Information
-
Patent Grant
-
4420584
-
Patent Number
4,420,584
-
Date Filed
Wednesday, April 29, 198143 years ago
-
Date Issued
Tuesday, December 13, 198341 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Harsh; Gene
- Pope; Lawrence S.
- Preis; Aron
-
CPC
-
US Classifications
Field of Search
US
- 260 37 PC
- 260 4218
- 260 4214
- 525 146
- 525 176
- 525 148
- 524 611
- 524 502
-
International Classifications
-
Abstract
A glass fiber reinforced polycarbonate composition having an improved level of impact strength and decreased notch sensitivity, comprising an aromatic polycarbonate, glass fibers and a polyanhydride resin which is a copolymer of .alpha.-olefin and maleic anhydride is provided.
Description
FIELD OF THE INVENTION
This invention relates to polycarbonates and more particularly to glass-filled aromatic polycarbonates containing polyanhydride resin.
BACKGROUND OF THE INVENTION
Polycarbonates derived from reactions involving organic dihydroxy compounds and carbonic acid derivatives have found extensive commercial application because of their excellent mechanical and physical properties. These thermoplastic polymers are particularly suited for the manufacture of molded products where impact strength, rigidity, toughness, thermal stability, dimensional stability as well as excellent electrical properties are required.
In comparison with non-reinforced polycarbonates, glass fiber reinforced polycarbonates have both substantially increased flexural strength and stiffness and a substantially increased E-modulus, but have a decreased impact strength, notched impact strength and elongation at break. This decline in impact and other physical properties is thought to be attributable to the formation of stress concentrations in the vicinity of the individual glass fibers causing propagation of cracks in the molded articles. Improved properties of glass reinforced polycarbonate composites have been reported in U.S. Pat. Nos. 4,056,504; 4,147,707; 4,097,435 and 4,048,133 and in PCT/US79/00371. Polyanhydrides are reported as additives to molding compositions in U.S. Pat. No. 3,586,659 and as an ingredient of a cross-linked polyester in U.S. Pat. No. 3,732,337.
In accordance with the present invention, glass-fiber reinforced aromatic polycarbonates are provided featuring both an improved impact strength and a greater elongation at break.
SUMMARY OF THE INVENTION
A glass fiber reinforced aromatic polycarbonate composition having an improved level of impact strength and elongation at break, comprising an aromatic polycarbonate resin, glass fibers and a polyanhydride resin which is a copolymer of .alpha.-olefin and maleic acid anhydride is provided.
DETAILED DESCRIPTION OF THE INVENTION
The polycarbonate resins useful in the practice of the invention are homopolycarbonates, copolycarbonates and terpolycarbonates or mixtures thereof. The polycarbonates generally have molecular weights of 10,000-200,000 (average molecular weight), preferably 20,000-80,000. They may be prepared, for example, by the known diphasic interface process from phosgene and bisphenols by polycondensation (see German OS Nos. 2,063,050; 2,063,052; 1,570,703; 2,211,956; 2,211,957 and 2,248,817 and French Pat. No. 1,561,518, monograph, "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York, 1964", all incorporated herein by reference).
The aromatic polycarbonates may be based on the following bisphenols: hydroquinone, resorcinol, dihydroxy diphenyls, bis-(hydroxyphenyl)-alkanes, bis-(hydroxyphenyl)-cycloalkanes, bis-(hydroxyphenyl)-sulphides, bis-(hydroxyphenyl)-ethers, bis-(hydroxyphenyl)-ketones, bis-(hydroxyphenyl)-sulphoxides, bis-(hydroxyphenyl)-sulphones and .alpha.,.alpha.'-bis-(hydroxyphenyl)-diisopropyl benzenes, as well as the corresponding compounds substituted in the nucleus. These and other suitable aromatic dihydroxy compounds have been described in U.S. Pat. Nos. 3,028,365; 2,999,835; 3,148,172; 3,271,368; 2,991,273; 3,271,367; 3,780,078; 3,014,891 and 2,999,846 and in German OS Nos. 1,570,703; 2,063,050 and 2,063,052 and in French Pat. No. 1,561,518, all incorporated herein by reference.
