Aspects of the present disclosure relate to the general field of biotechnology and, more particularly, to the fields of genetic engineering and microbiology.
Bacteroides species are prominent Gram-negative anaerobic symbionts of the mammalian gut microbiome, comprising 25% of culturable anaerobes in the human gastrointestinal tract. Of the Bacteroides genus, Bacteroides thetaiotaomicron is both prevalent (present in 46% of humans) and abundant (up to 1010 per gram stool). Stable and robust colonization of the densely populated gut environment is facilitated by the metabolic diversity of Bacteroides. Specifically, B. thetaiotaomicron and its relatives are equipped with an extensive repertoire of saccharolytic enzymes and serve as primary fermenters of host-, diet- or microbially-derived polysaccharides.
Bacteroides thetaiotaomicron, a commensal bacterium, forms stable interactions with the gastrointestinal tract and is a candidate for modulating the gut ecosystem. However, there are few genetic parts and circuits available to control expression in this Bacteroides species as well as other Bacteroides and Parabacteroides species. Provided herein is a library of constitutive promoters and ribosome-binding sites that may be used, in some embodiments, to achieve a 10,000-fold range in gene expression. For inducible control, a series of promoters, able to elicit up to 100-fold regulation in gene expression, were constructed. Further provided herein are vector systems that maybe used to manipulate gene expression in a variety of Bacteroides and Parabacteroides species. These tools were used as a platform to build recombinase-based memory gates that permanently record DNA-encoded information in the genome. CRISPR interference (CRISPRi) was used to enable the regulated knockdown of recombinant and endogenous gene expression. Finally, the function of the inducible systems, CRISPRi, and memory switch were validated in B. thetaiotaomicron colonizing the mouse gut. Collectively, these tools provide a resource to engineer Bacteroides and Parabacteroides to respond to environmental stimuli, record this information, and control genetic pathways as a means of surveillance of or therapeutic delivery to the human microbiome.
Some aspects of the present disclosure are directed to Bacteroides (or Parabacteroides) bacteria comprising (a) an engineered nucleic acid comprising a region containing a promoter and a nucleotide sequence encoding a ribosomal binding site (RBS) operably linked to a nucleotide sequence encoding a recombinase, and (b) an engineered nucleic acid comprising a promoter and a nucleotide sequence encoding a RBS operably linked to a nucleotide sequence encoding a molecule of interest, wherein the nucleotide sequence encoding the molecule of interest is flanked by a pair of cognate recombinase recognition sequences.
In some embodiments, wherein the nucleotide sequence encoding a RBS comprises a sequence selected from the group consisting SEQ ID NO: 1-SEQ ID NO: 143 and SEQ ID NO: 168-SEQ ID NO: 172.
In some embodiments, the promoter is constitutive. Thus, the region containing a promoter and a nucleotide sequence encoding a RBS may comprise a sequence selected from the group consisting SEQ ID NO: 151-SEQ ID NO: 155 and SEQ ID NO: 160-SEQ ID NO: 163. Other constitutive promoters are encompassed by the present disclosure.
In some embodiments, the promoter is inducible. Thus, the region containing a promoter and a nucleotide sequence encoding a RBS may comprise a sequence selected from the group consisting SEQ ID NO: 144-SEQ ID NO: 149. Other inducible promoters are encompassed by the present disclosure.
In some embodiments, the recombinase is a serine recombinase or a tyrosine recombinase. For example, the recombinase may be a serine recombinase. In some embodiments, the serine recombinase is selected from the group consisting of Intl (SEQ ID NO: 164), Int8 (SEQ ID NOT: 165), Int9 (SEQ ID NO: 166) and Int12 (SEQ ID NO: 167). Other serine recombinases and tyrosine recombinases are encompassed by the present disclosure.
Also provided herein are Bacteroides (or Parabacteroides) bacteria comprising an engineered nucleic acid comprising a promoter and a nucleotide sequence encoding a ribosomal binding site (RBS) operably linked to a nucleotide sequence encoding a molecule of interest, wherein the RBS comprises a sequence selected from the group consisting SEQ ID NO: 1-SEQ ID NO: 143 and SEQ ID NO: 168-SEQ ID NO: 172.
Further provided herein are Bacteroides (or Parabacteroides) bacteria comprising an engineered nucleic acid comprising a region containing a constitutive promoter and a nucleotide sequence encoding a ribosomal binding site (RBS) operably linked to a nucleotide sequence encoding a molecule of interest, wherein the region containing a constitutive promoter and a RBS comprises a sequence selected from the group consisting SEQ ID NO: 151-SEQ ID NO: 155 and SEQ ID NO: 160-SEQ ID NO: 163.
Also provided herein are Bacteroides bacteria comprising an engineered nucleic acid comprising a region containing an inducible promoter and a nucleotide sequence encoding a ribosomal binding site (RBS) operably linked to a nucleotide sequence encoding a molecule of interest, wherein the region containing an inducible promoter and a RBS comprises a sequence selected from the group consisting SEQ ID NO: 144-SEQ ID NO: 149.
Further provided herein are Bacteroides (or Parabacteroides) bacteria comprising an engineered nucleic acid comprising a region containing an inducible promoter and a nucleotide sequence encoding a ribosomal binding site (RBS) operably linked to a nucleotide sequence encoding a molecule of interest, wherein the nucleotide sequence encoding a RBS is immediately downstream from (3′ from) a 10-nucleotide to 20-nucleotide region, wherein at least 80% of the nucleotides in the 10-nucleotide to 20-nucleotide region are adenine or thymine, or a combination of adenine and thymine.
In some embodiments, the molecule of interest is a therapeutic molecule, a prophylactic molecule, or a diagnostic molecule.
Some aspects of the present disclosure provide methods of expressing a molecule of interest in a Bacteroides (or Parabacteroides) bacterium, the method comprising culturing a Bacteroides (or Parabacteroides) bacterium (or a population of Bacteroides bacteria), as described herein, under conditions that result in expression of the molecule of interest.
Some aspects of the present disclosure provide methods of treating a condition in a subject, the method comprising administering to the subject a Bacteroides (or Parabacteroides) bacterium, as described herein, wherein the molecule of interest is a therapeutic molecule. Some aspects of the present disclosure provide methods of preventing a condition in a subject, the method comprising administering to the subject a Bacteroides (or Parabacteroides) bacterium, as described herein, wherein the molecule of interest is a prophylactic molecule.
Also provided herein are Bacteroides (or Parabacteroides) bacteria comprising (a) an engineered nucleic acid comprising a region containing a promoter and a nucleotide sequence encoding a ribosomal binding site (RBS) operably linked to a nucleotide sequence encoding a catalytically-inactive Cas9 nuclease, and (b) an engineered nucleic acid comprising a promoter and a nucleotide sequence encoding a RBS operably linked to a nucleotide sequence encoding a guide RNA, wherein the guide RNA targets a nucleotide sequence encoding a molecule of interest.
