT





TTTTGGGAGCTGAAAAATTTCCGGTAAGGGAAA





GAAGGGCTCCTTTCGCTCCTTATTTCGCCGCCT





CCTTCCCTCCGCCACCTTCCCCTCCTCCGGCTT





TTTCCTCCCAACTCGGGGAGGTCCTTCCCGGTG





GCCGCCCTGACGAGGTCTGAGCACCTAGGCGGA





GGCGGCGCAGGCTTTTTGTAGTGAGGTTTGCGC





CTGCGCAGGCGCCTGCCTCCGCCATGCACGGGG





GTGGCCCCCCCTCGGGGGACAGCGCATGCCCGC





TGCGCACCATCAAGAGAGTCCAGTTCGGAGTCC





TGAGTCCGGATGAACTGAAGCGAATGTCTGTGA





CGGAGGGTGGCATCAAATACCCAGAGACGACTG





AGGGAGGCCGCCCCAAGCTTGGGGGGCTGATGG





ACCCGAGGCAGGGGGTGATTGAGCGGACTGGCC





GCTGCCAAACATGTGCAGGAAACATGACAGAGT





GTCCTGGCCACTTTGGCCACATTGAACTGGCCA





AGCCTGTGTTTCACGTGGGCTTCCTGGTGAAGA





CAATGAAAGTTTTGCGCTGTGTCTGCTTCTTCT





GCTCCAAACTGCTTGTGGACTCTAACAACCCAA





AGATCAAGGATATCCTGGCTAAGTCCAAGGGAC





AGCCCAAGAAGCGGCTCACACATGTCTACGACC





TTTGCAAGGGCAAAAACATATGCGAGGGTGGGG





AGGAGATGGACAACAAGTTCGGTGTGGAACAAC





CTGAGGGTGACGAGGATCTGACCAAAGAAAAGG





GCCATGGTGGCTGTGGGCGGTACCAGCCCAGGA





TCCGGCGTTCTGGCCTAGAGCTGTATGCGGAAT





GGAAGCACGTTAATGAGGACTCTCAGGAGAAGA





AGATCCTGCTGAGTCCAGAGCGAGTGCATGAGA





TCTTCAAACGCATCTCAGATGAGGAGTGTTTTG





TGCTGGGCATGGAGCCCCGCTATGCACGGCCAG





AGTGGATGATTGTCACAGTGCTGCCTGTGCCCC





CGCTCTCCGTGCGGCCTGCTGTTGTGATGCAGG





GCTCTGCCCGTAACCAGGATGACCTGACTCACA





AACTGGCTGACATCGTGAAGATCAACAATCAGC





TGCGGCGCAATGAGCAGAACGGCGCAGCGGCCC





ATGTCATTGCAGAGGATGTGAAGCTCCTCCAGT





TCCATGTGGCCACCATGGTGGACAATGAGCTGC





CTGGCTTGCCCCGTGCCATGCAGAAGTCTGGGC





GTCCCCTCAAGTCCCTGAAGCAGCGGTTGAAGG





GCAAGGAAGGCCGGGTGCGAGGGAACCTGATGG





GCAAAAGAGTGGACTTCTCGGCCCGTACTGTCA





TCACCCCCGACCCCAACCTCTCCATTGACCAGG





TTGGCGTGCCCCGCTCCATTGCTGCCAACATGA





CCTTTGCGGAGATTGTCACCCCCTTCAACATTG





ACAGACTTCAAGAACTAGTGCGCAGGGGGAACA





GTCAGTACCCAGGCGCCAAGTACATCATCCGAG





ACAATGGTGATCGCATTGACTTGCGTTTCCACC





CCAAGCCCAGTGACCTTCACCTGCAGACCGGCT





ATAAGGTGGAACGGCACATGTGTGATGGGGACA





TTGTTATCTTCAACCGGCAGCCAACTCTGCACA





AAATGTCCATGATGGGGCATCGGGTCCGCATTC





TCCCATGGTCTACCTTTCGCTTGAATCTTAGCG





TGACAACTCCGTACAATGCAGACTTTGACGGGG





ATGAGATGAACTTGCACCTGCCACAGTCTCTGG





AGACGCGAGCAGAGATCCAGGAGCTGGCCATGG





TTCCTCGCATGATTGTCACCCCCCAGAGCAATC





GGCCTGTCATGGGTATTGTGCAGGACACACTCA





CAGCAGTGCGCAAATTCACCAAGAGAGACGTCT





TCCTGGAGCGGGGTGAAGTGATGAACCTCCTGA





TGTTCCTGTCGACGTGGGATGGGAAGGTCCCAC





AGCCGGCCATCCTAAAGCCCCGGCCCCTGTGGA





CAGGCAAGCAAATCTTCTCCCTCATCATACCTG





GTCACATCAATTGTATCCGTACCCACAGCACCC





ATCCCGATGATGAAGACAGTGGCCCTTACAAGC





ACATCTCTCCTGGGGACACCAAGGTGGTGGTGG





AGAATGGGGAGCTGATCATGGGCATCCTGTGTA





AGAAGTCTCTGGGCACGTCAGCTGGCTCCCTGG





TCCACATCTCCTACCTAGAGATGGGTCATGACA





TCACTCGCCTCTTCTACTCCAACATTCAGACTG





TCATTAACAACTGGCTCCTCATCGAGGGTCATA





CTATTGGCATTGGGGACTCCATTGCTGATTCTA





AGACTTACCAGGACATTCAGAACACTATTAAGA





AGGCCAAGCAGGACGTAATAGAGGTCATCGAGA





AGGCACACAACAATGAGCTGGAGCCCACCCCAG





GGAACACTCTGCGGCAGACGTTTGAGAATCAGG





TGAACCGCATTCTTAACGATGCCCGAGACAAGA





CTGGCTCCTCTGCTCAGAAATCCCTGTCTGAAT





ACAACAACTTCAAGTCTATGGTCGTGTCCGGAG





CTAAAGGTTCCAAGATTAACATCTCCCAGGTCA





TTGCTGTCGTTGGACAGCAGAACGTCGAGGGCA





AGCGGATTCCATTTGGCTTCAAGCACCGGACTC





TGCCTCACTTCATCAAGGATGACTACGGGCCTG





AGAGCCGTGGCTTTGTGGAGAACTCCTACCTAG





CCGGCCTCACACCCACTGAGTTCTTTTTCCACG





CCATGGGGGGTCGTGAGGGGCTCATTGACACGG





CTGTCAAGACTGCTGAGACTGGATACATCCAGC





GGCGGCTGATCAAGTCCATGGAGTCAGTGATGG





TGAAGTACGACGCGACTGTGCGGAACTCCATCA





ACCAGGTGGTGCAGCTGCGCTACGGCGAAGACG





GCCTGGCAGGCGAGAGCGTTGAGTTCCAGAACC





TGGCTACGCTTAAGCCTTCCAACAAGGCTTTTG





AGAAGAAGTTCCGCTTTGATTATACCAATGAGA





GGGCCCTGCGGCGCACTCTGCAGGAGGACCTGG





TGAAGGACGTGCTGAGCAACGCACACATCCAGA





ACGAGTTGGAGCGGGAATTTGAGCGGATGCGGG





AGGATCGGGAGGTGCTCAGGGTCATCTTCCCAA





CTGGAGACAGCAAGGTCGTCCTCCCCTGTAACC





TGCTGCGGATGATCTGGAATGCTCAGAAAATCT





TCCACATCAACCCACGCCTTCCCTCCGACCTGC





ACCCCATCAAAGTGGTGGAGGGAGTCAAGGAAT





TGAGCAAGAAGCTGGTGATTGTGAATGGGGATG





ACCCACTAAGTCGACAGGCCCAGGAAAATGCCA





CGCTGCTCTTCAACATCCACCTGCGGTCCACGT





TGTGTTCCCGCCGCATGGCAGAGGAGTTTCGGC





TCAGTGGGGAGGCCTTCGACTGGCTGCTTGGGG





AGATTGAGTCCAAGTTCAACCAAGCCATTGCGC





ATCCCGGGGAAATGGTGGGGGCTCTGGCTGCGC





AGTCCCTTGGAGAACCTGCCACCCAGATGACCT





TGAATACCTTCCACTATGCTGGTGTGTCTGCCA





AGAATGTGACGCTGGGTGTGCCCCGACTTAAGG





AGCTCATCAACATTTCCAAGAAGCCAAAGACTC





CTTCGCTTACTGTCTTCCTGTTGGGCCAGTCCG





CTCGAGATGCTGAGAGAGCCAAGGATATTCTGT





GCCGTCTGGAGCATACAACGTTGAGGAAGGTGA





CTGCCAACACAGCCATCTACTATGACCCCAACC





CCCAGAGCACGGTGGTGGCAGAGGATCAGGAAT





GGGTGAATGTCTACTATGAAATGCCTGACTTTG





ATGTGGCCCGAATCTCCCCCTGGCTGTTGCGGG





TGGAGCTGGATCGGAAGCACATGACTGACCGGA





AGCTCACCATGGAGCAGATTGCTGAAAAGATCA





ATGCTGGTTTTGGTGACGACTTGAACTGCATCT





TTAATGATGACAATGCAGAGAAGCTGGTGCTCC





GTATTCGCATCATGAACAGCGATGAGAACAAGA





TGCAAGAGGAGGAAGAGGTGGTGGACAAGATGG





ATGATGATGTCTTCCTGCGCTGCATCGAGTCCA





ACATGCTGACAGATATGACCCTGCAGGGCATCG





AGCAGATCAGCAAGGTGTACATGCACTTGCCAC





AGACAGACAACAAGAAGAAGATCATCATCACGG





AGGATGGGGAATTCAAGGCCCTGCAGGAGTGGA





TCCTGGAGACGGACGGCGTGAGCTTGATGCGGG





TGCTGAGTGAGAAGGACGTGGACCCCGTACGCA





CCACGTCCAATGACATTGTGGAGATCTTCACGG





TGCTGGGCATTGAAGCCGTGCGGAAGGCCCTGG





AGCGGGAGCTGTACCACGTCATCTCCTTTGATG





GCTCCTATGTCAATTACCGACACTTGGCTCTCT





TGTGTGATACCATGACCTGTCGTGGCCACTTGA





TGGCCATCACCCGACACGGAGTCAACCGCCAGG





ACACAGGACCACTCATGAAGTGTTCCTTTGAGG





AAACGGTGGACGTGCTTATGGAAGCAGCCGCAC





ACGGTGAGAGTGACCCCATGAAGGGGGTCTCTG





AGAATATCATGCTGGGCCAGCTGGCTCCGGCCG





GCACTGGCTGCTTTGACCTCCTGCTTGATGCAG





AGAAGTGCAAGTATGGCATGGAGATCCCCACCA





ATATCCCCGGCCTGGGGGCTGCTGGACCCACCG





GCATGTTCTTTGGTTCAGCACCCAGTCCCATGG





GTGGAATCTCTCCTGCCATGACACCTTGGAACC





AGGGTGCAACCCCTGCCTATGGCGCCTGGTCCC





CCAGTGTTGGGAGTGGAATGACCCCAGGGGCAG





CCGGCTTCTCTCCCAGTGCTGCGTCAGATGCCA





GCGGCTTCAGCCCAGGTTACTCCCCTGCCTGGT





CTCCCACACCGGGCTCCCCGGGGTCCCCAGGTC





CCTCAAGCCCCTACATCCCTTCACCAGGTGGTG





CCATGTCTCCCAGCTACTCGCCAACGTCACCTG





CCTACGAGCCCCGCTCTCCTGGGGGCTACACAC





CCCAGAGTCCCTCTTATTCCCCCACTTCACCCT





CCTACTCCCCTACCTCTCCATCCTATTCTCCAA





CCAGTCCCAACTATAGTCCCACATCACCCAGCT





ATTCGCCAACGTCACCCAGCTACTCACCGACCT





CTCCCAGCTACTCACCCACCTCTCCCAGCTACT





CGCCCACCTCTCCCAGCTATTCGCCCACCTCTC





CCAGCTACTCACCCACTTCCCCTAGCTATTCGC





CCACTTCCCCTAGCTACTCGCCAACGTCTCCCA





GCTACTCGCCGACATCTCCCAGCTACTCGCCAA





CTTCACCCAGCTATTCTCCCACTTCTCCCAGCT





ACTCACCTACCTCTCCAAGCTATTCACCCACCT





CCCCCAGCTACTCACCCACTTCCCCAAGTTACT





CACCCACCAGCCCGAACTATTCTCCAACCAGTC





CCAATTACACCCCAACATCACCCAGCTACAGCC





CGACATCACCCAGCTATTCCCCTACTAGTCCCA





ACTACACACCTACCAGCCCTAACTACAGCCCAA





CCTCTCCAAGCTACTCTCCAACATCACCCAGCT





ATTCCCCGACCTCACCAAGTTACTCCCCTTCCA





GCCCACGATACACACCACAGTCTCCAACCTATA





CCCCAAGCTCACCCAGCTACAGCCCCAGTTCGC





CCAGCTACAGCCCAACCTCACCCAAGTACACCC





CAACCAGTCCTTCTTATAGTCCCAGCTCCCCAG





AGTATACCCCAACCTCTCCCAAGTACTCACCTA





CCAGTCCCAAATATTCACCCACCTCTCCCAAGT





ACTCGCCTACCAGTCCCACCTATTCACCCACCA





CCCCAAAATACTCCCCAACATCTCCTACTTATT





CCCCAACCTCTCCAGTCTACACCCCAACCTCTC





CCAAGTACTCACCTACTAGCCCCACTTACTCGC





CCACTTCCCCCAAGTACTCGCCCACCAGCCCCA





CCTACTCGCCCACCTCCCCCAAAGGCTCAACCT





ACTCTCCCACTTCCCCTGGTTACTCGCCCACCA





GCCCCACCTACAGTCTCACAAGCCCGGCTATCA





GCCCGGATGACAGTGACGAGGAGAACTGAGGGC





ACGTGGGGTGCGGCAGCGGGCTAGGGCCCAGGG





CAGCTTGCCCGTGCTGCCGTGCAGTTCTTGCCT





CCCTCACGGGGCGTCACCCCCAGCCCAGCTCCG





TTGTACATAAATACCTTGTGACAGAGCTCCCGG





TGAACTTCTGGATCCCGTTTCTGATGCAGATTC





TTGTCTTGTTCTCCACTTGTGCTGTTAGAACTC





ACTGGCCCAGTGGTGTTCTACCTCCTACCCCAC





CCACCCCCTGCCTGTCCCCAAATTGAAGATCCT





TCCTTGCCTGTGGCTTGATGCGGGGCGGGTAAA





GGGTATTTTAACTTAGGGGTAGTTCCTGCTGTG





AGTGGTTACAGCTGATCCTCGGGAAGAACAAAG





CTAAAGCTGCCTTTTGTCTGTTATTTTATTTTT





TTGAAGTTTAAATAAAGTTTACTAATTTTGACC






SDHA
NM_004168.1
GACTGCGCGGCGGCAACAGCAGACATGTCGGGG
38




GTCCGGGGCCTGTCGCGGCTGCTGAGCGCTCGG





CGCCTGGCGCTGGCCAAGGCGTGGCCAACAGTG





TTGCAAACAGGAACCCGAGGTTTTCACTTCACT





GTTGATGGGAACAAGAGGGCATCTGCTAAAGTT





TCAGATTCCATTTCTGCTCAGTATCCAGTAGTG





