Information
-
Patent Application
-
20040021072
-
Publication Number
20040021072
-
Date Filed
August 05, 200222 years ago
-
Date Published
February 05, 200420 years ago
-
CPC
-
US Classifications
-
International Classifications
Abstract
A method and apparatus for manipulating ions using a two-dimensional substantially quadrupole field, and a method of manufacturing an apparatus for manipulating ions using a two-dimensional substantially quadrupole field are described. The field has a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and higher order harmonics with amplitudes A6 and A8. The amplitude A8 is less than A4. The A4 component of the field is selected to improve the performance of the field with respect to ion selection and ion fragmentation. The selected A4 component can be added by selecting a degree of asymmetry under a 90° rotation about a central axis of the quadrupole. The degree of asymmetry is selected to be sufficient to provide the selected A4 component.
Description
FIELD OF THE INVENTION
[0001] This invention relates in general to quadrupole fields, and more particularly to quadrupole electrode systems for generating an improved quadrupole field for use in mass spectrometers.
BACKGROUND OF THE INVENTION
[0002] The use of quadrupole electrode systems in mass spectrometers is known. For example, U.S. Pat. No. 2,939,952 (Paul et. al.) describes a quadrupole electrode system in which four rods surround and extend parallel to a central axis. Opposite rods are coupled together and brought out to one of two common terminals. Most commonly, an electric potential V(t)=+(U−V cos Ωt) is then applied between one of these terminals and ground and an electric potential V(t)=−(U−V cos Ωt) is applied between the other terminal and ground. In these formulae, U is the DC voltage, pole to ground, and V is the zero to peak radio frequency (RF) voltage, pole to ground.
[0003] In constructing a linear quadrupole, the field may be distorted so that it is not an ideal quadrupole field. For example round rods are often used to approximate the ideal hyperbolic shaped rods required to produce a perfect quadrupole field. The calculation of the potential in a quadrupole system with round rods can be performed by the method of equivalent charges—see, for example, Douglas et al., Russian Journal of Technical Physics, 1999, Volume 69, pp. 96-101. When presented as a series of harmonic amplitudes A0, A1, A2. . . An, the potential in a linear quadrupole can be expressed as follows:
1
[0004] Field harmonics φhd n, which describe the variation of the potential in the X and Y directions, can be expressed as follows:
2
[0005] For example:
3
[0006] In these definitions, the X direction corresponds to the direction towards an electrode in which the quadrupole potential A2 increases from zero to become more positive when V(t) is positive.
[0007] In the series of harmonic amplitudes, the cases in which the odd field harmonics, having amplitudes A1,A3,A5 . . . , are each zero due to the symmetry of the applied potentials and electrodes are considered here (aside from very small contributions from the odd field harmonics due to instrumentation and measurement errors). Accordingly, one is left with the even field harmonics having amplitudes A0,A2,A4. . . As shown above, A0 is the constant potential (i.e. independent of X and Y), A2 is the quadrupole component of the field, A4 is the octopole component of the field, and there are still higher order components of the field, although in a practical quadrupole the amplitudes of the higher order components are typically small compared to the amplitude of the quadrupole term.
[0008] In a quadrupole mass filter, ions are injected into the field along the axis of the quadrupole. In general, the field imparts complex trajectories to these ions, which trajectories can be described as either stable or unstable. For a trajectory to be stable, the amplitude of the ion motion in the planes normal to the axis of the quadrupole must remain less than the distance from the axis to the rods (r0). Ions with stable trajectories will travel along the axis of the quadrupole electrode system and may be transmitted from the quadrupole to another processing stage or to a detection device. Ions with unstable trajectories will collide with a rod of the quadrupole electrode system and will not be transmitted.
[0009] The motion of a particular ion is controlled by the Mathieu parameters a and q of the mass analyzer. For positive ions, these parameters are related to the characteristics of the potential applied from terminals to ground as follows:
4
[0010] where e is the charge on an ion, mion is the ion mass, Ω=2πƒ where f is the RF frequency, U is the DC voltage from a pole to ground and V is the zero to peak RF voltage from each pole to ground. If the potentials are applied with different voltages between pole pairs and ground, U and V are ½ of the DC potential and the zero to peak AC potential respectively between the rod pairs. Combinations of a and q which give stable ion motion in both the x and y directions are usually shown on a stability diagram.
[0011] With operation as a mass filter, the pressure in the quadrupole is kept relatively low in order to prevent loss of ions by scattering by the background gas. Typically the pressure is less than 5×10−4 torr and preferably less than 5×10−5 torr. More generally quadrupole mass filters are usually operated in the pressure range 1×10−6 torr to 5×10−4 torr. Lower pressures can be used, but the reduction in scattering losses below 1×10−6 torr are usually negligible.
[0012] As well, when linear quadrupoles are operated as a mass filter the DC and AC voltages (U and V) are adjusted to place ions of one particular mass to charge ratio just within the tip of a stability region, as described. Normally, ions are continuously introduced at the entrance end of the quadrupole and continuously detected at the exit end. Ions are not normally confined within the quadrupole by stopping potentials at the entrance and exit. An exception to this is shown in the papers High Resolution Mass Spectrometry With a Multiple Pass Quadrupole Mass Analyzer by Ma'an H. Amad and R. S. Houk, Analytical Chemistry, 70, 4885 to 4889, 1998 and Mass Resolution of 11,000 to 22,000 With a Multiple Pass Quadrupole Mass Analyzer by Ma'an H. Amad and R. S. Houk, Journal of the American Society for Mass Spectrometry, 11, 407 to 415, 2000. These papers describe experiments where ions were reflected from electrodes at the entrance and exit of the quadrupole to give multiple passes through the quadrupole to improve the resolution. Nevertheless, the quadrupole was still operated at low pressure, although this pressure is not stated in these papers, and with the DC and AC voltages adjusted to place the ions of interest at the tip of the first stability region.
[0013] In contrast, when linear quadrupoles are operated as ion traps, the DC and AC voltages are normally adjusted so that ions of a broad range of mass to charge ratios are confined. Ions are not continuously introduced and extracted. Instead, ions are first injected into the trap (or created in the trap by fragmentation of other ions, as described below or by ionization of neutrals), ions are then processed in the trap, and ions are then removed from the trap by a mass selective scan, or allowed to leave the trap for additional processing or mass analysis, as described. Ion traps can be operated at much higher pressures than quadrupole mass filters, for example 3×10−3 torr of helium (A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer, J. C. Schwartz, M. W. Senko, J. E. P. Syka, Journal of the American Society for Mass Spectrometry, 13, 659, 2002; published online Apr. 26, 2002 by Elsevier Science Inc.) or up to 7×10−3 torr of nitrogen (A New Linear Ion Trap Time of Flight System With Tandem Mass Spectrometry Capabilities, Jennifer Campbell, B. A. Collings and D. J. Douglas, Rapid. Commun. Mass Spectrom. 12, 1463, 1998; A Combined Linear Ion Trap Time-of-Flight System With Improved Performance and MSn Capabilities, B. A. Collings, J. M. Campbell, Dunmin Mao and D. J. Douglas, Rapid Communications in Mass Spectrometry, 15, 1777, 2001). Typically, ion traps operate at pressures of 10−1 torr or less, and preferably in the range 10−5 to 10−2 torr. More preferably ion traps operate in the pressure range 10−4 to 10−2 torr. However ion traps can still be operated at much lower pressures for specialized applications (e.g. 10−9 mbar (1 mbar=0.75 torr) Fractional Frequency Collective Parametric resonances of an ion Cloud in a Paul Trap, M. A. N. Razvi, X. Y. Chu, R. Alheit, G. Werth, and R. Blumel, Physical Review A, 58, R34 to R37, 1998). For operation at higher pressures, gas can flow into the trap from a higher pressure source region or can be added to the trap through a separate gas supply and inlet.
[0014] Recently, there has been interest in performing mass selective scans by ejecting ions at the stability boundary of a two-dimensional quadrupole ion trap (see, for example, U.S. Pat. No. 5,420,425; A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer, J. C. Schwartz, M. W. Senko, J. E. P. Syka, Journal of the American Society for Mass Spectrometry, 13, 659, 2002; published online Apr. 26, 2002 by Elsevier Science Inc.). In the two-dimensional ion trap, ions are confined radially by a two-dimensional quadrupole field and are confined axially by stopping potentials applied to electrodes at the ends of the trap. Ions are ejected through an aperture or apertures in a rod or rods of a rod set to an external detector by increasing the RF voltage so that ions reach their stability limit and are ejected to produce a mass spectrum.
[0015] Ions can also be ejected through an aperture or apertures in a rod or rods by applying an auxiliary or supplemental excitation voltage to the rods to resonantly excite ions at their frequencies of motion, as described below. This can be used to eject ions at a particular q value, for example q=0.8. By adjusting the trapping RF voltage, ions of different mass to charge ratio are brought into resonance with the excitation voltage and are ejected to produce a mass spectrum. Alternatively the excitation frequency can be changed to eject ions of different masses. Most generally the frequencies, amplitudes and waveforms of the excitation and trapping voltages can be controlled to eject ions through a rod in order to produce a mass spectrum.
[0016] The efficacy of a mass filter used for mass analysis depends in part on its ability to retain ions of the desired mass to charge ratio, while discarding the rest. This, in turn, depends on the quadrupole electrode system (1) reliably imparting stable trajectories to selected ions and also (2) reliably imparting unstable trajectories to unselected ions. Both of these factors can be improved by controlling the speed with which ions are ejected as they approach the stability boundary in a mass scan.
