This disclosure relates to methods for genomic editing in living cells.
In the following discussion certain articles and methods will be described for background and introductory purposes. Nothing contained herein is to be construed as an “admission” of prior art. Applicant expressly reserves the right to demonstrate, where appropriate, that the articles and methods referenced herein do not constitute prior art under the applicable statutory provisions.
Methods have been described for editing the genomes of pathogens, including virus and bacteria, particularly in automated instruments. In general, editing methods have certain limitations, however, as most are manually performed and not amenable to being automated.
There is thus a need for methods to be used in an automated system for editing of live cells. The present disclosure addresses this need.
The present disclosure is based on the development of genome editing instruments and automated methods for editing one or more regions of the genome of living cells, and instruments and systems for carrying out such automated methods. The novel, automated methods carried out using the instruments and system of the disclosure can be used with a variety of cell manipulation techniques, and can be used in a single cycle or in sequential cycles to maximize the retention of the cells while maintaining cell viability.
In certain aspects, the present disclosure provides systems and instruments for automated methods of multiplexed nuclease-directed genome editing using nuclease expression under a constitutive promoter. In specific aspects, the constitutive promoter is an insulated promoter. In other aspects, the constitutive promoter is a heterologous promoter. In still other aspects, the constitutive promoter is a synthetic promoter.
The disclosure thus provides methods of modifying a target region in the genome of a cell, the method comprising: (a) contacting a cell with: a nucleic-acid-guided nuclease encoded by a nucleic acid operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter; a guide nucleic acid capable of complexing with the nucleic acid-guided nuclease; and an editing sequence encoding a nucleic acid complementary to said target region having a change in sequence relative to the target region; and (b) allowing the nuclease, guide nucleic acid, and editing sequence to create a genome edit in a target region of the genome of the cell. In some aspects, the engineered guide nucleic acid and the editing sequence are provided as a single nucleic acid. In other aspects, the editing sequence further comprises a mutation in a protospacer adjacent motif (PAM) site.
In certain other aspects, the methods are carried out in an automated system, as described in more detail herein. In yet other aspects, the methods are carried out in a multiplexed and/or recursive fashion.
Also disclosed herein are compositions for use in genome editing comprising a nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter. In some aspects, the nuclease is further codon optimized for use in cells from a particular organism. In some aspects, the nuclease is codon optimized for E. coli, B. subtilis, mycobacteria and the like. In other aspects, the nuclease is codon optimized for S. cerevisiae. In yet other aspects, the nuclease is codon optimized for mammalian cells. In some aspects, the nuclease is codon optimized for plant cells. In some aspects, the nuclease is codon optimized for cells of other organisms, e.g., non-mammalian animal, fungi, nematode or insect cells.
Specific embodiments of the present disclosure are directed to methods for multiplexed nuclease-directed genome editing using an automated system. Other specific embodiments of the systems and instruments of the disclosure are designed for recursive genome editing, i.e. sequentially introducing multiple edits into genomes inside one or more cells of a cell population.
In one aspect, the disclosure provides performing the genome editing methods of the disclosure using a non-naturally occurring nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter, on an instrument for automated, multiplexed nuclease-directed genome editing. The instrument can comprise a receptacle configured to receive cells and one or more nucleic acids comprising sequences to facilitate genome editing events in the cells, a transformation unit for introduction of the nucleic acid(s) into the cells, an editing unit for allowing the nuclease-directed genome editing events to occur in the cells, and a processor-based system configured to operate the instrument based on user input.
In another aspect, the disclosure provides an automated system for multiplexed nuclease-directed genome editing using a nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter, wherein the system comprises an instrument having a housing, means to receive cells and one or more nucleic acids comprising sequences to facilitate nuclease-directed genome editing in the cells, means for introduction of the nucleic acid(s) into the cells, means for allowing the nuclease-directed genome editing events to occur, means for collecting the edited cells, and means for configuring the operation of the system based on user input.
In yet another aspect, the disclosure provides an automated system for multiplexed nuclease-directed genome editing using a nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter, wherein the system comprises an instrument having a housing, means to receive cells and one or more nucleic acids comprising sequences to facilitate nuclease-directed genome editing in the cells, means for introduction of the nucleic acid(s) into the cells, means for allowing the nuclease-directed genome editing events to occur, means for the growth and/or selection of the edited cells, means for washing and/or concentrating the edited cells, means for collecting the edited cells, and means for configuring the operation of the system based on user input.
In still another aspect, the disclosure provides an automated system for multiplexed nuclease-directed genome editing using a nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter, wherein the system comprises an instrument for multiplexed nuclease-directed genome editing having a cell receptacle configured to receive cells, a nucleic acid receptacle configured to receive nucleic acids comprising sequences to facilitate genome editing events in the cells, a transformation unit for introduction of the nucleic acid(s) into the cells, an editing unit for allowing the nuclease-directed genome editing events to occur in the cells, and a processor-based system configured to operate the instrument based on user input.
In certain aspects, the methods of the disclosure are performed using an instrument for automated, multiplexed nuclease-directed genome editing, comprising a first nucleic acid receiving receptacle configured to receive nucleic acids comprising sequences to facilitate genome editing events in the cells, a cell receptacle configured to receive cells, a second nucleic acid receptacle configured to receive nucleic acids comprising sequences to facilitate genome editing events in the cells, an editing unit for allowing the nuclease-directed genome editing events to occur in the cells, a collection unit for collection of the edited cells, and a processor-based system configured to operate the instrument based on user input.
In certain aspects, the methods of the disclosure utilize nucleic acids complementary to a target region, with one or more changes in sequence relative to the target region, and one or more regions for directing nuclease-directed gene editing. In specific embodiments, the instrument has the ability to utilize multiple sets of nucleic acids for recursive editing of a cell population. The nucleic acids for recursive editing can be introduced as a single cartridge, or may be introduced sequentially at specific points in the instrument's genome editing cycle. The nucleic acids used in recursive editing can be introduced through a single receptacle, which sequentially introduces the sets of nucleic acids by cycle, or through separate receptacle for the sequential sets of editing nucleic acids used.
Accordingly, in some aspects, the disclosure provides using a nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter, with an instrument for automated, multiplexed nuclease-directed genome editing comprising a first nucleic acid receiving receptacle configured to receive a first set of nucleic acids comprising sequences to facilitate genome editing events in the cells, a cell receptacle configured to receive cells, a second nucleic acid receptacle configured to receive a second set of nucleic acids comprising sequences to facilitate genome editing events in the cells, an editing unit for allowing the nuclease-directed genome editing events to occur in the cells, a collection unit for collection of the edited cells, a growth unit for the growth and/or selection of the edited cells, a separation unit for washing and/or concentration of the edited cells, and a processor based system configured to operate the instrument based on user input.
In still another aspect, the disclosure provides using a nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter, wherein the system comprises an instrument for automated, multiplexed nuclease-directed genome editing comprising: a first nucleic acid receiving receptacle configured to receive a first set of nucleic acids comprising sequences to facilitate genome editing events in the cells, a cell receptacle configured to receive cells, a second nucleic acid receptacle configured to receive a second set of nucleic acids comprising sequences to facilitate genome editing events in the cells, an editing unit for allowing the nuclease-directed genome editing events to occur in the cells, a collection unit for collection of the edited cells, and a processor-based system configured to operate the instrument based on user input.
In yet another aspect, the disclosure provides using a nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter, with an instrument for multiplexed RNA-guided nuclease-directed genome editing comprising a receptacle configured to receive cells and one or more nucleic acids comprising sequences to facilitate RNA-guided nuclease-directed genome editing events in the cells, a transformation unit for introduction of the nucleic acid(s) into the cells, an editing unit for allowing the RNA-guided nuclease-directed genome editing events to occur in the cells, and a processor-based system configured to operate the instrument based on user input.
In yet another aspect, the disclosure provides using a nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter, with an instrument for automated, multiplexed nuclease-directed genome editing comprising a cell receptacle configured to receive cells, a nucleic acid receptacle configured to receive RNA-guided nucleic acids comprising sequences to facilitate genome editing events in the cells, a transformation unit for introduction of the nucleic acid(s) into the cells, an editing unit for allowing the RNA-guided nuclease-directed genome editing events to occur in the cells, and a processor-based system configured to operate the instrument based on user input.
In yet another aspect, the disclosure provides using a nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter, with an instrument for automated, multiplexed nuclease-directed genome editing comprising a first nucleic acid receiving receptacle configured to receive a first set of nucleic acids comprising sequences to facilitate genome editing events in the cells, a cell receptacle configured to receive cells; a second nucleic acid receptacle configured to receive a second set of nucleic acids comprising sequences to facilitate genome editing events in the cells, an editing unit for allowing the RNA-guided nuclease-directed genome editing events to occur in the cells, a collection unit for collection of the edited cells, and a processor-based system configured to operate the instrument based on user input.
In still another aspect, the disclosure provides using a nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter, with an instrument for automated, multiplexed nuclease-directed genome editing comprising a first nucleic acid receiving receptacle configured to receive nucleic acids comprising sequences to facilitate genome editing events in the cells, a cell receptacle configured to receive cells, a second nucleic acid receptacle configured to receive nucleic acids comprising sequences to facilitate genome editing events in the cells, an editing unit for allowing the RNA-guided nuclease-directed genome editing events to occur in the cells, a collection unit for collection of the edited cells, a growth/monitoring unit for the growth and/or selection of the edited cells and the induction of edited cells, a separation unit for washing and/or concentration of the edited cells, and a processor based system configured to operate the instrument based on user input.
In another aspect, the disclosure provides using a non-naturally occurring nuclease operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter, with an instrument for automated, multiplexed nuclease-directed genome editing comprising a first nucleic acid receiving receptacle configured to receive nucleic acids comprising sequences to facilitate genome editing events in the cells, a cell receptacle configured to receive cells, a second nucleic acid receptacle configured to receive nucleic acids comprising sequences to facilitate RNA-guided nuclease-directed genome editing events in the cells, an editing unit for allowing the nuclease-directed genome editing events to occur in the cells, a collection unit for collection of the edited cells, and a processor based system configured to operate the instrument based on user input.
In preferred aspects, the instrument comprises a recovery unit for the cells following transformation that allows the transformed cells to uptake and, in certain aspects integrate the introduced nucleic acids into the genome of the cell. In some embodiments the recovery unit and the editing unit are combined, and allow the cells to recover from transformation and induce editing of the cells' genomes, e.g., through expression of the introduced nucleic acids and the induction of an inducible nuclease. In other embodiments, the recovery unit and the editing unit are two separate units, e.g., with the cells recovering and/or expressing the introduced nucleic acids in a first unit, and induction of editing through induction of a nuclease in a separate unit.
In certain aspects, the disclosure provides methods and systems for multiplexed genome editing of multiple cells in a cycle instrument cycle. In some aspects, the instrument has the ability to edit the genome of at least 5 cells in a single cycle. In other aspects, the instrument has the ability to edit the genome of at least 100 cells in a single cycle. In yet other aspects, the instrument has the ability to edit the genome of at least 1000 cells in a single cycle. In still other aspects, the instrument has the ability to edit the genome of at least 10,000 cells in a single instrument cycle. In specific aspects, the instruments of the disclosure have the ability to edit the genome of at least 104, 105, 106 107, 108, 109, 1010, 1011, 1012, 1013, 1014 more cells in a single instrument cycle.
The number of genomic sites in a cell population that can be targeted for editing in a single instrument cycle can be between 2-1,000,000.
In embodiments that involve recursive editing, the instrument provides introducing two or more genome edits into cells, with a particular genome edit added to the genomes of the cell population for each instrument cycle. Accordingly, in some aspects the instrument and systems of the disclosure are useful for providing two or more edits per cell in a cell population per instrument cycle, three or more edits per cell in a cell population, five or more edits per cell in a population, or 10 or more edits per cell in an instrument cycle for a cell population.
In specific embodiments, the instrument is able to provide an editing efficiency of at least 25% of the cells introduced to the editing unit of the instrument per cycle, preferably an editing efficiency of at least 30% of the cells introduced to the editing unit of the instrument per cycle, more preferably an editing efficiency of at least 35% of the cells introduced to the editing unit of the instrument per cycle, still more preferably an editing efficiency of at least 40% of the cells introduced to the editing unit of the instrument per cycle, yet more preferably an editing efficiency of at least 45% of the cells introduced to the editing unit of the instrument per cycle and even more preferably 50% of the cells introduced to the editing unit of the instrument per cycle.
Other features, advantages, and aspects will be described below in more detail.
The foregoing and other features and advantages of the present disclosure will be more fully understood from the following detailed description of illustrative embodiments.
All of the functionalities described in connection with one embodiment are intended to be applicable to the additional embodiments described herein except where expressly stated or where the feature or function is incompatible with the additional embodiments. For example, where a given feature or function is expressly described in connection with one embodiment but not expressly mentioned in connection with an alternative embodiment, it should be understood that the feature or function may be deployed, utilized, or implemented in connection with the alternative embodiment unless the feature or function is incompatible with the alternative embodiment.
The practice of the techniques described herein may employ, unless otherwise indicated, conventional techniques and descriptions of organic chemistry, polymer technology, molecular biology (including recombinant techniques), cell biology, biochemistry, and sequencing technology, which are within the skill of those who practice in the art. Such conventional techniques include polymer array synthesis, hybridization and ligation of polynucleotides, and detection of hybridization using a label. Specific illustrations of suitable techniques can be had by reference to the examples herein. However, other equivalent conventional procedures can, of course, also be used. Such conventional techniques and descriptions can be found in standard laboratory manuals such as Green, et al., Eds. (1999), Genome Analysis: A Laboratory Manual Series (Vols. I-IV); Weiner, Gabriel, Stephens, Eds. (2007), Genetic Variation: A Laboratory Manual; Dieffenbach, Dveksler, Eds. (2003), PCR Primer: A Laboratory Manual; Bowtell and Sambrook (2003), Bioinformatics: Sequence and Genome Analysis; Sambrook and Russell (2006), Condensed Protocols from Molecular Cloning: A Laboratory Manual; and Green and Sambrook, (Molecular Cloning: A Laboratory Manual. 4th, ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2014); Stryer, L. (1995) Biochemistry (4th Ed.) W.H. Freeman, New York N.Y. Lehninger, Principles of Biochemistry 3rd Ed., W. H. Freeman Pub., New York, N.Y.; and Berg et al. (2002) Biochemistry, 5th Ed., W.H. Freeman Pub., New York, N.Y., all of which are herein incorporated in their entirety by reference for all purposes.
Note that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a cell” refers to one or more cells, and reference to “the methods” includes reference to equivalent steps and methods known to those skilled in the art, and so forth.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. All publications mentioned herein are incorporated by reference for the purpose of describing and disclosing devices and methodologies that may be used in connection with the presently described disclosure.
Where a range of values is provided, it is understood that each intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either both of those included limits are also included in the disclosure.
In the following description, numerous specific details are set forth to provide a more thorough understanding of the present disclosure. However, it will be apparent to one of skill in the art that the present disclosure may be practiced without one or more of these specific details. In other instances, well-known features and procedures well known to those skilled in the art have not been described in order to avoid obscuring the disclosure.
The contents of all references, patents and published patent applications cited throughout this application are hereby incorporated by reference in their entirety for all purposes.
The terms “polynucleotide”, “nucleotide”, “nucleotide sequence”, “nucleic acid” and “oligonucleotide” are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three dimensional structure, and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. The term also encompasses nucleic-acid-like structures with synthetic backbones, see, e.g., Eckstein, 1991; Baserga et al., 1992; Milligan, 1993; WO 97/03211; WO 96/39154; Mata, 1997; Strauss-Soukup, 1997; and Samstag, 1996. A polynucleotide may comprise one or more modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.