GATCATGAATTTGATGCAGTGGTGGTAGGCGCT





GGAGGGGCAGGCTTGCGAGCTGCATTTGGCCTT





TCTGAGGCAGGGTTTAATACAGCATGTGTTACC





AAGCTGTTTCCTACCAGGTCACACACTGTTGCA





GCGCAGGGAGGAATCAATGCTGCTCTGGGGAAC





ATGGAGGAGGACAACTGGAGGTGGCATTTCTAC





GACACCGTGAAGGGCTCCGACTGGCTGGGGGAC





CAGGATGCCATCCACTACATGACGGAGCAGGCC





CCCGCCGCCGTGGTCGAGCTAGAAAATTATGGC





ATGCCGTTTAGCAGAACTGAAGATGGGAAGATT





TATCAGCGTGCATTTGGTGGACAGAGCCTCAAG





TTTGGAAAGGGCGGGCAGGCCCATCGGTGCTGC





TGTGTGGCTGATCGGACTGGCCACTCGCTATTG





CACACCTTATATGGACGGTCTCTGCGATATGAT





ACCAGCTATTTTGTGGAGTATTTTGCCTTGGAT





CTCCTGATGGAGAACGGGGAGTGCCGTGGTGTC





ATCGCACTGTGCATAGAGGACGGGTCCATCCAT





CGCATAAGAGCAAAGAACACTGTTGTTGCCACA





GGAGGCTACGGGCGCACCTACTTCAGCTGCACG





TCTGCCCACACCAGCACTGGCGACGGCACGGCC





ATGATCACCAGGGCAGGCCTTCCTTGCCAGGAC





CTAGAGTTTGTTCAGTTCCACCCCACAGGCATA





TATGGTGCTGGTTGTCTCATTACGGAAGGATGT





CGTGGAGAGGGAGGCATTCTCATTAACAGTCAA





GGCGAAAGGTTTATGGAGCGATACGCCCCTGTC





GCGAAGGACCTGGCGTCTAGAGATGTGGTGTCT





CGGTCGATGACTCTGGAGATCCGAGAAGGAAGA





GGCTGTGGCCCTGAGAAAGATCACGTCTACCTG





CAGCTGCACCACCTACCTCCAGAGCAGCTGGCC





ACGCGCCTGCCTGGCATTTCAGAGACAGCCATG





ATCTTCGCTGGCGTGGACGTCACGAAGGAGCCG





ATCCCTGTCCTCCCCACCGTGCATTATAACATG





GGCGGCATTCCCACCAACTACAAGGGGCAGGTC





CTGAGGCACGTGAATGGCCAGGATCAGATTGTG





CCCGGCCTGTACGCCTGTGGGGAGGCCGCCTGT





GCCTCGGTACATGGTGCCAACCGCCTCGGGGCA





AACTCGCTCTTGGACCTGGTTGTCTTTGGTCGG





GCATGTGCCCTGAGCATCGAAGAGTCATGCAGG





CCTGGAGATAAAGTCCCTCCAATTAAACCAAAC





GCTGGGGAAGAATCTGTCATGAATCTTGACAAA





TTGAGATTTGCTGATGGAAGCATAAGAACATCG





GAACTGCGACTCAGCATGCAGAAGTCAATGCAA





AATCATGCTGCCGTGTTCCGTGTGGGAAGCGTG





TTGCAAGAAGGTTGTGGGAAAATCAGCAAGCTC





TATGGAGACCTAAAGCACCTGAAGACGTTCGAC





CGGGGAATGGTCTGGAACACAGACCTGGTGGAG





ACCCTGGAGCTGCAGAACCTGATGCTGTGTGCG





CTGCAGACCATCTACGGAGCAGAGGCGCGGAAG





GAGTCACGGGGCGCGCATGCCAGGGAAGACTAC





AAGGTGCGGATTGATGAGTACGATTACTCCAAG





CCCATCCAGGGGCAACAGAAGAAGCCCTTTGAG





GAGCACTGGAGGAAGCACACCCTGTCCTTTGTG





GACGTTGGCACTGGGAAGGTCACTCTGGAATAT





AGACCCGTAATCGACAAAACTTTGAACGAGGCT





GACTGTGCCACCATCCCGCCAGCCATTCGCTCC





TACTGATGAGACAAGATGTGGTGATGACAGAAT





CAGCTTTTGTAATTATGTATAATAGCTCATGCA





TGTGTCCATGTCATAACTGTCTTCATACGCTTC





TGCACTCTGGGGAAGAAGGAGTACATTGAAGGG





AGATTGGCACCTAGTGGCTGGGAGCTTGCCAGG





AACCCAGTGGCCAGGGAGCGTGGCACTTACCTT





TGTCCCTTGCTTCATTCTTGTGAGATGATAAAA





CTGGGCACAGCTCTTAAATAAAATATAAATGAG






STK11IP
NM_052902.2
GATAGGCGCCGGGCAGCTGAGCTGGTAGGAGGA
39




CCAGACGGGGATGTTCGGCTCCGCCCCCCAGCG





TCCCGTGGCCATGACGACCGCTCAGAGGGACTC





CCTGTTGTGGAAGCTCGCGGGGTTGCTGCGGGA





GTCCGGGGATGTGGTCCTGTCTGGCTGTAGCAC





CCTGAGCCTGCTGACTCCCACACTGCAACAGCT





GAACCACGTATTTGAGCTGCACCTGGGGCCATG





GGGCCCTGGCCAGACAGGCTTTGTGGCTCTGCC





CTCCCATCCTGCCGACTCCCCTGTTATTCTTCA





GCTTCAGTTTCTCTTCGATGTGCTGCAGAAAAC





ACTTTCACTCAAGCTGGTCCATGTTGCTGGTCC





TGGCCCCACAGGGCCCATCAAGATTTTCCCCTT





CAAATCCCTTCGGCACCTGGAGCTCCGAGGTGT





TCCCCTCCACTGTCTGCATGGCCTCCGAGGCAT





CTACTCCCAGCTGGAGACCCTGATTTGCAGCAG





GAGCCTCCAGGCATTAGAGGAGCTCCTCTCAGC





CTGCGGCGGCGACTTCTGCTCTGCCCTCCCTTG





GCTGGCTCTGCTTTCTGCCAACTTCAGCTACAA





TGCACTGACCGCCTTAGACAGCTCCCTGCGCCT





CTTGTCAGCTCTGCGTTTCTTGAACCTAAGCCA





CAATCAAGTCCAGGACTGTCAGGGATTCCTGAT





GGATTTGTGTGAGCTCCACCATCTGGACATCTC





CTATAATCGCCTGCATTTGGTGCCAAGAATGGG





ACCCTCAGGGGCTGCTCTGGGGGTCCTGATACT





GCGAGGCAATGAGCTTCGGAGCCTGCATGGCCT





AGAGCAGCTGAGGAATCTGCGGCACCTGGATTT





GGCATACAACCTGCTGGAAGGACACCGGGAGCT





GTCACCACTGTGGCTGCTGGCTGAGCTCCGCAA





GCTCTACCTGGAGGGGAACCCTCTTTGGTTCCA





CCCTGAGCACCGAGCAGCCACTGCCCAGTACTT





GTCACCCCGGGCCAGGGATGCTGCTACTGGCTT





CCTTCTCGATGGCAAGGTCTTGTCACTGACAGA





TTTTCAGACTCACACATCCTTGGGGCTCAGCCC





CATGGGCCCACCTTTGCCCTGGCCAGTGGGGAG





TACTCCTGAAACCTCAGGTGGCCCTGACCTGAG





TGACAGCCTCTCCTCAGGGGGTGTTGTGACCCA





GCCCCTGCTTCATAAGGTTAAGAGCCGAGTCCG





TGTGAGGCGGGCAAGCATCTCTGAACCCAGTGA





TACGGACCCGGAGCCCCGAACTCTGAACCCCTC





TCCGGCTGGATGGTTCGTGCAGCAGCACCCGGA





GCTGGAGCTCATGAGCAGCTTCCGGGAACGGTT





CGGCCGCAACTGGCTGCAGTACAGGAGTCACCT





GGAGCCCTCCGGAAACCCTCTGCCGGCCACCCC





CACTACTTCTGCACCCAGTGCACCTCCAGCCAG





CTCCCAGGGCCCCGACACTGCACCCAGACCTTC





ACCCCCGCAGGAGGAAGCCAGAGGCCCCCAGGA





GTCACCACAGAAAATGTCAGAGGAGGTCAGGGC





GGAGCCACAGGAGGAGGAAGAGGAGAAGGAGGG





GAAGGAGGAGAAGGAGGAGGGGGAGATGGTGGA





ACAGGGAGAAGAGGAGGCAGGAGAGGAGGAAGA





AGAGGAGCAGGACCAGAAGGAAGTGGAAGCGGA





ACTCTGTCGCCCCTTGTTGGTGTGTCCCCTGGA





GGGGCCTGAGGGCGTACGGGGCAGGGAATGCTT





TCTCAGGGTCACTTCTGCCCACCTGTTTGAGGT





GGAACTCCAAGCAGCTCGCACCTTGGAGCGACT





GGAGCTCCAGAGTCTGGAGGCAGCTGAGATAGA





GCCGGAGGCCCAGGCCCAGAGGTCGCCCAGGCC





CACGGGCTCAGATCTGCTCCCTGGAGCCCCCAT





CCTCAGTCTGCGCTTCTCCTACATCTGCCCTGA





CCGGCAGTTGCGTCGCTATTTGGTGCTGGAGCC





TGATGCCCACGCAGCTGTCCAGGAGCTGCTTGC





CGTGTTGACCCCAGTCACCAATGTGGCTCGGGA





ACAGCTTGGGGAGGCCAGGGACCTCCTGCTGGG





TAGATTCCAGTGTCTACGCTGTGGCCATGAGTT





CAAGCCAGAGGAGCCCAGGATGGGATTAGACAG





TGAGGAAGGCTGGAGGCCTCTGTTCCAAAAGAC





AGAATCTCCTGCTGTGTGTCCTAACTGTGGTAG





TGACCACGTGGTTCTCCTCGCTGTGTCTCGGGG





AACCCCCAACAGGGAGCGGAAACAGGGAGAGCA





GTCTCTGGCTCCTTCTCCGTCTGCCAGCCCTGT





CTGCCACCCTCCTGGCCATGGTGACCACCTTGA





CAGGGCCAAGAACAGCCCACCTCAGGCACCGAG





CACCCGTGACCATGGTAGTTGGAGCCTCAGTCC





CCCCCCTGAGCGCTGTGGCCTCCGCTCTGTGGA





CCACCGACTCCGGCTCTTCCTGGATGTTGAGGT





GTTCAGCGATGCCCAGGAGGAGTTCCAGTGCTG





CCTCAAGGTGCCAGTGGCATTGGCAGGCCACAC





TGGGGAGTTCATGTGCCTTGTGGTTGTGTCTGA





CCGCAGGCTGTACCTGTTGAAGGTGACTGGGGA





GATGCGTGAGCCTCCAGCTAGCTGGCTGCAGCT





GACCCTGGCTGTTCCCCTGCAGGATCTGAGTGG





CATAGAGCTGGGCCTGGCAGGCCAGAGCCTGCG





GCTAGAGTGGGCAGCTGGGGCGGGCCGCTGTGT





GCTGCTGCCCCGAGATGCCAGGCATTGCCGGGC





CTTCCTAGAGGAGCTCCTTGATGTCTTGCAGTC





TCTGCCCCCTGCCTGGAGGAACTGTGTCAGTGC





CACAGAGGAGGAGGTCACCCCCCAGCACCGGCT





CTGGCCATTGCTGGAAAAAGACTCATCCTTGGA





GGCTCGCCAGTTCTTCTACCTTCGGGCGTTCCT





GGTTGAAGGCCCTTCCACCTGCCTCGTATCCCT





GTTGCTGACTCCGTCCACCCTGTTCCTGTTAGA





TGAGGATGCTGCAGGGTCCCCGGCAGAGCCCTC





TCCTCCAGCAGCATCTGGCGAAGCCTCTGAGAA





GGTGCCTCCCTCGGGGCCGGGCCCTGCTGTGCG





TGTCAGGGAGCAGCAGCCACTCAGCAGCCTGAG





CTCCGTGCTGCTCTACCGCTCAGCCCCTGAGGA





CTTGCGGCTGCTCTTCTACGATGAGGTGTCCCG





GCTGGAGAGCTTTTGGGCACTCCGTGTGGTGTG





TCAGGAGCAGCTGACAGCCCTGCTTGCCTGGAT





CCGGGAACCATGGGAGGAGCTGTTTTCCATCGG





ACTCCGGACAGTGATCCAAGAGGCGCTGGCCCT





TGACCGATGAGGGTCCCACGCTGACCTTGGCCC





TGACCTCAGGAGCCACGCTGTAGACATTCCCTC





TCCTGGTCTCTGGGTCTGGCTTCCAGGCTCTGG





CTGTGGATGTCTTCAGCCTCTGGGTGCTGGCCA





GTGAGGTCCCAAATGACCCAGGGCTTAAGGGAG





AGGCGAGAGAATGATCTGGCCTCAGGGGACAGG





CCACCTGGTCAGGAGGAATATTTTTCCTGCACT





TTTTCTCAGGTATCAATAAAGTTGTTTCCAACT





CATAA






TBC1D10B
NM_015527.3
GAGGGGCGGCCCGCGGCCATGGAGACGGGCACG
40




GCGCCCCTGGTGGCCCCGCCGCGCCGTCATGGC





GCCCCCGCGGCCCCCTCGCCGCCGCCCCGGGGT





TCCCGGGCCGGGCCCGTCGTGGTGGTGGCTCCG





GGACCTCCAGTGACTACGGCCACTTCGGCCCCC





GTCACCCTGGTGGCCCCCGGGGAGGCGCGGCCC





GCCTGGGTCCCGGGGTCGGCCGAGACCTCTGCT





CCGGCCCCGGCCCCAGCCCCGGCCCCAGCCCCG





GCTGTCACGGGCAGCACGGTGGTGGTGCTGACC





CTGGAGGCCTCGCCCGAAGCCCCAAAGCCGCAG





CTCCCCTCCGGCCCGGAATCCCCAGAGCCCGCG





GCAGTGGCTGGAGTTGAGACATCGAGGGCTCTG





GCCGCAGGGGCAGACTCGCCGAAGACAGAGGAG





GCTCGACCCTCACCCGCCCCAGGACCAGGGACC





CCCACCGGGACCCCTACCAGGACCCCTTCCAGA





ACGGCTCCTGGTGCCCTGACCGCCAAACCCCCG





CTTGCCCCCAAGCCGGGAACCACAGTGGCCTCA





GGAGTGACTGCACGGAGTGCATCAGGACAAGTG





ACAGGTGGGCATGGAGCTGCCGCAGCAACATCA





GCATCAGCAGGACAGGCTCCTGAGGACCCCTCA





GGCCCTGGCACAGGCCCCTCTGGGACTTGTGAG





GCTCCGGTAGCTGTCGTGACCGTGACCCCAGCT





CCGGAGCCTGCTGAAAACTCTCAAGACCTGGGC





TCCACGTCCAGCCTGGGACCTGGCATCTCTGGG





CCTCGAGGGCAGGCCCCGGACACGCTGAGTTAC





TTGGACTCCGTGAGCCTCATGTCTGGGACCTTG





GAGTCCTTGGCGGATGATGTGAGCTCCATGGGC





TCAGATTCAGAGATAAACGGGCTGGCCCTGCGC





AAGACGGACAAGTATGGCTTCCTTGGGGGCAGC





CAGTACTCGGGCAGCCTAGAGAGCTCCATTCCC





GTGGACGTGGCTCGGCAGCGGGAGCTCAAATGG





CTGGACATGTTCAGTAACTGGGATAAGTGGCTG





TCACGGCGATTCCAGAAGGTGAAGCTGCGCTGC