Preferred aromatic polycarbonates are those in which 5-100 mol % of the structural units correspond to formula (1): ##STR1## wherein R.sub.1, R.sub.2, R.sub.3 and R.sub.4 .dbd.C.sub.1 -C.sub.10 alkyl, Cl, Br, phenyl and H, but not more than 3 of the groups R.sub.1, R.sub.2, R.sub.3 and R.sub.4 may be H; X=a single bond, --O--, --CO--, --SO.sub.2 --C.sub.1 -C.sub.10 alkylene, C.sub.1 -C.sub.10 alkylidene, C.sub.5 -C.sub.15 cycloalkylene, C.sub.5 -C.sub.15 cycloalkylidene, C.sub.7 -C.sub.20 cycloalkyl alkylene, C.sub.6 -C.sub.20 cycloalkyl alkylidene or ##STR2## wherein Z=C.sub.5 -C.sub.20 alkylene, C.sub.5 -C.sub.20 alkylidene, C.sub.5 -C.sub.15 cycloalkylene, C.sub.5 -C.sub.15 cycloalkylidene, C.sub.7 -C.sub.20 cycloalkyl alkylene or C.sub.6 -C.sub.20 cycloalkyl alkylidene.
Aromatic polycarbonates containing 5-30 mol % of structural units of formula (1) and/or (2) as well as those containing 50-100 mol % of these structural units are particularly preferred.
Preferred structural units of formula (1) are those of formula (3): ##STR3## wherein X is as defined above.
The structural units of formula (3) may be based on the following bisphenols, for example: bis-(3,5-dimethyl-4-hydroxyphenyl); bis-(3,5-dimethyl-4-hydroxyphenyl)-ether; bis-(3,5-dimethyl-4-hydroxyphenyl)-carbonyl; bis-(3,5-dimethyl-4-hydroxyphenyl)-sulphone; bis-(3,5-dimethyl-4-hydroxyphenyl)-methane; 1,1-bis-(3,5-dimethyl-4-hydroxyphenyl)-ethane; 1,1-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane; 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-butane; 2,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methyl butane; 2,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-butane; 3,3-bis-(3,5-dimethyl-4-hydroxyphenyl)-pentane; 3,3-bis-(3,5-dimethyl-4-hydroxyphenyl)-hexane; 4,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-heptane; 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-octane; 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-nonane; 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-decane; 1,1-bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexane; 1,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexane; .alpha.,.alpha.'-bis-(3,5-dimethyl-4-hydroxyphenyl)-p-diisopropyl benzene; and .alpha.,.alpha.'-bis-(3,5-dimethyl-4-hydroxyphenyl)-m-diisopropyl benzene.
Those structural units of formulae (1) and (2) which are based on the following bisphenols are particularly preferred: bis-(3,5-dimethyl-4-hydroxyphenyl)-methane; 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane; 2,4-bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methyl butane; 1,1-bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexane; .alpha.,.alpha.'-bis-(3,5-dimethyl-4-hydroxyphenyl)-p-diisopropyl benzene; 2,2-bis-(3,5-dichloro-4-hydroxyphenyl)-propane; 2,2-bis-(3,5-dibromo-4-hydroxyphenyl)-propane; 1,1-bis-(4-hydroxyphenyl)-cyclohexane; .alpha.,.alpha.'-bis-(4-hydroxyphenyl)-m-diisopropyl benzene; .alpha.,.alpha.'-bis-(4-hydroxyphenyl)-p-diisopropyl benzene; 2,4-bis-(4-hydroxyphenyl)-2-methyl butane; 2,2-bis-(3-methyl-4-hydroxyphenyl)-propane; and 2,2-bis-(3-chloro-4-hydroxyphenyl)-propane.