The terms “orthologue” (also referred to as “ortholog” herein) and “homologue” (also referred to as “homolog” herein) are well known in the art. By means of further guidance, a “homologue” of a protein as used herein is a protein of the same species which performs the same or a similar function as the protein it is a homologue of. Homologous proteins may but need not be structurally related, or are only partially structurally related. An “orthologue” of a protein as used herein is a protein of a different species which performs the same or a similar function as the protein it is an orthologue of. Orthologous proteins may but need not be structurally related, or are only partially structurally related. Homologs and orthologs may be identified by homology modelling (see, e.g., Greer, Science vol. 228 (1985) 1055, and Blundell et al., Eur J Biochem vol 172 (1988), 513) or “structural BLAST” (Dey F, Cliff Zhang Q, Petrey D, Honig B. Toward a “structural BLAST”: using structural relationships to infer function. Protein Sci. 2013 April; 22(4):359-66. doi: 10.1002/pro.2225.).
The term “heterologous” as used herein refers to a nucleic acid used in a context different than the naturally occurring context. For example, a heterologous promoter or enhancer is one that is different than the promoter or enhancer used with a nucleic acid in a naturally occurring system or organism. A heterologous nucleic acid may be synthetic or naturally occurring nucleic acid used in a different manner.
“Complementarity” refers to the ability of a nucleic acid to form hydrogen bond(s) with another nucleic acid sequence by either traditional Watson-Crick base pairing or other non-traditional types. A percent complementarity indicates the percentage of residues in a nucleic acid molecule which can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary). “Perfectly complementary” means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence. “Substantially complementary” as used herein refers to a degree of complementarity that is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% over a region of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, or more nucleotides, or refers to two nucleic acids that hybridize under stringent conditions.
As used herein, “stringent conditions” for hybridization refer to conditions under which a nucleic acid having complementarity to a target sequence predominantly hybridizes with the target sequence, and substantially does not hybridize to non-target sequences. Stringent conditions are generally sequence-dependent, and vary depending on a number of factors. In general, the longer the sequence, the higher the temperature at which the sequence specifically hybridizes to its target sequence. Non-limiting examples of stringent conditions are described in detail in Tijssen (1993). Laboratory Techniques In Biochemistry And Molecular Biology-Hybridization With Nucleic Acid Probes Part I, Second Chapter “Overview of principles of hybridization and the strategy of nucleic acid probe assay”, Elsevier, N.Y. Where reference is made to a polynucleotide sequence, then complementary or partially complementary sequences are also envisaged. These are preferably capable of hybridising to the reference sequence under highly stringent conditions. Generally, in order to maximize the hybridization rate, relatively low-stringency hybridization conditions are selected: about 20 to 25 degrees Celsius. lower than the thermal melting point (Tm). The Tm is the temperature at which 50% of specific target sequence hybridizes to a perfectly complementary probe in solution at a defined ionic strength and pH. Generally, in order to require at least about 85% nucleotide complementarity of hybridized sequences, highly stringent washing conditions are selected to be about 5 to 15 degrees Celsius lower than the Tm. In order to require at least about 70% nucleotide complementarity of hybridized sequences, moderately-stringent washing conditions are selected to be about 15 to 30 degrees Celsius lower than the Tm. Highly permissive (very low stringency) washing conditions may be as low as 50 degrees Celsius below the Tm, allowing a high level of mis-matching between hybridized sequences. Those skilled in the art will recognize that other physical and chemical parameters in the hybridization and wash stages can also be altered to affect the outcome of a detectable hybridization signal from a specific level of homology between target and probe sequences.
“Hybridization” refers to a reaction in which one or more polynucleotides react to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues. The hydrogen bonding may occur by Watson Crick base pairing, Hoogstein binding, or in any other sequence specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi stranded complex, a single self-hybridizing strand, or any combination of these. A hybridization reaction may constitute a step in a more extensive process, such as the initiation of PCR, or the cleavage of a polynucleotide by an enzyme. A sequence capable of hybridizing with a given sequence is referred to as the “complement” of the given sequence.
As used herein, the term “genomic locus” or “locus” (plural loci) is the specific location of a gene or DNA sequence on a chromosome. A “gene” refers to stretches of DNA or RNA that encode a polypeptide or an RNA chain that has functional role to play in an organism and hence is the molecular unit of heredity in living organisms. For the purpose of this disclosure it may be considered that genes include regions which regulate the production of the gene product, whether or not such regulatory sequences are adjacent to coding and/or transcribed sequences. Accordingly, a gene includes, but is not necessarily limited to, promoter sequences, terminators, translational regulatory sequences such as ribosome binding sites and internal ribosome entry sites, enhancers, silencers, insulators, boundary elements, replication origins, matrix attachment sites and locus control regions.
As used herein, “expression of a genomic locus” or “gene expression” is the process by which information from a gene is used in the synthesis of a functional gene product. The products of gene expression are often proteins, but in non-protein coding genes such as rRNA genes or tRNA genes, the product is functional RNA. The process of gene expression is used by all known life—eukaryotes (including multicellular organisms), prokaryotes (bacteria and archaea) and viruses to generate functional products to survive. As used herein “expression” of a gene or nucleic acid encompasses not only cellular gene expression, but also the transcription and translation of nucleic acid(s) in cloning systems and in any other context. As used herein, “expression” also refers to the process by which a polynucleotide is transcribed from a DNA template (such as into and mRNA or other RNA transcript) and/or the process by which a transcribed mRNA is subsequently translated into peptides, polypeptides, or proteins. Transcripts and encoded polypeptides may be collectively referred to as “gene product.” If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in a eukaryotic cell.
The terms “polypeptide”, “peptide” and “protein” are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non amino acids. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component. As used herein the term “amino acid” includes natural and/or unnatural or synthetic amino acids, including glycine and both the D or L optical isomers, and amino acid analogs and peptidomimetics.
As used herein, the term “domain” or “protein domain” refers to a part of a protein sequence that may exist and function independently of the rest of the protein chain.
As described in aspects of the disclosure, sequence identity is related to sequence homology. Homology comparisons may be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs may calculate percent (%) homology between two or more sequences and may also calculate the sequence identity shared by two or more amino acid or nucleic acid sequences. Sequence homologies may be generated by any of a number of computer programs known in the art, for example BLAST or FASTA, etc. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin. U.S.A; Devereux et al., 1984, Nucleic Acids Research 12:387). Examples of other software than may perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al., 1999 ibid—Chapter 18), FASTA (Atschul et al., 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999 ibid, pages 7-58 to 7-60). However it is preferred to use the GCG Bestfit program.
Percent homology may be calculated over contiguous sequences, i.e., one sequence is aligned with the other sequence and each amino acid or nucleotide in one sequence is directly compared with the corresponding amino acid or nucleotide in the other sequence, one residue at a time. This is called an “ungapped” alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues.
Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or deletion may cause the following amino acid residues to be put out of alignment, thus potentially resulting in a large reduction in % homology when a global alignment is performed. Consequently, most sequence comparison methods are designed to produce optimal alignments that take into consideration possible insertions and deletions without unduly penalizing the overall homology or identity score. This is achieved by inserting “gaps” in the sequence alignment to try to maximize local homology or identity.
However, these more complex methods assign “gap penalties” to each gap that occurs in the alignment so that, for the same number of identical amino acids, a sequence alignment with as few gaps as possible—reflecting higher relatedness between the two compared sequences—may achieve a higher score than one with many gaps. “Affinity gap costs” are typically used that charge a relatively high cost for the existence of a gap and a smaller penalty for each subsequent residue in the gap. This is the most commonly used gap scoring system. High gap penalties may, of course, produce optimized alignments with fewer gaps. Most alignment programs allow the gap penalties to be modified. However, it is preferred to use the default values when using such software for sequence comparisons. For example, when using the GCG Wisconsin Bestfit package the default gap penalty for amino acid sequences is −12 for a gap and −4 for each extension.
Calculation of maximum % homology therefore first requires the production of an optimal alignment, taking into consideration gap penalties. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (Devereux et al., 1984 Nuc. Acids Research 12 p 387). Examples of other software that may perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al., 1999 Short Protocols in Molecular Biology, 4th Ed.—Chapter 18), FASTA (Altschul et al., 1990 J. Mol. Biol. 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999, Short Protocols in Molecular Biology, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program. A new tool, called BLAST 2 Sequences is also available for comparing protein and nucleotide sequences (see FEMS Microbiol Lett. 1999 174(2): 247-50; FEMS Microbiol Lett. 1999 177(1): 187-8 and the website of the National Center for Biotechnology information at the website of the National Institutes for Health).
Although the final % homology may be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pair-wise comparison based on chemical similarity or evolutionary distance. An example of such a matrix commonly used is the BLOSUM62 matrix—the default matrix for the BLAST suite of programs. GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table, if supplied (see user manual for further details). For some applications, it is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62.
Alternatively, percentage homologies may be calculated using the multiple alignment feature in DNASIS™ (Hitachi Software), based on an algorithm, analogous to CLUSTAL (Higgins D G & Sharp P M (1988), Gene 73(1), 237-244). Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.
Sequences may also have deletions, insertions or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent substance. Deliberate amino acid substitutions may be made on the basis of similarity in amino acid properties (such as polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues) and it is therefore useful to group amino acids together in functional groups. Amino acids may be grouped together based on the properties of their side chains alone. However, it is more useful to include mutation data as well. The sets of amino acids thus derived are likely to be conserved for structural reasons. These sets may be described in the form of a Venn diagram (Livingstone C. D. and Barton G. J. (1993) “Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation” Comput. Appl. Biosci. 9: 745-756) (Taylor W. R. (1986) “The classification of amino acid conservation” J. Theor. Biol. 119; 205-218).
Embodiments of the disclosure include sequences (both polynucleotide or polypeptide) which may comprise homologous substitution (substitution and replacement are both used herein to mean the interchange of an existing amino acid residue or nucleotide, with an alternative residue or nucleotide) that may occur i.e., like-for-like substitution in the case of amino acids such as basic for basic, acidic for acidic, polar for polar, etc. Non-homologous substitution may also occur i.e., from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyridylalanine, thienylalanine, naphthylalanine and phenylglycine.
Variant amino acid sequences may include suitable spacer groups that may be inserted between any two amino acid residues of the sequence including alkyl groups such as methyl, ethyl or propyl groups in addition to amino acid spacers such as glycine or beta-alanine residues. A further form of variation, which involves the presence of one or more amino acid residues in peptoid form, may be well understood by those skilled in the art. For the avoidance of doubt, “the peptoid form” is used to refer to variant amino acid residues wherein the alpha-carbon substituent group is on the residue's nitrogen atom rather than the .alpha.-carbon. Processes for preparing peptides in the peptoid form are known in the art, for example Simon R J et al., PNAS (1992) 89(20), 9367-9371 and Horwell D C, Trends Biotechnol. (1995) 13(4), 132-134.
As used herein the term “variant” should be taken to mean the exhibition of qualities that have a pattern that deviates from what occurs in nature.
As used herein the term “wild type” is a term of the art understood by skilled persons and means the typical form of an organism, strain, gene or characteristic as it occurs in nature as distinguished from mutant or variant forms.
The present disclosure provides methods and systems for genomic editing in cells using constitutive promoters, and preferably in an automated editing system and/or instrument. The present disclosure provides novel instruments, systems and methods for multiplexed genome editing in living cells, as well as methods for constructing combinatorial libraries of edited cell populations. The methods, systems and instruments disclosed herein can be used with a variety of genome editing techniques, and in particular with nuclease-directed genome editing. The methods, systems and instruments of the disclosure allow novel methods for introducing multiple engineered nucleic acid sequences (e.g., engineering genetic mutations), as well as methods for constructing combinatorial libraries.
The methods, systems, instruments are particularly suited to introduction of genome edits to multiple cells in a single instrument cycle, thereby generating libraries of cells having one or more genome edits in an automated, multiplexed fashion. These genome edits are preferably rationally-designed edits, and the nucleic acids used for the edits are designed and created to introduce specific edits to target regions within a cell's genome. The sequences used to facilitate genome-editing events include sequences that assist in guiding nuclease cleavage, the introduction of a genome edit to a region of interest, and/or both.
The constitutive promoters for use in the present disclosure are preferably heterologous promoters, and may be found in nature (e.g., in different or the same organisms). Alternatively, the constitutive promoters for use in the present disclosure may be different from promoters found in nature. The heterologous promoters are operably linked to a nucleic acid-guided nuclease. The desired strength of the promoter can be determined based on, e.g., the desired expression of the nuclease and/or the potential toxicity of the expression in the cell of interest; alternatively, the strength of the promoter may be represented as the ratio of molecules of protein to the number of molecules of gRNA present.
In certain aspects, the promoter is bi-directional.
In specific aspects of the disclosure, the cells used are prokaryotic, and the methods and systems of the disclosure use constitutive bacterial promoters that act predictably in different sequence contexts and contain convenient sites for cloning and the introduction of downstream open-reading frames. In a preferred aspect, the design of the promoter insulates these promoters from stimulatory or repressive effects in vivo. For example, a promoter may contain a sequence that results in a secondary structure that insulates the promoter from stimulatory or repressive effects in vivo. In specific aspects, the bacterial promoters are synthetic promoters, such as those disclosed in David H J et al., Nucleic Acids Research, 2011, Vol. 39, No. 3 1131-1141.
In other aspects, the cells used are eukaryotic, and the methods and systems of the disclosure use constitutive promoters for specific cell types. For example, heterologous constitutive promoters for mammalian systems include SV40, CMV, U6, U13C, ERA, POK and CAGG and variations thereof. In another example, Drosophila, heterologous constitutive promoters for Drosophila systems can utilize COPIA and ACT5C or variations thereof. In still another example, heterologous constitutive promoters for S. Cerevisiae systems include TEF1 and PGKI and variations thereof. In other examples, the heterologous, constitutive promoters for use with eukaryotic systems are synthetic promoters (Schlabach, M R, PNAS Feb. 9, 2010. 107 (6) 2538-2543; Redden H. Nat Commun. 2015; 6: 7810). In some aspects, the constitutive promoters can be tunable and/or multifunctional. See, e.g., Farzadfard F et al., ACS Synth Biol. 2013 Oct. 18; 2(10):604-13.
The nucleic acids and oligonucleotides for use with the methods, systems and instruments of the disclosure can include various molecules with desired base sequences. These nucleic acids are preferably rationally designed to introduce specific, designed edits to the genomes of the cell populations.
Such nucleic acids and oligonucleotides (or “oligos”) are intended to include, but are not limited to, a polymeric form of nucleotides that may have various lengths, including either deoxyribonucleotides or ribonucleotides, or analogs thereof. The nucleic acids and oligonucleotides for use in the present disclosure can be modified at one or more positions to enhance stability and may be introduced during chemical synthesis or subsequent enzymatic modification or polymerase copying. These modifications include, but are not limited to, the inclusion of one or more alkylated nucleic acids, locked nucleic acids (LNAs), peptide nucleic acids (PNAs), phosphonates, phosphothioates, and the like in the oligomer. Examples of modified nucleotides include, but are not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl)uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-D46-isopentenyladenine, wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, 2,6-diaminopurine and the like. Nucleic acid molecules may also be modified at the base moiety, sugar moiety or phosphate backbone.
In preferred embodiments, the automated instrument and system of the disclosure utilizes a nuclease-directed genome editing system. Multiple different nuclease-based systems exist for introducing edits into an organism's genome, and each can be used in either single editing systems, sequential editing systems (e.g., using different nuclease-directed systems sequentially to provide two or more genome edits in a cell) and/or recursive editing systems, (e.g. utilizing a single nuclease-directed system to introduce two or more genome edits in a cell). Exemplary nuclease-directed genome editing systems are described herein, although a person of skill in the art would recognize upon reading the present disclosure that other such editing systems are also useful in the automated instruments and systems of the disclosure.
It should be noted that the automated systems as set forth herein can use the nucleases for cleavage of the genome, introduction of an edit into a target region, or both.