CGGAAGGGGATCCCCTCCTCTCTCAGAGCCAAA





GCCTGGCAGTACCTGTCTAATAGCAAGGAACTT





CTGGAGCAGAACCCAGGAAAGTTTGAGGAGCTG





GAACGGGCTCCTGGGGACCCCAAGTGGCTGGAT





GTGATTGAGAAGGACCTGCACCGCCAGTTCCCT





TTCCACGAGATGTTTGCTGCTCGAGGGGGGCAT





GGGCAACAGGACCTGTACCGAATCCTGAAGGCC





TACACCATCTACCGGCCTGACGAGGGTTACTGC





CAGGCCCAGGCCCCCGTGGCTGCGGTCCTGCTC





ATGCACATGCCTGCGGAGCAAGCCTTTTGGTGC





CTGGTGCAGATCTGCGACAAGTACCTCCCAGGT





TACTACAGTGCAGGGCTGGAGGCCATTCAGCTG





GACGGGGAGATCTTTTTTGCACTCCTGCGCCGG





GCCTCCCCGCTGGCGCATCGCCACCTGCGGCGG





CAGCGCATTGACCCTGTGCTCTACATGACGGAG





TGGTTCATGTGCATCTTCGCCCGCACCCTGCCC





TGGGCGTCGGTGCTGCGTGTCTGGGACATGTTT





TTCTGTGAAGGCGTTAAGATCATCTTCCGGGTG





GCCCTGGTCCTGCTGCGCCACACGCTGGGCTCA





GTGGAGAAGCTGCGCTCCTGCCAAGGCATGTAT





GAGACCATGGAGCAGCTGCGTAACCTGCCCCAG





CAGTGCATGCAGGAAGACTTCCTGGTGCATGAG





GTGACCAATCTGCCGGTGACAGAAGCACTGATT





GAGCGGGAGAATGCAGCCCAGCTCAAGAAGTGG





CGGGAAACGCGGGGGGAGCTGCAGTATCGGCCC





TCACGGCGACTGCATGGGTCCCGGGCCATCCAC





GAGGAGCGCCGGCGGCAACAGCCACCCCTGGGC





CCCTCCTCCAGCCTCCTCAGCCTCCCTGGCCTC





AAGAGCCGAGGCTCCCGGGCAGCTGGAGGGGCC





CCGTCCCCGCCGCCCCCCGTCCGCAGAGCCAGT





GCTGGGCCTGCCCCAGGGCCTGTGGTCACTGCT





GAGGGACTGCATCCATCCCTTCCCTCACCCACT





GGCAATAGCACCCCCTTGGGTTCCAGCAAGGAG





ACCCGGAAGCAGGAGAAGGAGCGGCAGAAACAG





GAGAAGGAGCGGCAGAAACAGGAGAAGGAGCGG





GAGAAGGAGCGGCAGAAGCAGGAGAAAGAGCGA





GAGAAGCAGGAAAAGGAGCGAGAGAAGCAGGAG





AAGGAGCGGCAGAAGCAGGAGAAGAAGGCTCAA





GGCCGGAAGCTTTCGCTGCGTCGAAAGGCAGAT





GGGCCCCCAGGCCCCCATGATGGTGGGGACAGG





CCCTCAGCCGAGGCCCGGCAGGACGCTTACTTC





TGACCTCTGCCCTGGGGCTGGACTGCATGGCCC





CCCTCTTTCCCTCAGCCAAGAACAGGCCTGGCC





CAAGGTGCCACCCCCTAGCACCTTGTCAGGCTG





TCCCTTGCTGGGGAAAGTGGCTTGGTTCCCCAT





CTCCTCGCCAGCTGCTGATCCCTACACGGGCAG





GACAGATGGGCAGCTGCAAATGAGTCTGGAGCC





TCTCATCTCCCATGAGGCTCAGCTGGGGTCTCT





GTCGCTCCTGCCCCAGTTCCCTCTGGGTCCCCT





CCTAGGTGCTGTCCTGAATGGCCCGTTGTCATC





CCAGGGGTGACTCCTGGTGATGGGAGTCAGCAG





TTTCAGATTCTTACACTCCATAGCTCCCCTTAC





CATGAGGTGGAGCTGGCTTCCTTTTCCCTGTCT





TCAGCCCTCCCTGTCTCCCCCACTTCCTGGCCA





GGGCTCTCATTCTGGACCTGTGTTGTAATTGTG





TACAGAGGATGGCGTTGGCCTGGGGTGGGGGTG





CTCGCTTTGTCTTCTGTCCTTTGGTTCTCCTTC





CATAATGCTCCTGTACCCAGTTTATTTAAGGGG





ACATGCACTGGAATAGGAAATGTCCCCCATCTC





CCTTCCTGCACCCTGCTGTGCTCCCTCCAAACC





CACCTTGCTCTGTGTTCTCAGGCCCCCCTGCTT





TTGTCTCACCAGGACCCATACCTTTCACCTTGT





TCCCTTCCACCCCTCCAGTTAGTCCCTATCTGG





GTAAGGGTCTTCCCTTGAGCTCCAGGGGGTGGA





ACCCAATGTTTACATTCTCTTCTGTCTCTGCCC





CCACCCCATGCAGCGCTTTGAGGAATTGGAAAA





GAACCTGCTGTTGTACCTGGGAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAA






TBP
NM_001172085.1
GGCGGAAGTGACATTATCAACGCGCGCCAGGGG
41




TTCAGTGAGGTCGGGCAGGTTCGCTGTGGCGGG





CGCCTGGGCCGCCGGCTGTTTAACTTCGCTTCC





GCTGGCCCATAGTGATCTTTGCAGTGACCCAGG





GTGCCATGACTCCCGGAATCCCTATCTTTAGTC





CAATGATGCCTTATGGCACTGGACTGACCCCAC





AGCCTATTCAGAACACCAATAGTCTGTCTATTT





TGGAAGAGCAACAAAGGCAGCAGCAGCAACAAC





AACAGCAGCAGCAGCAGCAGCAGCAGCAACAGC





AACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC





AGCAGCAGCAGCAGCAGCAGCAGCAGCAACAGG





CAGTGGCAGCTGCAGCCGTTCAGCAGTCAACGT





CCCAGCAGGCAACACAGGGAACCTCAGGCCAGG





CACCACAGCTCTTCCACTCACAGACTCTCACAA





CTGCACCCTTGCCGGGCACCACTCCACTGTATC





CCTCCCCCATGACTCCCATGACCCCCATCACTC





CTGCCACGCCAGCTTCGGAGAGTTCTGGGATTG





TACCGCAGCTGCAAAATATTGTATCCACAGTGA





ATCTTGGTTGTAAACTTGACCTAAAGACCATTG





CACTTCGTGCCCGAAACGCCGAATATAATCCCA





AGCGGTTTGCTGCGGTAATCATGAGGATAAGAG





AGCCACGAACCACGGCACTGATTTTCAGTTCTG





GGAAAATGGTGTGCACAGGAGCCAAGAGTGAAG





AACAGTCCAGACTGGCAGCAAGAAAATATGCTA





GAGTTGTACAGAAGTTGGGTTTTCCAGCTAAGT





TCTTGGACTTCAAGATTCAGAATATGGTGGGGA





GCTGTGATGTGAAGTTTCCTATAAGGTTAGAAG





GCCTTGTGCTCACCCACCAACAATTTAGTAGTT





ATGAGCCAGAGTTATTTCCTGGTTTAATCTACA





GAATGATCAAACCCAGAATTGTTCTCCTTATTT





TTGTTTCTGGAAAAGTTGTATTAACAGGTGCTA





AAGTCAGAGCAGAAATTTATGAAGCATTTGAAA





ACATCTACCCTATTCTAAAGGGATTCAGGAAGA





CGACGTAATGGCTCTCATGTACCCTTGCCTCCC





CCACCCCCTTCTTTTTTTTTTTTTAAACAAATC





AGTTTGTTTTGGTACCTTTAAATGGTGGTGTTG





TGAGAAGATGGATGTTGAGTTGCAGGGTGTGGC





ACCAGGTGATGCCCTTCTGTAAGTGCCCACCGC





GGGATGCCGGGAAGGGGCATTATTTGTGCACTG





AGAACACCGCGCAGCGTGACTGTGAGTTGCTCA





TACCGTGCTGCTATCTGGGCAGCGCTGCCCATT





TATTTATATGTAGATTTTAAACACTGCTGTTGA





CAAGTTGGTTTGAGGGAGAAAACTTTAAGTGTT





AAAGCCACCTCTATAATTGATTGGACTTTTTAA





TTTTAATGTTTTTCCCCATGAACCACAGTTTTT





ATATTTCTACCAGAAAAGTAAAAATCTTTTTTA





AAAGTGTTGTTTTTCTAATTTATAACTCCTAGG





GGTTATTTCTGTGCCAGACACATTCCACCTCTC





CAGTATTGCAGGACAGAATATATGTGTTAATGA





AAATGAATGGCTGTACATATTTTTTTCTTTCTT





CAGAGTACTCTGTACAATAAATGCAGTTTATAA





AAGTGTTAGATTGTTGTTAAAAAAAAAAAAAAA





AAA






UBB
NM_018955.2
CACTCGTTGCATAAATTTGCGCTCCGCCAGCCC
42




GGAGCATTTAGGGGCGGTTGGCTTTGTTGGGTG





AGCTTGTTTGTGTCCCTGTGGGTGGACGTGGTT





GGTGATTGGCAGGATCCTGGTATCCGCTAACAG





GTCAAAATGCAGATCTTCGTGAAAACCCTTACC





GGCAAGACCATCACCCTTGAGGTGGAGCCCAGT





GACACCATCGAAAATGTGAAGGCCAAGATCCAG





GATAAGGAAGGCATTCCCCCCGACCAGCAGAGG





CTCATCTTTGCAGGCAAGCAGCTGGAAGATGGC





CGTACTCTTTCTGACTACAACATCCAGAAGGAG





TCGACCCTGCACCTGGTCCTGCGTCTGAGAGGT





GGTATGCAGATCTTCGTGAAGACCCTGACCGGC





AAGACCATCACCCTGGAAGTGGAGCCCAGTGAC





ACCATCGAAAATGTGAAGGCCAAGATCCAGGAT





AAAGAAGGCATCCCTCCCGACCAGCAGAGGCTC





ATCTTTGCAGGCAAGCAGCTGGAAGATGGCCGC





ACTCTTTCTGACTACAACATCCAGAAGGAGTCG





ACCCTGCACCTGGTCCTGCGTCTGAGAGGTGGT





ATGCAGATCTTCGTGAAGACCCTGACCGGCAAG





ACCATCACTCTGGAGGTGGAGCCCAGTGACACC





ATCGAAAATGTGAAGGCCAAGATCCAAGATAAA





GAAGGCATCCCCCCCGACCAGCAGAGGCTCATC





TTTGCAGGCAAGCAGCTGGAAGATGGCCGCACT





CTTTCTGACTACAACATCCAGAAAGAGTCGACC





CTGCACCTGGTCCTGCGCCTGAGGGGTGGCTGT





TAATTCTTCAGTCATGGCATTCGCAGTGCCCAG





TGATGGCATTACTCTGCACTATAGCCATTTGCC





CCAACTTAAGTTTAGAAATTACAAGTTTCAGTA





ATAGCTGAACCTGTTCAAAATGTTAATAAAGGT





TTCGTTGCATGGTA






ZBTB34
NM_001099270.1
CGGGGACTGGCCTGGCGCCGGCGGCGGCGGAGG
43




GGGCGCCGCGGGCGGGCGATGTGAGCGCGGCGC





TCTGGACAGAGTACGCTTCATGTCAGTAGAAAT





GGACAGCAGCAGTTTTATTCAGTTTGATGTGCC





CGAGTACAGCAGCACCGTTCTGAGCCAGCTAAA





CGAACTCCGCCTGCAGGGGAAACTATGTGACAT





CATTGTACACATTCAGGGTCAGCCATTCCGAGC





CCACAAAGCAGTCCTTGCTGCCAGCTCCCCATA





TTTCCGGGACCATTCAGCGTTAAGTACCATGAG





TGGCTTGTCAATATCAGTGATTAAAAATCCCAA





TGTGTTTGAGCAGTTGCTTTCTTTTTGTTACAC





TGGAAGAATGTCCTTGCAGCTGAAGGATGTTGT





CAGTTTTCTGACTGCAGCCAGCTTTCTTCAGAT





GCAGTGTGTCATTGACAAGTGCACGCAGATCCT





AGAGAGCATCCATTCCAAAATCAGCGTTGGAGA





TGTTGACTCTGTTACCGTCGGTGCTGAAGAGAA





TCCCGAGAGTCGAAACGGAGTGAAAGACAGCAG





CTTCTTTGCCAACCCAGTGGAGATCTCTCCTCC





ATATTGCTCTCAGGGACGGCAGCCCACCGCAAG





CAGTGACCTCCGGATGGAGACGACCCCCAGCAA





AGCTTTGCGCAGCCGCTTACAGGAGGAGGGGCA





CTCAGACCGCGGGAGCAGTGGGAGCGTTTCTGA





ATATGAGATTCAGATAGAGGGAGACCATGAGCA





AGGAGACCTATTGGTGAGGGAGAGCCAGATCAC





CGAGGTGAAAGTGAAGATGGAGAAGTCCGACCG





GCCCAGCTGTTCCGACAGCTCCTCCCTGGGTGA





CGATGGGTACCACACCGAGATGGTTGATGGGGA





ACAAGTTGTGGCAGTGAATGTGGGCTCCTATGG





TTCTGTGCTCCAGCACGCATACTCCTATTCCCA





AGCAGCCTCACAGCCAACCAATGTATCAGAAGC





TTTTGGAAGTTTGAGTAATTCCAGCCCATCCAG





GTCCATGCTGAGCTGTTTCCGAGGAGGGCGTGC





CCGCCAGAAGCGGGCTTTGTCTGTCCACCTGCA





CAGTGACCTGCAGGGCCTGGTGCAGGGCTCTGA





CAGTGAAGCCATGATGAACAACCCCGGGTATGA





GAGCAGTCCCCGGGAGAGGAGTGCGAGAGGGCA





TTGGTACCCGTACAATGAGAGGTTGATCTGTAT





TTACTGTGGAAAGTCCTTCAACCAGAAAGGAAG





CCTTGATAGGCACATGCGACTCCATATGGGAAT





CACCCCCTTTGTGTGCAAGTTCTGTGGGAAGAA





GTACACACGGAAGGACCAACTGGAGTACCACAT





CCGGGGCCATACAGATGATAAACCATTCCGCTG





TGAGATCTGCGGGAAGTGCTTTCCATTCCAAGG





TACCCTCAACCAGCACTTGCGGAAAAACCACCC





AGGCGTTGCTGAAGTCAGGAGTCGCATTGAGTC





CCCCGAGAGAACAGATGTGTACGTGGAACAGAA





ACTAGAAAATGACGCATCGGCCTCAGAGATGGG





CCTAGATTCCCGGATGGAAATTCACACAGTGTC





TGATGCTCCCGATTAAGATGGTAAAGAAGTGCA





CCCAAACAAAGCACATTAATCAATGCATATTTG





TGATTTGCTTTGTTGTAATCTTTGGTTTTCCCA





ACCATCTGGAAATCTCTTGGTCTCTTGGCAGTT





TTTCTAAAGTTTCTGGATGGAACACTTCGTTGT