In addition to containing structural units of formulae (1) and (2), the preferred polycarbonates preferably contain structural units of formula (4): ##STR4##
Polycarbonates based solely on the above-mentioned o,o,o',o'-tetramethyl-substituted bisphenols are particularly important; in particular, the homopolycarbonate based on 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane.
Also suitable for the preparation of the polycarbonates of the invention are dihydroxybenzenes of the structural formula: ##STR5## wherein R.sup.t and R.sup.s independently denote C.sub.1 -C.sub.10 alkyls, m is an integer of from 0 to 2, X is S, ##STR6## and n is either 0 or 1.
Among the resins suitable in the practice of the invention are included phenolphthalic-based polycarbonate, copolycarbonates and terpolycarbonates such as are described in U.S. Pat. Nos. 3,036,036 and 4,210,741, both incorporated by reference herein.
In order to obtain special properties, mixtures of various di-(monohydroxyaryl)-alkanes can also be used; thus mixed polycarbonate resins are obtained. By far the most useful polycarbonate resins are those based on 4,4'-dihydroxydiaryl methanes and more particularly bisphenol A [2,2-(4,4'-dihydroxydiphenyl)-propane]. Thus, when flame retardant characteristics are to be imparted to the basic polycarbonate resin, a mixture of bisphenol A and tetrabromobisphenol A [2,2-(3,5,3',5'-tetrabromo-4,4'-dihydroxydiphenyl)-propane] is utilized when reacting with phosgene or a like carbonic acid derivative. Other halogenated phenolic diols are any halogen containing bisphenols such as 2,2'-(3,3,3',5'-tetrachloro-4,4'-dihydroxydiphenol)-propane; 2,2-(3,5,3',5'-tetrabromo-4,4'-dihydroxydiphenol)-propane; 2,2-(3,5-dichloro-4,4'-dihydroxydiphenol)-propane; 2,2-(3,3'-dichloro-5,5'-dimethyl-4,4'-dihydroxyphenol)-propane; 2,2-(3,3'-dibromo-4,4'-dihydroxydiphenol)-propane and the like. These halogenated diols are incorporated into the polycarbonates at levels sufficient to impart flame retardant characteristics. For example, a halogen content of about 3 to 10% by weight is normally sufficient.
The polycarbonates of the invention may also be branched by incorporating small quantities of polyhydroxyl compounds in them by condensation, e.g., 0.05-2.0 mol % (based on the quantity of bisphenols used). Polycarbonates of this type have been described, for example, in German OS No. 1,570,533; 2,116,974 and 2,113,347, British Patents 885,442 and 1,079,821 and U.S. Pat. No. 3,544,514. The following are some examples of polyhydroxyl compounds which may be used for this purpose: phloroglucinol; 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptane-2; 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptane; 1,3,5-tri-(4-hydroxyphenyl)-benzene; 1,1,1-tri-(4-hydroxyphenyl)-ethane; tri-(4-hydroxyphenyl)-phenylmethane; 2,2-bis-[4,4-(4,4'-dihydroxydiphenyl)-cyclohexyl]-propane; 2,4-bis-(4-hydroxyphenyl-4-isopropyl)-phenol; 2,6-bis-(2'-dihydroxy-5'-methylbenzyl)-4-methylphenol; 2,4-dihydroxybenzoic acid; 2-(4-hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propane and 1,4-bis-(4', 4"-dihydroxytriphenylmethyl)-benzene.
In addition to the polycondensation process mentioned above and which essentials are described below, other processes for the preparation of the polycarbonates of the invention are polycondensation in a homogeneous phase and transesterification. The suitable processes are disclosed in the incorporated herein by reference U.S. Pat. Nos. 3,028,365; 2,999,846; 3,248,414; 3,153,008; 3,215,668; 3,187,065; 2,064,974; 2,070,137; 2,991,273; and 2,000,835.
The preferred process is the interfacial polycondensation process.