[0017] Mass spectrometry (MS) will often involve the fragmentation of ions and the subsequent mass analysis of the fragments (tandem mass spectrometry). Frequently, selection of ions of a specific mass to charge ratio is used prior to ion fragmentation caused by Collision Induced Dissociation with a collision gas (CID) or other means (for example, by collisions with surfaces or by photo dissociation with lasers). This facilitates identification of the resulting fragment ions as having been produced from fragmentation of a particular precursor ion. In a triple quadrupole mass spectrometer system, ions are mass selected with a quadrupole mass filter, collide with gas in a ion guide, and mass analysis of the resulting fragment ions takes place in an additional quadrupole mass filter. The ion guide is usually operated with radio frequency only voltages between the electrodes to confine ions of a broad range of mass to charge ratios in the directions transverse to the ion guide axis, while transmitting the ions to the downstream quadrupole mass analyzer. In a three-dimensional ion trap mass spectrometer, ions are confined by a three-dimensional quadrupole field, a precursor ion is isolated by resonantly ejecting all other ions or by other means, the precursor ion is excited resonantly or by other means in the presence of a collision gas and fragment ions formed in the trap are subsequently ejected to generate a mass spectrum of fragment ions. Tandem mass spectrometry can also be performed with ions confined in a linear quadrupole ion trap. The quadrupole is operated with radio frequency voltages between the electrodes to confine ions of a broad range of mass to charge ratios. A precursor ion can then be isolated by resonant ejection of unwanted ions or other methods. The precursor ion is then resonantly excited in the presence of a collision gas or excited by other means, and fragment ions are then mass analyzed. The mass analysis can be done by allowing ions to leave the linear ion trap to enter another mass analyzer such as a time-of-flight mass analyzer (A New Linear Ion Trap Time of Flight System with Tandem Mass Spectrometry Capabilities, Jennifer Campbell, B. A. Collings and D. J. Douglas, Rapid. Commun. Mass Spectrom. 12, 1463, 1998; A Combined Linear Ion Trap Time-of-Flight System with Improved Performance and MSn Capabilities, B. A. Collings, J. M. Campbell, Dunmin Mao and D. J. Douglas, Rapid Communications in Mass Spectrometry, 15, 1777, 2001) or by ejecting the ions through a slot or holes in a rod to an external ion detector (M. E. Bier and John E. P. Syka, U.S. Pat. No. 5,420,425, May 30, 1995; A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer, J. C. Schwartz, M. W. Senko, J. E. P. Syka, Journal of the American Society for Mass Spectrometry, 13, 659, 2002; published online Apr. 26, 2002 by Elsevier Science Inc.). The term MSn has come to mean a mass selection step followed by an ion fragmentation step, followed by further ion selection, ion fragmentation and mass analysis steps, for a total of n mass analysis steps.
[0018] Similar to mass analysis, CID is assisted by moving ions through a radio frequency field, which confines the ions in two or three dimensions. However, unlike conventional mass analysis in a linear quadrupole mass filter, which uses fields to impart stable trajectories to ions having the selected mass to charge ratio and unstable trajectories to ions having unselected mass to charge ratios, quadrupole fields when used with CID are operated to provide stable but oscillatory trajectories to ions of a broad range of mass to charge ratios. In two-dimensional ion traps, resonant excitation of this motion can be used to fragment the oscillating ions. However, there is a trade off in the oscillatory trajectories that are imparted to the ions. If a very low amplitude motion is imparted to the ions, then little fragmentation will occur. However, if a larger amplitude oscillation is provided, then more fragmentation will occur, but some of the ions, if the oscillation amplitude is sufficiently large, will have unstable trajectories and will be lost. There is a competition between ion fragmentation and ion ejection. Thus, both the trapping and excitation fields must be carefully selected to impart sufficient energy to the ions to induce fragmentation, while not imparting so much energy as to lose the ions.
[0019] Accordingly, there is a continuing need to improve the two-dimensional quadrupole fields for mass filters and ion traps, both in terms of ion selection, and in terms of ion fragmentation. Specifically, for ion fragmentation in a linear ion trap, a quadrupole electrode system that provides a field that provides an oscillatory motion that is energetic enough to induce fragmentation while stable enough to prevent ion ejection, is desirable. For ion selection whether in a mass filter or in an ion trap by ejection at the stability boundary or by resonant excitation, a quadrupole electrode system that provides a field that causes ions to be ejected more rapidly, thus allowing for faster scan speeds and higher mass resolution, is also desirable.
SUMMARY OF THE INVENTION
[0020] An object of a first aspect of the present invention is to provide an improved quadrupole electrode system.
[0021] In accordance with the first aspect of the present invention, there is provided a quadrupole electrode system for connection to a voltage supply means for providing an at least partially-AC potential difference within the quadrupole electrode system. The quadrupole electrode system comprises: (a) a central axis; (b) a first pair of rods, wherein each rod in the first pair of rods is spaced from and extends alongside the central axis; (c) a second pair of rods, wherein each rod in the second pair of rods is spaced from and extends alongside the central axis; and (d) a voltage connection means for connecting at least one of the first pair of rods and the second pair of rods to the voltage supply means to provide the at least partially-AC potential difference between the first pair of rods and the second pair of rods. At any point along the central axis, an associated plane orthogonal to the central axis intersects the central axis, intersects the first pair of rods at an associated first pair of cross sections, and intersects the second pair of rods at an associated second pair of cross sections. The associated first pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a first axis orthogonal to the central axis and passing through a center of each rod in the first pair of rods. The associated second pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a second axis orthogonal to the central axis and passing through a center of each rod in the second pair of rods. The associated first pair of cross sections and the associated second pair of cross sections are substantially asymmetric under a ninety degree rotation about the central axis. The first axis and the second axis are substantially orthogonal and intersect at the central axis. In use, the first pair of rods and the second pair of rods are operable, when the at least partially-AC potential difference is provided by the voltage supply means and the voltage connection means to at least one of the first pair of rods and the second pair of rods, to generate a two-dimensional substantially quadrupole field having a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a hexadecapole harmonic with amplitude A8, wherein A8 is less than A4, and A4 is greater than 1% of A2.
[0022] An object of a second aspect of the present invention is to provide a quadrupole electrode system for use in a mass filter mass spectrometer.
[0023] In accordance with the second aspect of the present invention, there is provided a quadrupole electrode system for connection to a voltage supply means in a mass filter mass spectrometer to provide an at least partially-AC potential difference for selecting ions within the quadrupole electrode system. The quadrupole electrode system comprises (a) a central axis; (b) a first pair of rods, wherein each rod in the first pair of rods is spaced from and extends alongside the central axis; (c) a second pair of rods, wherein each rod in the second pair of rods is spaced from and extends alongside the central axis; and (d) a voltage connection means for connecting at least one of the first pair of rods and the second pair of rods to the voltage supply means to provide the at least partially-AC potential difference between the first pair of rods and the second pair of rods. At any point along the central axis, an associated plane orthogonal to the central axis intersects the central axis, intersects the first pair of rods at an associated first pair of cross sections, and intersects the second pair of rods at an associated second pair of cross sections. The associated first pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a first axis orthogonal to the central axis and passing through a center of each rod in the first pair of rods. The associated second pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a second axis orthogonal to the central axis and passing through a center of each rod n the second pair of rods. The associated first pair of cross sections and the associated second pair of cross sections are substantially asymmetric under a ninety degree rotation about the central axis. The first axis and the second axis are substantially orthogonal and intersect at the central axis. In use the first pair of rods and the second pair of rods are operable, when the at least partially-AC potential difference is provided by the voltage supply means and the voltage connection means to at least one of the first pair of rods and the second pair of rods, to generate a two-dimensional substantially quadrupole field having a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a hexadecapole harmonic with amplitude A8, wherein A4 is less than A8, and A4 is greater than 0.1% of A2.
[0024] An object of a third aspect of the present invention is to provide an improved method of processing ions in a quadrupole mass filter.
[0025] In accordance with the third aspect of the present invention, there is provided a method of processing ions in a quadrupole mass filter. The method comprises establishing and maintaining a two-dimensional substantially quadrupole field for processing ions within a selected range of mass to charge ratios, and introducing ions to the field. The field has a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a higher order harmonic with amplitude A8. The amplitude A8 is less than A4, and A4 is greater than 0.1% of A2. The field imparts stable trajectories to ions within the selected range of mass to charge ratios to retain such ions in the mass filter for transmission through the mass filter, and imparts unstable trajectories to ions outside of the selected range of mass to charge ratios to filter out such ions.
[0026] An object of a fourth aspect of the present invention is to provide an improved method of increasing average kinetic energy of ions in a two-dimensional ion trap mass spectrometer.
[0027] In accordance with the fourth aspect of the present invention, there is provided a method of increasing average kinetic energy of ions in a two-dimensional ion trap mass spectrometer. The method comprises (a) establishing and maintaining a two-dimensional substantially quadrupole field to trap ions within a selected range of mass to charge ratios; (b) trapping ions within the selected range of mass to charge ratios; and (c) adding an excitation field to the field to increase the average kinetic energy of trapped ions within a first selected sub-range of mass to charge ratios. The first selected sub-range of mass to charge ratios is within the selected range of mass to charge ratios. The field has a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a hexadecapole harmonic with amplitude A8 . The amplitude A8 is less than A4. A4 is greater than 1% of A2.
[0028] An object of a fifth aspect of the present invention is to provide an improved method of manufacturing a quadrupole electrode system.
[0029] In accordance with the fifth aspect of the present invention, there is provided a method of manufacturing a quadrupole electrode system for connection to a voltage supply means for providing an at least partially-AC potential difference within the quadrupole electrode system to generate a two-dimensional substantially quadrupole field for manipulating ions. The method comprises (a) determining an octopole component to be included in the field; (b) selecting a degree of asymmetry under a ninety degree rotation about a central axis of the quadrupole, the degree of asymmetry being selected to be sufficient to provide the octopole component; and (c) installing a first pair of rods and a second pair of rods about the central axis, wherein the first pair of rods and the second pair of rods are spaced from and extend alongside the central axis. At any point along the central axis, an associated plane orthogonal to the central axis intersects the central axis, intersects the first pair of rods at an associated first pair of cross sections, and intersects the second pair of rods at an associated second pair of cross sections. The associated first pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a first axis orthogonal to the central axis and passing through a center of each rod in the first pair of rods. The associated second pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a second axis orthogonal to the central axis and passing through a center of each rod in the second pair of rods. The associated first pair of cross sections and the associated second pair of cross sections have the selected degree of asymmetry. The first axis and the second axis are substantially orthogonal and intersect at the central axis.
[0030] An object of a sixth aspect of the present invention is to provide an improved quadrupole electrode system.