In some embodiments, the catalytically-inactive Cas9 nuclease is encoded by the nucleotide sequence of SEQ ID NO: 157.
Some aspects of the present disclosure provide engineered nucleic acids comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-SEQ ID NO: 180.
In some embodiments, the present disclosure provides a vector comprising the genetic elements depicted in
Also provided herein are cells comprising engineered nucleic acid(s), as described herein (e.g., engineered nucleic acids comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-SEQ ID NO: 180).
The accompanying drawings are not intended to be drawn to scale. For purposes of clarity, not every component may be labeled in every drawing.
To date, multiple microorganisms have served as chassis for engineered microbial therapies of human disease. However, compared to organisms such as E. coli and L. lactis, which undergo depletion or clearance within days of administration, Bacteroides populations exhibit low variation in abundance and long-term colonization. Nonetheless, few genetic parts and inducible systems are available for B. thetaiotaomicron, for example, and its relatives due, in part, to unique promoter and RBS architectures in Bacteroides, which have precluded the direct incorporation of genetic systems developed in other organisms. For example, unlike most other prokaryotes, the unique major sigma factor in Bacteroides binds to a −33/−7 consensus sequence (TTTG/TAnnTTTG), the strength of translation initiation is poorly correlated with the level of ribosome binding site (RBS) complementarity to the 16S rRNA of the host organism, and compared to the E. coli RBS, Bacteroides RBS strength is more sensitive to secondary structures, depleted in GC content, and predicted to rely more heavily on interactions with ribosomal protein S1. Further, promoter and RBS characterization have employed several reporter outputs, preventing direct comparison of parts. A lack of genetic part libraries hinders the introduction of multi-gene pathways, such as those that could produce a metabolic product designed to treat disease.
The present disclosure provides, in some aspects, a set of genetic tools for precise and robust engineering of Bacteroides (e.g., B. thetaiotomicron) or Parabacteroides for microbiome applications (as well as other applications). Provided herein is a library of biological parts, comprised of constitutive promoters, inducible promoters, and ribosomal binding sites (RBSs) that each span output dynamic ranges over several orders of magnitude (
Bacteroides and Parabacteroides
Bacteroides is a genus of Gram-negative, non-spore-forming, anaerobic, and rod-shaped bacteria. They have an outer membrane, a peptidoglycan layer, and a cytoplasmic membrane. The main by-products of their anaerobic respiration are acetic acid, isovaleric acid, propionic acid and succinic acid. They are involved in many important metabolic activities in the human colon including fermentation of carbohydrates, utilization of nitrogenous substances, and biotransformation of bile acids and other steroids. Most intestinal bacteria are saccharolytic, which means that they obtain carbon and energy by hydrolysis of carbohydrate molecules.
The genomes of the circular chromosomes of many Bacteroides species and strains have been studied; research is being done on sequencing Bacteroides species in order to understand their pathogenic properties. All Bacteroides have G-C composition of 40-48%. Much of the genome is controlled by sigma factors which respond to environmental factors. There have been a total of three genome projects done on two different species of Bacteroides. The three genomes sequenced were that of Bacteroides thetaiotaomicron VPI-5482, Bacteroides fragilis YCH46, and Bacteroides fragilis NCTC 9343. Information and a schematic representation of the Bacteroides thetaiotaomicron VPI-5482 chromosome can be found at National Center for Biotechnology Information (NCBI).
Engineered nucleic acids of the present disclosure may be introduced into a variety of different organisms, including Bacteroides. Examples of species of Bacteroides contemplated herein include, without limitation, B. acidifaciens, B. caccae, B. distasonis, B. gracilis, B. fragilis, B. dorei, B. oris, B. ovatus, B. putredinis, B. pyogenes, B. stercoris, B. suis, B. tectus, B. thetaiotaomicron, B. vulgatus, B. eggerthii, B. merdae, B. stercoris, and B. uniformis.
Engineered nucleic acids of the present disclosure may also be introduced into Parabacteroides (Sakamoto M and Benno Y. Int J Syst Evol Microbiol. 2006 July; 56 (Pt 7):1599-605, incorporated by reference), which is closely related to Bacteroides. Examples of species of Parbacteroides contemplated herein include, without limitation, P. chartae, P. chinchilla, P. distasonis, P. faecis, P. goldsteinii, P. gordonii, P. johnsonii, and P. merdae.
Engineered Nucleic Acids
A “nucleic acid” is at least two nucleotides covalently linked together, and in some instances, may contain phosphodiester bonds (e.g., a phosphodiester “backbone”). An “engineered nucleic acid” is a nucleic acid that does not occur in nature. It should be understood, however, that while an engineered nucleic acid as a whole is not naturally-occurring, it may include nucleotide sequences that occur in nature. In some embodiments, an engineered nucleic acid comprises nucleotide sequences from different organisms (e.g., from different species). For example, in some embodiments, an engineered nucleic acid includes a murine nucleotide sequence, a bacterial nucleotide sequence, a human nucleotide sequence, and/or a viral nucleotide sequence. Engineered nucleic acids include recombinant nucleic acids and synthetic nucleic acids. A “recombinant nucleic acid” is a molecule that is constructed by joining nucleic acids (e.g., isolated nucleic acids, synthetic nucleic acids or a combination thereof) and, in some embodiments, can replicate in a living cell. A “synthetic nucleic acid” is a molecule that is amplified or chemically, or by other means, synthesized. A synthetic nucleic acid includes those that are chemically modified, or otherwise modified, but can base pair with naturally-occurring nucleic acid molecules. Recombinant and synthetic nucleic acids also include those molecules that result from the replication of either of the foregoing.
In some embodiments, a nucleic acid of the present disclosure is considered to be a nucleic acid analog, which may contain, at least in part, other backbones comprising, for example, phosphoramide, phosphorothioate, phosphorodithioate, O-methylphophoroamidite linkages and/or peptide nucleic acids. A nucleic acid may be single-stranded (ss) or double-stranded (ds), as specified, or may contain portions of both single-stranded and double-stranded sequence. In some embodiments, a nucleic acid may contain portions of triple-stranded sequence. A nucleic acid may be DNA, both genomic and/or cDNA, RNA or a hybrid, where the nucleic acid contains any combination of deoxyribonucleotides and ribonucleotides (e.g., artificial or natural), and any combination of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine, hypoxanthine, isocytosine and isoguanine.
Nucleic acids of the present disclosure may include one or more genetic elements. A “genetic element” refers to a particular nucleotide sequence that has a role in nucleic acid expression (e.g., promoter, enhancer, terminator) or encodes a discrete product of an engineered nucleic acid (e.g., a nucleotide sequence encoding a guide RNA, a protein and/or an RNA interference molecule).
