The present invention relates generally to semiconductor circuits and methods, and more particularly to a glitch detection circuit.
Audio microphones are commonly used in a variety of consumer applications such as cellular telephones, digital audio recorders, personal computers and teleconferencing systems. In particular, lower-cost electret condenser microphones (ECM) are used in mass produced cost sensitive applications. An ECM microphone typically includes a film of electret material that is mounted in a small package having a sound port and electrical output terminals. The electret material is adhered to a diaphragm or makes up the diaphragm itself. Most ECM microphones also include a preamplifier that can be interfaced to an audio front-end amplifier within a target application such as a cell phone. The output of the front-end amplifier can be coupled to further analog circuitry or to an A/D converter for digital processing. Because an ECM microphone is made out of discrete parts, the manufacturing process involves multiple steps within a complex manufacturing process. Consequently, a high yielding, low-cost ECM microphone that produces a high level of sound quality is difficult to achieve.
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by embodiments of the invention.
In accordance with an embodiment of the present invention, a method for detecting a glitch comprises increasing a bias voltage of a first capacitor, sampling an input signal of a first plate of the first capacitor with a time period, mixing the input signal with the sampled input signal, and comparing the mixed signal with a reference signal.
In accordance with an embodiment of the present invention, a method for calibrating a microphone comprises operating the microphone in a normal operation mode based on a first bias voltage, and activating a calibration mode. The method further comprises operating the calibration mode, wherein the calibration mode comprises increasing a bias voltage of a first capacitor, sampling an input signal of a first plate of the first capacitor with a time period, calculating an output signal from the sampled input signal and the input signal, and comparing the calculated output signal with a reference signal.
In accordance with an embodiment of the present invention, a circuit comprises an input terminal configured to receive an input signal, a first summer configured to calculate an output signal, the first summer configured to receive the input signal and a sampled input signal, the sampled input signal being based on the input signal, a comparator configured to compare the calculated output signal with a reference signal, and an output terminal configured to provide the compared signal.
In accordance with an embodiment of the present invention, a circuit comprises a MEMS system, a glitch detection circuit, and a switch, the switch electrically connected to the MEMS system and to the glitch detection circuit.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
The present invention will be described with respect to embodiments in a specific context, namely a microphone. The invention may also be applied, however, to other types of systems such as audio systems, communication systems, or sensor systems.
In a condenser microphone or capacitor microphone, a diaphragm or membrane and a backplate form the electrodes of a capacitor. The diaphragm responds to sound pressure levels and produces electrical signals by changing the capacitance of the capacitor.
The capacitance of the microphone is a function of the applied bias voltage. At zero bias voltage the microphone exhibits a small capacitance and at higher bias voltages the microphone exhibits increased capacitances. The capacitance of the microphone as a function of the bias voltage is not linear. Especially at distances close to zero the capacity increases suddenly.
A sensitivity of a microphone is the electrical output for a certain sound pressure input (amplitude of acoustic signals). If two microphones are subject to the same sound pressure level and one has a higher output voltage (stronger signal amplitude) than the other, the microphone with the higher output voltage is considered having a higher sensitivity.
The sensitivity of the microphone may also be affected by other parameters such as size and strength of the diaphragm, the air gap distance, and other factors.
In one embodiment a glitch in a microphone system is detected using a glitch detection circuit. The glitch detection circuit may sample an input signal and may add, subtract or compare the sampled input signal with an instantaneous or momentary input signal. The added, subtracted or compared signal is then compared to a reference signal.
In one embodiment the glitch detection circuit is integrated in the microphone system. In one embodiment, the glitch detection circuit is connected to the microphone system via a switch. In one embodiment the switch is switched ON when the microphone system is in a calibration mode, otherwise the switch is switched OFF. In one embodiment the microphone system the normal operation mode of the microphone system is deactivated when the microphone system is in a calibration mode.
The microphone system 101 comprises a microphone or MEMS device 111, a charge pump 112, and an amplifier 113. The microphone 111 is shown as voltage source 114 and capacitors C0 and Cp. The charge pump 112 is shown as voltage source Vbias and resistor Rin. In one embodiment, the amplifier 113 is shown as buffer 116, resistor Rbias 115, voltage source 117 and feedback gain arrangement C1 and C2. In one embodiment the feedback gain is larger than 1. For example, the gain can be calculated as gain=1+C1/C2. The buffer 116 may be a voltage buffer or a boosted gain source follower, for example. In other embodiments the amplifier 113 may comprise different circuit arrangements.
The microphone system 101 may be arranged on a single chip. Alternatively, the microphone system 101 may be arranged on two or more chips. For example, the microphone 111 is arranged on a first chip and the amplifier 113, the charge pump 112 and the glitch detection circuit 102 are arranged on a second chip.
In one embodiment the glitch detection circuit 102 comprises a first summer 121 and a second summer 122. The first summer 121 is configured to calculate an output signal. For example, the first summer 121 is configured to receive an input signal at an input and a sampled input signal at the inverting input. The first summer 121 subtracts the sampled input signal from the input signal. The input signal may be an instantaneous or momentary signal. The input signal may be a voltage Vin, and the sampled input signal may be a sampled voltage Vstrobe. Depending on the configuration, the first summer 121 can also add the input signal to the sampled input signal or subtract the input signal from the sampled input signal.