GTTTATCCTTTCCCCTGCCCTCCCTCCCCGAAG





GAGCTCAAAGCATGAAGGGCAACGCATCCAGGG





AAAACACAGGCTGACAGTATTCCTCTTTGGCTG





AACTCTTAATCCAAAATCTGCCAGTGATTTAGC





TATGCCAACTGGTTGACCCTCCATTCTCTGCCA





AGAGGCATACTCTTTCTCATTGTGTGCGCTGGC





AGCAGTGCACTTCCACGGAGGGAGATTAGGATG





CCGTCAGCTGATACAAATGGGTAACCTTTTCTA





ATTTAAAATTCCTTTTAGGGGGTAGTTAGACAA





TTTATATATATATATAATAAAACTATTATTATA





TATATAGTATATATACATTTTCAAATTTGATTT





TATTCTGGTTGAGGTGAATGTAAGAGGAATATA





TAATTTAATACAATGTGAACAGGGCTTCTGAGT





CTATCTCATCCCTACCTAATATGTTAGGGTTTT





GCCCCTTCATTTCCCTTACAAAAGAATGTTAGT





AGGTTTATATTAATCATTGTGTCCAAAAGCAAG





CAAAGCAAATCACAGTGTTCACAGCTCTGCTTC





ATAACAAATACATAAACCAAATGCCATAAAATT





TCTTCAACTCTAGTTGGAAACCGTTTGGAATTT





TTGTTAGTTGTCCAGCAGGTAAGCTGGATGACC





TGTGGTGCTGACCTTTTTACATAGTGTAGTGTT





ATATTAGCCAACCCCAAAGGAGCAGTGGTTTTC





AAGGTTTTTACTGGCCTACAAATCTACCTTCAT





TCCGTACTGTAGAAACATACATACCAGGTAACT





AAATCGAATCACTCTCTATCATGAGTTAGTACT





CACTCGCACTTAAGGAAAGGGATTTGTAGTTCT





GTCTACAAAATTCTCCAAGCAGTGTTGTGGTTT





TTTTTGTTTTTGTTTTTTTTCTTTCTCTTTTCA





AACAGCCAGTTCAGGTGCACAGCAACTTTTTCT





ACATGCAGTTCCCAGGGAAACTGCAGAACTTAG





AATTTGTACTTTTTGTAAAGCTATACTCTATGG





GAATTGCAAGCAATATATCTATCTTAGTATTGT





GTGTGCTAATGAGAGCCTCAGTGGCTCCCCCAC





TCTCTCAGTGTTTCCTGCTTAAAGAACCAACAG





TTTAAAAGCCCTCTAAGATACTCTGTGTGTCAC





CAAATCTGTGTGTCACCATTTTTTGGTCATGTG





GTGCTATTTTTGTTAAGTGTCTTTTTAGGTCAG





TATAGTTGTAGAAAATGTGAAATCTGATGGTAA





TAATGAATTATAATTGTTTTCCTCTCTTGAGTT





CATAGCTTGAAAAGAGACCTCAAAAGCATGTGC





TGGCAAACACGTTACTGTATGAAAACATACCTG





AGTCCATTTGAATAATGTTTTATTAGTACTTTC





GGAAATGTCTTCAGTTCTGTATTGTGTTCACAT





ACACAAACAGGCTTTACAAGATTGCTTCGGTAC





TGTAAACTCTGGCAGAGAGTAATTTTGTAGGCA





GTTTGGTGGTGAGTTTGTGCTGCAGGCTGCCTG





TGGGATGTCAGCGTTCTGGTATCTGCCTGAGAA





CCTGGGCTCTGAGACGCACAACCAGTGCACCTC





CATAGGAGAACAGTGCAGCCACCTAAAAGAAAA





ACGAACGAAGGACCAGCCTCAGAGGCTAGAAGT





TAAAGGAATACAGAATTAGATGTTTGCTGGTTT





TCTGTGCTTTTTTGGCTCCTAAAATACCAATGG





TGGATTTGTTTTTGTTTTTGTTTTTTGTTTTGA





GAAATAAAAAGTCATTCAAGCCCTTTGTGTGTA





ATAGCCCCCAGGGGTGGCAGCTGTGCAGTCGCA





TCTCTTTGGCACACAGGATCTGTTCACGTGTGA





ACTGCTGCGCTACACATCAGTGTTAACTCCCTA





CAGATTACACTCTAATCCCGCTGCTCCCGAGGA





GCGGCTTTGCTAAATCGGGTATATAGTATATGC





CTTTTTCCTCGTCAAACTGCCTAAGTAGGGGTT





CGTTCTCTCCCTGAAGCACTTGTTCAACTCCTG





TTAAAGCCGCGTGCCTCAAGGGGAGGCTGGACC





CCAAGTGTTTACCCACTTAAATATGTTCTGGGG





TTTCAGGTAAATGTTTGTGGGTTTTTTTTTCCT





TACATGAATAAGTTTGGTTTTGATTTTTTTTTA





ATTGAATGCAAAAAATTTGTGTTGTGATACAAA





TTAAGTTTGTGACAAGAAATGCCCAAATCCAAG





GACATAAGAGGTCAAGCTCAGGGAAGGAACCTC





CTTTTCACTCAGGCTTGGGGCCTCCAGCGAGGT





TTCCAGAGCATTCCATGGTATGAGAGACAGTGA





GGAGGGAGGGCACCTGGCGCGGGCACTTCCAGC





GTCCTGGCTCTTGGCATTGTCCGTCTTAACCTT





ATTTACATGGAGTTCTTTGTATTTGTGAATCTG





TTTAACTGGTTTGAGTTTACCAAAGAGTGACTT





ATCCAAAATTGTCTTTGACAAAAATATCCATTG





CTTTGATTGTACAGTTCAGGTTCAAACATTGTA





ATGGGACTGTTAAGGGGCAGAAAATTGATTGAG





TTTCTCTCTAAGAATCATGATTCCACATTTTGC





AAGTTCCACTTGCTCCCATTCGTGTTGCTAACA





CTTTACCCTTTCCACTGCTCGCAGTGTTAAGAA





TGAATTCTCAAGCCATAACACAGTACTGTAAAG





TTCCGCAGGGCTTCGAGGGAGGCAGCGCCTAGG





CCAGCACGGAGCTGTGTAGCCTCTCTGAGCGTT





CGCACTGTCATGCTTCCCAGGGGTGTGACTGGT





GAGAGATTAACTCCATTCAGATCGGGCAGCAGC





AATTAATTGTGCCTTGCCGCATGAGGATGTGTC





AGGAGGATTAACATGACCACAGAACCGAAACAT





TCTCTCCCTGAAGTTCACTTCACGTCTCCGCAG





ACGAAGTACGCTGTGTAACTCCTTAGAGCAACT





CTTTTTGGAAAGCAAAGTCCCTATTTCTGTACA





GTTTTAGGTTAGGTGTTTCATTTATAACAGATG





CAGAAATCAATTAAGATAAAGTGATATGTGAAG





AAATCTTTTACAGTAAAATATATCCTGAATTCA





TATAGGCTTGTTCATAATTGAGTCTCTTCTTGA





GCTACCTTTTCAATATTAGACAATGTGAAGACA





GTGACAGCGTCCTTTTCTAGAGATATTTAGCCT





GTTATTACAAACTGTGAAGACAAAGAATTTTAT





ACTTTTACTAATGTTTGTGGTTTTAAACAGTTA





TTTTCATTCTAATCAGTTCTCTACCCTCTAATT





TCTACTAAAGCTGTAAATACATTTAGAAATTAT





ATTTGTAAATACAGTATATGGAGACAAGTTAAT





TTTTTGGTCAGTGGAAAAAGCCTCCCAACCAAT





TGGCCCTGCCTTGGCAGTTGTGTTTTTTGTTGT





TGTTGTTGTTGTTTTAGTTTAGTTTTTTTTTTT





AAACAGCAGAAAGGATACTGTCGGTTCACTGTT





GAGCAGAATATACTGTAGAACGAAAATGATAAT





TTTTAAATCTTCCAGAGCATGAGTAAATGTCTT





TTCTAATGATAGCAAATATAACCAACTCTTTGT





TTTTCCCTTAGCCCAGACCATATAGACCTGCGT





ATTTTGTGTGTGGTTTTGTTTTTATTTTTGTTC





TTACAGCCTAGACCCTAGGAAAAATTTGCAGGA





ACACGAAACAAGGGCTGGGGGGAAAATCATCTA





TGTGAATGAGCTTTACTTTAAAGAGATCAATGT





ATTTTATTTTATCAACTTTTTCTCTTAGTTACT





GTGATTTTTGTTGTTGTTGTCCTCGTTATTGTT





AAATTCTGTAATGGTTTCCTGTGAAGCCTCCAC





TGAAAGGGACTCAAATATGCAACACCTAAACTA





TTTTCCAAGGGCACATGCCCCTTGAATGGTGCT





TCTAGACTGGTCAGGGTTATTTATTAAATTTTA





TATATGAAAGTATTGGGGAATTATGTAAATTCT





TTATATGAAACTATCTAGTTCATAAATCATAGA





TTTCATATTACTCAGTGCAACTGAACTAAAAGT





TCAGAAAAGTCATTCACATTGTTCCAAATTTGT





AATGGTTGTCACATGTCACATGCGTCTTTTTCA





GTAAGTGCCAGAGTGTTCCCACTGTTTCTGCCC





AGTGCTTGACTTCTCGGCCCGGAAGAGAACCTG





CTTTCTCTGGTTTCCTTCCTGAGTCTGGCACAG





ACGGGGCTATTGTAGTTCTTGATCAAGTCCTGG





AGTCAGCCTTGCCTGGCTCTCCTTGTAGCAGAT





TCAGTCCACAGACCTCTTGCTGCCCCTCAGTGA





CAAGTATGCTGTGAATTCAACCTTTGGACTTGC





TGCCCAAGCCTTTGGTTGCTGCCCTGACTATTG





TAAGAGGTAAACTTACCTGGTTTGTTTGAGAAT





GACCATTTTCCTAATGTGAAAACCATCTCTCTC





ACCACTTTTATTAGTAGGGCTAACATTTTTTTC





CGTTATAAATGGTTGAGCAATTTGAATGACTTA





ACACAGTGTCATTATCTTGCAATATAAACTGGT





AACCTCACAACTCCACACTTCATCACCATATGA





AGTAAATGAAGCTAGCTAAGCGGATGCTGTATC





AACTAGTAACTTGCCATTAAGGATTATTTTATA





GCATGAATTTAAGACTATTTATTCAAATGATAT





TTTACTCTTGTATTCACTTTGTTTTAGATTTGT





GACATGAATATTTCAGTGCTGCTTAATTTTGTT





CTGAATTCTTGTTTCTTGCTTGTAAATGGCTTT





TTTATGGTATAAATAAAGTCAATGGACATTGCT





GTTTGTAAATAAAAATGCTGCTAGAGCAAAAAA





AAAAAAAAAA









In aspects of the methods of the present disclosure, gene expression is measured using methods known in the art that utilize probes targeting the genes of interest. The genes and exemplary target regions of those genes useful for determining gene expression in the methods of identifying mismatch repair deficiency in a subject disclosed herein are shown in Table 3.









TABLE 3







Exemplary Gene Targets for Determining Gene Expression













Exemplary





GenBank
Target

SEQ


Gene
Accession No.
Region
Target Sequence
ID NO.














MLH1
NM_000249.2
1606-1705
CAGGGACATGAGGTTCTCCGGGAGATGTTGCATAA
44





CCACTCCTTCGTGGGCTGTGTGAATCCTCAGTGGG






CCTTGGCACAGCATCAAACCAAGTTATACC






MSH2
NM_000251.1
2515-2614
AGGTGAAGAAAGGTGTCTGTGATCAAAGTTTTGGG
45





ATTCATGTTGCAGAGCTTGCTAATTTCCCTAAGCA






TGTAATAGAGTGTGCTAAACAGAAAGCCCT






MSH6
NM_000179.2
1016-1115
AGGCCTGAACAGCCCTGTCAAAGTTGCTCGAAAGC
46





GGAAGAGAATGGTGACTGGAAATGGCTCTCTTAAA






AGGAAAAGCTCTAGGAAGGAAACGCCCTCA






PMS2
NM_000535.6
895-994
TCAGGTTTCATTTCACAATGCACGCATGGAGTTGG
47





AAGGAGTTCAACAGACAGACAGTTTTTCTTTATCA






ACCGGCGGCCTTGTGACCCAGCAAAGGTCT






EPM2AIP1
NM_014805.3
1323-1422
GGGGCAACAACAGTCCACTTCTCAGACAAACAATG
48





GCTTTGTGACTTTGGCTTCTTGGTGGACATTATGG






AACACCTTCGAGAACTCAGTGAAGAATTAC






TTC30A
NM_152275.3
2493-2592
TGCCCTCAAGCAACAATTGCTAGAGTAACATCTTT
49





GTATAAGCAAGTAACCCCAGATAGAGTTGACGTTT






CAGCTTTGGGCTGTCAAAAGGGTATGTCAT






SMAP1
NM_001044305.2
824-923
GAAAAGCTGCAGAAGAAAGATCAGCAACTGGAGCC
50





TAAAAAAAGTACCAGCCCTAAAAAAGCTGCGGAGC






CCACTGTGGATCTTTTAGGACTTGATGGCC






RNLS
NM_001031709.2
727-826
CTCTTTTATGAAGCTGGTACGAAGATTGATGTCCC
51





TTGGGCTGGGCAGTACATCACCAGTAATCCCTGCA






TACGCTTCGTCTCCATTGATAATAAGAAGC






WNT11
XM_011545241.2
1016-1115
CTCTGCTTGTGAATTCCAGATGCCAGGCATGGGAG
52





GCGGCTTGTGCTTTGCCTTCACTTGGAAGCCACCA






GGAACAGAAGGTCTGGCCACCCTGGAAGGA






SFXN1
NM_001322977.1
192-291
CTACCACCAAACATTAACATCAAGGAACCTCGATG
53





GGATCAAAGCACTTTCATTGGACGAGCCAATCATT






TCTTCACTGTAACTGACCCCAGGAACATTC






SREBF1
NM_001005291.1
1393-1492
TTCGCTTTCTGCAACACAGCAACCAGAAACTCAAG
54





CAGGAGAACCTAAGTCTGCGCACTGCTGTCCACAA






AAGCAAATCTCTGAAGGATCTGGTGTCGGC






TYMS
NM_001071.1
396-495
TGCTAAAGAGCTGTCTTCCAAGGGAGTGAAAATCT
55





GGGATGCCAATGATCCCGAGACTTTTTGGACAGCC