Nucleic acids of the present disclosure may be produced using standard molecular biology methods (see, e.g., Green and Sambrook, Molecular Cloning, A Laboratory Manual, 2012, Cold Spring Harbor Press).
In some embodiments, nucleic acids are produced using GIBSON ASSEMBLY® Cloning (see, e.g., Gibson, D. G. et al. Nature Methods, 343-345, 2009; and Gibson, D. G. et al. Nature Methods, 901-903, 2010, each of which is incorporated by reference herein). GIBSON ASSEMBLY® typically uses three enzymatic activities in a single-tube reaction: 5′ exonuclease, the 3′ extension activity of a DNA polymerase and DNA ligase activity. The 5′ exonuclease activity chews back the 5′ end sequences and exposes the complementary sequence for annealing. The polymerase activity then fills in the gaps on the annealed regions. A DNA ligase then seals the nick and covalently links the DNA fragments together. The overlapping sequence of adjoining fragments is much longer than those used in Golden Gate Assembly, and therefore results in a higher percentage of correct assemblies.
In some embodiments, a compressed biosynthetic pathway is delivered to a cell on a vector. A “vector” refers to a nucleic acid (e.g., DNA) used as a vehicle to artificially carry genetic material (e.g., an engineered nucleic acid) into a cell where, for example, it can be replicated and/or expressed. In some embodiments, a vector is an episomal vector (see, e.g., Van Craenenbroeck K. et al. Eur. J. Biochem. 267, 5665, 2000, incorporated by reference herein). A non-limiting example of a vector is a plasmid (e.g.,
Genetic Elements
Expression of engineered nucleic acids is driven by a promoter operably linked to a nucleic acid containing, for example, a nucleic acid encoding a molecule of interest. A “promoter” refers to a control region of a nucleic acid sequence at which initiation and rate of transcription of the remainder of a nucleic acid sequence are controlled. A promoter drives expression or drives transcription of the nucleic acid sequence that it regulates. A promoter may also contain sub-regions at which regulatory proteins and molecules may bind, such as RNA polymerase and other transcription factors. Promoters may be constitutive, inducible, activatable, repressible, tissue-specific or any combination thereof.
Herein, a promoter is considered to be “operably linked” when it is in a correct functional location and orientation in relation to a nucleic acid sequence it regulates to control (“drive”) transcriptional initiation and/or expression of that sequence.
A promoter may be one naturally associated with a gene or sequence, as may be obtained by isolating the 5′ non-coding sequences located upstream of the coding segment of a given gene or sequence. Such a promoter can be referred to as “endogenous.”
In some embodiments, a coding nucleic acid sequence may be positioned under the control of a recombinant or heterologous promoter, which refers to a promoter that is not normally associated with the encoded sequence in its natural environment. Such promoters may include promoters of other genes; promoters isolated from any other cell; and synthetic promoters or enhancers that are not “naturally occurring” such as, for example, those that contain different elements of different transcriptional regulatory regions and/or mutations that alter expression through methods of genetic engineering that are known in the art. In addition to producing nucleic acid sequences of promoters and enhancers synthetically, sequences may be produced using recombinant cloning and/or nucleic acid amplification technology, including polymerase chain reaction (PCR) (see U.S. Pat. Nos. 4,683,202 and 5,928,906).
In some embodiments, a promoter is an “inducible promoter,” which refer to a promoter that is characterized by regulating (e.g., initiating or activating) transcriptional activity when in the presence of, influenced by or contacted by an inducer signal. An inducer signal may be endogenous or a normally exogenous condition (e.g., light), compound (e.g., chemical or non-chemical compound) or protein that contacts an inducible promoter in such a way as to be active in regulating transcriptional activity from the inducible promoter. Thus, a “signal that regulates transcription” of a nucleic acid refers to an inducer signal that acts on an inducible promoter. A signal that regulates transcription may activate or inactivate transcription, depending on the regulatory system used. Activation of transcription may involve directly acting on a promoter to drive transcription or indirectly acting on a promoter by inactivation a repressor that is preventing the promoter from driving transcription. Conversely, deactivation of transcription may involve directly acting on a promoter to prevent transcription or indirectly acting on a promoter by activating a repressor that then acts on the promoter.
The administration or removal of an inducer signal results in a switch between activation and inactivation of the transcription of the operably linked nucleic acid sequence. Thus, the active state of a promoter operably linked to a nucleic acid sequence refers to the state when the promoter is actively regulating transcription of the nucleic acid sequence (i.e., the linked nucleic acid sequence is expressed). Conversely, the inactive state of a promoter operably linked to a nucleic acid sequence refers to the state when the promoter is not actively regulating transcription of the nucleic acid sequence (i.e., the linked nucleic acid sequence is not expressed).
An inducible promoter of the present disclosure may be induced by (or repressed by) one or more physiological condition(s), such as changes in light, pH, temperature, radiation, osmotic pressure, saline gradients, cell surface binding, and the concentration of one or more extrinsic or intrinsic inducing agent(s). An extrinsic inducer signal or inducing agent may comprise, without limitation, amino acids and amino acid analogs, saccharides and polysaccharides, nucleic acids, protein transcriptional activators and repressors, cytokines, toxins, petroleum-based compounds, metal containing compounds, salts, ions, enzyme substrate analogs, hormones or combinations thereof.
Inducible promoters of the present disclosure include any inducible promoter described herein or known to one of ordinary skill in the art. Examples of inducible promoters include, without limitation, chemically/biochemically-regulated and physically-regulated promoters such as alcohol-regulated promoters, tetracycline-regulated promoters (e.g., anhydrotetracycline (aTc)-responsive promoters and other tetracycline-responsive promoter systems, which include a tetracycline repressor protein (tetR), a tetracycline operator sequence (tetO) and a tetracycline transactivator fusion protein (tTA)), steroid-regulated promoters (e.g., promoters based on the rat glucocorticoid receptor, human estrogen receptor, moth ecdysone receptors, and promoters from the steroid/retinoid/thyroid receptor superfamily), metal-regulated promoters (e.g., promoters derived from metallothionein (proteins that bind and sequester metal ions) genes from yeast, mouse and human), pathogenesis-regulated promoters (e.g., induced by salicylic acid, ethylene or benzothiadiazole (BTH)), temperature/heat-inducible promoters (e.g., heat shock promoters), and light-regulated promoters (e.g., light responsive promoters from plant cells).
In some embodiments, an inducer signal of the present disclosure is an N-acyl homoserine lactone (AHL), which is a class of signaling molecules involved in bacterial quorum sensing. Quorum sensing is a method of communication between bacteria that enables the coordination of group based behavior based on population density. AHL can diffuse across cell membranes and is stable in growth media over a range of pH values. AHL can bind to transcriptional activators such as LuxR and stimulate transcription from cognate promoters.