In particular aspects of the disclosure, the nuclease editing system is an inducible system that allows control of the timing of the editing. The ability to modulate nuclease activity can reduce off-target cleavage and facilitate precise genome engineering. Numerous different inducible systems can be used with the instrument and systems of the disclosure, as will be apparent to one skilled in the art upon reading the present disclosure.
In certain aspects, cleavage by a nuclease can be used with the instruments and systems of the disclosure to select cells with a genomic edit at a target region. For example, cells that have been subjected to a genomic edit that removes a particular nuclease recognition site (e.g., via homologous recombination) can be selected using the instruments and systems of the disclosure by exposing the cells to the nuclease following such edit. The DNA in the cells without the genome edit will be cleaved and subsequently will have limited growth and/or perish, whereas the cells that received the genome edit removing the nuclease recognition site will not be affected by the subsequent exposure to the nuclease.
In other aspects, cells for editing may be treated in some fashion to cleave the genome prior to introduction of the cells to the instrument, and the instrument used for automated introduction of desired genome edits in such cells. The initial cleavage can be performed by the same or a different enzyme than the one used for the initial cleavage event.
When the cell or population of cells comprising a nucleic acid-guided nuclease encoding DNA is in the presence of the inducer molecule, expression of the nuclease can occur. For example, CRISPR-nuclease expression can be repressed in the presence of a repressor molecule. When the cell or population of cells comprising nucleic acid-guided nuclease encoding DNA is in the absence of a molecule that represses expression of the nuclease, expression of the nuclease can occur.
Additionally, inducible systems for editing using RNA-guided nuclease have been described, including systems that use chemical induction to limit the temporal exposure of the cells to the RNA-guided nuclease. (Dow L E et al. (2015) Nature Biotechnology 33, 390-394 (2015); see also inducible lentiviral expression vectors available at Dharmacon., GE Life Sciences, Lafayette, cO.) For additional techniques, See e.g., Campbell A E Biochem J. 2016 Sep. 1; 473(17): 2573-2589.
In other examples, a virus-inducible nuclease can be used to induce gene editing in cells. See, e.g., Don Z Q Antiviral Res. 2016 June; 130:50-7. In another example, for inducible expression of nucleic acid directed nucleases, variants can be switched on and off in human cells with 4-hydroxytamoxifen (4-HT) by fusing the nuclease with the hormone-binding domain of the estrogen receptor (ERT2). Liu Ki et al. (2016) Nature Chemical Biology 12, 980-987.
The cells that can be editing using the instruments and systems of the disclosure include any prokaryotic, archeal or eukaryotic cell. For example, prokaryotic cells for use with the present disclosure can be gram positive bacterial cells, (e.g., Bacillus subtilis) or gram negative bacterial cells, e.g., E. coli cells. Eukaryotic cells for use with the instruments and systems of the disclosure include any plant cells and any animal cells, e.g. yeast cells, insect cells, amphibian cells nematode cells, or mammalian cells.
The cells can vary in size from 0.1 to 1 mm in diameter. In certain embodiments, the systems are designed to concentrate viable cells 1-10 μM in diameter (the general size of a prokaryotic cell). In other aspects, the systems are designed to concentrate small viable bacteria (e.g., mycobacteria) between 150-250 nm. In yet other aspects, the systems are designed to concentrate viable cells 10-100 μM in diameter (the general size of a eukaryotic plant cell). In still other aspects, the systems are designed to concentrate viable cells 10-30 μM in diameter (the general size of a eukaryotic animal cell). In other aspects, the systems are designed to concentrate viable cells from 0.1 μm to over 15 μm in diameter (the general size of an archaeal cell).
In certain aspects, the system and methods of the disclosure are utilized for methods of creating chemically competent and/or electrocompetent cells.
Bacterial and archaeal targetable nuclease systems have emerged as powerful tools for precision genome editing. However, naturally occurring nucleases have some limitations including expression and delivery challenges due to the nucleic acid sequence and protein size. Targetable nucleases that require PAM recognition are also limited in the sequences they can target throughout a genetic sequence. Other challenges include processivity, target recognition specificity and efficiency, and nuclease acidity efficiency, which often effect genetic editing efficiency.
Non-naturally occurring targetable nucleases and non-naturally occurring targetable nuclease systems can address many of these challenges and limitations.
Disclosed herein are non-naturally targetable nuclease systems. Such targetable nuclease systems are engineered to address one or more of the challenges described above and can be referred to as engineered nuclease systems. Engineered nuclease systems can comprise one or more of a nuclease, such as a nucleic acid-guided nuclease, a guide nucleic acid, a polynucleotides encoding said nuclease, or a polynucleotides encoding said guide nucleic acid. Engineered nucleases, engineered guide nucleic acids, and engineered polynucleotides encoding the engineered nuclease or engineered guide nucleic acid are not naturally occurring and are not found in nature. It follows that engineered nuclease systems including one or more of these elements are non-naturally occurring.
Non-limiting examples of types of engineering that can be done to obtain a non-naturally occurring nuclease system are as follows. Engineering can include codon optimization to facilitate expression or improve expression in a host cell, such as a heterologous host cell. Engineering can reduce the size or molecular weight of the nuclease in order to facilitate expression or delivery. Engineering can alter PAM selection in order to change PAM specificity or to broaden the range of recognized PAMs. Engineering can alter, increase, or decrease stability, processivity, specificity, or efficiency of a targetable nuclease system. Engineering can alter, increase, or decrease protein stability. Engineering can alter, increase, or decrease processivity of nucleic acid scanning. Engineering can alter, increase, or decrease target sequence specificity. Engineering can alter, increase, or decrease nuclease activity. Engineering can alter, increase, or decrease editing efficiency. Engineering can alter, increase, or decrease transformation efficiency. Engineering can alter, increase, or decrease nuclease or guide nucleic acid expression.
Examples of non-naturally occurring nucleic acid sequences that are disclosed herein include sequences codon optimized for expression in bacteria, such as E. coli, sequences codon optimized for expression in single cell eukaryotes, or yeast, sequences codon optimized for expression in multi-cell eukaryotes, human cells, polynucleotides used for cloning or expression of any sequences disclosed herein, plasmids comprising nucleic acid sequences operably linked to a heterologous promoter or nuclear localization signal or other heterologous element, proteins generated from engineered or codon optimized nucleic acid sequences, or engineered guide nucleic acids. Such non-naturally occurring nucleic acid sequences can be amplified, cloned, assembled, synthesized, generated from synthesized oligonucleotides or dNTPs, or otherwise obtained using methods known by those skilled in the art.
Suitable nucleic acid-guided nucleases can be from an organism from a genus which includes but is not limited to Thiomicrospira, Succinivibrio, Candidatus, Porphyromonas, Acidaminococcus, Acidomonococcus, Prevotella, Smithella, Moraxella, Synergistes, Francisella, Leptospira, Catenibacterium, Kandleria, Clostridium, Dorea, Coprococcus, Enterococcus, Fructobacillus, Weissella, Pediococcus, Corynebacter, Sutterella, Legionella, Treponema, Roseburia, Filifactor, Eubacterium, Streptococcus, Lactobacillus, Mycoplasma, Bacteroides, Flaviivola, Flavobacterium, Sphaerochaeta, Azospirillum, Gluconacetobacter, Neisseria, Roseburia, Parvibaculum, Staphylococcus, Nitratifractor, Mycoplasma, Alicyclobacillus, Brevibacilus, Bacillus, Bacteroidetes, Brevibacilus, Carnobacterium, Clostridiaridium, Clostridium, Desulfonatronum, Desulfovibrio, Helcococcus, Leptotrichia, Listeria, Methanomethyophilus, Methylobacterium, Opitutaceae, Paludibacter, Rhodobacter, Sphaerochaeta, Tuberibacillus, Oleiphilus, Omnitrophica, Parcubacteria, and Campylobacter. Species of organism of such a genus can be as otherwise herein discussed. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a kingdom which includes but is not limited to Firmicute, Actinobacteria, Bacteroidetes, Proteobacteria, Spirochates, and Tenericutes. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a phylum which includes but is not limited to Erysipelotrichia, Clostridia, Bacilli, Actinobacteria, Bacteroidetes, Flavobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Epsilonproteobacteria, Spirochaetes, and Mollicutes. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within an order which includes but is not limited to Clostridiales, Lactobacillales, Actinomycetales, Bacteroidales, Flavobacteriales, Rhizobiales, Rhodospirillales, Burkholderiales, Neisseriales, Legionellales, Nautiliales, Campylobacterales, Spirochaetales, Mycoplasmatales, and Thiotrichales. Suitable nucleic acid-guided nucleases can be from an organism from a genus or unclassified genus within a family which includes but is not limited to Lachnospiraceae, Enterococcaceae, Leuconostocaceae, Lactobacillaceae, Streptococcaceae, Peptostreptococcaceae, Staphylococcaceae, Eubacteriaceae, Corynebacterineae, Bacteroidaceae, Flavobacterium, Cryomoorphaceae, Rhodobiaceae, Rhodospirillaceae, Acetobacteraceae, Sutterellaceae, Neisseriaceae, Legionellaceae, Nautiliaceae, Campylobacteraceae, Spirochaetaceae, Mycoplasmataceae, Pisciririckettsiaceae, and Francisellaceae. Other nucleic acid-guided nucleases have been described in US Patent Application Publication No. US20160208243 filed Dec. 18, 2015; US Application Publication No. US20140068797 filed Mar. 15, 2013; U.S. Pat. No. 8,697,359 filed Oct. 15, 2013; and Zetsche et al., Cell 2015 Oct. 22; 163(3):759-71, each of which are incorporated herein by reference in their entirety.
Some nucleic acid-guided nucleases suitable for use in the methods, systems, and compositions of the present disclosure include those derived from an organism such as, but not limited to, Thiomicrospira sp. XS5, Eubacterium rectale, Succinivibrio dextrinosolvens, Candidatus Methanoplasma termitum, Candidatus Methanomethylophilus alvus, Porphyromonas crevioricanis, Flavobacterium branchiophilum, Acidaminococcus Sp., Acidomonococcus sp., Lachnospiraceae bacterium COE1, Prevotella brevis ATCC 19188, Smithella sp. SCADC, Moraxella bovoculi, Synergistes jonesii, Bacteroidetes oral taxon 274, Francisella tularensis, Leptospira inadai serovar Lyme str. 10, Acidomonococcus sp. crystal structure (5B43) S. mutans, S. agalactiae, S. equisimilis, S. sanguinis, S. pneumonia; C. jejuni, C. coli; N. salsuginis, N. tergarcus; S. auricularis, S. carnosus; N. meningitides, N. gonorrhoeae; L. monocytogenes, L. ivanovii; C. botulinum, C. difficile, C. tetani, C. sordellii; Francisella tularensis 1, Prevotella albensis, Lachnospiraceae bacterium MC2017 1, Butyrivibrio proteoclasticus, Butyrivibrio proteoclasticus B316, Peregrinibacteria bacterium GW2011_GWA2_33_10, Parcubacteria bacterium GW2011_GWC2_44_17, Smithella sp. SCADC, Acidaminococcus sp. BV3L6, Lachnospiraceae bacterium MA2020, Candidatus Methanoplasma termitum, Eubacterium eligens, Moraxella bovoculi 237, Leptospira inadai, Lachnospiraceae bacterium ND2006, Porphyromonas crevioricanis 3, Prevotella disiens, Porphyromonas macacae, Catenibacterium sp. CAG:290, Kandleria vitulina, Clostridiales bacterium KA00274, Lachnospiraceae bacterium 3-2, Dorea longicatena, Coprococcus catus GD/7, Enterococcus columbae DSM 7374, Fructobacillus sp. EFB-N1, Weissella halotolerans, Pediococcus acidilactici, Lactobacillus curvatus, Streptococcus pyogenes, Lactobacillus versmoldensis, Filifactor alocis ATCC 35896, Alicyclobacillus acidoterrestris, Alicyclobacillus acidoterrestris ATCC 49025, Desulfovibrio inopinatus, Desulfovibrio inopinatus DSM 10711, Oleiphilus sp. Oleiphilus sp. H10009, Candidtus kefeldibacteria, Parcubacteria CasY.4, Omnitrophica WOR 2 bacterium GWF2, Bacillus sp. NSP2.1, and Bacillus thermoamylovorans.
In some instances, a nucleic acid-guided nuclease disclosed herein is encoded in a nucleic acid sequence. Such a nucleic acid sequence can be codon optimized for expression in a desired host cell. Suitable host cells can include, as non-limiting examples, prokaryotic cells such as E. coli, P. aeruginosa, B. subtilus, and V. natriegens, and eukaryotic cells such as S. cerevisiae, plant cells, insect cells, nematode cells, amphibian cells, fish cells, or mammalian cells, including human cells.
A nucleic acid sequence encoding a nucleic acid-guided nuclease can be codon optimized for expression in gram positive bacteria, e.g., Bacillus subtilis, or gram negative bacteria, e.g., E. coli.
The nucleic acid sequences encoding a nucleic acid-guided nuclease are operably linked to a constitutive promoter, and preferably a heterologous constitutive promoter. Such nucleic acid sequences can be linear or circular. The nucleic acid sequences can be comprised on a larger linear or circular nucleic acid sequences that comprises additional elements such as an origin of replication, selectable or screenable marker, terminator, other components of a targetable nuclease system, such as a guide nucleic acid, or an editing or recorder cassette as disclosed herein. These larger nucleic acid sequences can be recombinant expression vectors, as are described in more detail later.
In general, a guide nucleic acid can complex with a compatible nucleic acid-guided nuclease and can hybridize with a target sequence, thereby directing the nuclease to the target sequence. A subject nucleic acid-guided nuclease capable of complexing with a guide nucleic acid can be referred to as a nucleic acid-guided nuclease that is compatible with the guide nucleic acid. Likewise, a guide nucleic acid capable of complexing with a nucleic acid-guided nuclease can be referred to as a guide nucleic acid that is compatible with the nucleic acid-guided nucleases.
A guide nucleic acid can be DNA. A guide nucleic acid can be RNA. A guide nucleic acid can comprise both DNA and RNA. A guide nucleic acid can comprise modified of non-naturally occurring nucleotides. In cases where the guide nucleic acid comprises RNA, the RNA guide nucleic acid can be encoded by a DNA sequence on a polynucleotide molecule such as a plasmid, linear construct, or editing cassette as disclosed herein.
A guide nucleic acid can comprise a guide sequence. A guide sequence is a polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a complexed nucleic acid-guided nuclease to the target sequence. The degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences. In some embodiments, a guide sequence is about or more than about 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, a guide sequence is less than about 75, 50, 45, 40, 35, 30, 25, 20 nucleotides in length. Preferably the guide sequence is 10-30 nucleotides long. The guide sequence can be 15-20 nucleotides in length. The guide sequence can be 15 nucleotides in length. The guide sequence can be 16 nucleotides in length. The guide sequence can be 17 nucleotides in length. The guide sequence can be 18 nucleotides in length. The guide sequence can be 19 nucleotides in length. The guide sequence can be 20 nucleotides in length.
In aspects of the disclosure the terms “guide nucleic acid” refers to one or more polynucleotides comprising 1) a guide sequence capable of hybridizing to a target sequence and 2) a scaffold sequence capable of interacting with or complexing with a nucleic acid-guided nuclease as described herein. A guide nucleic acid may be provided as one or more nucleic acids. In specific embodiments, the guide sequence and the scaffold sequence are provided as a single polynucleotide.
A guide nucleic acid can be compatible with a nucleic acid-guided nuclease when the two elements can form a functional targetable nuclease complex capable of cleaving a target sequence. Often, a compatible scaffold sequence for a compatible guide nucleic acid can be found by scanning sequences adjacent to a native nucleic acid-guided nuclease locus In other words, native nucleic acid-guided nucleases can be encoded on a genome within proximity to a corresponding compatible guide nucleic acid or scaffold sequence.