According to the interfacial polycondensation process, copolycarbonate resins are obtained by reacting the aromatic dihydroxy compounds with an alkali metal hydroxide or alkaline earth metal oxide or hydroxide to form the salt of the hydroxy compounds. The salt mixture is present in an aqueous solution or suspension and is reacted with phosgene, carbonyl bromide or bischloroformic esters of the aromatic dihydroxy compounds. An organic solvent is provided in the reaction admixture which is a solvent for the polymer but not for the aromatic dihydroxy salts. Thus, chlorinated aliphatic hydrocarbons or chlorinated aromatic hydrocarbons are used as the organic solvent which dissolves the condensation product. In order to limit the molecular weight one may use monofunctional reactants such as monophenols, for example the propyl-, isopropyl- and butyl-phenols, especially p-tert-butyl-phenol and phenol itself. In order to accelerate the reaction, catalysts such as tertiary amines, quaternary ammonium, phosphonium or arsonium salts and the like may be used. The reaction temperature should be about -20.degree. to +150.degree. C., preferably 0.degree. to about 100.degree. C.
According to the polycondensation process in a homogeneous phase, the dissolved reaction components are polycondensed in an inert solvent in the presence of an equivalent amount of a tertiary amine base required for absorption of the generated HCl, such as, e.g., N,N-dimethyl-aniline; N,N-dimethyl-cyclohexylamine or, preferably, pyridine and the like. In still another process, a diaryl carbonate can be transesterified with the aromatic dihydroxy compounds to form the polycarbonate resin.
It is to be understood that it is possible to combine in the processes described above in a chemically meaningful way both the aromatic dihydroxy compounds and the monohydroxy compounds in the form of the alkali metal salts and/or bix-haloformic acid esters and the amount of phosgene or carbonyl bromide then still required in order to obtain high molecular products. Other methods of synthesis in forming the polycarbonates of the invention such as disclosed in U.S. Pat. No. 3,912,688, incorporated herein by reference, may be used.
Glass fibers which may be used to prepare the polycarbonate compositions, are for example, fibers of low-alkali, aluminumborosilicate glass having a maximum alkali metal oxide content of 2.0% by weight (E-glass), of diameter between 8-15.mu. length between 300 and 800.mu. (short glass fibers) or 2,000 to 12,000.mu. (chopped strands) as well as rovings. The glass fibers are present in the polycarbonate in from about 5 to 40% by weight, preferably, about 10 to 30% by weight, based on the weight of the total composition.
Further description of glass fibers suitable in the practice of the invention is to be found in "Harro Hagen, Glasfaserverstazkte Kunststoffe" (Glass-Fiber Reinforced Plastics), Springer-Verlag, Berlin, Guttingen, Heidelberg, 1961 and in U.S. Pat. No. 3,577,378, both incorporated herein by reference.
The polyanhydride resins suitable in the practice of the present invention are characterized by their structural formula: ##STR7## where R is a phenyl or an alkyl substituted phenyl radical or an alkyl radical preferably having more than 4 carbon atoms, and most preferably from about 12 to about 16 carbon atoms. In general, the carbon atoms of R may not be greater in number than 28, while n is an integer of from 1 to 200, and m is an integer of from 1 to 3. In the most preferred embodiment n is about 145 and m is 1. Essentially the polyanhydride resin is a copolymer of maleic anhydride and an .alpha.-olefin the preparation of which copolymer is described in U.S. Pat. No. 3,586,659 hereby incorporated by reference. Examples of olefin compounds or mixtures of olefins suitable for forming the polyanhydride component of the composition include: ethylene, 1-propane, 1-decene; 1-butene; 1-undecene; 1-isobutylene; 1-hexene; 1-dodecene; 1-pentene; 1-tridecene; 1-heptene; 1-octene; 1-tetradecene; 1-octadecene; 1-nonadecene; styrene; 1-nonene and mixtures thereof.