[0031] In accordance with the sixth aspect of the present invention, there is provided a quadrupole electrode system for connection to a voltage supply means for providing an at least partially-AC potential difference within the quadrupole electrode system to generate a two-dimensional substantially quadrupole field for manipulating ions. The quadrupole electrode system comprises: (a) a central axis; (b) a first pair of rods, wherein each rod in the first pair of rods is spaced from and extends alongside the central axis, and has a transverse dimension D1; (c) a second pair of rods, wherein each rod in the second pair of rods is spaced from and extends alongside the central axis, and has a transverse dimension D2, D2 being less than D1; and (d) a voltage connection means for connecting at least one of the first pair of rods and the second pair of rods to the voltage supply means to provide the at least partially-AC potential difference between the first pair of rods and the second pair of rods.
[0032] An object of a seventh aspect of the present invention is to provide an improved quadrupole electrode system.
[0033] In accordance with the seventh aspect of the present invention, there is provided a quadrupole electrode system for connection to a voltage supply means for providing an at least partially-AC potential difference within the quadrupole electrode system. The quadrupole electrode system comprises a central axis, a first pair of cylindrical rods, a second pair of cylindrical rods, and a voltage connection means for connecting at least one of the first pair of cylindrical rods and the second pair of cylindrical rods to the voltage supply means to provide the at least partially-AC potential difference between the first pair of cylindrical rods and the second pair of cylindrical rods. Each rod in the first pair of cylindrical rods and in the second pair of cylindrical rods is spaced from and extends alongside the central axis. At any point along the central axis, an associated plane orthogonal to the central axis intersects the central axis, intersects the first pair of cylindrical rods at an associated first pair of cross-sections, and intersects the second pair of cylindrical rods at an associated second pair of cross-sections. The associated first pair of cross-sections are substantially symmetrically distributed about the central axis and are bisected by a first axis orthogonal to the central axis that passes through a center of each rod in the first pair of cylindrical rods. The associated second pair of cross-sections are substantially symmetrically distributed about the central axis, and are bisected by a second axis orthogonal to the central axis that passes through a center of each rod in the second pair of cylindrical rods. The first axis and the second axis are substantially orthogonal and intersect at the central axis. In use, the first pair of cylindrical rods and the second pair of cylindrical rods are operable, when the at least partially-AC potential difference is provided by the voltage supply means and the voltage connection means to at least one of the first pair of cylindrical rods and the second pair of cylindrical rods, to generate a two-dimensional substantially quadrupole field having a constant potential with amplitude A0, a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a hexadecapole harmonic with amplitude A8, wherein A8 is less than A4, and A4 is greater than 0.1% of A2.
BRIEF DESCRIPTION OF THE DRAWINGS
[0034] A detailed description of the preferred embodiments is provided herein below with reference to the following drawings, in which:
[0035]
FIG. 1, in a schematic perspective view, illustrates a set of quadrupole rods;
[0036]
FIG. 2 is a conventional stability diagram showing different stability regions for a quadrupole mass spectrometer;
[0037]
FIG. 3 is a sectional view of a set of quadrupole rods in which the X and Y rods are of different diameters;
[0038]
FIG. 4 is a graph of field harmonic amplitudes as a function of the radius of the Y rod relative to the spacing of the X rod from the quadrupole axis;
[0039]
FIG. 5 is a graph plotting spacing of the Y rods from the quadrupole axis, which are calculated to yield a zero axis potential, against the radius of the Y rods;
[0040]
FIG. 6 is a graph plotting the quadrupole and higher order harmonic amplitudes against the diameter of the Y rods, when the spacing of the Y rods is selected to yield a zero constant potential;
[0041]
FIG. 7, in a schematic sectional view, illustrates equal potential lines where the diameter of the Y rods is optimized;
[0042]
FIG. 8A is a graph plotting ion displacement, expressed as a fraction of the distance from the quadrupole axis to the rods, as a function of time in RF periods due to a selected field acting on the ion;
[0043]
FIG. 8B is a graph plotting the kinetic energy, in electron volts, imparted to the ion of FIG. 8A over time in RF periods;
[0044]
FIG. 8C is a graph plotting the displacement of the ion of FIG. 8A in the Y direction against the displacement in the X direction;
[0045]
FIG. 9A is a graph plotting ion displacement, expressed as a fraction of the distance from the quadrupole axis to the rods, as a function of time in RF periods due to a second selected field acting on the ion;
[0046]
FIG. 9B is a graph plotting the kinetic energy, in electron volts, imparted to the ion of FIG. 9A against time in RF periods;
[0047]
FIG. 9C is a graph plotting the displacement of the ion of FIG. 9A in the Y direction against the displacement in the X direction;
[0048]
FIG. 10A is a graph plotting ion displacement, expressed as a fraction of the distance from the quadrupole axis to the rods, as a function of time in RF periods due to a third selected field acting on the ion;
[0049]
FIG. 10B is a graph plotting the kinetic energy, in electron volts, imparted to the ion of FIG. 9A over time in RF periods;
[0050]
FIG. 10C is a graph plotting the displacement of the ion of FIG. 10A in the Y direction against the displacement of the ion in the X direction;
[0051]
FIG. 11A is a graph plotting ion displacement, expressed as a fraction of the distance from the quadrupole axis to the rods, as a function of time in RF periods due to a fourth selected field acting on the ion;
[0052]
FIG. 11B is a graph plotting the kinetic energy, in electron volts, imparted to the ion of FIG. 11A over time in RF periods;
[0053]
FIG. 11C is a graph plotting the displacement of the ion of FIG. 11A in the Y direction against the displacement in the X direction;
[0054]
FIG. 12A is a graph plotting ion displacement, expressed as a fraction of the distance from the quadrupole axis to the rods, as a function of time in RF periods due to a fifth selected field acting on the ion;
[0055]
FIG. 12B is a graph plotting the kinetic energy, in electron volts, imparted to the ion of FIG. 12A over time in RF periods;
[0056]
FIG. 12C is a graph plotting the displacement of the ion of FIG. 12A in the Y direction against the displacement in the X direction;
[0057]
FIG. 13 is a graph showing the mass spectrum of protonated reserpine ions generated by a sixth selected field acting on the protonated reserpine ions;
[0058]
FIG. 14 is a graph showing the mass spectrum of protonated reserpine ions generated by a seventh selected field acting on the ions;
[0059]
FIG. 15 is a graph showing the mass spectrum of negative ions of reserpine generated by a eighth selected field; and,
[0060]
FIG. 16 is a graph showing the mass spectrum of negative ions of reserpine generated by a ninth selected field acting on the ions.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
[0061] Referring to FIG. 1, there is illustrated a quadrupole rod set 10 according to the prior art. Quadrupole rod set 10 comprises rods 12, 14, 16 and 18. Rods 12, 14, 16 and 18 are arranged symmetrically around axis 20 such that the rods have an inscribed a circle C having a radius r0. The cross sections of rods 12, 14, 16 and 18 are preferably hyperbolic, although rods of circular cross-section are commonly used. As is conventional, opposite rods 12 and 14 are coupled together and brought out to a terminal 22 and opposite rods 16 and 18 are coupled together and brought out to a terminal 24. An electrical potential V(t)=+(U−V cos Ωt) is applied between terminal 22 and ground and an electrical potential V(t)=−(U−V cos Ωt) is applied between terminal 24 and ground. When operating conventionally as a mass filter, as described below, for mass resolution, the potential applied has both a DC and AC component. For operation as a mass filter or an ion trap, the potential applied is at least partially-AC. That is, an AC potential will always be applied, while a DC potential will often, but not always, be applied. The AC components will normally be in the RF range, typically about 1 MHz. As is known, in some cases just an RF voltage is applied. The rod sets to which the positive DC potential is coupled may be referred to as the positive rods and those to which the negative DC potential is coupled may be referred to as the negative rods.
[0062] As described above, the motion of a particular ion is controlled by the Mathieu parameters a and q of the mass analyzer. These parameters are related to the characteristics of the potential applied from terminals 22 and 24 to ground as follows:
5
[0063] where e is the charge on an ion, mion is the ion mass, Ω=2πƒ where ƒ is the RF frequency, U is the DC voltage from a pole to ground and V is the zero to peak RF voltage from each pole to ground. Combinations of a and q which give stable ion motion in both the X and Y directions are shown on the stability diagram of FIG. 2. The notation of FIG. 2 for the regions of stability is taken from “Quadrupole Mass Spectrometry and its Applications”, P. H. Dawson ed., Elsevier Amsterdam, 1976. The “first” stability region refers to the region near (a,q)=(0.2, 0.7), the “second” stability region refers to the region near (a,q)=(0.02, 7.55) and the “third” stability region refers to the region near (a,q)=(3,3). It is important to note that there are many regions of stability (in fact an unlimited number). Selection of the desired stability regions, and selected tips or operating points in each region, will depend on the intended application.
[0064] Ion motion in a direction u in a quadrupole field can be described by the equation
6
[0065] where
7
[0066] and t is time, C2n depend on the values of a and q, and A and B depend on the ion initial position and velocity (see, for example, Quadrupole Storage Mass Spectrometry, R. E. March and R. J. Hughes, John Wiley and Sons, Toronto, 1989, at p. 41). The value of β determines the frequencies of ion oscillation, and β is a function of the a and q values (Quadrupole Mass Spectrometry and Its Applications, P. H. Dawson ed., Elsevier, New York, 1976 at p. 70). From equation 7, the angular frequencies of ion motion in the x (ωx) and y (ωy) directions in a two-dimensional quadrupole field are given by
8
[0067] where n=0, ±1, ±2, ±3 . . . , 0≦βx≦1, 0≦βy≦1,, and βx and βy are determined by the Mathieu parameters a and q for motion in the x and y directions respectively (equation 6).
[0068] When higher field harmonics are present in a linear quadrupole, so called nonlinear resonances may occur. As shown for example by Dawson and Whetton (P. H. Dawson and N. R. Whetton, Int. J. Mass Spectrom. Ion Phys., 3, 1 to 12, 1969) nonlinear resonances occur when
9
[0069] where K is an integer and N is the order of the field harmonic. Combinations of βx and βy that produce nonlinear resonances form lines on the stability diagram. When a nonlinear resonance occurs, an ion, which would otherwise have stable motion, has unstable motion and can be lost from the quadrupole field. These effects are expected to be more severe when a linear quadrupole is used as an ion trap as compared to when the linear quadrupole is used as a mass filter. When the linear quadrupole is used as an ion trap, the non-linear resonances have longer times to build up. Thus, in the past it has been believed that the levels of octopoles and other higher order multipoles present in a two-dimensional quadrupole field should be as small as possible.