Nucleic acid-guided nucleases can be compatible with guide nucleic acids that are not found within the nucleases endogenous host. Such orthogonal guide nucleic acids can be determined by empirical testing. Orthogonal guide nucleic acids can come from different species or be synthetic or otherwise engineered to be non-naturally occurring.
Orthogonal guide nucleic acids that are compatible with a common nucleic acid-guided nuclease can comprise one or more common features. Common features can include sequence outside a pseudoknot region. Common features can include a pseudoknot region. Common features can include a primary sequence or secondary structure.
A guide nucleic acid can be engineered to target a desired target sequence by altering the guide sequence such that the guide sequence is complementary to the target sequence, thereby allowing hybridization between the guide sequence and the target sequence. A nucleic acid with a guide sequence can be referred to as a guide nucleic acid. Engineered guide nucleic acids are often non-naturally occurring and are not found in nature.
Disclosed herein are targetable nuclease systems. A targetable nuclease system can comprise a nucleic acid-guided nuclease operably linked to a constitutive promoter and a compatible guide nucleic acid. A targetable nuclease system can comprise a nucleic acid-guided nuclease or a polynucleotide sequence encoding the nucleic acid-guided nuclease. A targetable nuclease system can comprise a guide nucleic acid or a polynucleotide sequence encoding the guide nucleic acid.
In general, a targetable nuclease system as disclosed herein is characterized by elements that promote the formation of a targetable nuclease complex at the site of a target sequence, wherein the targetable nuclease complex comprises a nucleic acid-guided nuclease and a guide nucleic acid.
A guide nucleic acid together with a nucleic acid-guided nuclease forms a targetable nuclease complex that is capable of binding to a target sequence within a target polynucleotide, as determined by the guide sequence of the guide nucleic acid.
In general, to generate a double stranded break, in most cases a targetable nuclease complex binds to a target sequence as determined by the guide nucleic acid, and the nuclease has to recognize a protospacer adjacent motif (PAM) sequence adjacent to the target sequence. The guide nucleic acid can further comprise a guide sequence. The guide sequence can be engineered to target any desired target sequence. The guide sequence can be engineered to be complementary to any desired target sequence. The guide sequence can be engineered to hybridize to any desired target sequence.
A target sequence of a targetable nuclease complex can be any polynucleotide endogenous or exogenous to a prokaryotic or eukaryotic cell, or in vitro. For example, the target sequence can be a polynucleotide residing in the nucleus of the eukaryotic cell. A target sequence can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA). Without wishing to be bound by theory, it is believed that the target sequence should be associated with a PAM; that is, a short sequence recognized by a targetable nuclease complex. The precise sequence and length requirements for a PAM differ depending on the nucleic acid-guided nuclease used, but PAMs are typically 2-5 base pair sequences adjacent the target sequence. Examples of PAM sequences are given in the examples section below, and the skilled person will be able to identify further PAM sequences for use with a given nucleic acid-guided nuclease. Further, engineering of the PAM Interacting (PI) domain may allow programming of PAM specificity, improve target site recognition fidelity, and increase the versatility of a nucleic acid-guided nuclease genome engineering platform. Nucleic acid-guided nucleases may be engineered to alter their PAM specificity, for example as described in Kleinstiver B P et al., “Engineered CRISPR-Cas9 nucleases with altered PAM specificities”, Nature. 2015 Jul. 23; 523 (7561): 481-5. doi: 10.1038/nature14592.
A PAM site is a nucleotide sequence in proximity to a target sequence. In most cases, a nucleic acid-guided nuclease can only cleave a target sequence if an appropriate PAM is present. PAMs are nucleic acid-guided nuclease-specific and can be different between two different nucleic acid-guided nucleases. A PAM can be 5′ or 3′ of a target sequence. A PAM can be upstream or downstream of a target sequence. A PAM can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleotides in length. Often, a PAM is between 2-6 nucleotides in length.
In some examples, a PAM can be provided on a separate oligonucleotide. In such cases, providing PAM on a oligonucleotide allows cleavage of a target sequence that otherwise would not be able to be cleave because no adjacent PAM is present on the same polynucleotide as the target sequence.
Polynucleotide sequences encoding a component of a targetable nuclease system can comprise one or more vectors. In general, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Vectors include, but are not limited to, nucleic acid molecules that are single-stranded, double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g. circular); nucleic acid molecules that comprise DNA, RNA, or both; and other varieties of polynucleotides known in the art. One type of vector is a “plasmid,” which refers to a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques. Another type of vector is a viral vector, wherein virally-derived DNA or RNA sequences are present in the vector for packaging into a virus (e.g. retroviruses, replication defective retroviruses, adenoviruses, replication defective adenoviruses, and adeno-associated viruses). Viral vectors also include polynucleotides carried by a virus for transfection into a host cell. Another type of vector is a synthetic chromosome. Synthetic chromosomes offer several advantages over viral-based delivery systems including increased payload size, the fact that extrachromosomal maintenance avoids potential host-cell disruption, avoidance of transcriptional silencing of introduced genes and possible immunological complications, and mammalian synthetic chromosomes can be derived from and tailored to the species into which the synthetic chromosome is to be inserted. (See Lindenbaum and Perkins, et al., Nucleic Acid Research, 32(21):e172 (2004). Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g. bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as “expression vectors.” Common expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. Further discussion of vectors is provided herein.
Recombinant expression vectors can comprise a nucleic acid of the disclosure in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory elements, which may be selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory element(s) in a manner that allows for expression of the nucleotide sequence (e.g. in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). With regard to recombination and cloning methods, mention is made of U.S. patent application Ser. No. 10/815,730, published Sep. 2, 2004 as US 2004-0171156 A1, the contents of which are herein incorporated by reference in their entirety.
In some embodiments, a regulatory element is operably linked to one or more elements of a targetable nuclease system so as to drive expression of the one or more components of the targetable nuclease system.
In some embodiments, a vector comprises a polynucleotide sequence encoding a nucleic acid-guided nuclease operably linked to a constitutive promoter. The polynucleotide sequence encoding the nucleic acid-guided nuclease can be codon optimized for expression in particular cells, such as archaeal, prokaryotic or eukaryotic cells. Eukaryotic cells can be yeast, fungi, algae, plant, animal, or human cells. Eukaryotic cells may be those of or derived from a particular organism, such as a mammal, including but not limited to human, mouse, rat, rabbit, dog, or non-human mammal including non-human primate.
In general, codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g. about or more than about 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more codons) of the native sequence with codons that are more frequently or most frequently used in the genes of that host cell while maintaining the native amino acid sequence. Various species exhibit particular bias for certain codons of a particular amino acid. Codon bias (differences in codon usage between organisms) often correlates with the efficiency of translation of messenger RNA (mRNA), which is in turn believed to be dependent on, among other things, the properties of the codons being translated and the availability of particular transfer RNA (tRNA) molecules. The predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization. Codon usage tables are readily available, for example, at the “Codon Usage Database” available at www kazusa.orjp/codon/ (visited Jul. 9, 2002), and these tables can be adapted in a number of ways. See Nakamura, Y., et al. “Codon usage tabulated from the international DNA sequence databases: status for the year 2000” Nucl. Acids Res. 28:292 (2000). Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, Pa.), are also available. In some embodiments, one or more codons (e.g. 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons) in a sequence encoding a nuclease correspond to the most frequently used codon for a particular amino acid.
In some embodiments, a vector encodes a nucleic acid-guided nuclease comprising one or more nuclear localization sequences (NLSs), such as about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs. In some embodiments, the engineered nuclease comprises about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the amino-terminus, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more NLSs at or near the carboxy-terminus, or a combination of these (e.g. one or more NLS at the amino-terminus and one or more NLS at the carboxy terminus). When more than one NLS is present, each may be selected independently of the others, such that a single NLS may be present in more than one copy and/or in combination with one or more other NLSs present in one or more copies. In a preferred embodiment of the disclosure, the engineered nuclease comprises at most 6 NLSs. In some embodiments, an NLS is considered near the N- or C-terminus when the nearest amino acid of the NLS is within about 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more amino acids along the polypeptide chain from the N- or C-terminus.
In general, the one or more NLSs are of sufficient strength to drive accumulation of the nucleic acid-guided nuclease in a detectable amount in the nucleus of a eukaryotic cell. In general, strength of nuclear localization activity may derive from the number of NLSs, the particular NLS(s) used, or a combination of these factors. Detection of accumulation in the nucleus may be performed by any suitable technique. For example, a detectable marker may be fused to the nucleic acid-guided nuclease, such that location within a cell may be visualized, such as in combination with a means for detecting the location of the nucleus (e.g. a stain specific for the nucleus such as DAPI). Cell nuclei may also be isolated from cells, the contents of which may then be analyzed by any suitable process for detecting protein, such as immunohistochemistry, Western blot, or enzyme activity assay. Accumulation in the nucleus may also be determined indirectly, such as by an assay for the effect of the nucleic acid-guided nuclease complex formation (e.g. assay for DNA cleavage or mutation at the target sequence, or assay for altered gene expression activity affected by targetable nuclease complex formation and/or nucleic acid-guided nuclease activity), as compared to a control not exposed to the nucleic acid-guided nuclease or targetable nuclease complex, or exposed to a nucleic acid-guided nuclease lacking the one or more NLSs.
A nucleic acid-guided nuclease and one or more guide nucleic acids can be delivered either as DNA or RNA. Delivery of a nucleic acid-guided nuclease and guide nucleic acid both as RNA (unmodified or containing base or backbone modifications) molecules can be used to reduce the amount of time that the nucleic acid-guided nuclease persist in the cell. This may reduce the level of off-target cleavage activity in the target cell. Since delivery of a nucleic acid-guided nuclease as mRNA takes time to be translated into protein, it might be advantageous to deliver the guide nucleic acid several hours following the delivery of the nucleic acid-guided nuclease mRNA, to maximize the level of guide nucleic acid available for interaction with the nucleic acid-guided nuclease protein. In other cases, the nucleic acid-guided nuclease mRNA and guide nucleic acid are delivered concomitantly. In other examples, the guide nucleic acid is delivered sequentially, such as 0.5, 1, 2, 3, 4, or more hours after the nucleic acid-guided nuclease mRNA.
In situations where guide nucleic acid amount is limiting, it may be desirable to introduce a nucleic acid-guided nuclease in the form of a DNA expression cassette with a constitutive promoter driving the expression of the guide nucleic acid.
Guide nucleic acid in the form of RNA or encoded on a DNA expression cassette can be introduced into a host cell comprising a nucleic acid-guided nuclease encoded on a vector or chromosome. The guide nucleic acid may be provided in the cassette one or more polynucleotides, which may be contiguous or non-contiguous in the cassette. In specific embodiments, the guide nucleic acid is provided in the cassette as a single contiguous polynucleotide.
A variety of delivery systems can be used to introduce a nucleic acid-guided nuclease (DNA or RNA) and guide nucleic acid (DNA or RNA) into a host cell. These include the use of yeast systems, lipofection systems, microinjection systems, biolistic systems, virosomes, liposomes, immunoliposomes, polycations, lipid:nucleic acid conjugates, virions, artificial virions, viral vectors, electroporation, cell permeable peptides, nanoparticles, nanowires (Shalek et al., Nano Letters, 2012), exosomes. Molecular trojan horses liposomes (Pardridge et al., Cold Spring Harb Protoc; 2010; doi:10.1101/pdb.prot5407) may be used to deliver a nuclease and guide nuclease across the blood brain barrier.
In some embodiments, an editing template is also provided. A editing template may be a component of a vector as described herein, contained in a separate vector, or provided as a separate polynucleotide, such as an oligonucleotide, linear polynucleotide, or synthetic polynucleotide. In some cases, a editing template is on the same polynucleotide as a guide nucleic acid. In some embodiments, a editing template is designed to serve as a template in homologous recombination, such as within or near a target sequence nicked or cleaved by a nucleic acid-guided nuclease as a part of a complex as disclosed herein. A editing template polynucleotide may be of any suitable length, such as about or more than about 10, 15, 20, 25, 50, 75, 100, 150, 200, 500, 1000, or more nucleotides in length. In some embodiments, the editing template polynucleotide is complementary to a portion of a polynucleotide comprising the target sequence. When optimally aligned, an editing template polynucleotide might overlap with one or more nucleotides of a target sequences (e.g. about or more than about 1, 5, 10, 15, 20, 25, 30, 35, 40, or more nucleotides). In some embodiments, when a editing template sequence and a polynucleotide comprising a target sequence are optimally aligned, the nearest nucleotide of the template polynucleotide is within about 1, 5, 10, 15, 20, 25, 50, 75, 100, 200, 300, 400, 500, 1000, 5000, 10000, or more nucleotides from the target sequence.
In many examples, an editing template comprises at least one mutation compared to the target sequence. An editing template can comprise an insertion, deletion, modification, or any combination thereof compared to the target sequence. Examples of some editing templates are described in more detail in a later section.
In some aspects, the disclosure provides methods comprising delivering one or more polynucleotides, such as or one or more vectors or linear polynucleotides as described herein, one or more transcripts thereof, and/or one or proteins transcribed therefrom, to a host cell. In some aspects, the disclosure further provides cells produced by such methods, and organisms comprising or produced from such cells. In some embodiments, a nuclease in combination with (and optionally complexed with) a guide nucleic acid is delivered to a cell.
Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids in cells, such as prokaryotic cells, eukaryotic cells, mammalian cells, or target tissues. Such methods can be used to administer nucleic acids encoding components of a nucleic acid-guided nuclease system to cells in culture, or in a host organism. Non-viral vector delivery systems include DNA plasmids, RNA (e.g. a transcript of a vector described herein), naked nucleic acid, and nucleic acid complexed with a delivery vehicle, such as a liposome. Viral vector delivery systems include DNA and RNA viruses, which have either episomal or integrated genomes after delivery to the cell. For a review of gene therapy procedures, see Anderson, Science 256:808-813 (1992); Nabel & Feigner, TIBTECH 11:211-217 (1993); Mitani & Caskey, TIBTECH 11:162-166 (1993); Dillon. TIBTECH 11:167-175 (1993); Miller, Nature 357:455-460 (1992); Van Brunt, Biotechnology 6(10):1149-1154 (1988); Vigne, Restorative Neurology and Neuroscience 8:35-36 (1995); Kremer & Perricaudet, British Medical Bulletin 51(1):31-44 (1995); Haddada et al., in Current Topics in Microbiology and Immunology Doerfler and Bohm (eds) (1995); and Yu et al., Gene Therapy 1:13-26 (1994).
Methods of non-viral delivery of nucleic acids include lipofection, microinjection, biolistics, virosomes, liposomes, immunoliposomes, polycation or lipid:nucleic acid conjugates, naked DNA, artificial virions, and agent-enhanced uptake of DNA. Lipofection is described in e.g., U.S. Pat. Nos. 5,049,386, 4,946,787; and 4,897,355) and lipofection reagents are sold commercially (e.g., Transfectam™ and Lipofectin™). Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those of Felgner, WO 91/17424; WO 91/16024.
The preparation of lipid:nucleic acid complexes, including targeted liposomes such as immunolipid complexes, is well known to one of skill in the art (see, e.g., Crystal, Science 270:404-410 (1995); Blaese et al., Cancer Gene Ther. 2:291-297 (1995); Behr et al., Bioconjugate Chem. 5:382-389 (1994); Remy et al., Bioconjugate Chem. 5:647-654 (1994); Gao et al., Gene Therapy 2:710-722 (1995); Ahmad et al., Cancer Res. 52:4817-4820 (1992); U.S. Pat. Nos. 4,186,183, 4,217,344, 4,235,871, 4,261,975, 4,485,054, 4,501,728, 4,774,085, 4,837,028, and 4,946,787).