The copolymerization procedure may involve contacting the olefinic compound with the maleic anhydride in a suitable solvent in the presence of a catalyst. The molar ratio of the mono-.alpha.-olefin to maleic anhydride is desirably between about 1:1 and 3:1.
The preferred polyanhydride suitable in the practice of the invention is a copolymer of 1-octadecene and maleic anhydride of a 1:1 molar ratio is available from Gulf Oil Chemical Company under the trade name, PA-18. Typically, PA-18 is further characterized by its properties shown in the table below:
______________________________________Color/form White powderMolecular Weight 50,000Specific Gravity 0.97Melting point range 110-120Inherent viscosity.sup.(1) 0.10-0.13Viscosity @ 150.degree. C.: (cps) 20,000 @ 160.degree. C.: (cps) 8,000Anhydride equivalent, meg/g 3.10-3.25Neutralization equivalent, meg/g 4.83-5.53Anhydride content, wt. % 15-23Acid content, wt. % 5-10Volatiles, % <1Residual monomer <3Thermal Stability @ 250.degree. C. (wt. loss %) 1 @ 300.degree. C. (wt. loss %) 3 @ 350.degree. C. (wt. loss %) 10 @ 400.degree. C. (wt. loss %) 23______________________________________ .sup.(1) 5 gm/100 ml in methylisobutyl ketone @ 77.degree. F.
In practice of the invention glass-reinforced polycarbonate compositions containing 5 to 40% by weight, preferably 10 to 30% by weight, glass fibers may be modified by incorporation therein 0.1 to 10, preferably 0.5 to 5 and most preferably 0.8 to 3.75% by weight of the polyanhydride resin. Of particular interest is the embodiment where a sufficient amount of flame retarding agents are added to the composition to render its V-O rating at 1/16" in accordance with UL-94.
To prepare molding compositions according to the present invention, the individual components are mixed in known mixing devices, such as kneaders, single-screw extruders, twin-screw extruders, mills and the like.
The invention will be further illustrated, but is not intended to be limited, by the following examples.
EXAMPLES
EXAMPLE 1
Impact modified glass-fiber reinforced polycarbonate compositions were compounded using a single-screw extruder (2.75:1 screw; 60 rpm) at about 485.degree. F. The compositions were all based on Merlon M-39 polycarbonate resin (Mobay Chemical Corporation) and included 10% by weight glass fibers (Owens Corning 415BB, 3/16"). The effects of the incorporation of various polyanhydride resins, differing from each other in their respective .alpha.-olefin chains, on the impact performance and the tensile properties of the compositions were measured. All the compositions of this example were compounded to incorporate 1.25% by weight of polyanhydride.
______________________________________ Tensile.alpha.-Olefin Chain Impact Strength StrengthLength of the 1/8"-Izod (J/m) Elon-Polyanhydride un- Dart.sup.(b) Yield gationResin.sup.(a) notched notched Drop (J) MPa %______________________________________unmodified.sup.(c) 94 >2100 95 71 2 6 121 1320 86 66 510 165 1450 88 65 914 216 1910 94 61 1818 217 2250 92 59 15______________________________________ .sup.(a) Polyanhydride resins by Gulf Oil Chemical .sup.(b) 1" tup .sup.(c) Polycarbonate/10 wt. % glass fibers
EXAMPLE 2
Impact modified glass fiber reinforced polycarbonate compositions were compounded in accordance with the procedure described in Example 1. The compositions based on Merlon M-39 polycarbonate (Mobay Chemical Corporation) and all containing 10% by weight glass fibers, varied from each other in the amount of PA-18 (polyanhydride of .alpha.-octadecene) incorporated therein. The effects of the variations of the amount of PA-18 on the impact strength and tensile properties of the compositions were measured and are tabulated below.