In some embodiments, an inducer signal of the present disclosure is anhydrotetracycline (aTc), which is a derivative of tetracycline that exhibits no antibiotic activity and is designed for use with tetracycline-controlled gene expression systems, for example, in bacteria.
In some embodiments, an inducer signal of the present disclosure is isopropyl β-D-1-thiogalactopyranoside (IPTG), which is a molecular mimic of allolactose, a lactose metabolite that triggers transcription of the lac operon, and it is therefore used to induce protein expression where the gene is under the control of the lac operator. IPTG binds to the lac repressor and releases the tetrameric repressor from the lac operator in an allosteric manner, thereby allowing the transcription of genes in the lac operon, such as the gene coding for beta-galactosidase, a hydrolase enzyme that catalyzes the hydrolysis of β-galactosides into monosaccharides. The sulfur (S) atom creates a chemical bond which is non-hydrolyzable by the cell, preventing the cell from metabolizing or degrading the inducer. IPTG is an effective inducer of protein expression, for example, in the concentration range of 100 μM to 1.0 mM. Concentration used depends on the strength of induction required, as well as the genotype of cells or plasmid used. If lacIq, a mutant that over-produces the lac repressor, is present, then a higher concentration of IPTG may be necessary. In blue-white screen, IPTG is used together with X-gal. Blue-white screen allows colonies that have been transformed with the recombinant plasmid rather than a non-recombinant one to be identified in cloning experiments.
Other inducible promoter systems are known in the art and may be used in accordance with the present disclosure.
In some embodiments, inducible promoters of the present disclosure function in prokaryotic cells (e.g., bacterial cells). Examples of inducible promoters for use prokaryotic cells include, without limitation, bacteriophage promoters (e.g. Pls1con, T3, T7, SP6, PL) and bacterial promoters (e.g., Pbad, PmgrB, Ptrc2, Plac/ara, Ptac, Pm), or hybrids thereof (e.g. PLlacO, PLtetO). Examples of bacterial promoters for use in accordance with the present disclosure include, without limitation, positively regulated E. coli promoters such as positively regulated σ70 promoters (e.g., inducible pBad/araC promoter, Lux cassette right promoter, modified lamdba Prm promote, plac Or2-62 (positive), pBad/AraC with extra REN sites, pBad, P(Las) TetO, P(Las) CIO, P(Rhl), Pu, FecA, pRE, cadC, hns, pLas, pLux), σS promoters (e.g., Pdps), σ32 promoters (e.g., heat shock) and σ54 promoters (e.g., glnAp2); negatively regulated E. coli promoters such as negatively regulated σ70 promoters (e.g., Promoter (PRM+), modified lamdba Prm promoter, TetR-TetR-4C P(Las) TetO, P(Las) CIO, P(Lac) IQ, RecA_DlexO_DLacO1, dapAp, FecA, Pspac-hy, pcI, plux-cI, plux-lac, CinR, CinL, glucose controlled, modified Pr, modified Prm+, FecA, Pcya, rec A (SOS), Rec A (SOS), EmrR_regulated, BetI_regulated, pLac_lux, pTet_Lac, pLac/Mnt, pTet/Mnt, LsrA/cI, pLux/cI, LacI, LacIQ, pLacIQ1, pLas/cI, pLas/Lux, pLux/Las, pRecA with LexA binding site, reverse BBa_R0011, pLacI/ara-1, pLacIq, rrnB P1, cadC, hns, PfhuA, pBad/araC, nhaA, OmpF, RcnR), σS promoters (e.g., Lutz-Bujard LacO with alternative sigma factor σ38), σ32 promoters (e.g., Lutz-Bujard LacO with alternative sigma factor σ32), and σ54 promoters (e.g., glnAp2); negatively regulated B. subtilis promoters such as repressible B. subtilis GA promoters (e.g., Gram-positive IPTG-inducible, Xyl, hyper-spank) and σB promoters. Other inducible microbial promoters may be used in accordance with the present disclosure.
A “ribosomal binding site (RBS)” is a sequence on mRNA that is bound by the ribosome when initiating protein translation. The ribosome searches for this site and binds to it through base-pairing of nucleotides. Once the ribosome has bound, it recruits initiation factors and begins the translation process. Bacteroides possess a unique RBS where homology to the 16S rRNA does not play a role in the strength of translation initiation.
The present disclosure contemplates a variety of RBSs including, without limitation, those listed in Table 2.
Recombinases
A “recombinase,” as used herein, is a site-specific enzyme that recognizes short DNA sequence(s), which sequence(s) are typically between about 30 base pairs (bp) and 40 bp, and that mediates the recombination between these recombinase recognition sequences, which results in the excision, integration, inversion, or exchange of DNA fragments between the recombinase recognition sequences. For example, in some embodiments, Bacteroides cells of the present disclosure may be engineered to comprise at least two engineered nucleic acids, comprising a region containing a promoter and a nucleotide sequence encoding a ribosomal binding site (RBS) operably linked to a nucleotide sequence encoding a recombinase, and the other comprising a promoter and a nucleotide sequence encoding a RBS operably linked to a nucleotide sequence encoding a molecule of interest, wherein the nucleotide sequence encoding the molecule of interest is flanked by a pair of cognate recombinase recognition sequences. In such embodiments, expression of the molecule of interest is regulated by recombinase activity, or inactivity, of the other circuit.
Recombinases can be classified into two distinct families: serine recombinases (also referred to herein as serine integrases) and tyrosine recombinases (also referred to herein as tyrosine integrases), based on distinct biochemical properties. Serine recombinases and tyrosine recombinases are further divided into bidirectional recombinases and unidirectional recombinases. Examples of bidirectional serine recombinases for use herein include, without limitation, β-six, CinH, ParA and γδ; and examples of unidirectional serine recombinases include, without limitation, Intl, Int8, Int9, Int12, Bxb1, ϕkC31, TP901, TG1, φBT1, R4, φRV1, φFC1, MR11, A118, U153 and gp29. Examples of bidirectional tyrosine recombinases for use herein include, without limitation, Cre, FLP, and R; and unidirectional tyrosine recombinases include, without limitation, Lambda, HK101, HK022 and pSAM2. The serine and tyrosine recombinase names stem from the conserved nucleophilic amino acid residue that the recombinase uses to attack the DNA and which becomes covalently linked to the DNA during strand exchange.
The outcome of recombination depends, in part, on the location and orientation of two short repeated DNA sequences that are to be recombined, typically less than 30 bp long. Recombinases bind to these repeated sequences, which are specific to each recombinase, and are herein referred to as “recombinase recognition sequences.” Thus, as used herein, a recombinase is “specific for” a recombinase recognition sequence when the recombinase can mediate inversion or excision between the repeated nucleotide sequences. As used herein, a recombinase may also be said to recognize its “cognate recombinase recognition sequences,” which flank an intervening genetic element (e.g., promoter, terminator, or nucleotide sequence encoding the molecule of interest). A genetic element is said to be “flanked” by recombinase recognition sites when the element is located between and immediately adjacent to two repeated nucleotide sequences.