The use of RNA or DNA viral-based systems for the delivery of nucleic acids take advantage of highly-evolved processes for targeting a virus to specific cells in culture or in the host and trafficking the viral payload to the nucleus or host cell genome. Conventional viral based systems could include retroviral, lentivirus, adenoviral, adeno-associated and herpes simplex virus vectors for gene transfer. Integration in the host genome is possible with the retrovirus, lentivirus, and adeno-associated virus gene transfer methods, often resulting in long term expression of the inserted transgene. Additionally, high transduction efficiencies have been observed in many different cell types and target tissues.
In some applications adenoviral based vectors or adeno-associated virus (“AAV”) vectors may also be used to transduce cells with target nucleic acids, e.g., in the in vitro production of nucleic acids and peptides. Construction of recombinant AAV vectors are described in a number of publications, including U.S. Pat. No. 5,173,414; Tratschin et al., Mol. Cell. Biol. 5:3251-3260 (1985); Tratschin, et al., Mol. Cell. Biol. 4:2072-2081 (1984); Hermonat & Muzyczka, PNAS 81:6466-6470 (1984); and Samulski et al., J. Virol. 63:03822-3828 (1989).
In some embodiments, a host cell is transfected with one or more vectors, linear polynucleotides, polypeptides, nucleic acid-protein complexes, or any combination thereof as described herein. In some embodiments, a cell in transfected in vitro, in culture, or ex vivo. In some embodiments, a cell that is transfected is taken from a subject. In some embodiments, the cell is derived from cells taken from a subject, such as a cell line.
In some embodiments, a cell transfected with one or more vectors, linear polynucleotides, polypeptides, nucleic acid-protein complexes, or any combination thereof as described herein is used to establish a new cell line comprising one or more transfection-derived sequences. In some embodiments, a cell transfected with the components of a nucleic acid-guided nuclease system as described herein, and modified through the activity of a nuclease complex, is used to establish a new cell line comprising cells containing the modification but lacking any other exogenous sequence.
In the context of formation of a nuclease complex, “target sequence” refers to a sequence to which a guide sequence is designed to have complementarity, where hybridization between a target sequence and a guide sequence promotes the formation of a engineered nuclease complex. A target sequence may comprise any polynucleotide, such as DNA, RNA, or a DNA-RNA hybrid. A target sequence can be located in the nucleus or cytoplasm of a cell. A target sequence can be located in vitro or in a cell-free environment.
Typically, formation of a nuclease complex comprising a guide nucleic acid hybridized to a target sequence and complexed with one or more engineered nucleases as disclosed herein results in cleavage of one or both strands in or near (e.g. within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from) the target sequence. Cleavage can occur within a target sequence, 5′ of the target sequence, upstream of a target sequence, 3′ of the target sequence, or downstream of a target sequence.
In some embodiments, one or more vectors driving expression of one or more components of a targetable nuclease system are introduced into a host cell or in vitro such formation of a targetable nuclease complex at one or more target sites. For example, a nucleic acid-guided nuclease and a guide nucleic acid could each be operably linked to separate regulatory elements on separate vectors. Alternatively, two or more of the elements expressed from the same or different regulatory elements, may be combined in a single vector, with one or more additional vectors providing any components of the targetable nuclease system not included in the first vector. Targetable nuclease system elements that are combined in a single vector may be arranged in any suitable orientation, such as one element located 5′ with respect to (“upstream” of) or 3′ with respect to (“downstream” of) a second element. The coding sequence of one element may be located on the same or opposite strand of the coding sequence of a second element, and oriented in the same or opposite direction. In some embodiments, a single constitutive promoter drives expression of a transcript encoding a nucleic acid-guided nuclease and one or more guide nucleic acids. In some embodiments, a nucleic acid-guided nuclease and one or more guide nucleic acids are operably linked to and expressed from the same constitutive promoter. In other embodiments, one or more guide nucleic acids or polynucleotides encoding the one or more guide nucleic acids are introduced into a cell or in vitro environment already comprising a nucleic acid-guided nuclease or polynucleotide sequence encoding the nucleic acid-guided nuclease operably linked to a constitutive promoter.
When multiple different guide sequences are used, a single expression construct may be used to target nuclease activity to multiple different, corresponding target sequences within a cell or in vitro. For example, a single vector may comprise about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or more guide sequences. In some embodiments, about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more such guide-sequence-containing vectors may be provided, and optionally delivered to a cell or in vitro.
Methods and compositions disclosed herein may comprise more than one guide nucleic acid, wherein each guide nucleic acid has a different guide sequence, thereby targeting a different target sequence. In such cases, multiple guide nucleic acids can be using in multiplexing, wherein multiple targets are targeted simultaneously. Additionally or alternatively, the multiple guide nucleic acids are introduced into a population of cells, such that each cell in a population received a different or random guide nucleic acid, thereby targeting multiple different target sequences across a population of cells. In such cases, the collection of subsequently altered cells can be referred to as a library.
Methods and compositions disclosed herein may comprise multiple different nucleic acid-guided nucleases, each with one or more different corresponding guide nucleic acids, thereby allowing targeting of different target sequences by different nucleic acid-guided nucleases. In some such cases, each nucleic acid-guided nuclease can correspond to a distinct plurality of guide nucleic acids, allowing two or more non-overlapping, partially overlapping, or completely overlapping multiplexing events.
In some embodiments, the nucleic acid-guided nuclease has DNA cleavage activity or RNA cleavage activity. In some embodiments, the nucleic acid-guided nuclease directs cleavage of one or both strands at the location of a target sequence, such as within the target sequence and/or within the complement of the target sequence. In some embodiments, the nucleic acid-guided nuclease directs cleavage of one or both strands within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50, 100, 200, 500, or more base pairs from the first or last nucleotide of a target sequence.
In some aspects, the disclosure provides for methods of modifying a target sequence in vitro, or in a cell. In some embodiments, the method comprises sampling a cell or population of cells such as prokaryotic cells, or those from a human or non-human animal or plant (including micro-algae), and modifying the cell or cells. Culturing may occur at any stage in vitro or ex vivo. The cell or cells may even be re-introduced into the host, such as a non-human animal or plant (including micro-algae). For re-introduced cells it is particularly preferred that the cells are stem cells.
In some embodiments, the method comprises allowing a targetable nuclease complex to bind to the target sequence to effect cleavage of said target sequence, thereby modifying the target sequence, wherein the targetable nuclease complex comprises a nucleic acid-guided nuclease complexed with a guide nucleic acid, wherein the guide sequence of the guide nucleic acid is hybridized to a target sequence within a target polynucleotide.
In some aspects, the disclosure provides a method of modifying expression of a target polynucleotide in a prokaryotic or eukaryotic cell. In some embodiments, the method comprises allowing an targetable nuclease complex to bind to a target sequence with the target polynucleotide such that said binding results in increased or decreased expression of said target polynucleotide; wherein the targetable nuclease complex comprises a nucleic acid-guided nuclease complexed with a guide nucleic acid, and wherein the guide sequence of the guide nucleic acid is hybridized to a target sequence within said target polynucleotide. Similar considerations apply as above for methods of modifying a target polynucleotide. In fact, these sampling, culturing and re-introduction options apply across the aspects of the present disclosure.
In some aspects, the disclosure provides kits for use with the systems and instruments of the disclosure containing any one or more of the elements disclosed in the above methods and compositions. Elements may provide individually or in combinations, and may be provided in any suitable container, such as a vial, a bottle, or a tube. In some embodiments, the kit includes instructions in one or more languages, for example in more than one language.
In some embodiments, a kit comprises one or more reagents for use in a system and/or instrument described herein. Reagents may be provided in any suitable container. For example, a kit may provide one or more reaction or storage buffers. Reagents may be provided in a form that is usable in a particular assay, or in a form that requires addition of one or more other components before use (e.g. in concentrate or lyophilized form). A buffer can be any buffer, including but not limited to a sodium carbonate buffer, a sodium bicarbonate buffer, a borate buffer, a Tris buffer, a MOPS buffer, a HEPES buffer, and combinations thereof. In some embodiments, the buffer is alkaline. In some embodiments, the buffer has a pH from about 7 to about 10. In some embodiments, the kit comprises one or more oligonucleotides corresponding to a guide sequence for insertion into a vector so as to operably link the guide sequence and a regulatory element. In some embodiments, the kit comprises an editing template.
In some aspects, the disclosure provides methods for using one or more elements of a engineered targetable nuclease system. A targetable nuclease complex of the disclosure provides an effective means for modifying a target sequence within a target polynucleotide. A targetable nuclease complex of the disclosure has a wide variety of utility including modifying (e.g., deleting, inserting, translocating, inactivating, activating) a target sequence in a multiplicity of cell types. As such a targetable nuclease complex of the disclosure has a broad spectrum of applications in, e.g., biochemical pathway optimization, genome-wide studies, genome engineering, gene therapy, drug screening, disease diagnosis, and prognosis. An exemplary targetable nuclease complex comprises a nucleic acid-guided nuclease as disclosed herein complexed with a guide nucleic acid, wherein the guide sequence of the guide nucleic acid can hybridize to a target sequence within the target polynucleotide. A guide nucleic acid can comprise a guide sequence linked to a scaffold sequence. A scaffold sequence can comprise one or more sequence regions with a degree of complementarity such that together they form a secondary structure. In some cases, the one or more sequence regions are comprised or encoded on the same polynucleotide. In some cases, the one or more sequence regions are comprised or encoded on separate polynucleotides.
Provided herein are methods of cleaving a target polynucleotide. The method comprises cleaving a target polynucleotide using a targetable nuclease complex that binds to a target sequence within a target polynucleotide and effect cleavage of said target polynucleotide. Typically, the targetable nuclease complex of the disclosure, when introduced into a cell, creates a break (e.g., a single or a double strand break) in the target sequence. For example, the method can be used to cleave a target gene in a cell, or to replace a wildtype sequence with a modified sequence.
The break created by the targetable nuclease complex can be repaired by a repair processes such as the error prone non-homologous end joining (NHEJ) pathway, the high fidelity homology-directed repair (HDR), or by recombination pathways. During these repair processes, a editing template can be introduced into the genome sequence. In some methods, the HDR or recombination process is used to modify a target sequence. For example, an editing template comprising a sequence to be integrated flanked by an upstream sequence and a downstream sequence is introduced into a cell. The upstream and downstream sequences share sequence similarity with either side of the site of integration in the chromosome, target vector, or target polynucleotide.
An editing template can be DNA or RNA, e.g., a DNA plasmid, a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), a viral vector, a linear piece of DNA, a PCR fragment, oligonucleotide, synthetic polynucleotide, a naked nucleic acid, or a nucleic acid complexed with a delivery vehicle such as a liposome or poloxamer.
An editing template polynucleotide can comprise a sequence to be integrated (e.g, a mutated gene). A sequence for integration may be a sequence endogenous or exogenous to the cell. Examples of a sequence to be integrated include polynucleotides encoding a protein or a non-coding RNA (e.g., a microRNA). Thus, the sequence for integration may be operably linked to an appropriate control sequence or sequences. Alternatively, the sequence to be integrated may provide a regulatory function. Sequences to be integrated may be a mutated or variant of an endogenous wildtype sequence. Alternatively, sequences to be integrated may be a wildtype version of an endogenous mutated sequence. Additionally or alternatively, sequences to be integrated may be a variant or mutated form of an endogenous mutated or variant sequence.
Upstream and downstream sequences in an editing template polynucleotide can be selected to promote recombination between the target polynucleotide of interest and the editing template polynucleotide. The upstream sequence can be a nucleic acid sequence having sequence similarity with the sequence upstream of the targeted site for integration. Similarly, the downstream sequence can be a nucleic acid sequence having similarity with the sequence downstream of the targeted site of integration. The upstream and downstream sequences in an editing template can have 75%, 80%, 85%, 90%, 95%, or 100% sequence identity with the targeted polynucleotide. Preferably, the upstream and downstream sequences in the editing template polynucleotide have about 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with the targeted polynucleotide. In some methods, the upstream and downstream sequences in the editing template polynucleotide have about 99% or 100% sequence identity with the targeted polynucleotide.
An upstream or downstream sequence may comprise from about 20 bp to about 2500 bp, for example, about 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 bp. In some methods, the exemplary upstream or downstream sequence has about 15 bp to about 50 bp, about 30 bp to about 100 bp, about 200 bp to about 2000 bp, about 600 bp to about 1000 bp, or more particularly about 700 bp to about 1000 bp.
In some methods, the editing template polynucleotide may further comprise a marker. Such a marker may make it easy to screen for targeted integrations. Examples of suitable markers include restriction sites, fluorescent proteins, or selectable markers. The exogenous polynucleotide template of the disclosure can be constructed using recombinant techniques (see, for example, Green and Sambrook et al., 2014 and Ausubel et al., 2017).
In an exemplary method for modifying a target polynucleotide by integrating an editing template polynucleotide, a double stranded break is introduced into the genome sequence by a nuclease complex, the break can be repaired via homologous recombination using an editing template such that the template is integrated into the target polynucleotide. The presence of a double-stranded break can increase the efficiency of integration of the editing template.
Disclosed herein are methods for modifying expression of a polynucleotide in a cell. Some methods comprise increasing or decreasing expression of a target polynucleotide by using a targetable nuclease complex that binds to the target polynucleotide.
In some methods, a target polynucleotide can be inactivated to effect the modification of the expression in a cell. For example, upon the binding of a targetable nuclease complex to a target sequence in a cell, the target polynucleotide is inactivated such that the sequence is not transcribed, the coded protein is not produced, or the sequence does not function as the wild-type sequence does. For example, a protein or microRNA coding sequence may be inactivated such that the protein is not produced.
In some methods, a control sequence can be inactivated such that it no longer functions as a regulatory sequence. As used herein, “regulatory sequence” can refer to any nucleic acid sequence that effects the transcription, translation, or accessibility of a nucleic acid sequence. Examples of regulatory sequences include, a promoter, a transcription terminator, and an enhancer.
An inactivated target sequence may include a deletion mutation (i.e., deletion of one or more nucleotides), an insertion mutation (i.e., insertion of one or more nucleotides), or a nonsense mutation (i.e., substitution of a single nucleotide for another nucleotide such that a stop codon is introduced). In some methods, the inactivation of a target sequence results in “knockout” of the target sequence.
An altered expression of one or more target polynucleotides associated with a signaling biochemical pathway can be determined by assaying for a difference in the mRNA levels of the corresponding genes between the test model cell and a control cell, when they are contacted with a candidate agent. Alternatively, the differential expression of the sequences associated with a signaling biochemical pathway is determined by detecting a difference in the level of the encoded polypeptide or gene product.
To assay for an agent-induced alteration in the level of mRNA transcripts or corresponding polynucleotides, nucleic acid contained in a sample is first extracted according to standard methods in the art. For instance, mRNA can be isolated using various lytic enzymes or chemical solutions according to the procedures set forth in Green and Sambrook (2014), or extracted by nucleic-acid-binding resins following the accompanying instructions provided by the manufacturers. The mRNA contained in the extracted nucleic acid sample is then detected by amplification procedures or conventional hybridization assays (e.g. Northern blot analysis) according to methods widely known in the art or based on the methods exemplified herein.
For purpose of this disclosure, amplification means any method employing a primer and a polymerase capable of replicating a target sequence with reasonable fidelity. Amplification may be carried out by natural or recombinant DNA polymerases such as TaqGold™, T7 DNA polymerase, Klenow fragment of E. coli DNA polymerase, and reverse transcriptase. A preferred amplification method is PCR. In particular, the isolated RNA can be subjected to a reverse transcription assay that is coupled with a quantitative polymerase chain reaction (RT-PCR) in order to quantify the expression level of a sequence associated with a signaling biochemical pathway.