TGGGATTCTCCACCAGAGAAGAAGGGGAC






EIF5AL1
NM_001099692.1
2211-2310
AAAGGAAACACGAAGATTAATCAAGCAGGAAGGAC
56





AAGCTCAGTTTTGCACCCACTGAATTTGCCACAAA






TATTGTGGAAAATATTCTCGGGGACATTGC






WDR76
NM_024908.3
1876-1975
CGTTTGGTGGAGAATACCTTGTCTCTGTGTGTTCC
57





ATCAATGCCATGCACCCAACTCGGTATATTTTGGC






TGGAGGTAATTCCAGCGGGAAGATACATGT









Definitions

The terms “non-hypermutated” and “non-hypermutated samples” refer to tumor samples that have a mutation rate of less than 7 mutations in every 106 bases, or have a mutation rate of less than 8 mutations in every 106 bases, or have a mutation rate of less than 9 mutations in every 106 bases, or have a mutation rate of less than 10 mutations in every 106 bases, or have a mutation rate of less than 11 mutations in every 106 bases, or have a mutation rate of less than 12 mutations in every 106 bases.


The terms “hypermutated” and “hypermutated samples” refer to tumor samples that have a mutation rate of more than 12 mutations in every 106 bases, or have a mutation rate of more than 13 mutations in every 106 bases, or have a mutation rate of more than 14 mutations in every 106 bases, or have a mutation rate of more than 15 mutations in every 106 bases.


The term “mismatch repair deficiency” (MMRd), refers to the loss of function of at least one gene involved in DNA mismatch repair due to biallelic inactivation of the at least one gene. The biallelic inactivation can be caused by a variety of factors, including, but not limited to, somatic or germline mutations within the coding region of the at least one gene, methylation of the promoter of the at least one gene, leading to silencing of that promoter through a mechanism referred to as the CpG island methylator phenotype (CpG), and/or microRNA-induced downregulation of the expression of the at least one gene. The current state of the art for determining whether a sample displays mismatch repair deficiency is through the use of immunohistochemistry to visualize the expression of genes involved in DNA mismatch repair. The at least one gene involved in DNA mismatch repair can comprise MLH1, MSH2, MSH6 and PMS2. Mismatch repair deficiency causes hypermutation and microsatellite instability. Thus, determining that a tumor is mismatch repair deficient also indicates that the tumor is hypermutated and that the tumor is microsatellite instable.


The term “microsatellite instability” refers to length variations at short, repetitive DNA sequences, known as microsatellites (MS), within the genome. Tumors that are said to be microsatellite instable are tumors that display higher variations in the length of these short, repetitive DNA sequences as compared to normal, non-cancerous cells. Microsatellite instability can be caused by mismatch repair deficiency. In clinical settings, detection of MSI is customarily profiling the Bethesda markers, which often include two mononucleotide (BAT25 and BAT26) and three dinucleotide (D5S346, D2S123 and D17S250) MS loci. Colorectal tumors unstable at >40% of the Bethesda markers are considered high level microsatellite instable (MSI-H) and are known to have a better prognosis and to be less prone to metastasis than microsatellite stable (MSS) tumors. More recent guidelines suggest analyzing the length of four mononucleotide repeat loci comprising BAT25, BAT26, BAT40, and transforming growth factor receptor type II and three dinucleotide repeat loci comprising D2S123, D5S346 and D17S250 to determine the MSI status of a tumor sample. The length of these loci in a tumor sample is compared to the length of these loci in a non-tumor sample of the same tissue or mononuclear blood cells using multiplex-fluorescent labeled PCR and capillary electrophoresis. Tumors are classified as microsatellite stable (MSS) if none of the loci show a change in size in the tumor sample as compared to the non-tumor and blood cell sample. Tumors are classified as low level microsatellite instable (MSI-L) if one or two of the loci show a change in size in the tumor sample as compared to the non-tumor and blood cell sample. Tumors are classified as high level microsatellite instable (MSI-H) if three or more loci show a change in size in the tumor sample as compared to the non-tumor and blood cell sample.


As described in the preceding, the methods of the present disclosure can be used to identify mismatch repair deficiency in a subject using gene expression data in a tumor sample from a subject. The sample can be a biological sample. As will be appreciated by those in the art, the sample may comprise any number of things, including, but not limited to: cells (including both primary cells and cultured cell lines) and tissues (including cultured or explanted). In aspects, a tissue sample (fixed or unfixed) is embedded, serially sectioned, and immobilized onto a microscope slide. As is well known, a pair of serial sections will include at least one cell that is present in both serial sections. Structures and cell types, located on a first serial section will have a similar location on an adjacent serial section. The sample can be cultured cells or dissociated cells (fixed or unfixed) that have been immobilized onto a slide.


In aspects, a tissue sample is a biopsied tumor or a portion thereof, i.e., a clinically-relevant tissue sample. For example, the tumor may be from a breast cancer. The sample may be an excised lymph node.


The sample can be obtained from virtually any organism including multicellular organisms, e.g., of the plant, fungus, and animal kingdoms; preferably, the sample is obtained from an animal, e.g., a mammal. Human samples are particularly preferred.


In some aspects, the preceding methods are used in the diagnosis of a condition. As used herein the term diagnose or diagnosis of a condition includes predicting or diagnosing the condition, determining predisposition to the condition, monitoring treatment of the condition, diagnosing a therapeutic response of the disease, and prognosis of the condition, condition progression, and response to particular treatment of the condition. For example, a tissue sample can be assayed according to any of the methods described herein to determine the presence and/or quantity of markers of a disease or malignant cell type in the sample (relative to the non-diseased condition), thereby diagnosing or staging a disease or a cancer.


The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Included in this definition are benign and malignant cancers. Examples of cancer include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include adrenocortical carcinoma, bladder urothelial carcinoma, breast invasive carcinoma, cervical squamous cell carcinoma, endocervical adenocarcinoma, cholangiocarcinoma, colon adenocarcinoma, lymphoid neoplasm diffuse large B-cell lymphoma, esophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, kidney chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, acute myeloid leukemia, brain lower grade glioma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, mesothelioma, ovarian serous cystadenocarcinoma, pancreatic adenocarcinoma, pheochromocytoma, paraganglioma, prostate adenocarcinoma, rectum adenocarcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma, testicular germ cell tumors, thyroid carcinoma, thymoma, uterine carcinosarcoma, uveal melanoma. Other examples include breast cancer, lung cancer, lymphoma, melanoma, liver cancer, colorectal cancer, ovarian cancer, bladder cancer, renal cancer or gastric cancer. Further examples of cancer include neuroendocrine cancer, non-small cell lung cancer (NSCLC), small cell lung cancer, thyroid cancer, endometrial cancer, biliary cancer, esophageal cancer, anal cancer, salivary, cancer, vulvar cancer or cervical cancer.


The term “tumor” refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. The terms “cancer,” “cancerous,” “cell proliferative disorder,” “proliferative disorder” and “tumor” are not mutually exclusive as referred to herein.