______________________________________ Tensile Properties E-Impact Strength lon-1/8" Izod (J/m) Dart Yield Failure ga-PA-18 un- (J) Strength Strength tion(wt %) notched notched Drop MPa MPa (%)______________________________________0 94 >2100 95.4 -- 71 21.25 253 2200 87.1 59.5 47.6 172.5 247 1881 90.9 60.4 47.0 203.75 254 1781 55.9 59.2 46.9 205.0 219 1800 31.2 -- 60 210.0 141 630 <1 -- 52 2______________________________________
EXAMPLE 3
Impact modified, glass fiber reinforced flame resistant polycarbonate compositions were compounded according to the procedure described in Example 1 above. The compositions based on glass fiber reinforced flame resistant polycarbonate (Merlon 9510 Mobay Chemical Corporation) varied from each other in the amounts of PA-18 incorporated therein. The table below demonstrates the relations between the amount of PA-18 and the properties of the compositions.
______________________________________ Flamma- bility UL-94,Impact Strength HDT 1/16"Izod 1/8" (J/M) Dart at BurnAmount of un- Drop 264 psi TimePA-18, (%) notched notched (J) (.degree.C.) Class (Sec)______________________________________0 94 >2350 105 133 V-O 2.10.8 116 >2500 85 125 V-O 2.31.5 207 2100 -- 125 V-O 3.02.5 242 1900 -- 123 V-O 2.6______________________________________
EXAMPLE 4
The effect of increasing the level of added modifier on the impact performance of glass reinforced polycarbonate compositions of 20 wt. percent glass fibers content, was measured on specimens prepared as described above. Test results are shown in the table below.
______________________________________PA-18 IZOD IMPACT - 1/8" Dart Impact HDTConcn. Notch Unnotched 1" TUP 264 psi% J/m J/m J .degree.C.______________________________________0 158 800 41.5 1420.8 177 945 48 1401.5 184 870 40.5 136______________________________________
EXAMPLE 5
Similar to the compositions above, polycarbonates containing 30 percent by weight of glass fibers were prepared and their properties are reported below.
______________________________________ IZOD IMPACT - 1/8" Dart Impact HDTConcn. Notch Unnotch 1" TUP 264 psi% J/m J/m J .degree.C.______________________________________0 125 830 2 1420.8 107 205 12 1421.5 141 290 18 140______________________________________
The molding conditions employed upon the preparation of the glass-reinforced polycarbonates are shown in the following table:
__________________________________________________________________________TEMPERATUREBarrel INJECTION Screw MoldPA-18 1 2 Nozzle Cycle Time Press. Speed Temp. Inj. Rate% .degree.F. .degree.F. .degree.F. Sec. Sec. psi RPM .degree.F. Setting__________________________________________________________________________0 570 570 510 35 22 900 100 200 fast1-3 525 525 505 22-35 12-22 900 100 225 fast4-5 500 500 465 35 22 750 90 210 fast10 440 440 420 35 22 500 100 200 fast__________________________________________________________________________
As can be readily observed upon analyzing the data, the notch sensitivity of glass fiber reinforced polycarbonates decreased upon the incorporation therein of the polyanhydride resin. It is further noted that the desensitization to notch effects is directly proportional to the .alpha.-olefin chain length of the added polyanhydride.
Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be limited by the claims.
Claims
- 1. A polycarbonate molding composition comprising
- (a) an aromatic polycarbonate resin,
- (b) about 5 to 40% by weight, based on the total composition of glass fibers and
- (c) about 0.1 to 10% by weight, based on the total composition of a polyanhydride resin characterized by the structural formula: ##STR8## wherein R is a phenyl or an alkyl substituted phenyl radical or an alkyl radical having from 4 to 16 carbon atoms, n is an integer of from 1 to 200 and m is from 1 to 3.
- 2. A polycarbonate molding composition comprising
- (a) an aromatic polycarbonate resin,
- (b) about 5 to 40% by weight, based on the total composition of glass fibers and
- (c) about 0.8 to 3.75% by weight, based on the total composition of a polyanhydride resin characterized by the structural formula: ##STR9## wherein R is a phenyl or an alkyl substituted phenyl radical or an alkyl radical having from 4 to 16 carbon atoms, n is an integer of from 1 to 200 and m is from 1 to 3.