Detection of the gene expression level can be conducted in real time in an amplification assay. In one aspect, the amplified products can be directly visualized with fluorescent DNA-binding agents including but not limited to DNA intercalators and DNA groove binders. Because the amount of the intercalators incorporated into the double-stranded DNA molecules is typically proportional to the amount of the amplified DNA products, one can conveniently determine the amount of the amplified products by quantifying the fluorescence of the intercalated dye using conventional optical systems in the art. DNA-binding dye suitable for this application include SYBR green, SYBR blue, DAPI, propidium iodine, Hoeste, SYBR gold, ethidium bromide, acridines, proflavine, acridine orange, acriflavine, fluorcoumanin, ellipticine, daunomycin, chloroquine, distamycin D, chromomycin, homidium, mithramycin, ruthenium polypyridyls, anthramycin, and the like.
In another aspect, other fluorescent labels such as sequence specific probes can be employed in the amplification reaction to facilitate the detection and quantification of the amplified products. Probe-based quantitative amplification relies on the sequence-specific detection of a desired amplified product. It utilizes fluorescent, target-specific probes (e.g., TaqMan™ probes) resulting in increased specificity and sensitivity. Methods for performing probe-based quantitative amplification are well established in the art and are taught in U.S. Pat. No. 5,210,015.
In yet another aspect, conventional hybridization assays using hybridization probes that share sequence homology with sequences associated with a signaling biochemical pathway can be performed. Typically, probes are allowed to form stable complexes with the sequences associated with a signaling biochemical pathway contained within the biological sample derived from the test subject in a hybridization reaction. It will be appreciated by one of skill in the art that where antisense is used as the probe nucleic acid, the target polynucleotides provided in the sample are chosen to be complementary to sequences of the antisense nucleic acids. Conversely, where the nucleotide probe is a sense nucleic acid, the target polynucleotide is selected to be complementary to sequences of the sense nucleic acid.
Hybridization can be performed under conditions of various stringency, for instance as described herein. Suitable hybridization conditions for the practice of the present disclosure are such that the recognition interaction between the probe and sequences associated with a signaling biochemical pathway is both sufficiently specific and sufficiently stable. Conditions that increase the stringency of a hybridization reaction are widely known and published in the art. See, for example, (Green and Sambrook, et al., (2014); Nonradioactive in Situ Hybridization Application Manual, Boehringer Mannheim, second edition). The hybridization assay can be formed using probes immobilized on any solid support, including but are not limited to nitrocellulose, glass, silicon, and a variety of gene arrays. A preferred hybridization assay is conducted on high-density gene chips as described in U.S. Pat. No. 5,445,934.
For a convenient detection of the probe-target complexes formed during the hybridization assay, the nucleotide probes are conjugated to a detectable label. Detectable labels suitable for use in the present disclosure include any composition detectable by photochemical, biochemical, spectroscopic, immunochemical, electrical, optical or chemical means. A wide variety of appropriate detectable labels are known in the art, which include fluorescent or chemiluminescent labels, radioactive isotope labels, enzymatic or other ligands. In preferred embodiments, one will likely desire to employ a fluorescent label or an enzyme tag, such as digoxigenin, .beta.-galactosidase, urease, alkaline phosphatase or peroxidase, avidin/biotin complex.
Detection methods used to detect or quantify the hybridization intensity will typically depend upon the label selected above. For example, radiolabels may be detected using photographic film or a phosphoimager. Fluorescent markers may be detected and quantified using a photodetector to detect emitted light. Enzymatic labels are typically detected by providing the enzyme with a substrate and measuring the reaction product produced by the action of the enzyme on the substrate; and finally colorimetric labels are detected by simply visualizing the colored label.
An agent-induced change in expression of sequences associated with a signaling biochemical pathway can also be determined by examining the corresponding gene products. Determining the protein level typically involves a) contacting the protein contained in a biological sample with an agent that specifically bind to a protein associated with a signaling biochemical pathway; and (b) identifying any agent:protein complex so formed. In one aspect of this embodiment, the agent that specifically binds a protein associated with a signaling biochemical pathway is an antibody, preferably a monoclonal antibody.
The reaction can be performed by contacting the agent with a sample of the proteins associated with a signaling biochemical pathway derived from the test samples under conditions that will allow a complex to form between the agent and the proteins associated with a signaling biochemical pathway. The formation of the complex can be detected directly or indirectly according to standard procedures in the art. In the direct detection method, the agents are supplied with a detectable label and unreacted agents may be removed from the complex; the amount of remaining label thereby indicating the amount of complex formed. For such method, it is preferable to select labels that remain attached to the agents even during stringent washing conditions. It is preferable that the label does not interfere with the binding reaction. In the alternative, an indirect detection procedure may use an agent that contains a label introduced either chemically or enzymatically. A desirable label generally does not interfere with binding or the stability of the resulting agent:polypeptide complex. However, the label is typically designed to be accessible to an antibody for an effective binding and hence generating a detectable signal.
A wide variety of labels suitable for detecting protein levels are known in the art. Non-limiting examples include radioisotopes, enzymes, colloidal metals, fluorescent compounds, bioluminescent compounds, and chemiluminescent compounds.
The amount of agent:polypeptide complexes formed during the binding reaction can be quantified by standard quantitative assays. As illustrated above, the formation of agent:polypeptide complex can be measured directly by the amount of label remained at the site of binding. In an alternative, the protein associated with a signaling biochemical pathway is tested for its ability to compete with a labeled analog for binding sites on the specific agent. In this competitive assay, the amount of label captured is inversely proportional to the amount of protein sequences associated with a signaling biochemical pathway present in a test sample.
A number of techniques for protein analysis based on the general principles outlined above are available in the art. They include but are not limited to radioimmunoassays, ELISA (enzyme linked immunoradiometric assays), “sandwich” immunoassays, immunoradiometric assays, in situ immunoassays (using e.g., colloidal gold, enzyme or radioisotope labels), western blot analysis, immunoprecipitation assays, immunofluorescent assays, and SDS-PAGE.
Antibodies that specifically recognize or bind to proteins associated with a signaling biochemical pathway are preferable for conducting the aforementioned protein analyses. Where desired, antibodies that recognize a specific type of post-translational modifications (e.g., signaling biochemical pathway inducible modifications) can be used. Post-translational modifications include but are not limited to glycosylation, lipidation, acetylation, and phosphorylation. These antibodies may be purchased from commercial vendors. For example, anti-phosphotyrosine antibodies that specifically recognize tyrosine-phosphorylated proteins are available from a number of vendors including Invitrogen and Perkin Elmer. Anti-phosphotyrosine antibodies are particularly useful in detecting proteins that are differentially phosphorylated on their tyrosine residues in response to an ER stress. Such proteins include but are not limited to eukaryotic translation initiation factor 2 alpha (eIF-2a). Alternatively, these antibodies can be generated using conventional polyclonal or monoclonal antibody technologies by immunizing a host animal or an antibody-producing cell with a target protein that exhibits the desired post-translational modification.
In practicing a subject method, it may be desirable to discern the expression pattern of a protein associated with a signaling biochemical pathway in different bodily tissue, in different cell types, and/or in different subcellular structures. These studies can be performed with the use of tissue-specific, cell-specific or subcellular structure specific antibodies capable of binding to protein markers that are preferentially expressed in certain tissues, cell types, or subcellular structures.
An altered expression of a gene associated with a signaling biochemical pathway can also be determined by examining a change in activity of the gene product relative to a control cell. The assay for an agent-induced change in the activity of a protein associated with a signaling biochemical pathway will dependent on the biological activity and/or the signal transduction pathway that is under investigation. For example, where the protein is a kinase, a change in its ability to phosphorylate the downstream substrate(s) can be determined by a variety of assays known in the art. Representative assays include but are not limited to immunoblotting and immunoprecipitation with antibodies such as anti-phosphotyrosine antibodies that recognize phosphorylated proteins. In addition, kinase activity can be detected by high throughput chemiluminescent assays such as AlphaScreen™ (available from Perkin Elmer) and eTag™ assay (Chan-Hui, et al. (2003) Clinical Immunology 111: 162-174).
Where the protein associated with a signaling biochemical pathway is part of a signaling cascade leading to a fluctuation of intracellular pH condition, pH sensitive molecules such as fluorescent pH dyes can be used as the reporter molecules. In another example where the protein associated with a signaling biochemical pathway is an ion channel, fluctuations in membrane potential and/or intracellular ion concentration can be monitored. A number of commercial kits and high-throughput devices are particularly suited for a rapid and robust screening for modulators of ion channels. Representative instruments include FLIPR™ (Molecular Devices, Inc.) and VIPR (Aurora Biosciences). These instruments are capable of detecting reactions in over 1000 sample wells of a microplate simultaneously, and providing real-time measurement and functional data within a second or even a minisecond.
In practicing any of the methods disclosed herein, a suitable vector can be introduced to a cell, tissue, organism, or an embryo via one or more methods known in the art, including without limitation, microinjection, electroporation, sonoporation, biolistics, calcium phosphate-mediated transfection, cationic transfection, liposome transfection, dendrimer transfection, heat shock transfection, nucleofection transfection, magnetofection, lipofection, impalefection, optical transfection, proprietary agent-enhanced uptake of nucleic acids, and delivery via liposomes, immunoliposomes, virosomes, or artificial virions. In some methods, the vector is introduced into an embryo by microinjection. The vector or vectors may be microinjected into the nucleus or the cytoplasm of the embryo. In some methods, the vector or vectors may be introduced into a cell by nucleofection.
A target polynucleotide of a targetable nuclease complex can be any polynucleotide endogenous or exogenous to the host cell. For example, the target polynucleotide can be a polynucleotide residing in the nucleus of the eukaryotic cell, the genome of a prokaryotic cell, or an extrachromosomal vector of a host cell. The target polynucleotide can be a sequence coding a gene product (e.g., a protein) or a non-coding sequence (e.g., a regulatory polynucleotide or a junk DNA).
Examples of target polynucleotides include a sequence associated with a signaling biochemical pathway, e.g., a signaling biochemical pathway-associated gene or polynucleotide. Examples of target polynucleotides include a disease associated gene or polynucleotide. A “disease-associated” gene or polynucleotide refers to any gene or polynucleotide which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or cells of a non-disease control. It may be a gene that becomes expressed at an abnormally high level; it may be a gene that becomes expressed at an abnormally low level, where the altered expression correlates with the occurrence and/or progression of the disease. A disease-associated gene also refers to a gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with a gene(s) that is responsible for the etiology of a disease. The transcribed or translated products may be known or unknown, and may be at a normal or abnormal level.
Embodiments of the disclosure also relate to methods and compositions related to knocking out genes, editing genes, altering genes, amplifying genes, and repairing particular mutations. Altering genes may also mean the epigenetic manipulation of a target sequence. This may be the chromatin state of a target sequence, such as by modification of the methylation state of the target sequence (i.e. addition or removal of methylation or methylation patterns or CpG islands), histone modification, increasing or reducing accessibility to the target sequence, or by promoting 3D folding. It will be appreciated that where reference is made to a method of modifying a cell, organism, or mammal including human or a non-human mammal or organism by manipulation of a target sequence in a genomic locus of interest, this may apply to the organism (or mammal) as a whole or just a single cell or population of cells from that organism (if the organism is multicellular). In the case of humans, for instance, Applicants envisage, inter alia, a single cell or a population of cells and these may preferably be modified ex vivo and then re-introduced. In this case, a biopsy or other tissue or biological fluid sample may be necessary. Stem cells are also particularly preferred in this regard. And the disclosure is especially advantageous as to HSCs.
The functionality of a targetable nuclease complex can be assessed by any suitable assay. For example, the components of a targetable nuclease system sufficient to form a targetable nuclease complex, including a guide nucleic acid and nucleic acid-guided nuclease, can be provided to a host cell having the corresponding target sequence, such as by transfection with vectors encoding the components of the engineered nuclease system, followed by an assessment of preferential cleavage within the target sequence. Similarly, cleavage of a target sequence may be evaluated in a test tube by providing the target sequence and components of a targetable nuclease complex. Other assays are possible, and will occur to those skilled in the art. A guide sequence can be selected to target any target sequence. In some embodiments, the target sequence is a sequence within a genome of a cell. Exemplary target sequences include those that are unique in the target genome. Any method disclosed herein, including assembly of the various vectors, expression cassettes, exogenous sequences and the like may be performed manually or via the automated instruments and systems described herein.
Disclosed herein are compositions and methods for editing a target polynucleotide sequence. Such compositions include polynucleotides containing one or more components of targetable nuclease system. Polynucleotide sequences for use in these methods can be referred to as editing cassettes.
An editing cassette can comprise one or more primer sites. Primer sites can be used to amplify an editing cassette by using oligonucleotide primers comprising reverse complementary sequences that can hybridize to the one or more primer sites. An editing cassette can comprise two or more primer site. Sometimes, an editing cassette comprises a primer site on each end of the editing cassette, said primer sites flanking one or more of the other components of the editing cassette. Primer sites can be approximately 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 or more nucleotides in length.
An editing cassette can comprise an editing template as disclosed herein. An editing cassette can comprise an editing sequence. An editing sequence can be homologous to a target sequence. An editing sequence can comprise at least one mutation relative to a target sequence. An editing sequence often comprises homology region (or homology arms) flanking at least one mutation relative to a target sequence, such that the flanking homology regions facilitate homologous recombination of the editing sequence into a target sequence. An editing sequence can comprise an editing template as disclosed herein. For example, the editing sequence can comprise at least one mutation relative to a target sequence including one or more PAM mutations that mutate or delete a PAM site. An editing sequence can comprise one or more mutations in a codon or non-coding sequence relative to a non-editing target site.
A PAM mutation can be a silent mutation. A silent mutation can be a change to at least one nucleotide of a codon relative to the original codon that does not change the amino acid encoded by the original codon. A silent mutation can be a change to a nucleotide within a non-coding region, such as an intron, 5′ untranslated region, 3′ untranslated region, or other non-coding region.
A PAM mutation can be a non-silent mutation. Non-silent mutations can include a missense mutation. A missense mutation can be when a change to at least one nucleotide of a codon relative to the original codon that changes the amino acid encoded by the original codon. Missense mutations can occur within an exon, open reading frame, or other coding region.
An editing sequence can comprise at least one mutation relative to a target sequence. A mutation can be a silent mutation or non-silent mutation, such as a missense mutation. A mutation can include an insertion of one or more nucleotides or base pairs. A mutation can include a deletion of one or more nucleotides or base pairs. A mutation can include a substitution of one or more nucleotides or base pairs for a different one or more nucleotides or base pairs. Inserted or substituted sequences can include exogenous or heterologous sequences.
An editing cassette can comprise a polynucleotide encoding a guide nucleic acid sequence. In some cases, the guide nucleic acid sequence is optionally operably linked to a promoter. A guide nucleic acid sequence can comprise a scaffold sequence and a guide sequence as described herein.
An editing cassette can comprise a barcode. A barcode can be a unique DNA sequence that corresponds to the editing sequence such that the barcode can identify the one or more mutations of the corresponding editing sequence. In some examples, the barcode is 15 nucleotides. The barcode can comprise less than 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 88, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, or more than 200 nucleotides. A barcode can be a non-naturally occurring sequence. An editing cassette comprising a barcode can be a non-naturally occurring sequence.
An editing cassette can comprise one or more of an editing sequence and a polynucleotide encoding a guide nucleic acid optionally operably linked to a promoter, wherein the editing cassette and guide nucleic acid sequence are flanked by primer sites. An editing cassette can further comprise a barcode. Each editing cassette can be designed to edit a site in a target sequence Sites to be targeted can be coding regions, non-coding regions, functionally neutral sites, or they can be a screenable or selectable marker gene. Homology regions within the editing sequence flank the one or more mutations of the editing cassette and can be inserted into the target sequence by recombination. Recombination can comprise DNA cleavage, such as by a nucleic acid-guided nuclease, and repair via homologous recombination.