Recombinases can also be classified as irreversible or reversible. As used herein, an “irreversible recombinase” refers to a recombinase that can catalyze recombination between two complementary recombination sites, but cannot catalyze recombination between the hybrid sites that are formed by this recombination without the assistance of an additional factor. Thus, an “irreversible recognition site” refers to a recombinase recognition site that can serve as the first of two nucleotide recognition sequences for an irreversible recombinase and that is modified to a hybrid recognition site following recombination at that site. A “complementary irreversible recognition site” refers to a recombinase recognition site that can serve as the second of two nucleotide recognition sequences for an irreversible recombinase and that is modified to a hybrid recombination site following homologous recombination at that site.
Irreversible recombinases, and nucleic acids that encode the irreversible recombinases, are described in the art and can be obtained using routine methods. Examples of irreversible recombinases include, without limitation, phiC31 (φC31) recombinase, coliphage P4 recombinase (Ow & Ausubel, J. Bacteriol. 155, 704-713 (1983)), coliphage lambda integrase (Lorbach et al., J. Mol. Biol., 296, 1175-81 (2000)), Listeria A118 phage recombinase (Loessner et al., Mol. Micro. 35, 324-340 (2000)), and actinophage R4 Sre recombinase (Matsuura et al., J Bacteriol. 178, 3374-3376 (1996)), HK101, HK022, pSAM2, Bxb1, TP901, TG1, φBT1, φRV1, φFC1, MR11, U153 and gp29.
Conversely, a “reversible recombinase” refers to a recombinase that can catalyze recombination between two complementary recombinase recognition sites and, without the assistance of an additional factor, can catalyze recombination between the sites that are formed by the initial recombination event, thereby reversing it. The product-sites generated by recombination are themselves substrates for subsequent recombination. Examples of reversible recombinase systems include, without limitation, the Cre-lox and the Flp-frt systems, R, β-six, CinH, ParA and γδ.
In some embodiments, the recombinase is serine recombinase. Thus, in some embodiments, the recombinase is considered to be irreversible. In some embodiments, the recombinase is a tyrosine recombinase. Thus, in some embodiments, the recombinase is considered to be reversible.
The recombinases provided herein are not meant to be exclusive examples of recombinases that can be used in embodiments of the present disclosure. The complexity of the engineered nucleic acids of the present disclosure can be expanded by mining databases for new orthogonal recombinases or designing synthetic recombinases with defined DNA specificities (Groth, A. C. & Calos, M. P. J Mol Biol 335, 667-678, (2004); Gordley, R. M., et al. Proc Natl Acad Sci USA 106, 5053-5058 (2009)). Other examples of recombinases that are useful in the engineered nucleic acids described herein are known to those of skill in the art, and any new recombinase that is discovered or generated is expected to be able to be used in the different embodiments of the present disclosure.
Therapeutic, Prophylactic and Diagnostic Molecules
The tools provided herein may be used to express, inhibit expression of, or reduce expression of a molecule of interest (e.g., a gene or protein of interest). A molecule, herein, may be, for example, any molecule that can be used to provide benefit to a subject (including without limitation prophylactic or therapeutic benefit) or that can be used for diagnosis and/or detection (for example, imaging) in vitro or in vivo.
In some embodiments, a “nucleotide sequence encoding a molecule of interest” is a nucleotide sequence encoding a protein of interest. Proteins of interest include, for example, antibodies, single chain antibodies, antibody fragments, enzymes, co-factors, receptors, ligands, transcription factors and other regulatory factors, antigens, cytokines and chemokines.
Aspects of the present disclosure provide methods of treating a condition in a subject (e.g., a human subject) comprising administering to a subject a Bacteroides bacterium, as described herein. In some embodiments, the Bacteroides bacterium comprises (a) an engineered nucleic acid comprising a region containing a promoter and a nucleotide sequence encoding a ribosomal binding site (RBS) operably linked to a nucleotide sequence encoding molecule of interest, such as a therapeutic or prophylactic molecule of interest.
CRISPR Interference
Aspects of the present disclosure provide cells (e.g., Bacteroides bacteria) that comprise (a) an engineered nucleic acid comprising a region containing a promoter and a nucleotide sequence encoding a ribosomal binding site (RBS) operably linked to a nucleotide sequence encoding a catalytically-inactive Cas9 nuclease, and (b) an engineered nucleic acid comprising a promoter and a nucleotide sequence encoding a RBS operably linked to a nucleotide sequence encoding a guide RNA, wherein the guide RNA targets a nucleotide sequence encoding a molecule of interest.
CRISPR interference (CRISPRi) is a genetic perturbation technique that permits sequence-specific repression or activation of gene expression. The technique uses catalytically-inactive Cas9 (also referred to as dead Cas9 or dCas9) lacking endonuclease activity to regulate genes in an RNA-guided manner. Targeting specificity is determined by complementary base-pairing of a single guide RNA (sgRNA) to genomic loci, for example. CRISPRi relies on the generation of catalytically inactive Cas9. This is accomplished, for example, by introducing point mutations in the two catalytic residues (D10A and H840A) of the gene encoding Cas9. In doing so, dCas9 is unable to cleave dsDNA but retains the ability to target DNA. Taken together sgRNA and dCas9 provide a minimum system for gene-specific regulation in any organism.
In some embodiments, CRISPRi, as provided herein, is used to inhibit or reduce (e.g., by greater than 10%, such as 20% to 98%, or 50% to 90%) transcription of a molecule of interest (e.g., an endogenous gene of interest) in, for example, a Bacteroides bacterium.
Applications
The present disclosure provides, inter alia, a versatile set of genetic technologies for the manipulation of, for example, the abundant gut symbiont Bacteroides (e.g., B. thetaiotaomicron), expanding on the number and expression range of genetic parts previously available for Bacteroidetes (range: 102) and achieving ranges of expression similar to those of libraries characterized for other gut-associated bacteria, including E. coli (range: 104-105) and lactic acid bacteria (range: 103).