[0070] We have determined, as described below, that two-dimensional quadrupole fields used in mass spectrometers can be improved, both in terms of ion selection, and in terms of ion fragmentation, by adding an octopole component to the field. The added octopole component is far larger than octopole components arising from instrumentation or measurement errors. Specifically, octopole components resulting from these errors are typically well under 0.1%. In contrast, the octopole component A4 according to the present invention is typically in the range of 1 to 4% of A2, and may be as high as 6% of A2 or even higher. Accordingly, to realize the advantages from introducing an octopole component to a main trapping quadrupole field, it is desirable to construct an electrode system in which a certain level of octopole field imperfection is deliberately introduced into the main trapping quadrupole field, while limiting the introduction of other field imperfections. An octopole field can be added by constructing an electrode system, which is different in the X and Y directions.
[0071] Methods to deliberately introduce a substantial octopole component to a linear quadrupole while at the same time minimizing contributions from other higher harmonics have not been described. P. H. Dawson, in Advances in Electronics and Electron Physics, (Vol. 53, 153-208, 1980 at 195) showed that moving opposite rods outward will add an octopole component to the field; however, the inventors have calculated that this also adds to the potential 12 (A6) and 16 (A8) pole terms of magnitude similar to the octopole term. The inventors have found a method to add an octopole term to the potential while keeping other harmonics much smaller. Quadrupole electrode systems in accordance with different embodiments of the invention are described below. Referring to FIG. 3, there is illustrated in a sectional view, a set of quadrupole rods. The set of quadrupole rods includes X rods 112 and 114, Y rods 116 and 118, and has quadrupole axis 120. FIG. 3 introduces terminology used in describing both of the below embodiments of the invention. Specifically, Vy is the voltage provided to Y rods 116 and 118, Ry is the radius of these Y rods 116 and 118, and ry is the radial distance of the Y rods 116 and 118 from quadrupole axis 120.
[0072] Similarly, Vx is the voltage provided to X rods 112 and 114, Rx is the radius of these X rods 112, 114 and rx is the radial distance of these X rods 112 and 114 from quadrupole axis 120. It will be apparent to those of skill in the art that while Ry is shown to be less than Rx in FIG. 3, this is not necessarily so. Specifically, these terms are simply introduced to show how geometric variations can be introduced to the quadrupole electrode system in order to have the desired effects on the field generated.
[0073] The inventors have determined that an octopole component may be added to a quadrupole field by making the diameters of the Y rods substantially different from the diameters of the X rods. In order to investigate the fields in such systems, one takes ry=Rx=rx. The Y rod radius (Ry) is then changed. In this case, the field harmonic amplitudes calculated are shown in FIG. 4. For this calculation, the rods are in a case of radius Rg=8rx.
[0074] The potential calculation expressed in the field harmonic amplitudes of FIG. 4 shows that this method is useful to create a quadrupole field with a substantial added octopole component. When the Y rods 116 and 118 have diameters greater than the X rods 112 and 114, an octopole field is present and all other higher harmonics have comparatively small amplitudes. The quadrupole component stays almost unchanged (data for the quadrupole component is not shown).
[0075] Effective quadrupole electrode systems can be designed merely by increasing the dimensions of the Y rods relative to the X rods, as described above. However, with this method, a substantial constant potential is produced. Its value, A0, is almost equal to the amplitude of the octopole field, A4. While effective quadrupole electrode systems can have substantial constant potentials in the fields generated, preferably, the constant potential should be kept as small as possible. The constant potential arises in this case because the bigger rods influence the axis potential when they are placed at the same distance as the smaller rods. The potential on the axis can be removed in two different ways: 1) increasing the distance from the center 120 to the larger rods and 2) by a voltage misbalance between the X and the Y rods (usually the voltage of the Y rods is equal to the voltage of the X rods, but of opposite sign). A discussion of these two methods follows.
[0076] 1. Increasing the Distance From the Central Axis 120 to Y Rods 116 and 118
[0077] In the calculation, Rx=rx as previously. One then takes some value of Ry greater than rx, and finds the value of ry that gives zero constant potential. This is called the “zero” Y distance from the center, ry0. A graph of ry0 versus Ry is shown in FIG. 5. When this is done, the higher harmonics amplitudes change somewhat and are no longer given by FIG. 4. The higher harmonic amplitudes for the case where the rods are moved out are shown in FIG. 6. The A2 term is shown in FIG. 5.
[0078] This calculation shows that it is possible to construct an electrode geometry in which the constant potential is zero, the octopole field is present in a given proportion to the quadrupole field, and other higher field harmonics have comparatively small values. When the rods have unequal distances from the center in order to make A0=0, the best solution to this problem, is the point where A6=0 (see FIG. 6). This is called the “optimal” electrode geometry. The value of Ry at this point, Ry,opt, is close to 1.43·rx. Calculated harmonic amplitudes for this case are shown in Table 1. The equal potential lines are shown in FIG. 7.
1TABLE 1
|
|
Harmonic amplitudes for the case of optimal geometry:
Rx = 1.0 · rx, Ry = 1.43 · rx,
ry = 1.034 · rx.
A0A2A4A6A8A10
|
0.0003670.9708600.0311140.0000700.0002760.0020433
|
[0079] 2. Voltage Misbalance Between the X and Y Rods
[0080] An axis potential of zero may be achieved by keeping rx=Rx=ry and adding a voltage misbalance. Usually the voltage is applied in such a way that the Y rod voltage is equal to the X rod voltage but is of the opposite sign Vy=−Vx. This gives an axis potential of zero in a system of 4 equal diameter rods. When the Y rods 116 and 118 have greater diameters than the X rods 112 and 114, the axis potential will be influenced by the Y rod potential. This gives a non-zero axis potential. This may be removed by a voltage misbalance. Let us assume that the sum of the voltages on the X and Y rods is equal to twice the main trapping voltage:
|Vx|+|Vy|=2V(t) (11)
[0081] To achieve zero axis potential, the voltage of whichever pair of rods is larger will be somewhat lower, while the voltage of the smaller pair of rods will be somewhat higher. Call whichever pair of rods has a larger diameter, the first pair of rods, and the other pair of rods having the smaller diameters, the second pair of rods. Then the voltage of the first pair of rods will be somewhat lower: |V1/V(t)|=(1−ε), while the voltage of the second pair of rods will be somewhat higher: |V2/V(t)|=1+ε. ε is given by
ε=−A0≈A4 (12)
[0082] Here A0 is the number given in FIG. 4. For the system of 4 rods in a free space this is an accurate result. With a quadrupole case of radius Rg=8rx, as was used for the calculation presented in FIG. 4, this is very close to true. An example of the field calculation is presented in Table 2:
2TABLE 2
|
|
Harmonic amplitudes for the geometry Rx = ry = 1.0 · rx, Ry = 1.7.
With voltage misbalance ε= 0.04996 and quadrupole case: Rg =8 19 rx
A0A2A4A6A8A10
|
−0.0000021.0081990.049855−0.0056970.000580−0.002250
With voltage misbalance ε= 0.04996 and
without a quadrupole case (Rg = ∞)
−0.0000321.0081950.049893−0.0056920.000572−0.002252
Without voltage misbalance (ε= 0) and without a quadrupole case (Rg = ∞)
−0.0499921.0081950.049893−0.0056920.000572−0.002252
|
[0083] The foregoing describes how to create a two-dimensional quadrupole field with a certain value of octopole harmonic in a system of 4 parallel cylinders. Preferably, A6and A8 are 0 or as close to 0 as possible.
[0084] In order to produce a quadrupole field with an added octopole field (near 3%) it is useful to construct the electrodes with the geometry presented in Table 1. For higher or lower values of the octopole field, the geometry may be determined from FIGS. 4 to 6.
[0085] ION FRAGMENTATION
[0086] Adding an octopole component to the two-dimensional quadrupole field allows ions to be excited for longer periods of time without ejection from the field. In general, in the competition between ion ejection and ion fragmentation, this favors ion fragmentation.
[0087] When ions are excited with a dipole field, the excitation voltage requires a frequency given by equation 8 or 9. As shown in “Excitation Frequencies of Ions Confined in a Quadrupole Field With Quadrupole Excitation”, M. Sudakov, N. Konenkov, D. J. Douglas and T. Glebova, Journal of the American Society for Mass Spectrometry, 11, 2000, pp. 10-18, when ions are excited with a quadrupole field the excitation angular frequencies are given by
10
[0088] where K=1,2,3 . . . and m=0,±1,±1,±3 . . . Of course, when the quadrupole field has small contributions of higher field harmonics added, the excitation fields, dipole or quadrupole, may also contain small contributions from the higher harmonics.
[0089] Referring to FIG. 8A, there is illustrated the calculated displacement of an ion as a fraction of r0 against time in RF periods. The total length of time is 5000 periods. In this case, no direct current voltage is applied to the quadrupole rods (U=0), and a radio frequency voltage of V=124.29 volts is applied. The Mathieu parameters a and q are 0.00000 and 0.210300 respectively, which are in the first stability region. There is linear damping of the ion motion (i.e. there is a drag force on the ion by the gas, which is linearly proportional to the ion speed). The radio frequency is 768 kHz, r0 is equal to 4.0 mm. The ion mass and charge are 612 and 1 respectively. The mass of the collision gas is 28 (nitrogen) and its temperature is 300 Kelvin. The collision cross section between the ions and gas is 200.0 Å2, and the pressure of the gas is 1.75 millitorr. The initial displacement of the ion in the X direction is 0.1 r0. The initial displacement of the ion in the Y direction is 0.1 r0. The initial velocities of the ion in the X and Y directions are zero. The trajectory calculation is for an ideal quadrupole field with no added octopole component. There is no excitation of the ion motion in the trajectory shown in FIG. 8A.