Editing cassettes can be generated by chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, overlapping oligo extension, in vitro assembly, in vitro oligo assembly, PCR, traditional ligation-based cloning, other known methods in the art, or any combination thereof.
Trackable sequences, such as barcodes or recorder sequences, can be designed in silico via standard code with a degenerate mutation at the target codon. The degenerate mutation can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more than 30 nucleic acid residues. In some examples, the degenerate mutations can comprise 15 nucleic acid residues (N15).
Homology arms can be added to an editing sequence to allow incorporation of the editing sequence into the desired location via homologous recombination or homology-driven repair. Homology arms can be added by synthesis, in vitro assembly, PCR, or other known methods in the art. For example, chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, overlapping oligo extension, in vitro assembly, in vitro oligo assembly, PCR, traditional ligation-based cloning, other known methods in the art, or any combination thereof. A homology arm can be added to both ends of a barcode, recorder sequence, and/or editing sequence, thereby flanking the sequence with two distinct homology arms, for example, a 5′ homology arm and a 3′ homology arm.
A homology arm can comprise sequence homologous to a target sequence. A homology arm can comprise sequence homologous to sequence adjacent to a target sequence. A homology arm can comprise sequence homologous to sequence upstream or downstream of a target sequence. A homology arm can comprise sequence homologous to sequence within the same gene or open reading frame as a target sequence. A homology arm can comprise sequence homologous to sequence upstream or downstream of a gene or open reading frame the target sequence is within. A homology arm can comprise sequence homologous to a 5′ UTR or 3′ UTR of a gene or open reading frame within which is a target sequence. A homology arm can comprise sequence homologous to a different gene, open reading frame, promoter, terminator, or nucleic acid sequence than that which the target sequence is within.
The same 5′ and 3′ homology arms can be added to a plurality of distinct editing sequences, thereby generating a library of unique editing sequences that each have the same targeted insertion site. The same 5′ and 3′ homology arms can be added to a plurality of distinct editing templates, thereby generating a library of unique editing templates that each have the same targeted insertion site. In alternative examples, different or a variety of 5′ or 3′ homology arms can be added to a plurality of editing sequences or editing templates.
A barcode library or recorder sequence library comprising flanking homology arms can be cloned into a vector backbone. In some examples, the barcode comprising flanking homology arms are cloned into an editing cassette. Cloning can occur by chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, overlapping oligo extension, in vitro assembly, in vitro oligo assembly, PCR, traditional ligation-based cloning, other known methods in the art, or any combination thereof.
An editing sequence library comprising flanking homology arms can be cloned into a vector backbone. In some examples, the editing sequence and homology arms are cloned into an editing cassette. Editing cassettes can, in some cases, further comprise a nucleic acid sequence encoding a guide nucleic acid or gRNA engineered to target the desired site of editing sequence insertion, e.g. the target sequence. Editing cassettes can, in some cases, further comprise a barcode or recorder sequence.
Gene-wide or genome-wide editing libraries can be cloned into a vector backbone. A barcode or recorder sequence library can be inserted or assembled into a second site to generate competent trackable plasmids that can embed the recording barcode at a fixed locus while integrating the editing libraries at a wide variety of user defined sites. Cloning can occur by chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, overlapping oligo extension, in vitro assembly, in vitro oligo assembly, PCR, traditional ligation-based cloning, other known methods in the art, or any combination thereof.
A guide nucleic acid or sequence can be assembled or inserted into a vector backbone first, followed by insertion of an editing sequence and/or cassette. In other cases, an editing sequence and/or cassette can be inserted or assembled into a vector backbone first, followed by insertion of a guide nucleic acid or sequence encoding the same. In other cases, guide nucleic acid or sequence encoding the same and an editing sequence and/or cassette are simultaneously inserted or assembled into a vector. A recorder sequence or barcode can be inserted before or after any of these steps. In other words, it should be understood that there are many possible permutations to the order in which elements of the disclosure are assembled. The vector can be linear or circular and can be generated by chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, overlapping oligo extension, in vitro assembly, in vitro oligo assembly, PCR, traditional ligation-based cloning, other known methods in the art, or any combination thereof.
A nucleic acid molecule can be synthesized which comprises one or more elements disclosed herein. A nucleic acid molecule can be synthesized that comprises an editing cassette. A nucleic acid molecule can be synthesized that comprises a guide nucleic acid. A nucleic acid molecule can be synthesized that comprises a recorder cassette. A nucleic acid molecule can be synthesized that comprises a barcode. A nucleic acid molecule can be synthesized that comprises a homology arm. A nucleic acid molecule can be synthesized that comprises an editing cassette and a guide nucleic acid. A nucleic acid molecule can be synthesized that comprises an editing cassette and a barcode. A nucleic acid molecule can be synthesized that comprises an editing cassette, a guide nucleic acid, and a recorder cassette. A nucleic acid molecule can be synthesized that comprises an editing cassette, a recorder cassette, and two guide nucleic acids. A nucleic acid molecule can be synthesized that comprises a recorder cassette and a guide nucleic acid. In any of these cases, the guide nucleic acid can optionally be operably linked to a promoter. In any of these cases, the nucleic acid molecule can further include one or more barcodes.
Synthesis can occur by any nucleic acid synthesis method known in the art. Synthesis can occur by enzymatic nucleic acid synthesis. Synthesis can occur by chemical synthesis. Synthesis can occur by array-based synthesis. Synthesis can occur by solid-phase synthesis or phosphoramidite methods. Synthesis can occur by column or multi-well methods. Synthesized nucleic acid molecules can be non-naturally occurring nucleic acid molecules.
Software and automation methods can be used for multiplex synthesis and generation. For example, software and automation can be used to create 10, 102, 103, 104, 105, 106, or more synthesized polynucleotides, cassettes, or plasmids. An automation method can generate desired sequences and libraries in rapid fashion that can be processed through a workflow with minimal steps to produce precisely defined libraries, such as gene-wide or genome-wide editing libraries.
Polynucleotides or libraries can be generated which comprise two or more nucleic acid molecules or plasmids comprising any combination disclosed herein of recorder sequence, editing sequence, guide nucleic acid, and optional barcode, including combinations of one or more of any of the previously mentioned elements. For example, such a library can comprise at least 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 104, 105, 106, 107, 108, 109, 1010, or more nucleic acid molecules or plasmids of the present disclosure. It should be understood that such a library can include any number of nucleic acid molecules or plasmids, even if the specific number is not explicit listed above.
Trackable plasmid libraries or nucleic acid molecule libraries can be sequenced in order to determine the recorder sequence and editing sequence pair that is comprised on each trackable plasmid. In other cases, a known recorder sequence is paired with a known editing sequence during the library generation process. Other methods of determining the association between a recorder sequence and editing sequence comprised on a common nucleic acid molecule or plasmid are envisioned such that the editing sequence can be identified by identification or sequencing of the recorder sequence.
Methods and compositions for tracking edited episomal libraries that are shuttled between E. coli and other organisms/cell lines are provided herein. The libraries can be comprised on plasmids, Bacterial artificial chromosomes (BACs), Yeast artificial chromosomes (YACs), synthetic chromosomes, or viral or phage genomes. These methods and compositions can be used to generate portable barcoded libraries in host organisms, such as E. coli. Library generation in such organisms can offer the advantage of established techniques for performing homologous recombination. Barcoded plasmid libraries can be deep-sequenced at one site to track mutational diversity targeted across the remaining portions of the plasmid allowing dramatic improvements in the depth of library coverage.
Any nucleic acid molecule disclosed herein can be an isolated nucleic acid. Isolated nucleic acids may be made by any method known in the art, for example using standard recombinant methods, assembly methods, synthesis techniques, or combinations thereof. In some embodiments, the nucleic acids may be cloned, amplified, assembled, or otherwise constructed.
Isolated nucleic acids may be obtained from cellular, bacterial, or other sources using any number of cloning methodologies known in the art. In some embodiments, oligonucleotide probes which selectively hybridize, under stringent conditions, to other oligonucleotides or to the nucleic acids of an organism or cell can be used to isolate or identify an isolated nucleic acid.
Cellular genomic DNA, RNA, or cDNA may be screened for the presence of an identified genetic element of interest using a probe based upon one or more sequences. Various degrees of stringency of hybridization may be employed in the assay.
High stringency conditions for nucleic acid hybridization are well known in the art. For example, conditions may comprise low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50° C. to about 70° C. It is understood that the temperature and ionic strength of a desired stringency are determined in part by the length of the particular nucleic acid(s), the length and nucleotide content of the target sequence(s), the charge composition of the nucleic acid(s), and by the presence or concentration of formamide, tetramethylammonium chloride or other solvent(s) in a hybridization mixture. Nucleic acids may be completely complementary to a target sequence or may exhibit one or more mismatches.
Nucleic acids of interest may also be amplified using a variety of known amplification techniques. For instance, polymerase chain reaction (PCR) technology may be used to amplify target sequences directly from DNA, RNA, or cDNA. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences, to make nucleic acids to use as probes for detecting the presence of a target nucleic acid in samples, for nucleic acid sequencing, or for other purposes.
Isolated nucleic acids may be prepared by direct chemical synthesis by methods such as the phosphotriester method, or using an automated synthesizer. Chemical synthesis generally produces a single stranded oligonucleotide. This may be converted into double stranded DNA by hybridization with a complementary sequence or by polymerization with a DNA polymerase using the single strand as a template.
In some examples, two editing cassettes can be used together to track a genetic engineering step. For example, one editing cassette can comprise an editing template and an encoded guide nucleic acid, and a second editing cassette, referred to as a recorder cassette, can comprise an editing template comprising a recorder sequence and an encoded nucleic acid which has a distinct guide sequence compared to that of the first editing cassette. In such cases, the editing sequence and the recorder sequence can be inserted into separate target sequences and determined by their corresponding guide nucleic acids. A recorder sequence can comprise a barcode, trackable or traceable sequence, and/or a regulatory element operable with a screenable or selectable marker.
Through a multiplexed cloning approach, the recorder cassette can be covalently coupled to at least one editing cassette in a plasmid to generate plasmid libraries that have a unique recorder and editing cassette combination. This library can be sequenced to generate the recorder/edit mapping and used to track editing libraries across large segments of the target DNA. Recorder and editing sequences can be comprised on the same cassette, in which case they are both incorporated into the target nucleic acid sequence, such as a genome or plasmid, by the same recombination event. In other examples, the recorder and editing sequences can be comprised on separate cassettes within the same plasmid, in which case the recorder and editing sequences are incorporated into the target nucleic acid sequence by separate recombination events, either simultaneously or sequentially.
Methods are provided herein for combining multiplex oligonucleotide synthesis with recombineering, to create libraries of specifically designed and trackable mutations. Screens and/or selections followed by high-throughput sequencing and/or barcode microarray methods can allow for rapid mapping of mutations leading to a phenotype of interest.
Methods and compositions disclosed herein can be used to simultaneously engineer and track engineering events in a target nucleic acid sequence.
Such plasmids can be generated using in vitro assembly or cloning techniques. For example, the plasmids can be generated using chemical synthesis, Gibson assembly, SLIC, CPEC, PCA, ligation-free cloning, other in vitro oligo assembly techniques, traditional ligation-based cloning, or any combination thereof. Alternatively, plasmids can be generated via in vivo methods, such as lambda red mediated recombination or via gap repair in yeast.
Such plasmids can comprise at least one recording sequence, such as a barcode, and at least one editing sequence. In most cases, the recording sequence is used to record and track engineering events. Each editing sequence can be used to incorporate a desired edit into a target nucleic acid sequence. The desired edit can include insertion, deletion, substitution, or alteration of the target nucleic acid sequence. In some examples, the one or more recording sequence and editing sequences are comprised on a single cassette comprised within the plasmid such that they are incorporated into the target nucleic acid sequence by the same engineering event. In other examples, the recording and editing sequences are comprised on separate cassettes within the plasmid such that they are each incorporated into the target nucleic acid by distinct engineering events. In some examples, the plasmid comprises two or more editing sequences. For example, one editing sequence can be used to alter or silence a PAM sequence while a second editing sequence can be used to incorporate a mutation into a distinct sequence.
Recorder sequences can be inserted into a site separated from the editing sequence insertion site. The inserted recorder sequence can be separated from the editing sequence by 1 bp to 1 Mbp. For example, the separation distance can be about 1 bp, 10 bp, 50 bp, 100 bp, 500 bp, 1 kp, 2 kb, 5 kb, 10 kb, or greater. The separation distance can be any discrete integer between 1 bp and 10 Mbp. In some examples, the maximum distance of separation depends on the size of the target nucleic acid or genome.
Recorder sequences can be inserted adjacent to editing sequences, or within proximity to the editing sequence. For example, the recorder sequence can be inserted outside of the open reading frame within which the editing sequence is inserted. Recorder sequence can be inserted into an untranslated region adjacent to an open reading frame within which an editing sequence has been inserted. The recorder sequence can be inserted into a functionally neutral or non-functional site. The recorder sequence can be inserted into a screenable or selectable marker gene.
In some examples, the target nucleic acid sequence is comprised within a genome, artificial chromosome, synthetic chromosome, or episomal plasmid. In various examples, the target nucleic acid sequence can be in vitro or in cells. When the target nucleic acid sequence is in cells, the plasmid can be introduced into the host organisms by transformation, transfection, conjugation, biolistics, nanoparticles, cell-permeable technologies, or other known methods for DNA delivery, or any combination thereof. In such examples, the host organism can be a eukaryote, prokaryote, bacterium, archaea, yeast, or other fungi.
The engineering event can comprise recombineering, non-homologous end joining, homologous recombination, or homology-driven repair. In some examples, the engineering event is performed in cells.
The methods described herein can be carried out in any type of cell in which a targetable nuclease system can function (e.g., target and cleave DNA), including prokaryotic and eukaryotic cells. In some embodiments the cell is a bacterial cell, such as Escherichia spp. (e.g., E. coli). In other embodiments, the cell is a fungal cell, such as a yeast cell, e.g., Saccharomyces spp. In other embodiments, the cell is an algal cell, a plant cell, an insect cell, or a mammalian cell, including a human cell.
In some examples, the cell is a recombinant organism. For example, the cell can comprise a non-native targetable nuclease system. Additionally or alternatively, the cell can comprise recombination system machinery. Such recombination systems can include lambda red recombination system, Cre/Lox, attB/attP, or other integrase systems. Where appropriate, the plasmid can have the complementary components or machinery required for the selected recombination system to work correctly and efficiently.
Method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing cassette; (c) obtaining viable cells; and (d) sequencing the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.
A method for genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette comprising a PAM mutation as disclosed herein and at least one guide nucleic acid into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease operably linked to a constitutive promoter is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing cassette, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; (c) obtaining viable cells; and (d) sequencing the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon.
Method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, at least one recorder cassette, and at least two guide nucleic acids into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease operably linked to a constitutive promoter is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage and incorporation of the editing and recorder cassettes; (c) obtaining viable cells; and (d) sequencing the recorder sequence of the target DNA molecule in at least one cell of the second population of cells to identify the mutation of at least one codon.
In some examples where the plasmid comprises a second editing sequence designed to silence a PAM, a method for trackable genome editing can comprise: (a) introducing a vector that encodes at least one editing cassette, a recorder cassette, and at least two guide nucleic acids into a first population of cells, thereby producing a second population of cells comprising the vector; (b) maintaining the second population of cells under conditions in which a nucleic acid-guided nuclease operably linked to a constitutive promoter is expressed or maintained, wherein the nucleic acid-guided nuclease is encoded on the vector, a second vector, on the genome of cells of the second population of cells, or otherwise introduced into the cell, resulting in DNA cleavage, incorporation of the editing and recorder cassettes, and death of cells of the second population of cells that do not comprise the PAM mutation, whereas cells of the second population of cells that comprise the PAM mutation are viable; (c) obtaining viable cells; and (d) sequencing the recorder sequence of the target DNA in at least one cell of the second population of cells to identify the mutation of at least one codon.
