DESCRIPTION OF THE DRAWING
FIG. 1 shows an illustrative prior art excavator;
FIG. 2 shows an illustrative prior art excavator adapted to use a satellite positioning system;
FIG. 3 shows another illustrative prior art excavator adapted to use a satellite positioning system;
FIG. 4 shows how the illustrative excavator of FIG. 3 may result in satellites in a satellite positioning system being out of view of satellite positioning system receive antennas;
FIG. 5 shows a satellite positioning system antenna in accordance with an embodiment of the present invention;
FIG. 6 shows how the antenna of FIG. 5 may be used in excavation operations in accordance with an embodiment of the present invention; and
FIG. 7 shows an illustrative block diagram of a satellite positioning receiving system suitable for use with an excavator in accordance with the principles of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 shows a boom, stick and bucket assembly of an illustrative excavator such as that described above. The boom and stick are also referred to herein as “load-bearing arms”. Specifically, referring to FIG. 3, boom 301 is connected to stick 302 which is, in turn, attached to bucket 303, as discussed above. However, unlike the previously discussed excavators that utilized a satellite positioning system to assist in the control of the machine, the antennas 305 and 306 are mounted on support structure 307 which is attached to stick 302 at illustrative point 308. One skilled in the art will recognize that antennas 305 and 306 may be positioned in many different configurations. For example, the antennas may each be mounted separately on the stick. Additionally, while the antennas are shown mounted longitudinally along the stick, one skilled in the art will recognize that other mounting configurations are possible.
In the illustrative excavator of FIG. 3, in order to conduct excavation operations with a high degree of accuracy, it is necessary to know the position of bucket 303 with a high degree of accuracy and, more particularly, to know the position (e.g., the height/depth) of cutting teeth/prongs 304. As discussed above, some prior methods required knowledge of the dimensions of several excavator portions as well as multiple angle sensors to determine the location of prongs 304. More recently, however, as described above and disclosed in the 11/108,013 application, the precise determination of the position of the prongs 304 of bucket 303 can be determined by mounting the antennas directly on the stick, as shown in the illustrative embodiment of FIG. 3.
As one skilled in the art will recognize, antennas such as antennas 305 and 306 typically receive signals from a plurality of positioning system satellites such as those used in GPS or GLONASS systems. In many typical examples, the more satellites from which such antennas receive signals, the greater the potential accuracy of the calculated position of the antennas. However, the present inventors have recognized that, by mounting antennas, such as antennas 305 and 306 to the stick 302, those antennas may be moved during earth moving operations to an orientation in which they cannot receive satellite signals from a satellite positioning system. FIG. 4 shows such an orientation. Specifically, referring to that figure, excavator 401 which is, illustratively, conducting earth-moving operations, has stick 407 with antennas 402 attached to the stick. One skilled in the art will recognize that antennas such as illustrative antennas 402 typically are only capable of receiving a signal from certain directions. When a satellite is in certain positions relative to the antennas (i.e., below the field of view of the antenna), then the signal will not be of sufficient strength as received at a receiver connected to the antennas to permit reception of the signal. As shown in FIG. 4, antennas 402 are positioned in a way such that signals from satellites 404 are received with sufficient strength for positioning calculations while, on the other hand, satellites 406 are positioned relative to the antennas in a way such that the signals cannot be received with such sufficient strength to support positioning system calculations. As one skilled in the art will recognize, depending upon the relative positioning of satellites 404 and 406 with respect to the antennas 402, the number and strength of signals received by antennas 402 may be insufficient to permit accurate positioning calculations.
Therefore, in accordance with an embodiment of the present invention, the present inventors have recognized that satellite positioning system antennas, such as antennas 402 in FIG. 4, can be attached to the stick or other component of an earth moving machine to allow a greater number of satellites remain in view of the antennas, even when the position of the equipment upon which the antennas are mounted changes. More particularly, in accordance with a particular illustrative embodiment, antennas such as antennas 402 can be can be attached in a way such that the antennas are permitted to change their three-dimensional orientation with respect to the stick of the earthmoving machine. In this way, when the stick of the earthmoving machine moves, the antennas can remain positioned so that, for example, signals from all of satellites 404 and 406 in FIG. 4 are received with adequate strength to permit accurate positioning calculations.
FIG. 5 shows one illustrative embodiment of how an antenna housing, such as antenna housing 501 can be mounted to permit a change in orientation of the housing as the surface it is mounted on moves, as discussed above. Referring to that figure, antenna housing 501 is a housing containing, for example, a receiving antenna element of a positioning system antenna. Housing 501 is mounted in a gimbal structure consisting of support structure 503 and gimbal ring 502. Support structure 503 is, for example, mounted to surface 504 which is, illustratively, a surface of the stick of an earthmoving machine, such as stick 407 of excavator 401 of FIG. 4. Antenna housing 501 is illustratively mounted to gimbal ring 502 in a way such that the housing 501 can rotate in directions 511 about axis 512. Gimbal ring 502, in turn, is mounted to support structure 503 in a way such that the gimbal ring can rotate in directions 510 about axis 513. Accordingly, as one skilled in the art will recognize, when surface 504 moves in directions 508 and 509, as well as in the y-direction in FIG. 5, gravitational force in direction 514 acting on the antenna housing will cause the gimbal ring 502 and antenna housing 501 to rotate about axes 512 and 513 in a way such that the antenna housing will remain substantially horizontal, i.e., parallel with the x-z plane. One skilled in the art will recognize that the antenna of FIG. 5 is merely illustrative and that other variations are possible. For example, while the gimbaled antenna 501 of FIG. 5 is capable of maintaining the antenna in a horizontal orientation with respect to multiple axes (i.e., the x and z axes in FIG. 5), one skilled in the art will recognize that such a complex structure may not be necessary. More particularly, referring once again to FIG. 3, an antenna mounted to a stick of an excavator may experience a large range of motion in directions 309 and 310. However, the antennas will not typically experience large ranges of motion in other directions (e.g., a direction perpendicular to directions 309 and 310). Therefore, one skilled in the art will recognize that it may be desirable to mount antenna 501 of FIG. 5 to the stick in a way such that it is only capable of rotating to compensate for the movement in directions 309 and 310. While such a structure will not be able to fully compensate for the full range of motion of the excavator, such an arrangement would be satisfactory in many implementations.