The second summer 122 is configured to calculate a reference signal. For example, the second summer 122 is configured to receive a first reference signal at the input and a second reference signal at an inverting input. The second summer 122 subtracts the second reference signal from the first reference signal. Depending on the configuration, the second summer 122 can also add the first reference signal to the second reference signal or subtract the first reference signal from the second reference signal.
The first summer 121 is electrically connected to a comparator 123 and the second summer 122 is electrically connected to the comparator 123. The comparator 123 compares the calculated output signal from the first summer 121 with the reference signal from the second summer 122.
The comparator 123 compares the calculated output signal and the reference signal with a time period Tcomp (or a related clock rate fcomp), wherein the time period Tcomp is a time in the range of about 1 μs to about 5 μs. The comparator 123 is electrically connected to an output terminal 124. The output terminal 124 is configured to provide an output signal or glitch detection signal.
The glitch detection circuit 102 further comprises an input terminal 120 which is electrically connected to the first summer 121. The input terminal 120 is electrically connected to the first summer 121 via line 131 and via line 132. Line 132 comprises a first buffer 141, a switch 142 and a second buffer 143. A capacitor Cs is connected to line 132. An advantage of the buffers is that the charge in the sample capacitor Cs is unchanged and that the output impedance for the summer is low and not high.
The input signal is sampled over line 132 and stored in the capacitor Cs. The input signal is sampled with a time period Tstrobe (or related frequency fstrobe) by the switch 142. The time period Tstrobe may be shorter than a time period of a glitch (Teach). The time period Tstrobe may be a time between about 10 μs and about 30 μs. The first reference signal may be a first reference voltage Vref-p and the second reference signal may be a second reference voltage Vref-n. The second summer 122 may subtract the second reference voltage Vref-n from the first reference voltage Vref-p to provide the reference voltage Vref. An advantage of a differential structure may be that it is insensitive against disturbances coming from positive or negative supply lines. In an alternative embodiment, the reference signal may be a single reference signal. If the reference signal is a single reference signal, the second summer 122 can be omitted.
In one embodiment the switch 103 is connected to ground via the resistor Rcal 104. The resistor Rcal 104 may have a resistance between about 100 kΩ and about 10 MΩ. The resistor Rcal 104 may have a specific resistance value or resistance range. The resistor Rcal 104 may have substantially lower impedance than the resistor Rbias 115. In one example, the resistor Rbias 115 has a resistance in the GΩ range, e.g., 400 GΩ, while the resistor Rcal 104 may have a resistance in the MΩ range, e.g. 1 MΩ. The resistor Rcal 104 may have low impedance in order to carry out the calibration of the microphone 101 within a reasonable time frame.
In one embodiment, the charge pump 112 increases the bias voltage Vbias between the membrane and the backplate of the microphone or MEMS device 111. The input from the backplate to the glitch detection circuit 102 is connected to ground and bypass the high input impedance of the amplifier 113. Alternatively, an implementation with other bias voltages is also possible. The input voltage Vin is sampled with the time period Tstrobe and stored at the capacitor Cs along line 132. The continuous input voltage Vin is subtracted from the sampled input voltage Vstrobe. The difference is compared with a reference voltage Vref in a SC-comparator using the frequency fcomp. If the difference between the input voltage Vin and the sampled input voltage Vstrobe is bigger than the reference voltage Vref, a glitch occurred.
Graph 270 in
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.
Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This is a continuation application of U.S. application Ser. No. 13/299,098, entitled “Glitch Detection and Method for Detecting a Glitch” which was filed on Nov. 17, 2011 and is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3927260 | Amundson et al. | Dec 1975 | A |
5119321 | Burton, Jr. et al. | Jun 1992 | A |
5563952 | Mercer | Oct 1996 | A |
9143876 | Kropfitsch | Sep 2015 | B2 |
20020188216 | Kayyali et al. | Dec 2002 | A1 |
20030201777 | Gogoi et al. | Oct 2003 | A1 |
20070013571 | Fujimoto | Jan 2007 | A1 |
20080061843 | Yanci | Mar 2008 | A1 |
20100034031 | Kang et al. | Feb 2010 | A1 |
20100164068 | Pennock | Jul 2010 | A1 |
20100219839 | Steele et al. | Sep 2010 | A1 |
20100310096 | Josefsson et al. | Dec 2010 | A1 |
20110037517 | Teplechuk | Feb 2011 | A1 |
20110110536 | Hovesten et al. | May 2011 | A1 |
20110142261 | Josefsson | Jun 2011 | A1 |
20120250910 | Shajaan et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
102137315 | Jul 2011 | CN |
102004030380 | Jan 2006 | DE |
Number | Date | Country | |
---|---|---|---|
20150334499 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13299098 | Nov 2011 | US |
Child | 14811536 | US |