In some examples transformation efficiency is determined by using a non-targeting control guide nucleic acid, which allows for validation of the recombineering procedure and CFU/ng calculations. In some cases, absolute efficiency is obtained by counting the total number of colonies on each transformation plate, for example, by counting both red and white colonies from a galK control. In some examples, relative efficiency is calculated by the total number of successful transformants (for example, white colonies) out of all colonies from a control (for example, galK control).
The methods, systems and instruments of the disclosure can provide, for example, greater than 1000× improvements in the efficiency, scale, cost of generating a combinatorial library, and/or precision of such library generation.
The methods, systems and instruments of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater improvement in the efficiency of generating genomic or combinatorial libraries.
The methods, systems and instruments of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater improvement in the scale of generating genomic or combinatorial libraries.
The methods, systems and instruments of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater decrease in the cost of generating genomic or combinatorial libraries.
The methods, systems and instruments of the disclosure can provide, for example, greater than: 10×, 50×, 100×, 200×, 300×, 400×, 500×, 600×, 700×, 800×, 900×, 1000×, 1100×, 1200×, 1300×, 1400×, 1500×, 1600×, 1700×, 1800×, 1900×, 2000×, or greater improvement in the precision of genomic or combinatorial library generation.
Disclosed herein are methods and compositions for iterative rounds of engineering. Disclosed herein are recursive engineering strategies that allow implementation of editing at the single cell level through several serial engineering cycles. These disclosed methods and compositions can enable search-based technologies that can effectively construct and explore complex genotypic space. The terms recursive and iterative can be used interchangeably.
Combinatorial engineering methods can comprise multiple rounds of engineering. Methods disclosed herein can comprise 2 or more rounds of engineering. For example, a method can comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, or more than 30 rounds of engineering.
In some examples, during each round of engineering a new recorder sequence, such as a barcode, is incorporated at the same locus in nearby sites such that following multiple engineering cycles to construct combinatorial diversity throughout the genome a simple PCR of the recording locus can be used to reconstruct each combinatorial genotype or to confirm that the engineered edit from each round has been incorporated into the target site.
Disclosed herein are methods for selecting for successive rounds of engineering. Selection can occur by a PAM mutation incorporated by an editing cassette. Selection can occur by a PAM mutation incorporated by a recorder cassette. Selection can occur using a screenable, selectable, or counter-selectable marker. Selection can occur by targeting a site for editing or recording that was incorporated by a prior round of engineering, thereby selecting for variants that successfully incorporated edits and recorder sequences from both rounds or all prior rounds of engineering.
Quantitation of these genotypes can be used for understanding combinatorial mutational effects on large populations and investigation of important biological phenomena such as epistasis.
Serial editing and combinatorial tracking can be implemented using recursive vector systems as disclosed herein. These recursive vector systems can be used to move rapidly through the transformation procedure. In some examples, these systems consist of two or more plasmids containing orthogonal replication origins, antibiotic markers, and an encoded guide nucleic acids. The encoded guide nucleic acid in each vector can be designed to target one of the other resistance markers for destruction by nucleic acid-guided nuclease-mediated cleavage. These systems can be used, in some examples, to perform transformations in which the antibiotic selection pressure is switched to remove the previous plasmid and drive enrichment of the next round of engineered genomes. Two or more passages through the transformation loop can be performed, or in other words, multiple rounds of engineering can be performed. Introducing the requisite recording cassettes and editing cassettes into recursive vectors as disclosed herein can be used for simultaneous genome editing and plasmid curing in each transformation step with high efficiencies.
In some examples, the recursive vector system disclosed herein comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, or more than 10 unique plasmids. In some examples, the recursive vector system can use a particular plasmid more than once as long as a distinct plasmid is used in the previous round and in the subsequent round.
Recursive methods and compositions disclosed herein can be used to restore function to a selectable or screenable element in a targeted genome or plasmid. The selectable or screenable element can include an antibiotic resistance gene, a fluorescent gene, a unique DNA sequence or watermark, or other known reporter, screenable, or selectable gene. In some examples, each successive round of engineering can incorporate a fragment of the selectable or screenable element, such that at the end of the engineering rounds, the entire selectable or screenable element has been incorporated into the target genome or plasmid. In such examples, only those genome or plasmids which have successfully incorporated all of the fragments, and therefore all of the desired corresponding mutations, can be selected or screened for. In this way, the selected or screened cells will be enriched for those that have incorporated the edits from each and every iterative round of engineering.
Recursive methods can be used to switch a selectable or screenable marker between an on and an off position, or between an off and an on position, with each successive round of engineering. Using such a method allows conservation of available selectable or screenable markers by requiring, for example, the use of only one screenable or selectable marker. Furthermore, short regulatory sequence or start codon or non-start codons can be used to turn the screenable or selectable marker on and off. Such short sequences can easily fit within a synthesized cassette or polynucleotide.
One or more rounds of engineering can be performed using the methods and compositions disclosed herein. In some examples, each round of engineering is used to incorporate an edit unique from that of previous rounds. Each round of engineering can incorporate a unique recording sequence. Each round of engineering can result in removal or curing of the plasmid used in the previous round of engineering. In some examples, successful incorporation of the recording sequence of each round of engineering results in a complete and functional screenable or selectable marker or unique sequence combination.
Unique recorder cassettes comprising recording sequences such as barcodes or screenable or selectable markers can be inserted with each round of engineering, thereby generating a recorder sequence that is indicative of the combination of edits or engineering steps performed. Successive recording sequences can be inserted adjacent to one another. Successive recording sequences can be inserted within proximity to one another. Successive sequences can be inserted at a distance from one another.
Successive sequences can be inserted at a distance from one another. For example, successive recorder sequences can be inserted and separated by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, or greater than 100 bp. In some examples, successive recorder sequences are separated by about 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100, 1200, 1300, 1400, 1500, or greater than 1500 bp.
Successive recorder sequences can be separated by any desired number of base pairs and can be dependent and limited on the number of successive recorder sequences to be inserted, the size of the target nucleic acid or target genomes, and/or the design of the desired final recorder sequence. For example, if the compiled recorder sequence is a functional screenable or selectable marker, than the successive recording sequences can be inserted within proximity and within the same reading frame from one another. If the compiled recorder sequence is a unique set of barcodes to be identified by sequencing and have no coding sequence element, then the successive recorder sequences can be inserted with any desired number of base pairs separating them. In these cases, the separation distance can be dependent on the sequencing technology to be used and the read length limit.
While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.
The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use specific embodiments in the present disclosure, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.
Four different promoters operably linked to a nucleic acid encoding an RNA-directed nuclease were tested to investigate the effects of the promoters on cutting and pasting efficiencies using the same nuclease in vivo. The four promoters used were: pL, a temperature sensitive promoter; the constitutive promoter Pro1; the constitutive promoter ProA; and the constitutive promoter ProB.
5 ml of an overnight starter culture of cells containing the RNA-directed nuclease operably linked to the four different promoters was inoculated into 250 mL of LB, grown in a baffled flask for 2 hours and 45 minutes in LB-Chlor supplemented with 4% Arabinose, to induce the lambda DNA repair operon, to an optical density of 0.6 at 600 nm.
For the cells containing the nuclease operably linked to pL, the flask containing the pL cells was transferred to a shaking water bath and incubated at 42° C. for 15 minutes. Following temperature induction, the flask was placed on ice for 15 minutes. The cells containing the pL promoter were then transferred to a centrifuge bottle and pelleted by centrifugation at 4,300 RPM for 10 minutes at 4° C. The supernatant was removed and the cell pellet was resuspended in 100 ml of ice cold ddH2O containing 10% glycerol (wash buffer). This washing step was repeated 3 times followed by a final wash step using 25 ml ice cold wash buffer. The final cell pellet was resuspended in 2.5 ml ice cold ddH2O containing 10% glycerol.
200 μl aliquots were dispensed into cold microfuge tubes and stored at −80° C. until the time of use. pL cells were transformed with 50 ng of an editing cassette library consisting of 94 individual editing cassettes, where each cassette was designed to create a series of synonymous mutations within the targeted gene region. As a control for “uptake” of the library in the absence of nuclease, cells containing an engine vector devoid of the nuclease were prepared in the manner stated above. As a method to measure the gRNA activity within the library independent of lambda-directed DNA repair, pL cells were prepared in the manner above with the exception that the arabinose was omitted from the culture media. As a control for the quality of the pL cells, a plasmid expressing a non-targeting editing cassette was also transformed, which was biologically inert within the cells.
Following each transformation cells were diluted in 3 mls SOC media and allowed to recover for 3 hours in a shaking incubator at 30° C. Cells containing the nuclease operably linked to the pL promoter were plated onto selective media plates, and the number of colonies counted.
For the cells containing the nuclease operably linked to the other three constitutive promoters, 5 ml of an overnight starter culture of cells containing the constitutive promoters driving expression of the same RNA-directed nuclease were grown in a baffled flask for 2 hours and 45 minutes in LB-Chlor supplemented with 4% Arabinose, to induce the lambda DNA repair operon, to an optical density of 0.6 at 600 nm. Following log phase growth, the flask was placed on ice for 15 minutes. Cells transformed with one of the three constitutive promoters linked to the RNA-direct nuclease were then transferred to a plastic bottle and pelleted by centrifugation at 4,300 RPM for 10 minutes at 4° C. The supernatant was removed and the cell pellet was resuspended in 100 ml of ice cold ddH2O containing 10% glycerol (wash buffer). This washing step was repeated 3 times followed by a final wash step of 25 ml ice cold wash buffer. The final cell pellet was resuspended in 2.5 ml ice cold ddH2O containing 10% glycerol.
200 μl aliquots were dispended into cold microfuge tubes and stored at −80° C. until the time of use. Cells transformed with one of the three constitutive promoters linked to the RNA-direct nuclease were then transformed with 50 ng of the identical editing cassette library stated above for the pL cells using essentially the same conditions. Similarly, as a method to measure the gRNA activity within the library independent of lambda-directed DNA repair, cells with the nuclease operably linked to a constitutive promoter were prepared in the exact manner above with the exception that the arabinose was omitted from the culture media. Following each transformation cells were diluted in 3 mls SOC media and allowed to recover for 3 hours in a shaking incubator at 30° C.
Also as expected, over an order of magnitude decrease in the total CFUs was observed in the pL “Cut” strain. This expected decrease in CFUs reflects the average activity of the gRNAs expressed from each editing cassette within the library. As these cells are unable to repair the gRNA directed cut on the E. coli genome due to the absence of the lambda repair machinery, cells that receive a biologically active gRNA undergo cell death. Conversely, cells that receive an inactive gRNA survive since genomic cleavage does not occur, and thus this population of cells makes up the observed CFUs within this specific condition. Within the pL “Paste” condition the total CFUs observed are similar to the “Cut” condition. Within this population of cells, both active and inactive gRNAs exist since the lambda DNA repair machinery is expressed, however results from previous experiments indicate the overwhelming majority of these recovered cells contain inactive cassettes. Therefore, the observed total CFU within this “Paste” population is driven almost entirely by the preponderance of inactive cassettes.
The cells containing the nuclease operably linked to Pro1, ProA and ProB were then plated onto selective media plates to count for colonies. When comparing the total CFUs recovered from the Pro1, ProA or ProB “Cut” cells to the pL “Cut” cells, nearly a one order of magnitude decrease was observed (See
Colonies of cells containing each of the four promoters operably linked to the nuclease were selected from a single confluent selective media plate, and resuspended in ddH2O containing 0.8% NaCl. The plasmids containing the editing cassette library were purified using a Zymo miniprep kit (Zymo Research, Irvine, Calif.) and the library of editing cassettes were extracted from the plasmids by conventional PCR using primers that anneal at common regions flanking each editing cassette. Illumina sequencing adapters (Illumina, Inc., San Diego, Calif.) were ligated onto the editing cassettes, and the resulting amplicon library was deep sequenced to identify and count the relative abundance of each individual editing cassette within the pool of 94. Downstream filtering and mapping of the sequences obtained from the sequencing run were performed using conventional methodologies and the resulting output consisted of a counts table of full-length perfect (FLP) reads for each editing cassette, within each sample.
The reads from each sample were normalized across all samples by dividing the reads from each cassette by the total number for FLP reads in the sample, resulting in a read fraction for each editing cassette within each sample. The relative fraction of inactive gRNAs within the pool for each promoter was determined, as shown in
The read fraction for each editing cassette within each sample was determined, and the distribution of the behavior of all the cassettes within the editing cassette library was plotted for each promoter. As shown in
For the light grey violins, any signal below the dotted line, marking a Log 2 fold change of 1 (no change), represents active gRNA within the editing cassette. Conversely, any signal above the dotted line represents inactive gRNAs. Furthermore, the width of the signal for each violin represents the relative fraction of cassettes within the library that behaved in the specified manner (i.e. wider signal means many cassettes behaving similarly).
For the dark grey violins any signal above the dotted line indicates the proportion of cassettes where the “Paste” condition rescues read fraction signal from the “Cut” condition. By rescuing these reads, it indicates that the editing cassettes are able to repair the double stranded DNA break with the donor template DNA and the cell escapes death, otherwise observed in the “Cut” condition. When comparing the light grey “Cut” violins between the pL promoter and the constitutive promoter series a significant improvement in the in the activity of the gRNAs was observed within the editing cassette library, as indicated by the violins shifting downward, away from the horizontal dotted line.
While cells containing nuclease operably linked to Pro1 out-performed cells containing nuclease operably linked to pL in this analysis, cells containing nuclease operably linked to either ProA or ProB significantly outperformed cells containing nuclease operably linked to pL or Pro1, suggesting robust and constitutive expression of the nuclease improves the library scale gRNA activity. When comparing the dark grey “Paste” violins between the pL promoter and the constitutive promoter series a significant improvement in the in the ability for the editing cassette to repair the DNA lesion generated by the nuclease was not observed, suggesting that robust constitutive expression does not interfere with lambda mediated DNA repair, and that a benefit observed using constitutive promoters to drive RNA-directed nucleases is to increase the efficiency and uniformity of cassette activity within a library scale scenario.
Changes in editing efficiency (% edited) as a function of the promoter driving the nuclease were measured. 96 colonies from the “Paste” library transformation were selected for each promoter operably linked to a nuclease, and the colonies grown in 750 μl selective media overnight. The next morning, 250 μl of the overnight growth were transferred into a new 96 well plate and total DNA (nuclease expressing plasmid, editing cassette plasmid and genomic DNA) was extracted using the Promega Wizard SV 96-well kit (Promega, Madison, Wis.). Total DNA was eluted and prepared for whole-genome shotgun sequencing using the Illumina Nexterra XT library kit (Illumina, San Diego, Calif.). This preparation barcoded each picked colony, allowing correlation of an editing cassette with its cognate genomic sequence and search for the intended genomic edit.
While this disclosure is satisfied by embodiments in many different forms, as described in detail in connection with preferred embodiments of the disclosure, it is understood that the present disclosure is to be considered as exemplary of the principles of the disclosure and is not intended to limit the disclosure to the specific embodiments illustrated and described herein. Numerous variations may be made by persons skilled in the art without departure from the spirit of the disclosure. The scope of the disclosure will be measured by the appended claims and their equivalents. The abstract and the title are not to be construed as limiting the scope of the present disclosure, as their purpose is to enable the appropriate authorities, as well as the general public, to quickly determine the general nature of the disclosure. In the claims that follow, unless the term “means” is used, none of the features or elements recited therein should be construed as means-plus-function limitations pursuant to 35 U.S.C. § 112, 916.
The present application claims priority to U.S. Provisional Patent Application No. 62/648,130, filed Mar. 26, 2018 and is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62648130 | Mar 2018 | US |