Any of the above aspects and embodiments can be combined with any other aspect or embodiment as disclosed here in the Summary and/or Detailed Description sections.


The term “immunotherapy” can refer to activating immunotherapy or suppressing immunotherapy. As will be appreciated by those in the art, activating immunotherapy refers to the use of a therapeutic agent that induces, enhances, or promotes an immune response, including, e.g., a T cell response while suppressing immunotherapy refers to the use of a therapeutic agent that interferes with, suppresses, or inhibits an immune response, including, e.g., a T cell response.


As will be appreciated by those in the art, activating immunotherapy may comprise the use of checkpoint inhibitors. Checkpoint inhibitors are readily available in the art and include, but are not limited to, a PD-1 inhibitor, PD-L1 inhibitor, PD-L2 inhibitor, or a combination thereof. Checkpoint inhibitors can comprise antibodies. These antibodies can include, but are not limited to anti-PD1 antibodies, anti-PDL1 antibodies, or anti-CTLA4 antibodies. Anti-PD1 antibodies and anti-PD-L1 antibodies can include, but are not limited to, pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001 and CT-001. Anti-CTLA4 antibodies can include but are not limited to ipilimumab and tremelimumab.


Additionally, the immunotherapy that is provided to a patient in need thereof according to the methods of the present invention comprises providing a cytokine agonist or cytokine antagonist, that is an agonist or antagonist of interferon, IL-2, GMCSF, IL-17E, IL-6, IL-1a, IL-12, TFGB2, IL-15, IL-3, IL-13, IL-2R, IL-21, IL-4R, IL-7, M-CSF, MIF, myostatin, Il-10, Il-24, CEA, IL-11, IL-9, IL-15, IL-2Ra, TNF or a combination thereof.


The term “antibody” herein is used in the broadest sense and encompasses various antibody structures, including but not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired antigen-binding activity. An antibody that binds to a target refers to an antibody that is capable of binding the target with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting the target. In one embodiment, the extent of binding of an anti-target antibody to an unrelated, non-target protein is less than about 10% of the binding of the antibody to target as measured, e.g., by a radioimmunoassay (RIA) or biacore assay. In certain embodiments, an antibody that binds to a target has a dissociation constant (Kd) of <1 μM, <100 nM, <10 nM, <1 nM, <0.1 nM, <0.01 nM, or <0.001 nM (e.g. 108 M or less, e.g. from 108 M to 1013 M, e.g., from 109 M to 1013 M). In certain embodiments, an anti-target antibody binds to an epitope of a target that is conserved among different species.


A “blocking antibody” or an “antagonist antibody” is one that partially or fully blocks, inhibits, interferes, or neutralizes a normal biological activity of the antigen it binds. For example, an antagonist antibody may block signaling through an immune cell receptor (e.g., a T cell receptor) so as to restore a functional response by T cells (e.g., proliferation, cytokine production, target cell killing) from a dysfunctional state to antigen stimulation.


An “agonist antibody” or “activating antibody” is one that mimics, promotes, stimulates, or enhances a normal biological activity of the antigen it binds. Agonist antibodies can also enhance or initiate signaling by the antigen to which it binds. In some embodiments, agonist antibodies cause or activate signaling without the presence of the natural ligand. For example, an agonist antibody may increase memory T cell proliferation, increase cytokine production by memory T cells, inhibit regulatory T cell function, and/or inhibit regulatory T cell suppression of effector T cell function, such as effector T cell proliferation and/or cytokine production.


An “antibody fragment” refers to a molecule other than an intact antibody that comprises a portion of an intact antibody that binds the antigen to which the intact antibody binds. Examples of antibody fragments include but are not limited to Fv, Fab, Fab′, Fab′-SH, F(ab′)2; diabodies; linear antibodies; single-chain antibody molecules (e.g. scFv); and multispecific antibodies formed from antibody fragments.


The term “benefit” is used in the broadest sense and refers to any desirable effect and specifically includes clinical benefit as defined herein. Clinical benefit can be measured by assessing various endpoints, e.g., inhibition, to some extent, of disease progression, including slowing down and complete arrest; reduction in the number of disease episodes and/or symptoms; reduction in lesion size; inhibition (i.e., reduction, slowing down or complete stopping) of disease cell infiltration into adjacent peripheral organs and/or tissues; inhibition (i.e. reduction, slowing down or complete stopping) of disease spread; decrease of auto-immune response, which may, but does not have to, result in the regression or ablation of the disease lesion; relief, to some extent, of one or more symptoms associated with the disorder; increase in the length of disease-free presentation following treatment, e.g., progression-free survival; increased overall survival; higher response rate; and/or decreased mortality at a given point of time following treatment.


As used in this Specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise.


Unless specifically stated or obvious from context, as used herein, the term “or” is understood to be inclusive and covers both “or” and “and”.


Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from the context, all numerical values provided herein are modified by the term “about.”


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although other probes, compositions, methods, and kits similar, or equivalent, to those described herein can be used in the practice of the present disclosure, the preferred materials and methods are described herein. It is to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting.


EXAMPLES
Example 1—Loss of Mismatch Repair Gene Expression Predicts Microsatellite Instability and Hypermutation

Because loss of protein expression for any of the mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2 is sufficient to identify tumors with microsatellite instability, it is plausible that loss of mRNA expression in these genes can provide a surrogate measurement of tumor microsatellite instability (MSI). FIG. 1 shows a series of graphs in which MMR gene expression is plotted against mutation burden and MSI status in colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD) and uterine corpus endometrial carcinoma (UCEC) tumors. FIG. 1 reveals the strong association between these three phenomena, and it shows that loss of MMR gene expression predicts MSI and hypermutation with high specificity.


In all 4 tumor types (colon, esophageal, stomach, and uterine), a cluster of hypermutated tumors is easily visible, with the subtype being relatively abundant in the colon, stomach, and uterine cancer The Cancer Genome Atlas (TCGA) data sets and rare in esophageal cancers. In all four datasets, these hypermutated tumors are strongly enriched for MSI. In colon, stomach, and uterine cancers, a small third cluster of tumors with an even higher mutation burden is apparent. These ultramutated tumors are often MSS or low-level MSI (MSI-L) in the TCGA datasets. Instead, these tumors have a mutation in one of the polymerase genes POLE or POLD1, consistent with a mechanism in which defective polymerase leads to widespread errors in DNA replication. A small fraction of each cancer type is minimally mutated. Furthermore, the average mutation burden within a given cluster is not preserved across tumor types; for example, non-hypermutated (typical) esophageal cancers have 3.8 times the mutation rate of non-hypermutated colon cancers.


MSI-H status as determined by PCR occurs in most (67%-86%) of the hypermutated tumors in these cancers types and in a smaller fraction of the ultramutated tumors. MSI-H occurs in less than 1.4% of non-hypermutated tumors in each dataset. MSI-L status occurs primarily (>92%) in non-hypermutated tumors in the colon, esophageal, and stomach datasets, while in the uterine dataset MSI-L status occurs with approximately equal frequency across non-hypermutated, hypermutated, and ultramutated tumors.



FIG. 1 also shows that loss of expression of the four MMR genes, observed as low-expression outliers, are also apparent within each cancer type. MLH1 is by far the most frequently under-expressed of these genes. In TCGA, MLH1 expression loss occurs in 16% of colon cancers, 3% of esophageal cancers, 20% of stomach cancers, and 29% of uterine cancers. MLH1 loss on its own is a surprisingly sensitive biomarker, detecting two thirds or more of the hypermutation cases in each of these cancer types. Expression loss in the other three MMR genes detects a small number of additional hypermutated/MSI samples not captured by MLH1: MSH2 loss detects 5 additional MSI-H tumors in these 4 datasets, MSH6 loss detects 2, and PMS2 loss detects none. These loss of expression events are highly specific predictors of both MSI and hypermutation, occurring almost exclusively within hypermutated and MSI-H tumors. However, a subset of less than 10% of MSI tumors display normal expression levels of these 4 genes, indicating MMR dysfunction arising from a cause other than loss of mRNA expression.


Example 2—Hypermutated Tumors Share Common Transcriptional Patterns in Colon, Stomach, and Uterine Cancers

Approximately one third of hypermutation or ultramutation events as measured by next-generation sequencing cannot be detected by loss of MMR gene expression. In such cases, transcriptomic events downstream of mismatch repair deficiency (MMRd) might enable detection of hypermutation independent of the expression levels of the classic MMR genes. In cancers where hypermutation has a common origin in MMRd, and possibly in CpG island methylator phenotype (CIMP), it is plausible that hypermutated tumors will display common transcriptional patterns across tumor types. To evaluate whether broader expression patterns could predict MSI and hypermutation, univariate linear models testing the association of hypermutation status with each gene in the TCGA whole transcriptome RNA-Seq datasets were run. These models were fit separately within the colon, stomach, and uterine cancer datasets, omitting esophageal cancer because the presence of only 4 hypermutated tumors in that dataset limited statistical power.


A great deal of the transcriptome had significant association with hypermutation status in these datasets: a Benjamini-Hochberg false discovery rate (FDR) <0.05 was achieved by 7800 genes in colon adenocarcinomas, 9337 genes in stomach adenocarcinomas, and 3848 genes in uterine carcinomas. FIG. 2 is a series of volcano plots that show genes' associations with hypermutation in COAD, STAD and UCEC tumors. FIG. 2 shows that a number of these genes behaved similarly across all 3 cancer types: 420 genes had a FDR <0.05 and a positive association with hypermutation in all 3 datasets, and 672 genes had a FDR <0.05 and a negative association with hypermutation in all 3 cancer types.


Some consistent biology emerges from this comparison, in that gene sets relating to DNA replication machinery and metabolism are highly enriched for genes with consistent positive associations with hypermutation. Table 4 shows the proportion of the genes in each gene set that are consistently down-regulated and consistently up-regulated with hypermutation across COAD, STAD and UCEC datasets, where “consistently up-regulated” is taken to mean “false discover rate <0.05 and a positive association with hypermutation in all 3 datasets. For Table 4, Kyoto Encyclopedia of Genes and Genomes (KEGG), Biocarta, and Reactome gene sets were downloaded from the Molecular Signatures Database (MSigDB).









TABLE 4







Genes down-regulated and up-regulated in cancer datasets










Proportion
Proportion



down in
up in



COAD, STAD,
COAD, STAD,



and UCEC
and UCEC













BIOCARTA_KREB_PATHWAY
0
0.38


REACTOME_ACTIVATION_OF_THE_PRE_REPLICATIVE_COMPLEX
0
0.33


REACTOME_G1_S_SPECIFIC_TRANSCRIPTION
0
0.31


REACTOME_PROCESSIVE_SYNTHESIS_ON_THE_LAGGING_STRAND
0
0.27


REACTOME_UNWINDING_OF_DNA
0
0.27


REACTOME_E2F_MEDIATED_REGULATION_OF_DNA_REPLICATION
0
0.26


BIOCARTA_MCM_PATHWAY
0
0.25


REACTOME_ASSOCIATION_OF_LICENSING_FACTORS_WITH_THE_PRE_R
0
0.25


REACTOME_DNA_STRAND_ELONGATION
0
0.23


REACTOME_CITRIC_ACID_CYCLE_TCA_CYCLE
0
0.21


REACTOME_LAGGING_STRAND_SYNTHESIS
0
0.21


BIOCARTA_DNAFRAGMENT_PATHWAY
0
0.2


BIOCARTA_GLYCOLYSIS_PATHWAY
0
0.2


REACTOME_CDC6_ASSOCIATION_WITH_THE_ORC_ORIGIN_COMPLEX
0
0.2


REACTOME_REMOVAL_OF_THE_FLAP_INTERMEDIATE_FROM_THE_C_STRAND
0
0.2


KEGG_GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM
0
0.19


KEGG_DNA_REPLICATION
0
0.19


REACTOME_HOMOLOGOUS_RECOMBINATION_REPAIR_OF_REPLS
0.06
0.19









This study demonstrates that numerous genes display strong differential expression with hypermutation across all cancer types and suggests that a data-driven predictor of hypermutation could prove informative.


Example 3—Gene Expression Algorithms for Predicting MMRd, Hypermutation, and MSI

Based on the results from examples 1 and 2, three gene expression algorithms for predicting MMRd, hypermutation, and MSI were trained. The “MMR Loss” algorithm uses the results from FIG. 1 to measure loss of expression of the four MMR genes (MLH1, MSH2, MSH6, and PMS2). The “Hypermutation Predictor” algorithm relies on the results from FIG. 2, using genes differentially expressed in hypermutated tumors to predict a tumor's hypermutation status. Finally, to attain the most powerful prediction with all available information, the “MSI Predictor” algorithm combines the MMR Loss and Hypermutation Predictor algorithms in a single score designed to predict MSI status. FIG. 3 is a series of graphs that show how the three algorithms relate to each other. The curved lines in FIG. 3 show the show the decision boundaries corresponding, from top-left to bottom-right, to MSI predictor score p-value cutoffs of 0.05, 0.01, and 0.00. The derivations of these algorithms are described in the materials and methods section below.


Results

The ability of the MSI Predictor algorithm and its 2 component algorithms to predict tumor MSI was evaluated. Table 5 shows that the MMR Loss (also referred to herein as MLS score) and Hypermutation Predictor (also referred to herein as HPS score) algorithms were each accurate predictors of MSI, with the MSI Predictor (also referred to herein as MPS score) algorithm showing higher accuracy as measured by True Positive Rate (TPR; the proportion of MSI-high cases detected by each algorithm) and False Positive Rate (FPR; the proportion of non-hypermutated cases falsely called hypermutated by the gene expression algorithms). A p-value threshold of 0.01 was used for all gene expression algorithms. Numbers in the parentheses in Table 5 give 95% confidence intervals calculated by the Wilson method.