For microbiome engineering applications, the ability to precisely modulate gene expression in commensal organisms may enable functional studies of the microbiome, non-invasive monitoring of in vivo environments, and long-term targeted therapeutics. For example, the constitutive and inducible systems, integrases, and CRISPRi regulators, as provided herein, may be integrated for higher-order computation in B. thetaiotaomicron. These engineered commensals may be used to map the dose-dependent and temporal effects of specific surface polysaccharides or heterologous pathways on colonization and maintenance of the gut microbiota and on host health. Higher-order combinations of inducible promoters linked with integrases may achieve Boolean logic with embedded cellular memory, enabling surveillance of the gut environment. Furthermore, environmental sensing coupled with precision expression control of heterologous pathways in B. thetaiotaomicron may be exploited, in some embodiments, for on-demand, localized delivery of therapeutic molecules. The present disclosure also shows that the CRISPRi system can be used to dynamically manipulate bacterial processes in Bacteroides (e.g., B. thetaiotaomicron) by targeting endogenous genes. dCas9-mediated repression may be induced, for example, in a commensal library of Bacteroides (e.g., B. thetaiotaomicron) harboring distinct guide RNAs to identify genes required for Bacteroides (e.g., B. thetaiotaomicron) maintenance or interspecies interactions, for example. With these genetic resources, Bacteroides (e.g., B. thetaiotaomicron) is a useful platform for cellular sensing, computation and actuation at the host-microbe interface in the gut.
All genetic parts in this study were characterized using the integration vector pNBU2 to ensure genetic stability of the constructs (
B. thetaiotaomicron genetic parts were characterized with NanoLuc luciferase (Hall M P et al. ACS Chem. Biol. 7:1848-1857, 2012), which is a small (19 kDa) modified shrimp luciferase. Efforts to use members of the green fluorescent protein family and a FMN-based fluorescent reporter were not successful. NanoLuc oxidizes the exogenously-added substrate furimazine to produce glow-type bioluminescence (Emax=460 nm) with a signal half-life of 2 hr. By comparison, bacterial luciferase LuxAB (79 kDa) exhibited rapid signal decay when used to characterize gene expression in Bacteroides (Mastropaolo M D et al. Microbiology 155:2683-93, 2009).
To expand the range of constitutive gene expression that can be implemented in Bacteroides, promoter-RBS combinations were constructed and characterized (
The PAM promoters were then combined with RBSs of varying strength to increase the range of expression levels. The RBS is poorly understood in Bacteroides species, and the presence of a consensus Shine-Delgarno (SD) sequence based on the Bacteroides 16S rRNA does not greatly enhance translation initiation. RBSs GH022, GH023, and GH078 (Wegmann U, et al. Appl. Environ. Microbiol. 79:1980-9, 2013) were first used. As reported, this set of RBSs covered a limited range of expression spanning less than one order of magnitude (
To identify a set of RBSs for fine-tuning gene expression in B. thetaiotaomicron, three randomized RBS libraries targeting the most conserved positions of the Bacteroides ribosomal protein RBSs were generated. Libraries were based on the rpiL* RBS and were characterized under the control of PBT1311. The low GC content (14%) of the rpiL* RBS reduced the likelihood of introducing secondary structures during randomization. For each library, 3 nucleotides in and around the rpiL* RBS Shine Delgarno sequence were targeted. These positions are within or near the RBS region predicted to interact with the ribosomal 51 protein (nt −21 to −11 relative to the start codon of NanoLuc,
RBS strength in Bacteroides species is reported to be sensitive to secondary structure and GC content, likely due to the inability to form mRNA-16S rRNA interactions. Only a weak positive correlation was observed between the minimum free energy of RBS folding and expression of the NanoLuc reporter (r2=0.19) in the rpiL* library (
To create inducible systems for use in B. thetaiotaomicron, parts from a large repertoire of systems that govern carbohydrate utilization were used, which included cytoplasmic transcription factors, extracytoplasmic function sigma/anti-sigma pairs, and hybrid two-component systems (HTCS), among others (64). In B. thetaiotaomicron, rhamnose metabolism is mediated by the AraC/XylS-family transcriptional activator, RhaR, which activates transcription at the PBT3763 promoter (Patel E H, et al. Res. Microbiol. 159:678-84, 2008). To assay the functionality of PBT3763 as an inducible system, 250 bp of the promoter-RBS region was cloned upstream of the start codon of BT3763 into the pNBU2 expression vector to drive expression of NanoLuc. Gene expression was conditional on the concentration of rhamnose and demonstrated a response curve with an output dynamic range of 104-fold (
Two-component systems are signal-transduction mechanisms widespread in bacteria for sensing external stimuli. Bacteroides sp. possess a unique variant of these systems, called hybrid two-component systems (HTCSs), that incorporate both the sensor histidine kinase and response regulator of classical two-component systems into a single polypeptide chain. Putative HTCSs, BT3334 and BT0267, were identified in transcriptomic studies to control expression of the chondroitin sulfate (ChS)-inducible PBT3324 promoter and arabinogalactan (AG)-inducible PBT0268 promoter, respectively (64, 83). The promoter regions upstream of the BT3324 and BT0268 genes were used as the basis for two polysaccharide sensors. Chondroitin sulfate induction of PBT3324 and arabinogalactan induction PBT0268 led to a 60-fold and 29-fold regulation of output gene expression, respectively (
Next, an IPTG-inducible system was developed. Pairs of LacO1 operator sites were inserted in the strong PcfxA promoter in three locations: upstream of the −33 element (O1), between the −33 and −7 elements (O2) or just downstream of the transcription start site (O3) (
As the orthogonality of genetic parts is crucial for their simultaneous use, the degree of cross-talk between each inducible system was tested by incubating each engineered strain with the full set of carbohydrate inducers. The inducers themselves bear little structural similarity: rhamnose, a methyl-pentose sugar; ChS, a sulfated glycocosaminoglycan composed of chains of acetylgalactosamine and glucuronic acid residues; AG, a polysaccharide composed of arabinose and galactose units; and IPTG, a molecular mimic of allolactose. Functionally, each inducible system was highly orthogonal to each other, with no cross-reactivity observed with any of the combinations (
To enable genetic memory in B. thetaiotaomicron, serine integrases were implemented, which permanently invert DNA between two recognition sequences (