[0090] From FIG. 8A, it is apparent that when a simple quadrupole field, lacking any higher order terms, is generated by an electrode system, and when there is no excitation of ion motion, the ions generally have a declining quantity of kinetic energy. Ions move through the two-dimensional quadrupole field and lose energy in the radial and axial directions as discussed for example in the article “Collisional Focusing Effects in Radio Frequency Quadrupoles”, D. J. Douglas and J. B. French, J. Am. Soc. Mass Spectrom. 3, 398, 1992. As a consequence, the ions are confined and move toward the centerline of the quadrupole, and fragmentation is minimal. Referring to FIG. 8B, the kinetic energy in electron volts (eV) of the ions is very low. In fact the kinetic energy is so low that it appears to be nearly zero in FIG. 8B. As the ion oscillates in the field, the kinetic energy varies between zero and a maximum value that decreases with time. The kinetic energy averaged over each period of the ion motion decreases with time. Referring to FIG. 8C, a graph plots displacement of the ion in the Y direction against displacement of the ion in the X direction. From FIG. 8C, it can be seen that the motion of the ion is highly restricted and, for this trajectory, within a very small area in which its X and Y displacements are substantially equal. This is a consequence of the initial conditions for this single trajectory.
[0091] Referring to FIG. 9A, ion displacement as a fraction of r0 is plotted against time in periods of the quadrupole RF field. The ion of FIG. 9A has been subjected to a second field. In generating this second field, a dipole excitation voltage has been applied between the X rods 112 and 114, but there is no dipole excitation voltage applied between the Y rods 116 and 118. The amplitude of this dipole excitation voltage is 0.30 V and its frequency is 57.6 kHz, which corresponds to n=0 in equation 8. All the other parameters remain the same as per FIG. 8A.
[0092] Unlike the trajectory of FIG. 8A, the amplitude of displacement in the X direction increases substantially. As the amplitude of ion displacement in the X direction increases, the ion kinetic energy also increases. However, the amplitude increases so much, and so much kinetic energy is imparted to the ion, that it strikes an X rod and is lost after a time of 210 periods. This can also be seen from FIG. 9B, which plots the kinetic energy in electron volts (eV) imparted to the ion of FIG. 9A against time in periods of the quadrupole RF field. As shown, the kinetic energy averaged over each period of the ion motion increases over time, until a time of 210 periods, at which point the ion is lost. Referring to FIG. 9C, it can be seen that the excitation of the ion is largely confined to the X direction. The amplitude of oscillation in the Y direction remains small, as it is only motion in the X direction that is excited.
[0093] Referring to FIG. 10A, ion displacement as a fraction of r0 is again plotted against time in periods of the quadrupole RF field. All of the parameters are the same as in FIG. 9A, except that a 2% octopole field was added to the quadrupole field. As shown in FIG. 10A, the amplitude of displacement of the ion in the X direction first increases to a relatively high fraction of r0 (about 0.8) and then diminishes to a smaller amplitude (about 0.4). This pattern is a consequence of the resonance frequency of the ion depending on its amplitude of displacement when an octopole or other multipole component with N≦3 is present. As the amplitude of displacement of the ion increases, the resonant frequency of the ion shifts relative to the excitation frequency (for an anharmonic ocillator, this shift is described in L. Landau and E. M. Lifshitz, Mechanics, third Edition, Pergamon Press Oxford, 1966, pages 84-87). The ion motion becomes out of phase with the excitation frequency, thereby reducing the kinetic energy imparted by the field to the ion such that the amplitude of motion of the ion diminishes. As the amplitude of motion decreases once again the resonant frequency of the ion matches the frequency of the excitation field, such that energy is again imparted to the ion and its amplitude once again increases. Referring to FIG. 10B, this relationship can be seen in that the kinetic energy averaged over each period of the ion motion imparted to the ion over time gradually increases and decreases, until, eventually a steady state is reached. Referring to FIG. 10C, it can be seen that similar to the FIG. of 9C, the movement of the ion is largely confined to the X direction as the dipole excitation voltage is applied only to the X rods 112 and 114. In comparison to FIG. 9A, as illustrated by the trajectories in FIG. 10A, adding an octopole field allows ions to be excited for longer periods of time without being ejected from the field. During the excitation, the ion accumulates internal energy through energetic collisions with the background gas and eventually, when it has gained sufficient internal energy, fragments. Thus, to induce fragmentation, it is advantageous to be able to excite ions for long periods of time without having the ions ejected from the field. Of course, it will be appreciated by those skilled in the art that the amount of octopole field must not be made too large relative to the quadrupole component of the field.
[0094] Referring to FIG. 11A, the displacement of an ion subjected to a quadrupole excitation field is plotted against time in periods of the quadrupole RF field. The amplitude of the excitation voltage applied to both the X and Y rods is 0.5 volts and the excitation frequency is 115 kHz which corresponds to m=0 and K=1 in equation 13. The quadrupole field has no added octopole component. All the other parameters remain the same as the parameters for FIGS. 8 to 10.
[0095] As shown in FIG. 11A, the amplitude of ion oscillation gradually increases over time until a time of 350 periods at which point the ion strikes a Y rod and is lost. Referring to 11B, the kinetic energy averaged over each period of the ion motion received by the ion can be seen to gradually increase until a time after 350 periods, at which point the ion is lost. FIG. 11C plots the displacement of the ion in the X direction against the displacement of the ion in the Y direction. Unlike FIGS. 8 to 10, the ion of FIG. 11C moves throughout the XY plane of the quadrupole, before being lost.
[0096] Referring to FIG. 12A, the displacement of an ion as a fraction of r0 is plotted against time in periods of the quadrupole RF field. The ion is subjected to a field similar to the field of FIG. 11A in all respects, except that it has been supplemented by an octopole component. The octopole component is 2% of the mainly quadrupole field. All other parameters remain the same as the parameters of FIG. 11.
[0097] Similar to FIG. 10A, the displacement of the ion shown in FIG. 12A gradually increases over time, due to the auxiliary quadrupole excitation, until it reaches a maximum of approximately 0.8 r0. At this point, the resonant frequency of the ion shifts and, the ion motion moves out of phase with the frequency of the quadrupole excitation field. Consequently, the displacement diminishes and the ion moves gradually back into phase with the frequency of the quadrupole excitation field, whereupon the amplitude of displacement of the ion once again increases. Referring to FIG. 12B, the kinetic energy averaged over one period of the ion increases until the time is equal to about 350 periods, at which point the kinetic energy diminishes, but again increases as the ion moves back into phase with the quadrupole excitation field. Referring to FIG. 12C, the displacement of the ion in the Y direction is plotted against the displacement of the ion in the X direction. Again, similar to FIG. 11C, the ion can be seen to have moved throughout the XY plane of the quadrupole. Thus with quadrupole excitation, as with dipole excitation, addition of a small octopole component to the field allows the ion to be excited for much longer periods of time to increase the internal energy that can be imparted to an ion to induce fragmentation.
[0098] Addition of an octopole component to the quadrupole field can also improve the scan speed and resolution that is possible in ejecting trapped ions from a two-dimensional quadrupole field. Ejection can be done in a mass selective instability scan or by resonant ejection, both of which are described in U.S. Pat. No. 5,420,425. These two cases are considered separately.
[0099] MASS ANALYSIS OF TRAPPED IONS BY EJECTION AT THE STABILITY BOUNDARY
[0100] In the two-dimensional ion trap, ions are confined radially by a two-dimensional quadrupole field. These trapped ions can be ejected through an aperture or apertures in a rod or rods to an external detector by increasing the RF voltage so that ions reach the boundary of the stability region (at q=0.908 for the first stability region) and are ejected. Unlike the three-dimensional trap, there is no confinement of ions in the z direction by quadrupole RF fields. As shown in the article “Effective Potential and the Ion Axial Beat Motion Near the Boundary of the First Stable Region in a Non-Linear Ion Trap”, by M. Sudakov, International Journal of Mass Spectrometry, vol. 206, (2001), pp. 27-43, when there is a positive octopole component of the field in the direction of ion ejection, ions are ejected more quickly at the stability boundary, and therefore higher resolution and scan speed are possible in a mass selective stability scan than in a field without an octopole component. Here a “positive” octopole component means the magnitudes of the potential and electric field increase more rapidly with distance from the center than would be the case for a purely quadrupole field.
[0101] The field generated will be strongest in the direction of the small rods. Therefore, a positive octopole component will be generated in the direction of the small rods. Thus, a detector should be located outside the small rods.
[0102] MASS ANALYSIS OF TRAPPED IONS BY RESONANT EJECTION
[0103] When the octopole component is present, ions can still be ejected from the linear quadrupole trap by resonant excitation, but greater excitation voltages are required. With dipole excitation, a sharp threshold voltage for ejection is produced. Thus, if ions are being ejected by resonant excitation, they move from having stable motion to unstable motion more quickly as the trapping RF field or other parameters are adjusted to bring the ions into resonance for ejection. This means the scan speed can be increased and the mass resolution of a scan with resonant ejection can be increased.
[0104] With quadrupole excitation, two thresholds need to be distinguished. As discussed in the article “Observation of Higher Order Quadrupole Excitation Frequencies in a Linear Ion Trap” by B. A. Collings and D. J. Douglas, (J. Am. Soc. Mass Spectrom. 11, 1016-1022, 2000) and in the text Mechanics, by L. Landau and E. M. Lifshitz, (third Edition, Pergamon Press, Oxford, 1960 on pages 80-83), when ions have their motion damped by collisions, there is a threshold voltage for excitation. This is referred to here as the “damping threshold”. If the excitation voltage is below the damping threshold, the amplitude of ion motion decreases exponentially with time, even when the excitation is applied. (Somewhat like the trajectories in FIG. 8A). If the amplitude of excitation is above the damping threshold, the amplitude of ion motion increases exponentially with time and the ions can be ejected, as can be see in FIG. 11A. When the octopole component is present and ions are excited with amplitudes above the damping threshold, ions can be excited, but still confined by the field, as shown in FIG. 12A. However if the amplitude of the quadrupole excitation is increased, ions can still be ejected. Thus, there is a second threshold—the ion ejection threshold. This means, as with dipole excitation, that the scan speed and resolution of mass analysis by resonant ejection can be increased.
[0105] The field generated will be strongest in the direction of the small rods. Therefore, a positive octopole component will be generated in the direction of the small rods. Thus, a detector should be located outside the small rods.