TABLE 5







MMR loss and hypermutation predictor performance












COAD
ESCA
STAD
UCEC



















TPR MMR
0.9
(0.76-0.96)
1
(0.34-1)
0.92
(0.82-0.96)
0.94
(0.86-0.98)


loss score


TPR
0.74
(0.59-0.85)
1
(0.34-1)
0.8
(0.68-0.88)
0.94
(0.86-0.98)


Hypermutation


Predictor score


TPR MSI
0.9
(0.76-0.96)
1
(0.34-1)
0.9
(0.8-0.95)
0.93
(0.84-0.97)


Predictor score


FPR MMR loss
0.26
(0.2-0.32)
0.08
(0.04-0.17)
0.3
(0.24-0.36)
0.36
(0.3-0.43)


score


FPR
0.17
(0.12-0.23)
0.04
(0.01-0.12)
0.23
(0.18-0.29)
0.37
(0.31-0.43)


Hypermutation


Predictor score


FPR MSI
0.21
(0.16-0.28)
0.03
(0.01-0.1)
0.25
(0.19-0.31)
0.3
(0.24-0.36)


Predictor score









However, because the Hypermutation Predictor algorithm was trained from these samples it is subject to overfitting. Therefore, its performance, as well as the performance of the MSI Predictor algorithm, may be exaggerated in this data. In contrast, the MMR Loss algorithm was developed using a minimal training procedure that only required estimates of the mean and interquartile range of each gene in non-hypermutated samples; as such, this algorithm's performance is more likely to be reproduced in new datasets.


Table 6 shows that the gene expression algorithms predicted hypermutation in TCGA datasets almost as well as they predicted MSI. TCGA's PCR-based MSI assay was a slightly more powerful predictor of hypermutation, though this advantage was generally not statistically significant.









TABLE 6







Prediction of hypermutation using gene expression algorithms












COAD
ESCA
STAD
UCEC



















TPR MMR loss
0.77
(0.62-0.87)
0.75
(0.3-0.95)
0.8
(0.69-0.88)
0.73
(0.63-0.81)


score


TPR
0.65
(0.5-0.78)
0.75
(0.3-0.95)
0.74
(0.63-0.83)
0.83
(0.74-0.9)


Hypermutation


Predictor score


TPR MSI
0.79
(0.65-0.89)
0.75
(0.3-0.95)
0.79
(0.67-0.87)
0.74
(0.65-0.82)


Predictor score


TPR MSI status
0.86
(0.73-0.93)
0.67
(0.21-0.94)
0.88
(0.78-0.94)
0.74
(0.65-0.82)


FPR MMR loss
0.1
(0.06-0.15)
0.06
(0.03-0.11)
0.11
(0.07-0.16)
0.13
(0.08-0.19)


score


FPR
0.02
(0.01-0.05)
0.03
(0.01-0.06)
0.04
(0.02-0.08)
0.12
(0.08-0.18)


Hypermutation


Predictor score


FPR MSI
0.04
(0.02-0.08)
0.02
(0.01-0.05)
0.03
(0.02-0.07)
0.03
(0.01-0.07)


Predictor score


FPR MSI status
0.01
(0-0.04)
0
(0-0.04)
0
(0-0.03)
0.01
(0-0.05)









Materials and Methods

Development and Validation of the MMR Loss Algorithm for Calling MSI Status from Loss of MMR Genes



FIG. 1 suggests that low gene expression values in MLH1, MSH2, MSH6, and PMS2 could be used to detect hypermutation and MSI. Therefore, an algorithm for predicting MSI by detecting loss of expression in these genes was developed. To do so, the uncharacteristically low expression of any one of these genes for a MSS tumor was investigated.


To quantify how atypically low a gene's expression is, knowledge of its mean expression and standard deviation in MSS samples was required. Both of these quantities will vary between cancer types, so the mean and standard deviation were estimated separately for each tumor dataset. A gene's mean expression in MSS samples will vary with platform and batch effects. Therefore, this parameter must be estimated anew when deploying this algorithm on a new platform. To ensure an unbiased procedure, this mean parameter was estimated without reference to known mutation or MSI status, either by taking each gene's median expression across a whole dataset (under the assumption that most cases are MSS) or by fitting a Gaussian mixture model with 2 clusters and taking the mean of the higher cluster. If this algorithm were to be applied in a locked assay, each gene's mean in non-hypermutated samples could be estimated directly and fixed.


The standard deviation of a gene's log-scale expression should be platform-agnostic, as platform effects are generally well-modelled as unique scaling factors applied to each gene, amounting to additive constants on the log-scale. Therefore, this parameter can be estimated in TCGA and applied it to future datasets without further calibration. In colon, stomach, and uterine cancers, each MMR gene's standard deviation in the MSS/non-hypermutated subtype was estimated using the cases where MSS status was known. In the esophageal dataset, in which many MSI calls were missing, samples with unknown MSI were included in this analysis, as MSI is rare in this indication, with only 4 cases in TCGA. These standard deviation estimates are reported Table 7.









TABLE 7







Standard deviations of each mismatch repair gene in microsatellite


stable samples in The Cancer Genome Atlas












MLH1
MSH2
MSH6
PMS2

















COAD
0.3241
0.4108
0.4198
0.3259



ESCA
0.5221
0.6602
0.7347
0.4927



STAD
0.4245
0.6020
0.4814
0.4314



UCEC
0.4543
0.7312
0.6158
0.4217










Upon calculation of means and standard deviations, the remainder of the algorithm was simple to execute. Each gene was Z-scored, and the minimum of the four Z-scores was taken for each sample. To place the score on a familiar scale, this minimum Z score was then rescaled by the theoretical mean and standard deviation of the minimum of four standard normal random variables, attaining a final “MMR Loss” score with a mean of 0 and standard deviation of 1 in non-hypermutated samples.


A concise description of the procedure for calculating MMR Loss score is as follows. The below algorithm is proposed for calling hypermutation events resulting from loss of expression of 1 of the 4 key MMR genes (MLH1, MSH2, MSH6, or PMS2).

    • 1. Normalize the gene expression dataset using a sensible method.
    • 2. For each gene, estimate μ, the gene's mean expression in non-hypermutated samples. If a low rate of hypermutation is expected in the dataset, each gene's median expression provides a good estimate. If hypermutation is expected to be common, a Gaussian mixture model with two clusters can be fit to each gene's expression data, and the mean of the higher expression cluster should be taken as μ. For single sample applications, μ must be pre-defined using a training dataset run on the same assay.
    • 3. For each gene, look up its standard deviation (σ) in non-hypermutated tumors of the appropriate cancer type in TCGA. Examples of the 4 MMR genes' σ values are provided in Table 7.
    • 4. For each sample, score each gene relative to its expected value in non-hypermutated samples as [Z=(x−μ)/σ], where x is the gene's normalized log 2 expression value.
    • 5. For each sample, call Zm the minimum Z score from the 4 genes. Calculate the final MMR Loss score, [MLS=(Zm+1.03)/0.69], where 1.03 and 0.69 are the theoretical expectation and standard deviation of the minimum of 4 standard normal random variables.
    • 6. Calculate a p-value for each sample: [p=Φ(MLS)], where Φ is the standard normal distribution function. Choose a stringent p-value threshold for calling loss events, at least as strict as 0.01. Most loss of expression events are substantial enough that they are easily detected, so p-values between 0.05 and 0.01 will often result in false positives.


Development and Validation of the Hypermutation Predictor Algorithm for Calling MSI Status from Genes Differentially Expressed in Hypermutated Tumors


Given an abundance of genes with consistent and highly significant associations with hypermutation, the derivation of a data-driven predictor of hypermutation was sought. 10 genes with good performance across all 3 datasets were selected. Selection was based on multiple considerations, including effect size in the linear models described above and effect size in models fit to subsets of the data (e.g. models excluding ultramutated tumors or hypermutated tumors without MMR gene expression loss). Table 8 shows the genes selected for this process.









TABLE 8







Genes used in the hypermutation predictor score and


false discovery rates (FDR) for various cancer types













COAD
STAD
UCEC


Gene
Weight
FDR
FDR
FDR














EPM2AIP1
−0.31218
2.13E-19
1.49E-35
6.80E-24


TTC30A
−0.19894
1.54E-13
5.22E-17
2.59E-07


SMAP1
−0.1835
7.96E-18
2.57E-13
0.001251


RNLS
−0.19023
2.23E-14
0.000156
4.52E-18


WNT11
−0.11515
1.52E-08
0.036791
7.02E-06


SFXN1
0.214676
1.22E-15
1.11E-16
0.000229


SREBF1
0.194835
8.58E-11
5.48E-14
8.62E-06


TYMS
0.206972
2.08E-17
2.73E-14
0.001611


EIF5AL1
0.194935
5.99E-13
2.86E-13
9.06E-05


WDR76
0.188582
4.26E-12
3.80E-09
2.67E-07









Using the 10 selected genes, a linear predictor score was derived. Each gene was given a weight equal to its mean t-statistic across the 3 datasets and each sample's score was calculated as the sum of its weighted log 2-transformed gene expression values. As the positive and negative weights were nearly balanced, weights were rescaled such that they summed to 0, achieving a score that is invariant to any normalization scheme that adjusts each sample by a scaling constant (i.e., a sample's score was the same under any housekeeping gene normalization regimen, or even in unnormalized data. As a final step, the score was centered and scaled by its mean and standard deviation in MSS samples. Similar to the MMR Loss algorithm, the mean score was estimated in MSS samples anew on each platform. Model-based clustering was again used to estimate this parameter without reference to known MSI status. Also similar to the MMR Loss algorithm, the score's standard deviation in MSS samples in each TCGA dataset was estimated and this parameter was fixed for all future datasets. In the TCGA data from which it was trained, the Hypermutation Predictor score predicts MSI and hypermutation almost as well as the MMR Loss score.


A concise description of the algorithm for calculating Hypermutation Predictor score is as follows. The below algorithm for calling hypermutation events from genes that are differentially expressed between hypermutated/tumors with microsatellite instability (MSI) and non-hypermutated/MSS tumors is proposed.

    • 1. For a given sample, Log 2-transform the expression data for each of the genes in Table 8, multiply each gene by its given weight, and take the sum of these weighted expression values. Call this value x.
    • 2. If applying the assay to a new platform, calibrate the mean parameter for the dataset: fit a Gaussian mixture model with two classes to the data, and take the lower of the two mean parameters. If the mean parameter for the platform has been previously estimated, use that value instead. Call the mean parameter μ.
    • 3. Look up the score's standard deviation (σ) in non-hypermutated tumors of the appropriate cancer type in TCGA. The 4 datasets' σ values are provided in Table 9.









TABLE 9







Standard deviations of the Hypermutation Predictor score in


microsatellite stable samples in The Cancer Genome Atlas










Tumor Type
σ







COAD
0.6604



ESCA
0.7617



STAD
0.8153



UCEC
0.7027












    • 4. Z-transform the score to have a mean of 0 and standard deviation of 1 in non-hypermutated sample: calculate the Hypermutation Predictor score [HPS=(x−μ)/σ].

    • 5. For each sample: [p=Φ(HPS)], where Φ is the standard normal distribution function. Choose a stringent p-value threshold for calling loss events, at least as strict as 0.01.





Development and Validation of the MSI Predictor Algorithm for Calling MSI Status from Combined Information in the MMR Loss and Hypermutation Predictor Scores


Ultimately, a single procedure for calling tumors' MSI status was required. The MSI predictor algorithm described below combines the information in the MMR Loss and Hypermutation Predictor scores into a single score for predicting MSI status. First, it was observed that both the MMR Loss and Hypermutation Predictor scores were approximately Gaussian with a mean of 0 and standard deviation of 1 in MSS samples. Furthermore, they appeared uncorrelated in MSS samples. These observations suggested a test that rejects the null hypothesis of MSS/non-hypermutation in samples that fall in extreme values of the joint distribution of these two scores, which could be reasonably approximated as a bivariate normal distribution.


However, a one-sided test was desired and the rejection of the null hypothesis of MSS/non-hypermutation (e.g., when MLH1 expression was extremely high) was unwanted. Additionally, allowing a null score from one test to counteract the evidence from an impressive score from the other test was unwanted (e.g., if the Hypermutation Predictor score suggested hypermutation but all the MMR genes were unusually high, letting the MMR genes' results counteract the evidence from the Hypermutation Predictor score was unwanted). Thus, both the MMR Loss score and the Hypermutation Predictor score were truncated at 0.


This truncation and the assumption of approximate bivariate normality lead to the following test statistic: MSI predictor score=[(max(HPS,mean(HPS))2+min(MLS,0)2)1/2], where HPS is the Hypermutation Predictor score and MLS is the MMR Loss score. Selected contours of this test score, or equivalently, decision boundaries it could delineate, are shown in FIG. 3. By assuming bivariate normality a p-value for the test statistic could be calculated, equal to the mass of a bivariate normal probability distribution falling above the decision boundary implied by the test statistic's value. Using numerical integration, it was found that p-values of 0.05, 0.01, 0.005, and 0.001 correspond to test statistics of 2.058, 2.699, 2.939, and 3.429, respectively.


A concise description of the algorithm for calculating MSI status from combined information in the MMR Loss and Hypermutation Predictor scores is as follows. The below algorithm for calling hypermutation events in a given sample is proposed:

    • 1. Calculate the MMR Loss and Hypermutation Predictor scores as described above. Call MLS the Z-score from the MMR Loss algorithm, and call HPS the Z-score from the Hypermutation Predictor algorithm.
    • 2. Calculate the final score: MSI Predictor Score=[(max(HPS,0)2+min(MLS,0)2)1/2].
    • 3. Compare the score to a pre-specified cutoff. A cutoff of 7.287 is suggested, which corresponds to a p=0.01 threshold for rejecting the null hypothesis of MSS/non-hypermutation.