To equip B. thetaiotaomicron with permanent genetic memory, serine integrases that function in B. thetaiotaomicron were first identified by cloning the integrases into a strong constitutive expression vectors (PAM4-rpiL*, 1.2×10−2 RLU/CFU). Using allelic exchange, the DNA memory array containing the integrase recognition sequences were incorporated into the B. thetaiotaomicron chromosome to provide a stable, single-copy record of DNA inversion (
To create an inducible memory switch, Int12 was cloned under the control of the rhamnose-inducible promoter with the rpiL*RBS variant C51 (
CRISPRi can provide a facile toolbox for constructing synthetic gene circuits and modulating endogenous genes in B. thetaiotaomicron. To demonstrate the use of CRISPRi-mediated gene knockdown for synthetic constructs, a set of guide RNAs (sgRNAs) that control expression of NanoLuc was first created (
To demonstrate the programmable knockdown of endogenous genes in B. thetaiotaomicron, sgRNAs were designed to target mechanisms implicated in the resilience of Bacteroides in the human microbiota. Resistance to inflammation-associated cationic antimicrobial peptides, such as polymyxin B, is essential for the stability of commensal organisms in the dynamic gut environment. In B. thetaiotaomicron, LpxF, the gene product of BT1854, is required for the dephosphorylation of lipid A that leads to high levels of resistance to antimicrobial peptides. Using the minimum inhibitory concentration (MIC) of polymyxin B as a phenotypic readout, an sgRNA was designed to specifically suppress BT1854 expression. Similar to wild-type (WT) B. thetaiotaomicron, strains containing dCas9NS demonstrated high levels of polymyxin B resistance in the presence or absence of dCas9 induction with IPTG. However, in cells containing the sgRNA targeted against BT1854 (dCas9BT1854), the induction of dCas9 with led to sensitization of the cells to polymyxin B treatment, with a 8 to 16-fold decrease in MIC compared to WT and the non-specific dCas9NS control (
Next, whether dCas9-mediated repression of carbohydrate-utilization pathways could alter the metabolic capabilities of B. thetaiotaomicron was explored, which pathways are important for the bacterium's ability to successfully and persistently colonize the mammalian gut. Fructose-containing carbohydrates are catabolized by the gene products of the BT1757-1763/BT1765 polysaccharide utilization locus, which is subject to regulation by the HTCS sensor, BT1754 (Sonnenburg E D, et al. Cell 141:1241-52, 2010). BT1754 is essential for growth on fructose-containing carbohydrates and genetic inactivation of BT1754 leads to retarded growth in minimal media (MM) containing fructose as the sole carbon source. To modulate the ability of B. thetaiotaomicron to utilize fructose, a specific guide RNA was designed to repress BT1754 and integrated this system into the B. thetaiotaomicron genome along with an IPTG-inducible dCas9 cassette (dCas9BT1754). Induction of dCas9BT1754 did not affect the growth rate of cells on MM-glucose compared to WT cells and dCas9NS. The generation time G=(log102·t)/log10(B/B0)≈1 hr (where t is the time interval, and Bo and B are the initial and final concentrations of bacteria, respectively), indicating that neither dCas9 induction nor repression of BT1754 impacts growth on glucose media (
Next investigated was whether the function of the B. thetaiotaomicron genetic parts and modules can be maintained in the context of a complex microbiota. As wild-type strains of Bacteroides spp. are unable to stably colonize conventional specific-pathogen free (SPF) mice, an antibiotic regimen that promotes B. thetaiotaomicron colonization without sterilizing the gut microbiota was employed (
Using this model, the functionality of the inducible systems were tested, CRISPRi, and integrases in vivo. First, SPF mice were colonized with the strain containing the arabinogalactan-inducible P0268 promoter driving expression of NanoLuc (
To investigate whether more complex genetic circuits perform in the context of the mouse microbiome, the dCas9NL3 repressor cascade was evaluated, which is composed of the CRISPRi system as well as the PLacO23 IPTG-inducible promoter, within stably colonized B. thetaiotaomicron. Within 24 hours of adding IPTG to drinking water, CRISPRi elicited approximately a 20-fold reduction in gene expression compared to the uninduced control (
To test the function of recombinases in vivo, mice were colonized with a B. thetaiotaomicron strain containing the rhamnose-inducible Int12 integrase memory switch (
An integration vector, designated pNBU1, was created to introduce recombinant DNA into a wide range of Bacteroides species (
ATG (SEQ ID NO: 173)
ATG
ATG
ATG
ATG
ATG
ATG
ATG
It should be understood that the pNBU2 vector described herein may be substituted with pNBU1 (SEQ ID NO: 209), provided herein. Thus, any of any of the components provided in Tables 1-3 and 5, for example, may be used in an pNBU1 or pNBU2 vector backbone. In some embodiments, a pNBU1 backbone is used instead of the pNBU2 backbone for any one or more of the constructs described in Table 4.
While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
All references, patents and patent applications disclosed herein are incorporated by reference with respect to the subject matter for which each is cited, which in some cases may encompass the entirety of the document.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
This application is a national stage filing under 35 U.S.C. § 371 of international application number PCT/US2016/036811, filed Jun. 10, 2016, which was published under PCT Article 21(2) in English and claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application Ser. No. 62/173,481, filed Jun. 10, 2015, each of which is incorporated by reference herein in its entirety.
This invention was made with government support under Grant No. FA8721-05-C-0002 awarded by the U.S. Air Force. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/036811 | 6/10/2016 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/201174 | 12/15/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20150004705 | Lu | Jan 2015 | A1 |
20150089681 | Van Der Oost | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
WO 2010042894 | Apr 2010 | WO |
Entry |
---|
Mastropaolo et al. Microbiology 155:2683-2693, 2009. |
Horn et al. Frontiers in Microbiology 7: pp. 1-9, 2016. |
International Search Report and Written Opinion dated Mar. 13, 2017 for Application No. PCT/US2016/036811. |
International Preliminary Report on Patentability dated Dec. 21, 2017 for Application No. PCT/US2016/036811. |
Partial European Search Report dated Dec. 10, 2018 for Application No. 16808336.8. |
Extended European Search Report dated Mar. 21, 2019 for Application No. 16808336.8. |
Mahowald et al., Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A. Apr. 7, 2009;106(14):5859-64. doi: 10.1073/pnas.0901529106. Epub Mar. 24, 2009. |
Mimee et al., Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota. Cell Syst. Jul. 29, 2015;1(1):62-71. |
Nakayama-Imaohji et al., Identification of the site-specific DNA invertase responsible for the phase variation of SusC/SusD family outer membrane proteins in Bacteroides fragilis. J Bacteriol. Oct. 2009;191(19):6003-11. doi: 10.1128/JB.00687-09. Epub Jul. 31, 2009. |