[0106] OPERATION AS A MASS FILTER
[0107] The above-described quadrupole fields having significant octopole components can be useful as quadrupole mass filters. The term “quadrupole mass filter” is used here to mean a linear quadrupole operated conventionally to produce a mass scan as described, for example, in “Quadrupole Mass Spectrometry and its Applications”, P. H. Dawson ed., Elsevier Amsterdam, 1976, pages 19-22. The voltages U and V are adjusted so that ions of a selected mass to charge ratio are just inside the tip of a stability region such as the first region shown in FIG. 1. Ions of higher mass have lower a,q values and are outside of the stability region. Ions of lower mass have higher a,q values and are also outside of the stability region. Therefore ions of the selected mass to charge ratio are transmitted through the quadrupole to a detector at the exit of the quadrupole. The voltages U and V are then changed to transmit ions of different mass to charge ratios. A mass spectrum can then be produced. Alternatively the quadrupole may be used to “hop” between different mass to charge ratios as is well known. The resolution can be adjusted by changing the ratio of DC to RF voltages (UN) applied to the rods.
[0108] It has been expected that for operation as a mass filter, the potential in a linear quadrupole should be as close as possible to a pure quadrupole field. Field distortions, described mathematically by the addition of higher multipole terms to the potential, have generally been considered undesirable (see, for example, “Non-linear Resonances in Quadrupole Mass Spectrometers Due to Imperfect Fields” by P. H. Dawson and N. R. Whetton, International Journal of Mass Spectrom. Ion Physics, 3, 1 to 12, 1969, and “Ion Optical Properties of Quadrupole Mass Filters” by P. H. Dawson, in Advances in Electronics and Electron Optics, 53, 153 to 208, 1980). Empirically, manufacturers who use round rods to approximate the ideal hyperbolic rod shapes, have found that a geometry that adds small amounts of 12-pole and 20-pole potentials, gives higher resolution and gives peaks with less tailing than quadrupoles constructed with a geometry that minimizes the 12-pole potential. It has been shown that this is due to a fortuitous cancellation of unwanted effects from the 12- and 20-pole terms with the optimized geometry. However the added higher multipoles still have very low magnitudes (ca. 10−3) compared to the quadrupole term (Influence of the 6th and 10th Spatial Harmonics on the Peak Shape of a Quadrupole Mass Filter with Round Rods, D. J. Douglas and N. V. Konenkov, Rapid Communications in Mass Spectrometry, 16, 1425-1431, 2002).
[0109] The inventors have constructed rods sets, as described above, that contain substantial octopole components (typically between 2 to 3% of A2). In view of all the previous literature on field imperfections, it would not be expected that these rod sets would be capable of mass analysis in the conventional manner. However, the inventors have discovered that the rod sets can in fact give mass analysis with resolution comparable to a conventional rod set provided the polarity of the quadrupole power supply is set correctly and the rod offset of the quadrupole is set correctly. Conversely if the polarity is set incorrectly, the resolution is extremely poor.
[0110] Rod Polarity Effects
[0111] FIGS. 13 to 16 are mass spectra generated by a mass spectrometer using a quadrupole field with an octopole component A4=0.026 (Ry=1.30Rx); (Rx=rx=ry). The other harmonic amplitudes are can be determined from the graph of FIG. 4. In all cases, the quadrupole frequency was 1.20 MHz, the length of the quadrupole was 20 cm, the distance of the rods from the central axis was 4.5 mm. The scan was conducted on individual 0.1 mion/e intervals along the horizontal axis, which shows mass to charge ratio. On each interval, ions were counted for 10 milliseconds, and then after a 0.05 millisecond pause, the scan was moved to the next mion/e value. Fifty scans of the entire range were performed, and the numbers of ions counted for each interval were then added up over these entire 50 scans. A computer and software acting as a multi-channel scalar was used in the scans. The vertical axes of all of the graphs show the ion count rates normalized to 100% for the highest peaks.
[0112]
FIG. 13 shows the resolution obtained with positive ions of mass to charge ratio mion/e=609 (protonated reserpine) when the positive DC voltage of the quadrupole power supply is connected to the larger diameter rod pair, and the negative DC voltage is connected to the smaller diameter rod pair. A broad peak with a resolution at half height of R1/2=135 is formed. Changes to the rod offset, balance or ratio of RF to DC voltage do not increase the resolution substantially, although they can change the signal intensity. FIG. 14 shows the resolution for the same ion when the positive output is connected to the smaller rod pair and the negative output is connected to the larger rod pair. The resolution is dramatically improved to R1/2=1590, and can be adjusted by changing the ratio of RF to DC voltage. In this way, a resolution of up to R1/2=5600 has been obtained at this mass to charge ratio.
[0113]
FIG. 15 shows the mass spectrum of negative ions of reserpine, that is obtained when the negative DC voltage output is connected to the larger rods and the positive DC voltage output is connected to the smaller rods. The resolution at half height is R1/2=135 and cannot be significantly improved by changing the rod offset, balance or ratio of RF to DC voltage settings, although these settings can change the signal intensity. FIG. 16 shows the resolution obtained with the same ions but when the positive DC voltage output is connected to the larger diameter rods and the negative DC voltage output is connected to the smaller rods. The resolution at half height is improved to R1/2=1015, and can be adjusted with the ratio of RF to DC voltages applied to the rods. These results show that for positive ions, it is necessary to connect the positive output of the quadrupole supply to the small rods, and for negative ions, it is necessary to connect the negative output to the small rods.
[0114] Briefly, the small rods should be given the same polarity as the ions to be mass analyzed.
[0115] When positive ions are analyzed, the negative output of the quadrupole supply is preferably connected to the larger rods. If a balanced DC potential is applied to the rods, there will be a negative DC axis potential, because a small portion of the DC voltage applied to the larger rods appears as an axis potential. The magnitude of this potential will increase as the quadrupole scans to higher mass (because a higher DC potential is required for higher mass ions). To maintain the same ion energy within the quadrupole (in order to maintain good resolution), it will be necessary to increase the rod offset as the mass filter scans to higher mass. Similarly, it will be necessary to adjust the rod offset with mass during a scan with negative ions. In this case the axis potential caused by balanced DC becomes more positive (less negative) at higher masses, and it will be necessary to make the rod offset more negative as the quadrupole scans to higher mass. Thus in general, if a balanced DC potential U is applied to the rod sets with different diameter rod pairs, it will be necessary to adjust the rod offset potential for ions of different mion/e values, in order to maintain good performance.
[0116] If an unbalanced DC is applied to the rods to make the axis potential zero, it will not be necessary to adjust the rod offset as the mass is scanned. Tests show that the resolution is not changed between running with balanced and unbalanced RF, provided the ratio of RF/DC between rods is suitably adjusted.
[0117] Other variations and modifications of the invention are possible. For example, quadrupole rod sets may be used with a high axis potential. Further, while the foregoing discussion has dealt with cylindrical rods, it will be appreciated by those skilled in the art that the invention may also be implemented using other rod configurations. For example. Hyperbolic rod configurations may be employed. Alternatively, the rods could be constructed of wires as described, for example, in U.S. Pat. No. 4,328,420. Also, while the foregoing has been described with respect to quadrupole electrode systems having straight central axes, it will be appreciated by those skilled in the art that the invention may also be implemented using quadrupole electrode systems having curved central axes. All such modifications or variations are believed to be within the sphere and scope of the invention as defined by the claims appended hereto.
Claims
- 1. A quadrupole electrode system for connection to a voltage supply means for providing an at least partially-AC potential difference within the quadrupole electrode system, the quadrupole electrode system comprising:
(a) a central axis; (b) a first pair of rods, wherein each rod in the first pair of rods is spaced from and extends alongside the central axis; (c) a second pair of rods, wherein each rod in the second pair of rods is spaced from and extends alongside the central axis; and (d) a voltage connection means for connecting at least one of the first pair of rods and the second pair of rods to the voltage supply means to provide the at least partially-AC potential difference between the first pair of rods and the second pair of rods; wherein, at any point along the central axis, an associated plane orthogonal to the central axis intersects the central axis, intersects the first pair of rods at an associated first pair of cross sections, and intersects the second pair of rods at an associated second pair of cross sections; the associated first pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a first axis orthogonal to the central axis and passing through a center of each rod in the first pair of rods; the associated second pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a second axis orthogonal to the central axis and passing through a center of each rod in the second pair of rods; the associated first pair of cross sections and the associated second pair of cross sections are substantially asymmetric under a ninety degree rotation about the central axis; and, the first axis and the second axis are substantially orthogonal and intersect at the central axis; such that in use the first pair of rods and the second pair of rods are operable, when the at least partially-AC potential difference is provided by the voltage supply means and the voltage connection means to at least one of the first pair of rods and the second pair of rods, to generate a two-dimensional substantially quadrupole field having a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a hexadecapole harmonic with amplitude A8, wherein A8 is less than A4, and A4is greater than 1% of A2.
- 2. A linear ion trap for manipulating ions, the linear ion trap comprising the quadrupole electrode system as defined in claim 1.
- 3. The linear ion trap as defined in claim 2 wherein A4<4% of A2.
- 4. The linear ion trap as defined in claim 2 wherein A4 is greater than a dodecapole harmonic amplitude A6 of the substantially quadrupole field.
- 5. The linear ion trap as defined in claim 2 wherein
each rod in the first pair of rods is substantially parallel to the central axis and has a transverse dimension D1; and, each rod in the second pair of rods is substantially parallel to the central axis and has a transverse dimension D2 less than D1, D1/D2 being selected such that A4 is greater than 1% of A2.
- 6. The linear ion trap as defined in claim 5 wherein
the first pair of rods and the second pair of rods are substantially cylindrical; the transverse dimension D1 is twice a radius R1 of each rod in the first pair of rods; and, the transverse dimension D2 is twice a radius R2 of each rod in the second pair of rods.
- 7. The linear ion trap as defined in claim 6, wherein the voltage supply means comprises a first voltage source for supplying a first at least partially-AC voltage to the first pair of rods and a second voltage source for supplying a second at least partially-AC voltage to the second pair of rods; and, the voltage connection means comprises a first voltage connection means for connecting the first pair of rods to the first voltage source, and a second voltage connection means for connecting the second pair of rods to the second voltage source.