- 3. The molding composition of claim 1 wherein said polyanhydride resin is present in an amount of between 0.5 and 5% by weight, relative to the weight of said composition.
- 4. The molding composition of claim 1 or 2 wherein said glass fibers are present in an amount of between 10 and 30% by weight relative to weight of said composition.
- 5. The molding composition of claim 1 or 2 wherein said polyanhydride is a copolymer of .alpha.-octadecene and maleic acid anhydride having a molar ratio of 1:1.
- 6. The molding composition of claim 1 or 2 wherein said polycarbonate is based on bisphenol-A.
- 7. The molding composition of claim 1 or 2 further comprising flame retarding agents.
- 8. A process for desensitizing the notch effects of glass fiber reinforced aromatic polycarbonate compositions containing 5 to 40 percent by weight glass fibers comprising blending therein about 0.1 to 10% by weight, relative to the weight of the composition of a polyanhydride characterized by the structural formula: ##STR10## wherein R is a phenyl radical or an alkyl radical having from 4 to 16 carbon atoms, n is an integer of from 1 to 200, and m is an integer from 1 to 3.
- 9. A polycarbonate molding composition comprising
- (a) an aromatic polycarbonate resin,
- (b) about 5 to 40% by weight, based on the total composition of glass fibers,
- (c) about 0.1 to 10% by weight, based on the total composition of a polyanhydride resin characterized by the structural formula: ##STR11## wherein R is a phenyl or an alkyl substituted phenyl radical or an alkyl radical having from 4 to 16 carbon atoms, n is an integer of from 1 to 200 and m is from 1 to 3,
- (d) a sufficient amount of flame-retarding agents to render this composition V-O rating at 1/16" according to UL-94.
- 10. A polycarbonate molding composition comprising
- (a) an aromatic polycarbonate resin,
- (b) about 5 to 40% by weight, based on the total composition of glass fibers and
- (c) about 0.1 to 10% by weight, based on the total composition of a polyanhydride resin characterized by the structural formula: ##STR12## wherein R is an alkyl radical having from 4 to 16 carbon atoms, n is an integer of from 1 to 200 and m is from 1 to 3.
- 11. The composition of claim 10 wherein said glass fibers are present in an amount of between 10 to 30% by weight relative to weight of said composition.
- 12. The composition of claim 10 wherein said polyanhydride resin is present in an amount of between 0.5 and 5% by weight, relative to the weight of said composition.
- 13. The composition of claim 10 or 11 or 12 wherein said polyanhydride is a copolymer of .alpha.-octadecene and maleic acid anhydride having a molar ratio of 1:1.
- 14. A polycarbonate molding composition comprising
- (a) an aromatic polycarbonate resin,
- (b) about 5 to 40% by weight, based on the total composition of glass fibers,
- (c) about 0.1 to 10% by weight, based on the total composition of a polyanhydride resin characterized by the structural formula: ##STR13## wherein R is an alkyl radical having from 4 to 16 carbon atoms, n is an integer of from 1 to 200 and m is from 1 to 3,
- (d) a sufficient amount of flame-retarding agent to render this composition V-O rating at 1/16" according to UL-94.
- 15. A process for desensitizing the notch effects of glass fibers reinforced aromatic polycarbonate compositions containing 5 to 40 percent by weight glass fibers comprising blending therein about 0.8 to 3.75% by weight, relative to the weight of the composition of a polyanhydride characterized by the structural formula: ##STR14## wherein R is a phenyl radical or an alkyl radical having from 4 to 16 carbon atoms, n is an integer of from 1 to 200, and m is an integer from 1 to 3.
US Referenced Citations (14)
Foreign Referenced Citations (1)
Number |
Date |
Country |
WO8000083 |
Jan 1980 |
WOX |