Example 4—Validation of MSI Predictor Algorithm in Two Independent Sample Sets Using the NanoString nCounter System

To validate the algorithms trained in TCGA, the NanoString nCounter (NanoString Technologies, Inc., Seattle, Wash., USA) was used to profile two new sample sets for which results of the MMRd IHC assay were available (MSI assays were not run, but the MMRd IHC assay is commonly accepted as a surrogate for MSI). One sample set consisted of 30 MMR-proficient and 30 MMRd colorectal carcinoma samples. The other sample set was 5 MMR-proficient and 10 MMRd endometrial and neuroendocrine tumors, with MMRd status determined by IHC. Endometrial and neuroendocrine samples were combined in a single analysis because of the limited sample sizes.



FIG. 4 is a series of box plots that show that, like the phenomenon seen in TCGA, the validation datasets revealed loss of expression events in a majority of MSI samples. In the endometrial and neuroendocrine samples, losses were only observed for MLH1. PMS2 expression was not noticeably suppressed in 2 tumors with mutations in that gene and in 2 tumors with loss of nuclear PMS2 expression seen in IHC. In the colorectal samples, frequent MLH1 loss of expression was apparent, as were a single instance each of MSH2 and PMS2 loss. Loss of expression events occurred exclusively in MMRd tumors. FIG. 5 shows that the MMR loss score, which measures the evidence for loss in any of the four MMR genes, attained an area under the ROC curve (AUC) of 0.80 in endometrial samples and 0.87 in colorectal samples.



FIG. 5 also shows that the Hypermutation Predictor score, a linear combination of 10 genes, retained strong predictive performance in these independent datasets and outperformed the MMR Loss score (area under curve [AUC]=0.902 in endometrial samples and 0.932 in colorectal samples). The MSI Predictor score added negligible predictive power to the Hypermutation Predictor score. The majority of MMRd cases are unambiguously detected by the MSI Predictor score, and the score's overall predictive power was very high (area under curve [AUC]=0.940 in endometrial samples and 0.963 in colorectal samples).


The TCGA training did not map perfectly to the validation datasets. Examining the top row of FIG. 5, it appears that moving the score contours/decision boundaries left would capture more MMRd samples while incurring no false positives. These suboptimal decision boundaries of the Hypermutation Predictor score appear to result from a lower standard deviation in the validation MSS samples than in TCGA MSS samples. If the Hypermutation Predictor score's standard deviation in MSS samples were to be estimated anew in these datasets, it would shift the score contours/decision boundaries left and thereby achieve even better prediction. By implementing the MSI Predictor score using the pre-defined standard deviation estimates from TCGA, the differential score in MSI calling is underutilized and the results are unnecessarily conservative. The reason for the narrower distribution of Hypermutation Predictor scores in MSS samples in NanoString data is unclear. It could result from more precise gene expression measurements or from some unknown difference in the studies' sample preparation methods or clinical populations.


Materials and Methods


Calculation of Gene Expression Algorithms in NanoString Validation Datasets


Before the algorithms could be applied to data from a new platform, an up-front calibration step was required: for each of the 4 MMR genes and for the Hypermutation Predictor score, the mean value in non-hypermutated samples (or the “center”) had to be estimated. This calibration was performed using unsupervised techniques blind to the samples' MSI status as described in the methods sections for the respective algorithms.


MMRd Assay in Colorectal Carcinoma Samples


MSI-H and MSS/MSI-L colorectal cancer tumor samples in formalin-fixed paraffin-embedded (FFPE) blocks were purchased from iSpecimen (Lexington, Mass., USA). MMR status was determined by the original clinical source using IHC for MLH1, MSH2, MSH6, and PMS2. Blocks were then sent to CellNetix (Seattle, Wash., USA) for pathology review and slide cutting.


MMRd Assay in Endometrial Samples


MMR status was determined by IHC performed at PhenoPath Laboratories, PLLC (Seattle, Wash., USA). Antibody clones used were MSH2 (mouse monoclonal FE11, catalog #M3639; Dako), MSH6 (rabbit monoclonal EP49, catalog #M3646; Dako), MLH1 (mouse monoclonal ES05, catalog #M3640; Dako) and PMS2 (rabbit monoclonal EP51, catalog #M3647; Dako) (Agilent Technologies, Inc., Santa Clara, Calif., USA). All samples were stained with hematoxylin and eosin to allow for morphological evaluation. MMR status was reviewed by a board-certified pathologist and reported as “no loss of expression” or “loss of expression.”


NanoString Assay and Normalization


Samples were run using the standard nCounter Gene Expression assay methodology (NanoString Technologies, Inc., Seattle, Wash., USA; see, e.g. Geiss G K et al. Nature biotechnology. 2008 Mar. 1; 26(3):317-25). Total RNA was extracted from each FFPE tumor sample using the Qiagen FFPE RNeasy kit (Qiagen, Inc., Hilden, Germany). A total of 100 ng of RNA was hybridized with the nCounter IO 360 gene expression panel (NanoString Technologies, Inc., Seattle, Wash., USA), with downstream processing and data collection following manufacturer's instructions.


Both NanoString datasets were normalized such that the mean log 2 expression of 10 housekeeping genes was constant across all samples. All analyses used log 2-transformed data.


Calculation of MSI Algorithms in NanoString Data


Platform differences prevented us from directly applying the TCGA-trained algorithms to NanoString data. Because gene expression platforms differ in the efficiency with which they measure each target sequence, platform effects can be well-modelled by a constant shift in each gene's log-scale normalized expression. Therefore, to apply the algorithms to NanoString data, these constant factors were estimated for each MMR gene and for the Hypermutation Predictor score. To preserve the integrity of this dataset as an unbiased test set for the algorithms, all of these calibration parameters were estimated using unsupervised methods without reference to the known MSI calls. The R library Mclust was used to fit a two-component Gaussian mixture model to each MMR gene's log 2-transformed, normalized expression and to the Hypermutation Predictor score. For the MMR genes, the mean of the higher of the two clusters was taken as the estimate of the mean expression level in non-hypermutated samples; for the Hypermutation Predictor score, the mean in the lower of the two clusters was used. Apart from these mean estimates, all other parameters needed to calculate algorithm scores were calculated from TCGA data without reference to the validation dataset.


Example 5—Association of MSI Status with Extent of Anti-Tumor Immunity as Measured by the Tumor Inflammation Signature

It is well-established that gene expression can predict immunotherapy response by measuring the inflamed microenvironment phenotype. In particular, the Tumor Inflammation Signature as disclosed in PCT/US2015/064445 (WO2016/094377), which is incorporated herein by reference in its entirety, uses 18 genes involved in adaptive anti-tumor immunity to predict response to the anti-PD-1 agent, pembrolizumab (also see e.g. Ayers M et al. The Journal of clinical investigation. 2017 Aug. 1; 127(8):2930-40). The motivation of this study was to enable gene expression to capture an additional, genotypic predictor of immunotherapy response: hypermutation. FIG. 6 compares these genotype and phenotype variables in TCGA, plotting the MSI Predictor score against the Tumor Inflammation Signature score. As a visual guide, thresholds for calling MSI or high immunity have been drawn.


Together, the Tumor Inflammation Signature and MSI scores measured in the same sample identify more potential responders than either test alone. Importantly, very few patients called MSI-H by standard techniques are missed by both the Tumor Inflammation Signature and MSI gene expression score. Interestingly, MSI scores in true MSI-H samples become attenuated in tumors with high Tumor Inflammation Signature scores. One explanation for this phenomenon is that in inflamed tumors, highly abundant immune cells contribute background expression of MLH1 and other MSI signature genes, clouding the otherwise clear signal of the tumor cells' mRNA. Importantly, nearly all MSI-H tumors missed by the MSI gene expression score have high Tumor Inflammation Signature scores, and their potential for anti-tumor immunity would be identified based on that variable alone.


Summary of Examples

In summary, the examples described herein demonstrate here that RNA expression can be used to identify MSI-H tumors with both high sensitivity and specificity. This discovery opens the possibility of using RNA expression profiling to identify multiple orthogonal biomarkers of checkpoint inhibitor efficacy in a single assay, thereby improving the ability to identify the best treatment option for every patient. Additionally, there are benefits to measuring both anti-tumor immune activity and MSI status using a single test. Rather than using multiple tissue samples and potentially sending those out to multiple laboratories for analysis, combining these two measurements into a single assay allows for conservation of biological material and simplification of personalized treatment decisions.


These findings should have broad applicability in gene expression studies of cancer types where MSI occurs. It is reasonable to posit that outlier low expression values of MHL1, MSH2, MSH6, and PMS2 will nearly always occur in tandem with MSI, regardless of tumor type.


Based on these results, MSI and immune status should together form the foundation of any analysis of immunotherapy in solid tumors. Because these variables are non-redundant, they promise to offer superior prediction together than either can alone. Responders missed by one of these variables may often be identified by the other. To more optimally guide treatment choices, drug efficacy should be evaluated separately in MSI-H/immune-high, MSI-H/immune-low, MSI-L/immune-high, and MSI-L/immune-low subsets.

Claims
  • 1. A method of treating cancer in a subject identified as having mismatch repair deficiency, the method comprising administering to the subject identified as having mismatch repair deficiency at least one treatment, wherein the subject is identified as having mismatch repair deficiency by a method comprising a) measuring the gene expression level of at least one gene comprising MLH1, MSH2, MSH6 or PMS2 in a tumor sample from the subject;b) determining for each of the at least one gene a score Z, wherein Z=(x−μ1)/σ1, wherein x is the log-transformed normalized expression of the at least one gene, μ1 is the mean of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ1 is the standard deviation of the log-transformed normalized expression of the at least one gene in non-hypermutated samples;c) determining a score MLS, wherein MLS=(Zm+c1)/c2, wherein Zm is the minimum Z score of the at least one gene, and wherein c1 is 0 and c2 is 1 when one gene is used,c1 is 0.56 and c2 is 0.83 when two genes are used,c1 is 0.85 and c2 is 0.75 when three gene are used, orc1 is 1.03 and c2 is 0.70 when four genes are used;d) comparing the MLS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; ande) identifying the presence of mismatch repair deficiency in the subject when the MLS score is equal to or greater than the predetermined cutoff value.
  • 2. The method of claim 1, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 99% specificity.
  • 3. (canceled)
  • 4. The method of claim 1, wherein the cutoff value is 1.645.
  • 5. The method of claim 1, wherein the cutoff value is 2.326.
  • 6. The method of claim 1, wherein the cutoff value is 2.576.
  • 7. The method of claim 1, wherein the at least one gene comprises MLH1.
  • 8. The method of claim 1, wherein the at least one gene comprises each of MLH1, MSH2, MSH6 and PMS2.
  • 9. A method of treating cancer in a subject identified as having mismatch repair deficiency, the method comprising administering to the subject identified as having mismatch repair deficiency at least one treatment, wherein the subject is identified as having mismatch repair deficiency by a method comprising a) measuring the gene expression level of at least one gene comprising EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1, or WDR76 in a tumor sample from the subject;b) determining a score HPS, wherein HPS=(y−μ2)/σ2, wherein y=Σi=110yiwi, wherein yi is the log-transformed normalized expression of the at least one gene i in the tumor sample and wi is the prespecified weight for gene i, μ2 is the mean of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples, and σ2 is the standard deviation of the linear combination of the log-transformed normalized expression of the at least one gene in non-hypermutated samples;c) comparing the HPS score with a predetermined cutoff value, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 95% specificity; andd) identifying the presence of mismatch repair deficiency in the subject when the HPS score is equal to or greater than the predetermined cutoff value.
  • 10. The method of claim 9, wherein the weight wi for the at least one gene is
  • 11. The method of claim 9, wherein the cutoff value identifies mismatch repair deficiency in a subject with at least 99% specificity.
  • 12. (canceled)
  • 13. The method of claim 9, wherein the cutoff value is 1.645.
  • 14. The method of claim 9, wherein the cutoff value is 2.326.
  • 15. The method of claim 9, wherein the cutoff value is 2.576.
  • 16. The method of claim 9, wherein the at least one gene comprises each of EPM2AIP1, TTC30A, SMAP1, RNLS, WNT11, SFXN1, SREBF1, TYMS, EIF5AL1 and WDR76
  • 17.-32. (canceled)
  • 33. The method of claim 1, wherein the treatment comprises immunotherapy.
  • 34. The method of claim 1, wherein the treatment comprises administering to the subject checkpoint inhibitors.
  • 35. The method of claim 1, wherein the treatment comprises administering to the subject pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab or a combination thereof.
  • 36. The method of claim 1, wherein the treatment comprises administering to the subject pidilizumab, REGN2810, AMP-224, MEDI0680, PDR001, CT-001 or a combination thereof.
  • 37. The method of claim 1, wherein the treatment comprises administering to the subject a CTLA4 antibody.
  • 38. The method of claim 37, wherein the CTLA4 antibody comprises ipilimumab, tremelimumab or a combination thereof.
  • 39. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Patent Application No. PCT/US2019/030537, filed May 3, 2019, which claims priority to, and the benefit of, U.S. Provisional Application No. 62/666,870, filed May 4, 2018. The contents of each of the aforementioned patent applications are incorporated herein by reference in their entireties.

Provisional Applications (1)
Number Date Country
62666870 May 2018 US
Continuations (1)
Number Date Country
Parent PCT/US2019/030537 May 2019 US
Child 17086842 US