- 8. The linear ion trap as defined in claim 7, wherein the first at least partially-AC voltage is decreased by a voltage misbalance amount and the second at least partially-AC voltage is increased by the voltage misbalance amount, the voltage misbalance amount being selected to minimize an axis potential of the field.
- 9. The linear ion trap as defined in claim 6, wherein
each rod in the first pair of rods is a distance r1 from the central axis of the quadrupole electrode system; each rod in the second pair of rods is a distance r2 from the central axis of the quadrupole electrode system, r2 being unequal to r1; and, r1/r2 is selected to minimize an amplitude A0 of a constant potential of the field.
- 10. The linear ion trap as defined in claim 2 wherein A4<6% of A2.
- 11. The linear ion trap as defined in claim 6 further comprising an ion detector for detecting ions ejected from the quadrupole electrode system, the ion detector being located outside the quadrupole electrode system and adjacent to a rod in the second pair of rods.
- 12. A quadrupole electrode system for connection to a voltage supply means in a mass filter mass spectrometer to provide an at least partially-AC potential difference for selecting ions within the quadrupole electrode system, the quadrupole electrode system comprising:
(a) a central axis; (b) a first pair of rods, wherein each rod in the first pair of rods is spaced from and extends alongside the central axis; (c) a second pair of rods, wherein each rod in the second pair of rods is spaced from and extends alongside the central axis; and (d) a voltage connection means for connecting at least one of the first pair of rods and the second pair of rods to the voltage supply means to provide the at least partially-AC potential difference between the first pair of rods and the second pair of rods; wherein, at any point along the central axis, an associated plane orthogonal to the central axis intersects the central axis, intersects the first pair of rods at an associated first pair of cross sections, and intersects the second pair of rods at an associated second pair of cross sections; the associated first pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a first axis orthogonal to the central axis and passing through a center of each rod in the first pair of rods; the associated second pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a second axis orthogonal to the central axis and passing through a center of each rod in the second pair of rods; the associated first pair of cross sections and the associated second pair of cross sections are substantially asymmetric under a ninety degree rotation about the central axis; and, the first axis and the second axis are substantially orthogonal and intersect at the central axis; such that in use the first pair of rods and the second pair of rods are operable, when the at least partially-AC potential difference is provided by the voltage supply means and the voltage connection means to at least one of the first pair of rods and the second pair of rods, to generate a two-dimensional substantially quadrupole field having a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a hexadecapole harmonic with amplitude A8, wherein A8 is less than A4, and A4 is greater than 0.1% of A2.
- 13. A mass filter mass spectrometer for selecting ions, the mass spectrometer comprising:
a quadrupole electrode system as defined in claim 12; and, ion introduction means for injecting ions between the first pair of rods and the second pair of rods at an ion introduction end of the first pair of rods and the second pair of rods.
- 14. The mass spectrometer as defined in claim 13 wherein A4<4% of A2 and A4>1% of A2.
- 15. The mass spectrometer as defined in claim 13 wherein A4 is greater than the dodecapole harmonic amplitude A6 of the substantially quadrupole field.
- 16. The mass spectrometer as defined in claim 13 wherein
each rod in the first pair of rods is substantially parallel to the central axis and has a transverse dimension D1; and, each rod in the second pair of rods is substantially parallel to the central axis and has a transverse dimension D2 less than D1, D1/D2 being selected such that A4 is greater than 0.1% of A2.
- 17. The mass spectrometer as defined in claim 16 wherein
the first pair of rods and the second pair of rods are substantially cylindrical; the transverse dimension D1 is twice a radius R1 of each rod in the first pair of rods; and, the transverse dimension D2 is twice a radius R2 of each rod in the second pair of rods.
- 18. The mass spectrometer as defined in claim 17, wherein the voltage supply means comprises a first voltage source for supplying a first at least partially-AC voltage to the first pair of rods and a second voltage source for supplying a second at least partially-AC voltage to the second pair of rods; and, the voltage connection means comprises a first voltage connection means for connecting the first pair of rods to the first voltage source, and a second voltage connection means for connecting the second pair of rods to the second voltage source.
- 19. The mass spectrometer as defined in claim 18 wherein the first at least partially-AC voltage is decreased by a voltage misbalance amount and the second at least partially-AC voltage is increased by the voltage misbalance amount, the voltage misbalance amount being selected to minimize an axis potential of the field.
- 20. The mass spectrometer as defined in claim 18, wherein
each rod in the first pair of rods is a distance r1 from the central axis of the quadrupole electrode system; each rod in the second pair of rods is a distance r2 from the central axis of the quadrupole electrode system; and r1/r2 is selected to minimize an amplitude A0 of a constant potential of the field.
- 21. The mass spectrometer as defined in claim 13 wherein A4<6% of A2 .
- 22. A method of processing ions in a quadrupole mass filter, the method comprising
establishing and maintaining a two-dimensional substantially quadrupole field for processing ions within a selected range of mass to charge ratios, the field having a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a hexadecapole harmonic with amplitude A8, wherein A8 is less than A4 and A4 is greater than 0.1% of A2; and, introducing ions to the field, wherein the field imparts stable trajectories to ions within the selected range of mass to charge ratios to retain such ions in the mass filter for transmission through the mass filter, and imparts unstable trajectories to ions outside of the selected range of mass to charge ratios to filter out such ions.
- 23. The method as defined in claim 22 further comprising detecting ions within the selected range of mass to charge ratios at an ion detection end of the field.
- 24. The method as defined in claim 22 wherein A4<4% of A2.
- 25. The method as defined in claim 22 wherein A4 is greater than a dodecapole harmonic amplitude A6 of the substantially quadrupole field.
- 26. The method as defined in claim 22 wherein the quadrupole mass filter has a first rod pair and a second rod pair, the first rod pair being selected to be of greater transverse dimension than the second rod pair such that A4 is greater than 0.1% of A2, the method further comprising
supplying a voltage V1 to the first rod pair, the voltage V1 being at least partially-AC and having a first DC component of a different polarity than ions within the selected range of mass to charge ratios; and, supplying a voltage V2 to the second rod pair, the voltage V2 being at least partially-AC and having a second DC component of the same polarity as ions within the selected range of mass to charge ratios.
- 27. The method as defined in claim 26 further comprising
increasing V2 by a voltage misbalance amount, and decreasing V1 by the voltage misbalance amount, the voltage misbalance amount being selected to minimize an axis potential of the field.
- 28. The method as defined in claim 26, wherein
the second rods are a distance r2 from a central axis of the quadrupole electrode system; the first rods are a distance r1 from the central axis of the quadrupole electrode system, r2 being unequal to r1; and r1/r2 is selected to minimize an amplitude A0 of a constant potential of the field.
- 29. A method of increasing average kinetic energy of ions in a two-dimensional ion trap mass spectrometer, the method comprising
(a) establishing and maintaining a two-dimensional substantially quadrupole field to trap ions within a selected range of mass to charge ratios wherein the field has a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a hexadecapole harmonic with amplitude A8, wherein A8 is less than A4 and A4 is greater than 1% of A2; (b) trapping ions within the selected range of mass to charge ratios; and (c) adding an excitation field to the field to increase the average kinetic energy of trapped ions within a first selected sub-range of mass to charge ratios, wherein the first selected sub-range of mass to charge ratios is within the selected range of mass to charge ratios.
- 30. The method as defined in claim 29 wherein A4<4% of A2.
- 31. The method as defined in claim 29 wherein A4 is greater than a dodecapole harmonic amplitude A6 of the substantially quadrupole field.
- 32. The method as defined in claim 29 wherein step (a) comprises
supplying a voltage V1 to a first pair of rods, the voltage V1 being at least partially-AC; and supplying a voltage V2 to a second pair of rods, the voltage V2 being at least partially-AC; wherein the first pair of rods and the second pair of rods surround a central axis of the field and extend substantially parallel to the central axis.
- 33. The method as defined in claim 32 wherein the first rod pair is selected to be of greater transverse dimension than the second rod pair such that A4 is greater than 1% of A2, the method further comprising
increasing V2 by a voltage misbalance amount, and decreasing V1 by the voltage misbalance amount, the voltage misbalance amount being selected to minimize an axis potential of the field.
- 34. The method as defined in claim 32 further comprising
increasing the excitation field to impart unstable trajectories to trapped ions within a second selected sub-range of mass to charge ratios, wherein the second selected sub-range of mass to charge ratios is within the selected range of mass to charge ratios and the ions having unstable trajectories are ejected from the ion trap; and, detecting the ions having unstable trajectories as the ions leave the ion trap.
- 35. The method as defined in claim 32 further comprising:
providing a collision gas to the two-dimensional ion trap mass spectrometer, and increasing the excitation field to fragment the trapped ions.
- 36. A method of manufacturing a quadrupole electrode system for connection to a voltage supply means for providing an at least partially-AC potential difference within the quadrupole electrode system to generate a two-dimensional substantially quadrupole field for manipulating ions, the method comprising the steps of:
(a) determining an octopole component to be included in the field; (b) selecting a degree of asymmetry under a ninety degree rotation about a central axis of the quadrupole, the degree of asymmetry being selected to be sufficient to provide the octopole component; (c) installing a first pair of rods and a second pair of rods about the central axis, wherein the first pair of rods and the second pair of rods are spaced from and extend alongside the central axis, and, wherein at any point along the central axis,
an associated plane orthogonal to the central axis intersects the central axis, intersects the first pair of rods at an associated first pair of cross sections, and intersects the second pair of rods at an associated second pair of cross sections; the associated first pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a first axis orthogonal to the central axis and passing through a center of each rod in the first pair of rods; the associated second pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a second axis orthogonal to the central axis and passing through a center of each rod in the second pair of rods; the associated first pair of cross sections and the associated second pair of cross sections have the selected degree of asymmetry; and, the first axis and the second axis are substantially orthogonal and intersect at the central axis.
- 37. The method as defined in claim 36, wherein the selected degree of asymmetry is provided by
selecting each rod in the first pair of rods to have a transverse dimension D1; and, selecting each rod in the second pair of rods to have a transverse dimension D2 less than D1, D2/D1 being selected to provide the octopole component determined in step (a).