FIG. 6 shows one illustrative embodiment of how the gimbaled antenna structure of FIG. 5 can be used with the excavator of FIG. 3. Referring to FIG. 6, as described above in association with FIG. 3, antennas 601 and 602 are once again mounted on stick 613 which is, in turn, attached to boom 612. However, in the embodiment of FIG. 6, instead of the antennas being mounted in a fixed position, which causes the aforementioned potential loss of signal from positioning satellites, antennas 601 and 602 are mounted using the illustrative gimbal structure as described above in association with FIG. 5. Thus, for example, when stick 613 moves in direction 605, the antenna housings of antennas 601 and 602 remain oriented in horizontal positions 603 and 604 with respect to surface 611. Similarly, when the stick is moved in direction 606, the antenna housings will once again remain oriented in horizontal positions 603 and 604. Thus, illustratively, during both types of operations (i.e., when stick 613 is moved in direction 605 or in direction 606), both signals 609 and 610 from satellites 607 and 608, respectively, will continue to be received by antennas 601 and 602.
FIG. 7 is a block diagram showing one illustrative embodiment of a satellite positioning system that may be used with the gimbaled positioning system antennas, as described above. Specifically, as discussed above, a plurality of satellite positioning system antennas, such as GPS positioning antennas 701 and 702, are positioned on the stick of an excavator, such as stick 104 in FIG. 1. Each of these antennas is connected to a corresponding receiver 703 and 704 which determine the precise position of each antenna 701 and 702. The position of each antenna may be more accurately obtained in the illustrative implementation of FIG. 7 by incorporating a correction signal obtained from a base station transmitter. As discussed above, the use of such a correction signal is typically referred to as “differential” positioning or as “real time kinematic” correction of positioning. The correction signal transmitted by the base station is received by a radio receiver 706 via antenna 705 and is used in the calculations of the positioning receivers 703 and 704 to obtain more accurate positions of antennas 701 and 702. Inclinometers/angle sensors 707 and 708 are used, as described illustratively above, to measure both the scoop of the bucket as well as the slope of the body of the excavator. These calculations are made and used in illustrative graphics computer 709 that is, for example, used by the excavator operator in controlling the excavation operations. Graphics computer 709 may be any suitable computer adapted to compute and/or display the position of the prongs and/or the bucket. Computer 709 may have, illustratively, a processor 710 (or multiple processors) which controls the overall operation of the computer 709. Such operation is defined by computer program instructions stored in a memory 711 and executed by processor 710. The memory 711 may be any type of computer readable medium, including without limitation electronic, magnetic, or optical media. Further, while one memory unit 711 is shown in FIG. 7, it is to be understood that memory unit 711 could comprise multiple memory units, with such memory units comprising any type of memory. Computer 709 also comprises interface 712 which provides for the transmission of antenna positional data associated with antennas 701 and 702 from GPS receivers 703 and 704 to computer 709. Computer 709 also illustratively comprises interface 715 adapted to receive slope and/or inclination data associated with the earthmoving machine/excavator or a component thereof. Although shown separately in FIG. 7, one skilled in the art will recognize that interface 712 may be the same interface as interface 715. Additionally, computer 709 also illustratively comprises one or more input/output devices, represented in FIG. 7 as I/O 713, for allowing interaction, for example, with an excavator operator or technician. Finally, computer 709 also illustratively comprises a storage medium, such as a computer hard disk drive 714 for storing, for example, data and computer programs adapted for use in accordance with the principles of the present invention as described hereinabove. One skilled in the art will recognize that computer 709 is merely illustrative in nature and that various hardware and software components may be adapted for equally advantageous use in a computer in accordance with the principles of the present invention.
The foregoing Detailed Description is to be understood as being in every respect illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is not to be determined from the Detailed Description, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. It is to be understood that the embodiments shown and described herein are only illustrative of the principles of the present invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention. For example, while the above described embodiments involve an excavator, one skilled in the art will recognize that the principles described therein are equally applicable to other machines such as, for example, a backhoe. Typically backhoes differ from excavators in that the booms of backhoes are mounted in a way such that the boom can rotate about a pivot point relative to the body of the machines. Thus, while the body of the machine stays in one position, the boom rotates to move the bucket or other tool. The body and boom of excavators, on the other hand, are typically connected in a fixed manner such that the body and boom always have the same heading. In order to change the direction of the bucket, it is necessary to rotate the entire body of the excavator about a base. One skilled in the art will fully appreciate how the above described aspects of the embodiments of the present invention may be modified for use with such backhoes and other vehicles, such as dozers.