Parker et al., Development of an IPTG inducible expression vector adapted for Bacteroides fragilis. Plasmid. Sep. 2012;68(2):86-92. doi: 10.1016/j.plasmid.2012.03.002. Epub Apr. 1, 2012. |
Salyers et al., Starting a new genetic system: lessons from Bacteroides. Methods. Jan. 2000;20(1):35-46. |
Wang et al., Characterization of a Bacteroides mobilizable transposon, NBU2, which carries a functional lincomycin resistance gene. J Bacteriol. Jun. 2000;182(12):3559-71. |
Wegmann et al., Defining the Bacteroides ribosomal binding site. Appl Environ Microbiol. Mar. 2013;79(6):1980-9. doi: 10.1128/AEM.03086-12. Epub Jan. 18, 2013. |
Wexler, Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. Oct. 2007;20(4):593-621. |
Xu et al., A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science. Mar. 28, 2003;299(5615):2074-6. |
Zocco et al., Bacteroides thetaiotaomicron in the gut: molecular aspects of their interaction. Dig Liver Dis. Aug. 2007;39(8):707-12. Epub Jun. 29, 2007. |
Bayley et al., Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett. Dec. 1, 2000;193(1):149-54. |
Becker et al., Human intestinal microbiota: characterization of a simplified and stable gnotobiotic rat model. Gut Microbes. 2011;2(1):25-33. doi: 10.4161/gmic.2.1.14651. |
Bikard et al., Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. Aug. 2013;41(15):7429-37. doi: 10.1093/nar/gkt520. Epub Jun. 12, 2013. |
Bloom et al., Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe. May 19, 2011;9(5):390-403. doi: 10.1016/j.chom.2011.04.009. |
Bonnet et al., Rewritable digital data storage in live cells via engineered control of recombination directionality. PNAS. Jun. 5, 2012;109(23):8884-9. |
Bonnet et al., Amplifying genetic logic gates. Science. May 3, 2013;340(6132):599-603. doi: 10.1126/science.1232758. Epub Mar. 28, 2013. |
Cox et al., Programming gene expression with combinatorial promoters. Mol Syst Biol. 2007;3:145, 11 pages. Epub Nov. 13, 2007. |
Cullen et al., Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation. Science. 2015;45:39-45. |
Gevers et al., The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. Jun. 2012;486(7402):207-14. |
Gordley et al., Synthesis of programmable integrases. PNAS USA. Mar. 31, 2009;106(13):5053-8. |
Goto et al., Complete Sequence of pBFUK1, a Carbapenemase-Harboring Mobilizable Plasmid From Bacteroides Fragilis, and Distribution of pBFUK1-like Plasmids Among Carbapenem-Resistant B. Fragilis Clinical Isolates. J Antibiot. Dec. 12, 2012;66(4):239-42. Epub Apr. 2013. |
Groth et al., Phage Integrases: Biology and Applications. J Mol Biol. 2004;335(5):667-78. doi: 10.1016/j.jmb.2003.09.082. |
Hall et al., Engineered Luciferase Reporter From a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate. ACS Chem Biol. Nov. 16, 2012;7(11):1848-57. |
Koropatkin et al., How Glycan Metabolism Shapes the Human Gut Microbiota. Nat Rev Microbiol. Apr. 11, 2012;10(5):323-35. doi: 10.1038/nrmicro2746. |
Kosuri et al., Composability of Regulatory Sequences Controlling Transcription and Translation in Escherichia Coli. PNAS USA. Aug. 20, 2013;110(34):14024-9. doi: 10.1073/pnas.1301301110. |
Kotula et al., Programmable Bacteria Detect and Record an Environmental Signal in the Mammalian Gut. PNAS USA. Apr. 1, 2014;111(13):4838-43. |
Lee et al., Bacterial Colonization Factors Control Specificity and Stability of the Gut Microbiota. Nature. Sep. 19, 2013;501(7467):426-9. doi:10.1038/nature12447. |
Loessner et al., Complete Nucleotide Sequence, Molecular Analysis and Genome Structure of Bacteriophage A118 of Listeria Monocytogenes: Implications for Phage Evolution. Mol Micro. Jan. 2000;35(2):324-40. doi: 10.1046/j.1365-2958.2000.01720.x. |
Lorbach et al., Site-specific recombination in human cells catalyzed by phage λ integrase mutants. J Mol Biol. Mar. 10, 2000;296(5):1175-81. |
Martens et al., Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts. PLoS Biol. Dec. 20, 2011;9(12):e1001221, 16 pages. |
Martens et al., Mucosal Glycan Foraging Enhances Fitness and Transmission of a Saccharolytic Human Gut Bacterial Symbiont. Cell Host Microbe. Nov. 13, 2008;4(5):447-57. |
Mastropaolo et al., Comparison of Bacteroides thetaiotaomicron and Escherichia coli 16S rRNA gene expression signals. Microbiol. 2009;155:2683-93. |
Matsuura et al., The sre gene (ORF469) encodes a site-specific recombinase responsible for integration of the R4 phage genome. J Bacteriol. Jun. 1996;178(11):3374-6. |
Mutalik et al., Precise and Reliable Gene Expression via Standard Transcription and Translation Initiation Elements. Nat Methods. Apr. 2013;10(4):354-60. doi: 10.1038/nmeth.2404. |
Ow et al., Conditionally replicating plasmid vectors that can integrate into the Klebsiella pneumoniae chromosome via bacteriophage P4 site-specific recombination. J Bacteriol. Aug. 1983;155(2):704-13. |
Parker et al., Genetic and biochemical analysis of a novel Ambler class A beta-lactamase responsible for cefoxitin resistance in Bacteroides species. Antimicrob Agents Chemother. 1993;37:1028-36. doi: 10.1128/AAC.37.5.1028. |
Patel et al., Rhamnose catabolism in Bacteroides thetaiotaomicron is controlled by the positive transcriptional regulator RhaR. Res Microbiol. Dec. 2008;159(9-10):678-84. |
Qi et al., Repurposing CRISPR as an RNA-guided Platform for Sequence-Specific Control of Gene Expression. Cell. Feb. 28, 2013;152(5):1173-83. |
Rogers et al., Insertional activation of cepA leads to high-level beta-lactamase expression in Bacteroides fragilis clinical isolates. J Bacteriol. 1994;176:4376-84. |
Sakamoto et al., Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb, nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol. Jul. 2006; 56(7):1599-605. |
Salis et al., Automated Design of Synthetic Ribosome Binding Sites to Control Protein Expression. Nat Biotechnol. Oct. 2009;27(10):946-50. |
Salyers, Bacteroides of the Human Lower Intestinal Tract. Annu Rev Microbiol. 1984;38:293-313. doi: 10.1146/annurev.mi.38.100184.001453. |
Sonnenburg et al., Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations. Cell. Jun. 25, 2010;141(7):1241-52. |
Vingadassalom et al., An Unusual Primary Sigma Factor in the Bacteroidetes Phylum. Mol Microbiol. May 2005;56(4):888-902. |
Wang et al., Characterization of a Bacteroides Mobilizable Transposon, NBU2, Which Carries a Functional Lincomycin Resistance Gene. J Bacteriol. Jun. 2000;182(12):3559-71. doi: 10.1128/jb.182.12.3559-3571.2000. |
Wegmann et al., Defining the bacteroides ribosomal binding site. Appl Environ Microbiol. 2013;79:1980-9. |
Yang et al., Permanent Genetic Memory With >1-byte Capacity. Nat Methods. Dec. 2014;11(12):1261-6. doi: 10.1038/nmeth.3147. |
EP 16808336.8, European Exam Report, dated Oct. 23, 2020. |
European Exam Report dated Oct. 23, 2020 for Application No. 16808336.8. |
Feldhaus et al., Use of an Escherichia coli Beta-Glucuronidase Gene as a Reporter Gene for Investigation of Bacteroides Promoters. J Bacteriol. Jul. 1991;173(14):4540-3. |
Number | Date | Country | |
---|---|---|---|
20180163216 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
62173481 | Jun 2015 | US |