- 38. The method as defined in claim 37, wherein the first pair of rods and the second pair of rods are substantially cylindrical, the dimension D1 is twice a radius R1 of each rod in the first pair of rods, and the dimension D2 is twice a radius R2 of each rod in the second pair of rods.
- 39. The method as defined in claim 37, wherein step (c) comprises
aligning the first pair of rods on a first plane containing the central axis, each rod in the first pair of rods being substantially equally spaced from the central axis; and aligning the second pair of rods on a second plane containing the central axis, each rod in the second pair of rods being substantially equally spaced from the central axis; wherein the first plane and the second plane are substantially orthogonal and intersect at the central axis.
- 40. The method as defined in claim 37 wherein step (c) further comprises
(i) installing the first pair of rods at a distance r1 from the central axis on opposite sides of the central axis; and, (ii) installing the second pair of rods at a distance r2 from the central axis on opposite sides of the central axis, r2 being unequal to r1; wherein r1/r2 is selected to minimize an amplitude A0 of a constant potential of the two-dimensional substantially quadrupole field.
- 41. A quadrupole electrode system for connection to a voltage supply means for providing an at least partially-AC potential difference within the quadrupole electrode system to generate a two-dimensional substantially quadrupole field for manipulating ions, the quadrupole electrode system comprising
(a) a central axis; (b) a first pair of rods, wherein each rod in the first pair of rods is spaced from and extends alongside the central axis, and has a transverse dimension D1; (c) a second pair of rods, wherein each rod in the second pair of rods is spaced from and extends alongside the central axis, and has a transverse dimension D2, D2 being less than D1; and (d) a voltage connection means for connecting at least one of the first pair of rods and the second pair of rods to the voltage supply means to provide the at least partially-AC potential difference between the first pair of rods and the second pair of rods.
- 42. The quadrupole electrode system as defined in claim 41 wherein at any point along the central axis,
an associated plane orthogonal to the central axis intersects the central axis, intersects the first pair of rods at an associated first pair of cross sections, and intersects the second pair of rods at an associated second pair of cross sections; the associated first pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a first axis orthogonal to the central axis and passing through a center of each rod in the first pair of rods; the associated second pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a second axis orthogonal to the central axis and passing through a center of each rod in the second pair of rods; the associated first pair of cross sections and the associated second pair of cross sections are substantially asymmetric under a ninety degree rotation about the central axis; and, the first axis and the second axis are substantially orthogonal and intersect at the central axis.
- 43. A linear ion trap for manpulating ions, the linear ion trap comprising the quadrupole electrode system as defined in claim 41.
- 44. The linear ion trap as defined in claim 43 wherein the first pair of rods and the second pair of rods are substantially cylindrical, the transverse dimension D1 is twice a radius R1 of each rod in the first pair of rods, and the transverse dimension D2 is twice a radius R2 of each rod in the second pair of rods.
- 45. The linear ion trap as defined in claim 43 wherein the field has a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a hexadecapole harmonic amplitude A8, wherein A8 is less than A4, and A4is greater than 0.1% A2.
- 46. The linear ion trap as defined in claim 43 wherein the voltage supply means comprises a first voltage source for supplying a first at least partially-AC voltage to the first pair of rods and a second voltage source for supplying a second at least partially-AC voltage to the second pair of rods; and, the voltage connection means comprises a first voltage connection means for connecting the first pair of rods to the first voltage source, and a second voltage connection means for connecting the second pair of rods to the second voltage source.
- 47. The linear ion trap as defined in claim 46, wherein the first at least partially-AC voltage is decreased by a voltage misbalance amount and the second at least partially-AC voltage is increased by the voltage misbalance amount, the voltage misbalance amount being selected to minimize an axis potential of the field.
- 48. The linear ion trap as defined in claim 43, wherein
each rod in the first pair of rods is a distance r1 from the central axis of the quadrupole electrode system; each rod in the second pair of rods is a distance r2 from the central axis of the quadrupole electrode system, r2 being unequal to r1; and, r1/r2 is selected to minimize an amplitude A0 of a constant potential of the field.
- 49. The linear ion trap as defined in claim 43 wherein A4<4% of A2 and A4>1% of A2.
- 50. The linear ion trap as defined in claim 43 wherein A4 is greater than a dodecapole harmonic amplitude A6 of the substantially quadrupole field.
- 51. The linear ion trap as defined in claim 43 further comprising an ion detector for detecting ions ejected from the quadrupole electrode system, the ion detector being located outside the quadrupole electrode system and adjacent to a rod in the second pair of rods.
- 52. A mass filter mass spectrometer for selecting ions, the mass spectrometer comprising:
a quadrupole electrode system as defined in claim 41; and, ion introduction means for injecting ions between the first pair of rods and the second pair of rods at an ion introduction end of the first pair of rods and the second pair of rods.
- 53. The mass spectrometer as defined in claim 52 wherein the first pair of rods and the second pair of rods are substantially cylindrical, the dimension D1 is twice a radius R1 of each rod in the first pair of rods and the dimension D2 is twice a radius R2 of each rod in the second pair of rods.
- 54. The mass spectrometer as defined in claim 52 wherein the field has a constant potential with amplitude A0 a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a hexadecapole harmonic with amplitude A8 , wherein A8 is less than A4.
- 55. The mass spectrometer as defined in claim 52 wherein A4<4% of A2and A4>0.1% of A2.
- 56. The mass spectrometer as defined in claim 52 wherein A4 is greater than a dodecapole harmonic amplitude A6 of the substantially quadrupole field.
- 57. The mass spectrometer as defined in claim 52 wherein the voltage supply means comprises a first voltage source for supplying a first at least partially-AC voltage to the first pair of rods and a second voltage source for supplying a second at least partially-AC voltage to the second pair of rods; and, the voltage connection means comprises a first voltage connection means for connecting the first pair of rods to the first voltage source, and a second voltage connection means for connecting the second pair of rods to the second voltage source.
- 58. The mass spectrometer as defined in claim 57, wherein the first at least partially-AC voltage is decreased by a voltage misbalance amount and the second at least partially-AC voltage is increased by the voltage misbalance amount, the voltage misbalance amount being selected to minimize an axis potential of the field.
- 59. The mass spectrometer as defined in claim 57, wherein
each rod in the first pair of rods is a distance r1 from the central axis of the quadrupole electrode system; each rod in the second pair of rods is a distance r2 from the central axis of the quadrupole electrode system; and r1/r2 is selected to minimize an amplitude A0 of a constant potential of the field.
- 60. The mass spectrometer as defined in claim 57 wherein A4<6% of A2.
- 61. A quadrupole electrode system for connection to a voltage supply means for providing an at least partially-AC potential difference within the quadrupole electrode system, the quadrupole electrode system comprising:
(a) a central axis; (b) a first pair of cylindrical rods, wherein each rod in the first pair of cylindrical rods is spaced from and extends alongside the central axis; (c) a second pair of cylindrical rods, wherein each rod in the second pair of cylindrical rods is spaced from and extends alongside the central axis; and (d) a voltage connection means for connecting at least one of the first pair of cylindrical rods and the second pair of cylindrical rods to the voltage supply means to provide the at least partially-AC potential difference between the first pair of cylindrical rods and the second pair of cylindrical rods; wherein, at any point along the central axis, an associated plane orthogonal to the central axis intersects the central axis, intersects the first pair of cylindrical rods at an associated first pair of cross sections, and intersects the second pair of cylindrical rods at an associated second pair of cross sections; the associated first pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a first axis orthogonal to the central axis and passing through a center of each rod in the first pair of rods; the associated second pair of cross sections are substantially symmetrically distributed about the central axis and are bisected by a second axis orthogonal to the central axis and passing through a center of each rod in the second pair of rods; the associated first pair of cross sections and the associated second pair of cross sections are substantially asymmetric under a ninety degree rotation about the central axis; and, the first axis and the second axis are substantially orthogonal and intersect at the central axis; such that in use the first pair of cylindrical rods and the second pair of cylindrical rods are operable, when the at least partially-AC potential difference is provided by the voltage supply means and the voltage connection means to at least one of the first pair of cylindrical rods and the second pair of cylindrical rods, to generate a two-dimensional substantially quadrupole field having a quadrupole harmonic with amplitude A2, an octopole harmonic with amplitude A4, and a hexadecapole harmonic with amplitude A8, wherein A8 is less than A4, and A4is greater than 0.1% of A2.
- 62. A linear ion trap for manipulating ions, the linear ion trap comprising the quadrupole electrode system as defined in claim 61.
- 63. The linear ion trap as defined in claim 62 wherein A4<4% of A2.
- 64. The linear ion trap as defined in claim 62 wherein A4 is greater than a dodecapole harmonic amplitude A6 of the substantially quadrupole field.
- 65. The linear ion trap as defined in claim 62 wherein
each rod in the first pair of rods is substantially parallel to the central axis and has a radius R1; and, each rod in the second pair of rods is substantially parallel to the central axis and has a radius R2 less than R1, R1/R2 being selected such that A4 is greater than 0.1% of A2.
- 66. The linear ion trap as defined in claim 65, wherein the voltage supply means comprises a first voltage source for supplying a first at least partially-AC voltage to the first pair of rods and a second voltage source for supplying a second at least partially-AC voltage to the second pair of rods; and, the voltage connection means comprises a first voltage connection means for connecting the first pair of rods to the first voltage source, and a second voltage connection means for connecting the second pair of rods to the second voltage source.
- 67. The linear ion trap as defined in claim 66, wherein the first at least partially-AC voltage is decreased by a voltage misbalance amount and the second at least partially-AC voltage is increased by the voltage misbalance amount, the voltage misbalance amount being selected to minimize an axis potential of the field.
- 68. The linear ion trap as defined in claim 67, wherein
each rod in the first pair of rods is a distance r1 from the central axis of the quadrupole electrode system; each rod in the second pair of rods is a distance r2 from the central axis of the quadrupole electrode system, r2 being unequal to r1; and, r1/r2 is selected to minimize an amplitude A0 of a constant potential of the field.
- 69. The linear ion trap as defined in claim 62 wherein A4<6% of A2.
- 70. The linear ion trap as defined in claim 65 further comprising an ion detector for detecting ions ejected from the quadrupole electrode system, the ion detector being located outside the quadrupole electrode system and adjacent to a rod in the second pair of rods.